
ABSTRACT
Molecular dynamics (MD) is a widely used tool in

condensed matter physics, as well as other disciplines
ranging from chemistry to high-energy physics.  In MD,
one integrates the equations of motion – Newton’s sec-
ond law for classical particles – directly, invoking no
approximations.  To do so requires an interaction po-
tential energy or forces between atoms.  I will discuss
both integration schemes and potential types.  MD po-
tentially bridges two length scales – macroscopic and
atomistic – and also links experimental results with theo-
ries.  This will be emphasized through a discussion of
modern research in solid-state physics, with each re-
search application highlighting a different type of inter-
action potential.  I will discuss fluid flow briefly and high-
light some other applications of Lennard-Jones poten-
tials, surface growth using a Stillinger-Weber potential,
and defects in silicon using tight-binding potentials.  I
give some references regarding density-functional theory
calculations of these defects.

A different avenue of modern MD research is in the
method itself rather than its application.  Much research
is towards developing so-called acceleration methods.  By
taking advantage of the physics of condensed matter sys-
tems, acceleration methods have been proposed which
extend the time scales accessible by MD by orders-of-
magnitude in many cases.  In this article, I will focus on
A. F. Voter’s methods, giving their motivation, algorithm,
and some derivations.

In short, this article explain why MD is useful and
where it has been used, it gives the fundamentals neces-
sary for understanding a MD simulation, and discusses
research into MD methods themselves, namely Voter et
al.’s acceleration methods.

Potentials
To accurately propagate the system, we must have an

accurate interaction potential.  This potential gives the po-
tential energy as a function of the atomic positions and ve-
locities.  Details on existing potentials are given, as well as
some general ways of deducing potentials.

Common potentials:
One can generally group potentials into three basic cat-

egories: classical potentials, tight-binding potentials, and
density-functional calculations, in order of increasing com-
putational complexity.  Representative examples are dis-
cussed: Lennard-Jones (LJ), MEAM, and Stillinger-Weber
(SW); empirical tight-binding (TB); and density-functional
theory (DFT).  LJ considers interactions between pairs of
atoms; MEAM adds corrections, beyond pairwise interac-
tions, based on the local geometry; TB and DFT add quan-
tum mechanics at increasingly sophisticated levels.  Each
potential will be discussed later in terms of a particular re-
search application.

Regardless of the potential, deriving its form requires
assumptions, or the form of the potential may just be guessed.
In optimizing a potential’s accuracy, parameters are adjusted
(like the balance between attractive and repulsive LJ pa-
rameters – see below) so the potential reproduces quanti-
ties such as lattice constants and defect energies obtained
from first-principles calculations or experiment (Baskes,
2001).

Efficient potential calculations – see (Rapaport, 1997) for
more information:

Once the potential is obtained, it must be computed re-
peatedly in a MD simulation, a O(N2) or worse calculation,
where N is the number of particles, rendering simulation of
large systems impossible.  A O(N) calculation is achieved
in practice by one of two methods:

1.  The “cell method” – This method divides the system
being simulated into cells, each with a linear size larger than
the interaction cutoff r

c
 (Figure 1), where r

c
 is a value such

that atoms farther apart than this value essentially do not
interact.  Now one needs only to compute interactions be-
tween atoms in the same and adjacent cells (Figure 1), caus-
ing a speedup to O(N) for even moderate size systems.

2.  The “neighbor list method” — In fact, only 16% of
the atoms, on average, included in the cell method are within
a distance of r

c
 (Rapaport, 1997).  Hence we keep a list of

all “neighbors” of an atom.  This is actually an O(N2) calcu-
lation. Fortunately, one can code this efficiently and only
compute it only once every many time-steps since there is
an upper bound to how fast things are moving, effectively
making the overall system an efficient O(N) calculation for
most system sizes.

Reviews in Undergraduate Research, Vol. 2, 19-26, 2003

Kaden Hazzard1*, Communicated by: Dr. John Wilkins1

1 Ohio State University, Dept. of Physics
* To whom correpondence should be addressed:
hazzard@pacific.mps.ohio-state.edu

Molecular Dynamics as a Bridge: Fundamen-
tals, Methods, and Current Research



Position integration algorithms.
Some details of potentials and their calculation are now

familiar.  With the potential and initial conditions Newton’s
second law can be integrated for all the particles.  The verlet
and predictor-corrector (PC) methods are common for per-
forming the integration.

