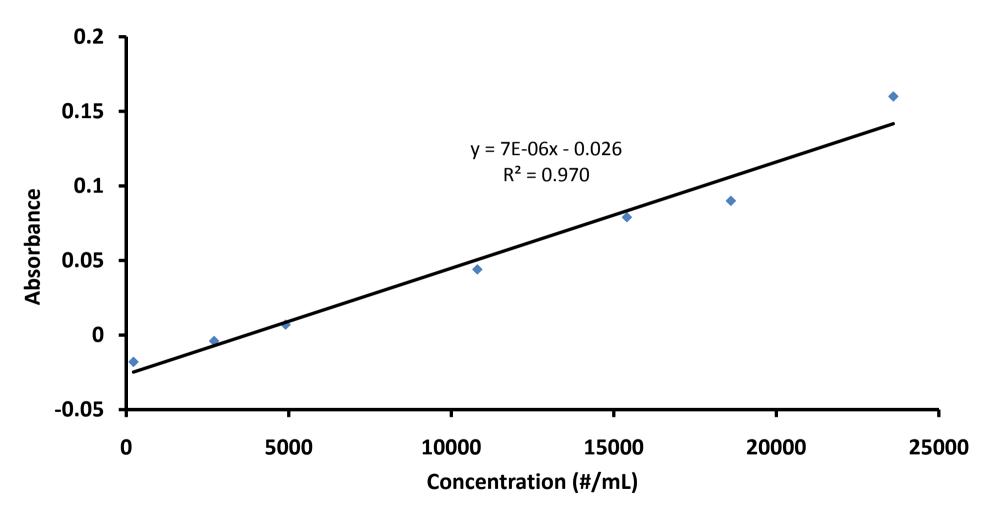
Viability and Proliferation in HDF Cells

YYYY Bioe 342 2/11/09


Objectives

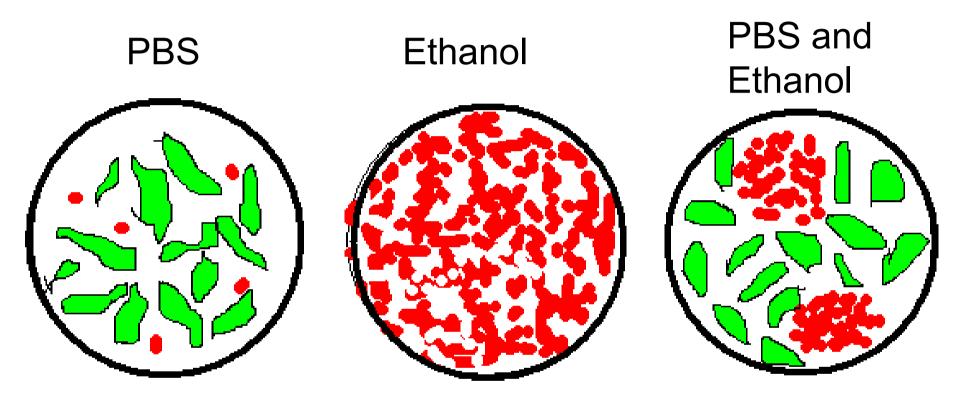
- Formulate a relationship between the absorbance of a MTT viability test and cell number.
- Asses the impact of ethanol on living cells using the Live/Dead Fluorescence assay.
- Conduct a cell proliferation assay to asses the effect of serum on the growth and replication of HDF cells.

Methods- MTT Viability Test

- HDF P5 cells were seeded on 2 sets of 7 cells of 24-well plate in concentrations of stock(50,000 cells/mL), 1:1.5, 1:2, 1:3, 1:6, 1:12, and control (no cells)
- After 2 day period, MTT dye was added to each well on MTT plate
- The absorbance of the cells from the MTT plate was measured by a spectrophotometer.
- The other plate of cells was trypsinized and each well was counted on the Coulter Counter.

