HDF Viability and Proliferation in Vitro

YYYYYYY 11 Feb 2009

1

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

Purpose

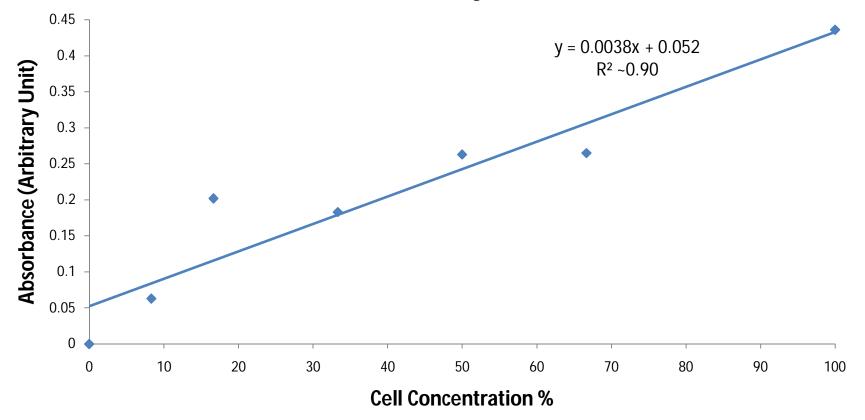
MTT Assay Test

To calculate the relationship between cell concentration and MTT dye absorbance (at 570 nm)

Anti-PCNA Staining

To observe the effects of different media conditions on the rate of cell division

<u>Cell Proliferation Assay</u>


To observe cell proliferation in cultures incubated in media with varying serum concentrations (1%, 5%, 10%)

Measuring MTT Dye Absorbance at Different Cell Concentrations

- Seeded two sets of human dermal fibroblast (HDF) solutions at 7 different concentrations ranging from 0 to 50,000 cells/mL and incubated for 48 hours.
- Measured cell concentration for one set using Coulter Counter.
- Treated second set with MTT dye and measured absorbance at 570 nm using spectrophotometer.
- Graphically derived relationship between absorbance levels and cell concentration.

Linear Relationship Between Concentration of Viable Cells and Absorbance

MTT Viability Test

4

Absorbance Increases Linearly with Cell Concentration

- Wavelength setting of spectrophotometer (570nm) corresponds to absorbance of metabolized MTT dye, which is purple.
- Therefore, measured absorbance proportional to viable (metabolizing) cell concentration.

Observing the Number of Dividing Cells Using Anti-PCNA Staining

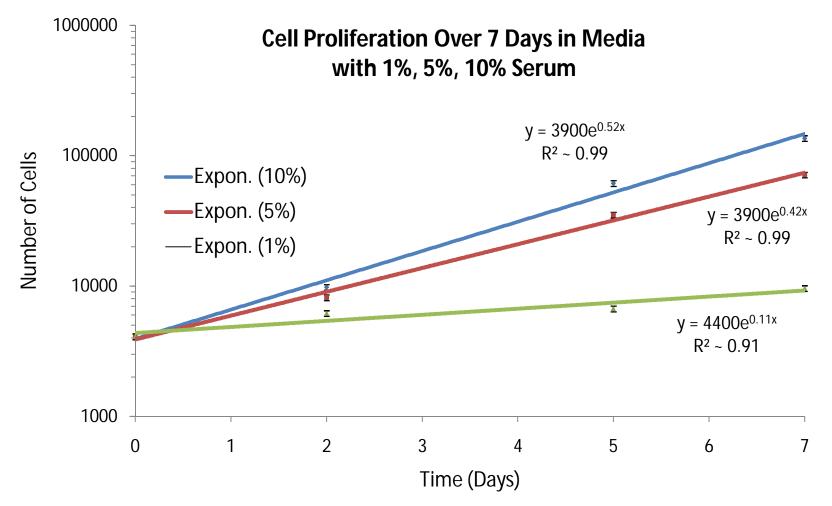
- Seeded HDF cells (20,000 cells/mL) in DMEM with 1%, 5%, and 10% serum; incubated cells for 48 hours.
- Treated cells with primary antibody that reacts with PCNA protein and then with Horseradish Peroxidase (HRP) secondary antibody, which reacts with staining agents Aminoethyl carbazole (AEC) and hematoxylin.
 - AEC stains nucleus of dividing cells red
 - Hematoxylin stains nuclei of all cells blue
- Used light microscope to observe and estimate percentage of cells in S-phase (stained red) under each media condition.

Cells Undergoing Division Indicated by Anti-PCNA Staining

% Serum in	Fraction of Red
Media	Stained Nuclei
10	67 %
5	40%
1	15%

- Red stain marked nuclei of cells in S-phase and actively growing.
- Greater percentage of cells in media with higher serum concentration more frequently exhibited red stain.

* Data from XXXXXX χ_{7}


Increased Cell Viability at Higher Serum Concentrations

- Higher concentration of serum provides increased availability of nutrients required for cell growth and division.
- Consequently, higher concentrations of serum promote a greater number of cells to actively undergo mitosis.
- This also results in a greater number of cells in Sphase at a given time and is reflected in the Anti-PCNA staining outcome.

Measuring Proliferation of Cells Incubated in Varying Serum Content

- Seeded HDF cells onto TC-treated plate in DMEM with 1% serum and incubated for 4 hours.
- Measured cell concentration of HDF cell suspension using Coulter Counter (Day 0).
- Replaced media of wells with 3 separate conditions of media: DMEM with 1%, 5%, 10 % Serum (FBS).
- At each time benchmark (Day 2, Day 5, Day 7), treated wells with trypsin and measured cell concentration for each media condition using Coulter Counter.

HDF Cells Exhibit Exponential Growth Rate

HDF Cells Proliferate Exponentially at Varying Rates

- Cells proliferate at a greater rate in media with higher serum (FBS) concentration.
- The differences in rate were observed graphically and further evaluated by calculating by doubling time for each condition.

Concentration of FBS	Doubling Time (days)
10%	1.7 days
5%	2 days
1%	4.6 days

Anti-PCNA and Proliferation Assay Reveal Common Trend for FBS

- Anti-PCNA staining qualitatively demonstrated that higher percentage of FBS in media results in larger fraction of cells in S-phase.
- Cell proliferation assay quantitatively revealed that higher percentage of FBS in media resulted in greater number of cells.
- Understanding the connection of S-phase to the growth cycle of cell, it can be deduced that Anti-PCNA staining and the cell proliferation assay demonstrate similar conclusions.

Summary: HDF Viability and Proliferation

- Cell concentration and absorption of metabolized MTT dye share a linear relationship.
- Among the observed media conditions (DMEM with 1%, 5%,10% FBS), higher serum concentration yielded a greater percentage of cells in S-phase and greater proliferation rate of cells overall.