The integration algorithm usually does not need to be
extremely accurate.  Because an extremely slight position
displacement at any time (or an equivalent round-off error)
can cause huge differences in the atom’s trajectory at all
later times after a certain time, only quantities which are
insensitive to exact trajectories “matter.”  This is not par-
ticular to MD, but is characteristic of the natural process
itself.

The verlet method gives positions at a short time ∆t af-
ter the time corresponding to the supplied positions.  Each
is derived in a straightforward manner from the Taylor ex-
pansion, in time, of the atomic coordinates. The formula for
the verlet propagator is (Rapaport, 1997):

The verlet propagator is commonly used for its simplicity
and tendency to conserve energy.

The PC methods are more accurate than verlet, but they
are not used as frequently as the simpler verlet-class propa-
gators.   The primary advantage of the PC method over the
verlet-like algorithms is in the ability to change ∆t on the
fly, which may be useful in systems where one set of par-
ticles inherently move faster than others.  PC is also useful
when constraints (on, say, bond length or angles) are placed
on the system (Rapaport, 1997).

The PC method predicts positions based upon Adams-
Bashforth extrapolation, which is exact if they follow monic
polynomials.  After prediction, correction is made via a dif-
ferent set of formulae.  For the (relatively complex) equa-
tions see (Rapaport, 1997).

Better (Faster!) Molecular Dynamics.
Although MD is an increasingly mature field, there are

still continuous advances in methods.  Voter et al. have de-
veloped several methods for increasing MD’s performance
by many orders of magnitude.  Each method requires some
assumptions – usually forms of transition state theory (TST)
(Voter, 2002 or Lombardo, 1991) – on the nature of transi-
tions.  However, the assumptions are minimal and their va-
lidity can be checked.

There are three common families of acceleration tech-
niques, namely parallel-replica (PR or par-rep), tempera-
ture-accelerated dynamics (TAD), and hyperdynamics.  The
families can be utilized simultaneously for multiplicative
performance boosts.  Voter gives an excellent, accessible
review concentrating on these acceleration methods (Voter,
2002).

The limitation that keeps one from simulating long time
scales is the fact that MD is a multi-scale problem (for most
solid-state systems).  Specifically, one must use a small
enough integration time step to reproduce the dynamics of
the fast vibrational modes.  Since these vibrations occur on
the order of 1013 - 1014 times a second, the time step for
accurate integration must be on the order of femtoseconds.
A typical time step falls in the range of 1-5 fs.

On the other hand, transitions occur infrequently; time
scales between interesting transitions range from picosec-
onds (quickly diffusing surface atoms) to seconds (disloca-
tion motion under shearing (Haasen, 1996)).  One can con-
ceive of watching interesting behavior for minutes or hours
(for example, in crystal growth), however the longest MD
simulations can now run for only microseconds.  It must be
kept in mind that the acceleration methods discussed below
only apply to infrequent event systems, systems in which
the time for transitions between ‘sites’ or ‘structures’ is much
longer than the vibrational period.

Parallel-Replica.
When running MD simulations on parallel computers

such as clusters one can separate the calculation so that each
processor deals only with a portion of the atoms.  Thus in-
creasing the number of processors one can increase the size
of the simulated system.  However, each processor must
have many atoms associated to it or else the communica-
tion time between processors, rather than the computational
time, will be the performance bottleneck.  While a spatial
decomposition of the problem is conceptually easy, there is
no straightforward way to decompose the simulation in time
because each set of positions requires the previous posi-
tions.

To solve this problem, Voter created the parallel-replica
(PR) algorithm (Voter, 1998).  The only assumption of PR
is that the probability of a system escaping a site
(transitioning from one potential minimum to another) be-
tween times t and t+dt is given by:

                                  (Eq. 1)

where k is the rate constant.
This is satisfied by infrequent systems when the sites

are uncorrelated (Voter, 2002).  Here uncorrelated means
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Figure 1.  Two-dimensional illustration of the cell method.  The dark
gray cell needs only to check the light gray cells – its nearest neighbors –
because all other atoms must lie outside of the interaction cutoff range r

c
,

the range beyond which no particles interact.



that once a system enters a new potential well (crosses a
saddle point in the potential energy surface) it has no
“memory” of the site it just arrived from; that is, the dy-
namics after the crossing are not affected by how it got to
that site.

The PR method has been extended to work when the
probability distribution function has a different form than
Eq. 3 (Shirts, 2001).  However, one must be very careful in
this case as it indicates that a “state” is composed of several
potential minima or that the runs on each processor are not
independent (see below).