Linear Relationship between Absorbance and Cell Count

•Relationship between absorbance and cell count linear (R=0.97)


Methods-Live/Dead Fluorescence

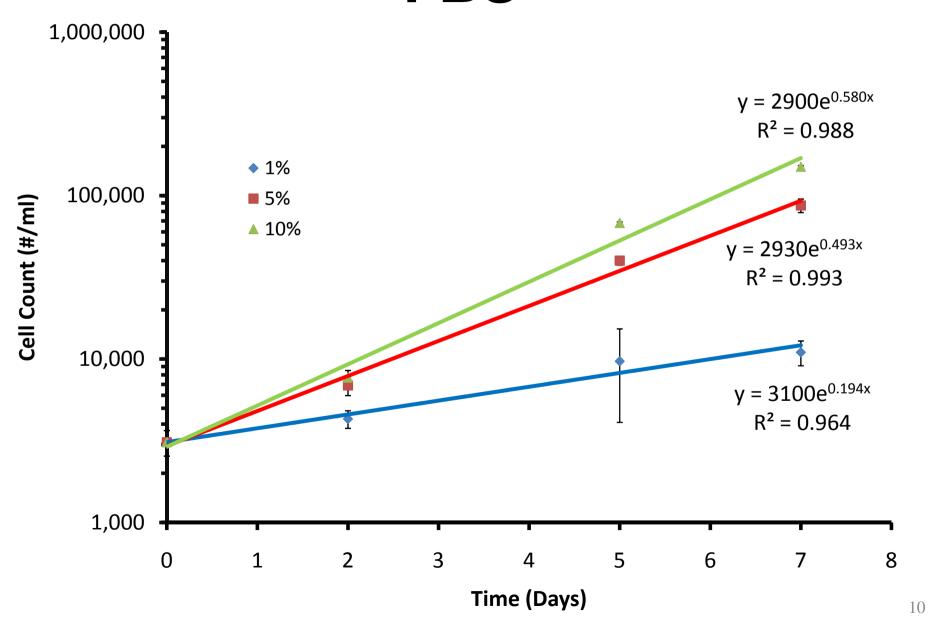
- HDF P5 cells were seeded in 9 wells of a 24-well plate
- After a 2 day period, the wells were separated by groups of three into the three test conditions: 250 μL PBS, 250 μL ethanol, and 250 μL PBS and 2 drops ethanol
- 100 µL Cacien AM and Ethidium Homodimer mix was added to dye the cells
- Cells were viewed under a fluorescent microscope and observations recorded

Live/Dead Fluorescence Assay Observations

Test Condition	Observations
250 μL PBS	Over 95% of cells appear green Very few red cells randomly dispersed
250 µL ethanol	100% of cells appear red
250 µL PBS and 2 drops ethanol	Both red and green cells Red cells appear in circular spots surrounded by green cells Few red cells dispersed with green

Appearance of Live/Dead Assay

- Live cells appeared green
- The nuclear material of dead cells appeared red
- •Ethanol kills all cells it contacts hence all red in condition 2 and spots of red in condition 3


Assessing Cell Viability Using MTT and Live/Dead Assays

- Coulter Counter counts overall number of particles not number of live cells
- MTT results therefore not entirely accurate, since the absorbance is only from live cells
- A more appropriate relationship between absorbance and cell viability determined by:
 - Perform MTT and find absorbance for 1st set of conditions
 - Perform Live/Dead Fluorescence Assay on 2nd set of test conditions
 - Count cell concentration of live cells in Live/Dead assay using the hemocytometer
 - Find relationship between Live/Dead concentration and absorbance

Methods-Cell Proliferation

- HDF P6 cells were seeded at a concentration of 5000 cells/mL onto a total of 33 wells over 2, 24-well plates
- All cells were seeded with media with 1% Fetal Bovine serum (FBS) and allowed to incubate for 4 hours
- After the 4 hours, the cell concentrations of 6 wells were counted using the coulter counter
- The other wells were split into 3 test conditions of 1%, 5%, and 10% FBS in media
- 3 wells of each test condition were counted using the coulter counter on days 2, 5, and 7

Cell Proliferation increases with % FBS

Cell Proliferation Analysis

 Cell concentration was statistically significant in the 10% FBS test group between days 2, 5, and 7 with P<<0.05

 Cell count on day 7 was statistically significantly greater with 10% FBS (P<<0.05)

 Growth for 1%, 5%, and 10% FBS was exponential (R>0.95)

Summary

- MTT assay established relationship between absorbance and cell concentration such that:
- Live/Dead Fluorescence assay allowed for distinguishing live and dead cells with fluorescent microscope.
- If used in conjunction Live/Dead and MTT could establish a more accurate relationship between absorbance and cell viability
- Cell proliferation was greatest with 10% FBS and decreased with decreased FBS percent.