 With this assumption, the parallel-replica procedure can
be shown to give the same dynamics as a system simulated
with non-accelerated dynamics in the sense that the se-
quences of transitions from state to state are reproduced in
the long time limit.  I will present how the procedure works;
for a proof, see (Voter, 2002).

To start a parallel-replica simulation, identical systems
are set up on multiple processors.  The number of proces-
sors can often be very large and consist of many different
types/speeds of processors.  Now, to ensure that each pro-
cessor is simulating independent trajectories, the dynamics
run at finite temperature with momenta randomized every
few time steps.

All the processors now run dynamics until the system
on one of the processors escapes from its current state.  The
time elapsed on each processor is summed and this is iden-
tified as the total time spent in the state from which the
system has just escaped.  The processor that computed the
escape continues to run for a certain length of time such
that after this additional time there is no memory of the state
from which the system escaped.

The PR method solves, to some degree, the process of
parallelizing MD in the time domain.  It has been often uti-
lized (Zagrovic B, 2001; Shirts, 2000; or Birner, 2001).  Still,
much the performance of the individual processors can be
increased.  Hyperdynamics and temperature-accelerated dy-
namics are two solutions to this problem and are discussed
next.

Hyperdynamics.
One (justified) way to view the time evolution of a sys-

tem is as a succession of vibrational and transitional ‘events’.
This is illustrated in Figure 2; the system oscillates in this
potential well for a certain time, and then an increase in
local energy pushes the system over the transition barrier to
a new potential well (Figure 2a).  Remember that this is a
high-dimensional potential well; forgetting this can misguide
intuition.

Using this picture of dynamics, one can imagine speed-
ing up the simulation by “filling in” the wells (Figure 2b).
However, to do this one must be able to decide (automati-
cally) whether the system is close to the bottom of the well
or near the transition point, since the potential should be
filled in more or less, respectively.  Even assuming that one
can fill in the wells with some technique, one must map the
dynamics of the boosted system back to the non-acceler-

ated systems.  Voter et al. describes this process in (Voter,
2002).

As a last note, the average boost factor for hyperdy-

namics is given by:  with Bk

Boltzmann’s constant, T the temperature, and V∆  the in-

crease in potential energy from the bias potential.  This im-
plies that we receive an exponentially bigger boost as the
temperature of interest lowers.  Hyperdynamics has not
found nearly as much success as other acceleration meth-
ods due to technical difficulties in filling in the potential
wells.

Temperature-accelerated dynamics.
The temperature-accelerated dynamics (TAD) method

has been more successful than hyperdynamics to date.  This
method is related to hyperdynamics in that one increases
transition frequencies by making the energy barriers easier
to go over.  Rather than changing the relative energetics,
however, TAD simply raises the temperature of the system.
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Figure 2.  Viewing dynamics as a sequence of vibrational and translational
events – applicable to many condensed matter systems – and the relation
to hyperdynamics.  a.  The particle oscillates in its potential minimum then
the energy of the system is temporarily increased, pushing the system over an
energy barrier.  b.  By decreasing the depth of the potential wells, the dynamics
are sped up since less energy is required to cross the barrier.



transition with the shortest time for escape (at low tem-
perature) is selected as the transition corresponding to the
low-temperature dynamics and the system is updated.  The
BCMD is started again from this new site.  To be confi-
dent, with certainty δ, that the current shortest time t

0
 (at

low-temperature T
low

) is correct, the system must run in
BCMD for a time

   

where v
min

 is the minimum attempt prefactor (see Eq. 2)
which can be chosen manually, using reasonable guesses;
t_low,short is the shortest found time (extrapolated to low-
temperature) (Voter, 2002).

Using this technique, one boosts the simulation speed
by a factor of hundreds when interested in low enough
temperature systems (a couple hundred Kelvin).  Recently,
Voter proposed a TAD enhancement (Montalenti, 2001)
in which one considers the total time spent in a state (pre-
vious and current visit).  This requires a good way of tell-
ing if two states are the same, within symmetry, a topic
just being explored in condensed matter systems (Jiang,
2003 and Machiraju, 2003).  With this improved TAD
method, the average boost factor for each state becomes

with E
min

 the minimum bar-

rier for escape from the state in consideration (Montalenti,
2001).

I briefly mention on-the-fly kinetic Monte Carlo (OTF-
KMC) simulations.  KMC uses a user-specified list of tran-
sition rates and, by sampling from the rate list, propagates
the system in time.  KMC requires a priori knowledge of
the transitions and their rates, which is problematic.
OTFKMC computes the list of transitions by MD simula-
tion (Voter, 2002) or other means (Henkelman, 2003) as
the simulation progresses.  When the system returns to a
state enough times, one assumes that the rate list is nearly
complete and uses KMC.  To see applications of TAD and
OTFKMC, see (Sprague, 2002 or Montalenti, 2002 or
Montalenti, 2001).

Recent simulations

Lennard-Jones potential – fluid flow and biophysics
Now I focus on current simulations performed using

MD, starting with Lennard-Jones (LJ) potentials.  LJ po-
tentials are pairwise interaction potentials.  That is, the
total potential energy of a system is just a sum over all
possible pairs i,j of atoms of a potential energy function

As with hyperdynamics, the accelerated dynamics will
not directly correspond to the non-accelerated dynamics;
rather, by some a priori assumptions, the dynamics are
mapped to the lower (correct) temperature dynamics.  In
place of a usual MD simulation, basin-constrained MD
(BCMD) is performed in which the system is evolved until
a transition occurs.  After this is detected, the trajectory is
reversed, sending the system back into the basin from which
it had just escaped.  The saddle point is calculated using,
say, the nudged-elastic band method (Henkelman, 2000) and
stored.  This continues until a specified certainty is reached
that one possesses enough information to properly extrapo-
late the dynamics to lower temperature.

Harmonic transition-state theory (HTST) – the assump-
tion placed on the system in this method – states that the
probability distribution for first escape times for the basin
in consideration is given by Eq. 1, with

                (Eq. 2)

where E
a
 is the energy barrier the system must go over to

escape from the basin, and v
0 
is some frequency character-

izing how often the system vibrates or attempts to leave the
basin (the attempt prefactor-).

Note that these equations explain why raising the tem-
perature changes the dynamics; changing the temperature
does not affect merely the magnitudes of each rate constant,
but affect also the relative magnitudes (hence speed up one
transition more than another).  To extrapolate the transition
time from high to low temperature

           (Eq. 3)

is used (Figure 3), where t
low

 is the time at the low tempera-

ture and t
high

 is the time at the high temperature; ,

and E
a
 is the activation energy computed by nudged-elastic

band or a related method (Henkelman, 2000).
To derive Eq. 3, change variables in the probability dis-

tribution (Eq. 1) to x = kt.  Then

Hence has the same probability distribution as

, and

.

This relation is illustrated graphically in Figure 3.  Here it is
clear that a transition that is not the shortest at high tem-
peratures can be the shortest at a lower temperature – this is
why basin-constrained dynamics must be performed.  The
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, where U is a function only of relative atomic

positions of two atoms.  These interactions capture the es-
sence of many systems, and produce quantitatively the be-
havior of noble gas (say argon) liquids and gases in many
cases – the noble gases were historically very important for
the LJ potential (Collings, 1971, for example).

In the LJ potential there are two parameters: one param-
eter governs the strength of the attractive interaction and
one of the repulsive interaction; equivalently one can use a
parameter as the potential minima depth, and another as the
atomic separation for the potential minimum (σ and ε re-
spectively below).  The basic formula for calculating the

(LJ a-b) potential is .

Usually a=12 and b=6; if this is the case the potential is
generally just denoted LJ (rather than LJ 12-6).  In Figure 4
one can see the strong repulsive core at short ranges and the
weak attractive tail.  The a=12 parameter is fairly arbitrary
(fortunately some physics is relatively insensitive to the
choice of a) and the value of b=6 comes from Van der Walls
attraction of non-polar substances.

In addition to the noble gases, the LJ potential is still
used as part of the total potential in biological applications
(Schleyer, 1998 or Brooks, 1983).  In these situations, long-
range interactions are Coulombic and LJ, and short-range
interactions (bonded atoms) obey Hooke’s law.  In testing
new methods, low dimensional LJ model systems are often
used.  These systems have the advantage of giving qualita-
tively complicated and atomic-like potential surfaces as well
as, in some cases, being analytically solvable.  This, coupled
with the quickness of their simulation, gives rise to LJ’s
usefulness in testing models.

Moreover, the potentials occasionally find use in con-
densed matter outside of biophysics.  Despite the extreme
simplicity of this model, it shows many complex phenom-
ena characteristic of condensed matter systems (phase tran-
sitions, complex energy landscapes, infrequent events) and
hence is studied to see the simplest examples of these phe-
nomena (Scopigno, 2002 and Fabricius, 2002).  A system-
atic study of large numbers of clusters of particles interact-
ing via LJ yields interesting results on the dynamics and
structures of these clusters, while suggesting general fea-
tures that hint at features in real clusters (Doye, 1999).  Also,
when extremely large numbers of particles need to be simu-
lated yet a continuum approach is not applicable, such as in
some fluid flow problems, LJ is attractive.  Millions of par-
ticles can be simulated for many time steps.

As an example, Berthier and Barrat (Berthier, 2002) have
studied mixtures of sheared fluids using a LJ potential.  Two
types of particles are implemented via particle-type depen-
dent σ’s and ε’s in the LJ potential.  They are able to inves-
tigate velocity distributions, viscosity dependence on shear

rate, and structure factors for the system at different tem-
perature, spanning liquid, supercooled, and glassy states.
Hence, they investigate this macroscopic system at an ato-
mistic level of detail, bridging these length scales as prom-
ised in the introduction.  They also correlate theoretical pre-
dictions (using a “mode-coupling approach”) with the simu-
lations, demonstrating another of the bridges discussed at
the start.  Others have used LJ to study fluid flow as well –
for a flavor, try (Bruin, 1998 or Laredji, 1996).

Classical potentials (beyond Lennard-Jones)
The LJ potential does not include how the environment

(nearby atoms) affects the pairwise interaction.  That is, the
potential depends on terms involving three or more relative
positions, but LJ ignores this.  Extra terms are necessary to
accurately simulate many systems.

Typical potentials that incorporate these many-body in-
teractions (in very different ways) are modifications to LJ
to include explicit angular dependence, Stillinger-Weber
(SW) (Stillinger, 1985), and the modified embedded atom
method (MEAM) (Daw, 1984).  Recently, MEAM has been
used to tackle a large variety of systems; largely these have
been surface diffusion/surface growth phenomena.

Lee et al. (Lee, 1998) and (Baskes 1997) (and many
others) have studied ad-dimer (two atoms deposited on top
of a surface) diffusion on silicon surfaces.  Adatom (one
deposited atom) diffusion was studied earlier (Roland, 1992).
Here I will describe results garnered by Gawlinski and
Gunton (G&G) for molecular-beam epitaxial (MBE) growth
of Si(001) surfaces (Gawlinski, 1987), a simulation which
involves diffusion of adatoms and ad-dimers as well as coa-
lescence: the clusters meet and ‘stick,’ forming islands.
G&G employed a SW potential for the simulation.

Some investigations have looked at the detailed mecha-
nisms of the diffusion of these small clusters and coales-
cence of these.  G&G chose to discuss only the morphology
(basic shape) of the surfaces grown and to not discuss the
exact mechanisms, since classical potentials may not prop-
erly incorporate important effects.

In MBE, atoms are deposited (in this case as single at-
oms) from the gas phase onto the crystal surface.  G&G
were inspired to simulate this process, in part, by the ex-
perimental discovery of an epitaxial growth transition tem-
perature.  Above this temperature the atoms, after striking
the surface, have time to diffuse around and find globally
stable (bulk-like) states; below this temperature, however,
new atoms are deposited close to already deposited atoms
before the deposited atoms can relax.  This leads to amor-
phous (no local order) surface grown on the bulk phase
(Gawlinski, 1987).  One of the simulation goals was pre-
dicting this transition temperature; they succeeded in find-
ing a temperature in good agreement with theory (Gawlinski,
1987).

In an ordered, layered crystal structure, the density of
atoms as a function of some coordinate should have oscilla-
tory behavior with sharp peaks.  In amorphous structures,
the density should be spread out relatively smoothly.  Fig-
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ures from G&G (Gawlinsky, 1987) are reproduced as Fig-
ures 5a,b.  Figure 5a is the density of deposition occurring
above the epitaxial transition temperature; Figure 5b is the
corresponding density below the epitaxial transition tem-
perature.  Clearly, the top layers represented in Figure 5a
are well layered, and in Figure 5b they seem more random.
This case forms an excellent example of MD forming the
third bridge I mentioned in the introduction, that with ex-
periment.

While it is possible to compare simulation results with
experiment, one must be extremely cautious in several re-
gards.  First, a simulation is only as accurate as the poten-
tials used, leading to the cautious interpretation above (no
detailed mechanisms).  Moreover, in order to run this simu-
lation (in 1987, even!) the deposition rate of incoming at-
oms had to be increased to extremely unrealistic values.  If
the time between atomic depositions should match experi-
ment, it is likely that no depositions would have occurred in
the time scale simulated.  With this is mind, however, some-
thing must be going correctly, or the simulation would not
have reproduced experiment.

Tight-binding potentials and density functional theory
While purely classical potentials have worked extremely

well in some situations, often quantum effects are impor-
tant.  Both tight-binding (TB) and density-functional theory
(DFT) methods incorporate quantum mechanical effects at
some level.  TB incorporates these at a much less accurate
level than DFT, but TB is a couple orders-of-magnitude
faster to calculate.  Moreover, TB can scale linearly with
system size in some cases by exploiting the fact that the
calculation is essentially diagonalizing a sparse matrix
(Galli, 1998 or Klimeck, 2002).  DFT is also widespread in
the literature, including the problem of silicon defect clus-
ters discussed below (for example, Kohyama, 1999;
Estreicher, 1998; or Windl, 1999).  I focus on TB.

TB has found use in cluster and defect structure and
defect diffusion in some materials (Arai, 1997 or Jansen,
1988).  In particular, it has been used to simulate interstitial
(extra atoms inserted between lattice sites) and vacancy
(atom removed from lattice site) clusters.  Also, groups have
studied more extended structures such as the {311} defect
in silicon (Kim, 2000).  This is by no means an exhaustive
list.

Many studies of defect clusters in silicon are not MD
simulations, but only energetic calculations, especially in
DFT.  In investigations such as these, initial structures are
guessed and then the system is locally minimized (Estreicher,
1998).  The downside to this is the guessing.  Quite un-
intuitive structures are typical (Richie, 2002) and missed
by simple guessing.  A few people (Wilkins, private com-
munication) are advocates of performing “cheap” TB or
classical MD to explore a problem and improve guesses for
structures and transition pathways, followed by DFT en-
ergy calculations to confirm results.

Colombo reviews TB results of silicon defects in (Co-
lombo, 2002).  Naively, it may seem that when an intersti-

tial meets a vacancy, they should annihilate, leaving only
bulk silicon.  This state is energetically favored, and, if given
an infinite amount of time, the system will spend most of its
time in the bulk state.  However, experiments and experi-
ence tend to deal with finite time scales on the order of sec-
onds.  Colombo et al., (Tang, 1997) find that if an intersti-
tial and a vacancy are placed within next nearest neighbors
along the <110> direction (in which the dimer points) then
annihilation does occur.  If the vacancy and interstitial are
instead separated by greater than next nearest neighbors they
do not annihilate; they attract each other and form a stable
interstitial-vacancy pair shown in Figure 6.  The energy
barrier for annihilation once achieving this state is greater
than 1 eV, corresponding to a lifetime of hours for the de-
fect at room temperature.   This strange structure is a con-
crete example of why guessing structures and interaction
mechanisms can fail (Richie, 2002 or Kim, 2000).

As a final note on this research, note that I have artifi-
cially assigned each problem domain to a type of potential.
Often, these problems do not use the potential types I sug-
gest.  For example, hydrogen atoms effect on Si(001) sur-
faces have been studied with DFT (Dongxue, 2002); classi-
cal potentials have been used to study Si clusters (Birner,
2001); and TB potentials have been used for Ge diffusion
on Si (110) surfaces (Katircioglu, 1994).  The applications
I have presented are a small fraction of all simulations per-
formed – there is little limit to MD’s applications thanks to
the lack of assumptions on the dynamics.

Conclusion.
This review does not cover all classes of research using

MD – references are representative rather than exhaustive.
However, it should have given the reader an idea of some
typical applications – fluid dynamics, surface growth, and
defect dynamics.  Through examples, connections between
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Figure 6.  A stable interstitial-vacancy cluster (one extra atom, one
missing atom) and its annhilation path.  This unintuitive structure (top
left) is higher in energy than its lowest energy state (perfectly crystalline),
but there is a very large energy barrier between the two states.  At room
temperature such interstitial-vacancy clusters are stable for hours.



experiment, theory, and MD are emphasized.  One now
hopefully has a feeling for the variety and advantages of
some potential types.

Also one should now be aware of some of the growing
number of molecular dynamics acceleration methods – par-
allel-replica, temperature-accelerated dynamics,
hyperdynamics, and on-the-fly Monte Carlo.  Perhaps the
most important information presented is the necessary back-
ground to understand what goes into an MD simulation.
With this and the references, a motivated individual could
probably code a simplistic MD simulator in a matter of a
week (though given the increasing number of sophisticated,
fast MD programs, writing one from scratch is probably
not advisable except as a teaching tool).
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