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Abstract 

We model the economically optimal dynamic oil production decisions for a stylized oilfield 

resembling the largest developed field in Saudi Arabia, Ghawar, paying particular attention to the 

engineering aspects of oil production. Specifically, we begin with a fluid dynamics model 

composed of differential equations describing the dynamics of fluid flow as a function of fluid 

pressure, formation characteristics, water injection, new wells, and how these parameters change 

as oil extraction occurs. We then link this physical description of the field to an intertemporal 

optimizing economic model. The cost and revenue functions are based on data from a number of 

sources. We use tensor splines to approximate the value function. The optimal solution depends on 

exogenous variables, such as the discount rate or the timing of breakthroughs in the cost of 

alternative energy sources, which are uncertain. We examine solutions under a number of 

scenarios to account for these uncertainties.  

JEL Classification System Number: C30, C61, Q32, Q41 

Keywords: Optimal oil production; Dynamic programming; Value function 
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1. Introduction 

Following the Arab oil embargo of 1973–74, which produced a four-fold increase 

in world oil prices, understanding oil market dynamics, and especially OPEC oil 

production decisions, has been a major concern for economists. Saudi Arabia, the 

largest supplier in OPEC, then as now produces about 30% of total OPEC output 

and about 12% of the total world output. It also has roughly 25% of the world’s 

proven conventional oil reserves and a maximum sustainable production capacity 

of 10.5–11 million barrels per day.2 The overwhelming influence of Saudi oil 

policy on past world oil prices is widely acknowledged. 

The highest levels of the Saudi Arabian government, acting through the Supreme 

Council for Petroleum and Mineral Affairs, take ultimate responsibility for oil 

pricing and production decisions. Revenues from oil sales, and activities such as 

petrochemicals and oil refining, account for about 50% of Saudi government 

expenditures (Azzam, 1993). One therefore would expect to find that the revenue, 

or more particularly profits, of Saudi Aramco should be of major concern. For 

example, Soligo and Jaffe (2000) point out that Saudi Arabia has been practicing 

price discrimination against customers in the Far East in favor of customers in 

U.S. and Europe, which is consistent with a profit maximization motive. 

Economic motivations apart from profit maximization also have been proposed. 

These include diversifying away from oil revenue in the long term and meeting 

short-term fluctuations in government expenditure. For example, Teece (1982) 

proposes that OPEC countries base production decisions on target revenues, while 

Ramcharran (2002) presents evidence consistent with this hypothesis. An 

implication would be that price rises should substantially reduce OPEC supply. 

Non-economic factors may also influence oil policy. For example, Askari (1991) 

suggests that political goals, such as Saudi’s role in the world, Arab solidarity, and 

regional politics, also have motivated Saudi Arabian oil policy. 

We focus on finding the dynamically optimal (profit maximizing) oil production 

rate. Our analysis provides a measure of the extent to which long-run value 

maximization is being followed. It also allows us to assess the potential for 

                                                
2 These Saudi Arabian oil statistics were obtained from the United States Energy Information 
Administration web site. 
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forgone profits in the event that oil production decisions are based on criteria 

other than the maximization of the expected present value of profits.3 

A number of studies have addressed the oil production policies of OPEC, and 

Saudi Arabia in particular, in a dynamic optimization setting. Dahl and Yücel 

(1991), among others, find empirical support for the role of dynamic behavior in 

producer supply decisions. Quandt (1982) qualitatively discusses Saudi Arabia’s 

oil policy and its possible motivations based on two criteria: optimization of the 

long-term value of oil reserves and the attainment of political goals. Khadduri 

(1996) discusses the oil policies of Middle East countries in the context of current 

developments in that region. Powell (1990) gives an excellent review of two 

major strands of economic research on OPEC oil production.  The first approach 

attempts to simulate the behavior of the decision-maker.  The second is the 

intertemporal optimization approach, traditionally attributed to Hotelling (1931). 

Recent research on oil production using dynamic value optimization has been 

pursued by, among others, Wirl (1990), Suranovic (1993), Benkherouf (1994), 

Lohrenz and Bailey (1995), and Fousekis and Stefanou (1996).  

The novel element in our approach is that it is based on an engineering model of 

oil extraction, which is an inherently dynamic process. We solve for the combined 

long run investment and short run production path that maximizes discounted 

profits by integrating economic factors, like demand and drilling and maintenance 

costs, with petroleum engineering considerations affecting oil recovery. 

Specifically, we begin our analysis with an engineering model (WorkBench Black 

Oil Simulator, 1995), which recursively solves a system of homogeneous 

difference equations that describe the fluid dynamics within and among a set of 

three-dimensional grids that partition the oil field and whose joint behavior 

describes the production dynamics of the field. Using the Black Oil simulation 

results, we estimate a short-term dynamic production function linking water 

injection rates, cumulative field production, and the number of oil wells to the 

short-run production capacity. This dynamic production function is employed as 

an inequality constraint qualifying the intertemporal profit maximization problem. 

                                                
3A complete model of the optimal oil policy of a country like Saudi Arabia requires a thorough 
understanding of the country’s economic and political circumstances. While acknowledging the 
complexity, we believe there is value in focusing on profitability. In particular, even when Saudi 
Arabia has other goals, it is worth knowing the cost in terms of foregone profits. 
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Our approach contrasts with the traditional economics of production literature 

where the production function is specifed based either on a generic property of 

scale or substitution (e.g., the constant elasticity of substitution production 

function) or on approximating forms (such as Cobb-Douglas, transcendental 

logarithmic or Leontief). It is instead related to the work of Griffin (1977, 1978) 

who constructed approximations to static technologies utilizing pseudo-data.  

However, it differs from Griffin in that the production technology we consider is 

fundamentally dynamic. The traditional economics of production literature also is 

most often cast in a static setting with the dynamics of production subsumed in the 

effects of current production on future capacity. 

Our approach also differs from the extensive engineering literature based on 

dynamic fluid flow models. In this literature (see Feraille et. al., 2003, for 

example), the objective is usually taken to be maximization of total production 

from the reservoir. We instead recognize that discounting implies future 

production is valued less than production today, while for a large producer such as 

Saudi Arabia additional production in any period will depress market prices. 

We apply the model to a homogeneous light oil field whose properties mimic 

those of Saudi Arabia’s largest field, Ghawar. While this field accounts for about 

60%–70% of Saudi oil reserves, we effectively assume that all Saudi oil is 

produced from a field whose properties mimic those of Ghawar. Since the 

reservoir environments of Saudi oil fields differ, this simplification undoubtedly 

affects the accuracy of the model predictions. Our methodology could handle 

more heterogeneity. It simply would take more information and computing 

resources than we had available. A complete analysis would require multiple 

reservoir descriptions. There is also a lack of individual well production history 

for many fields. Finally, the time and manpower needed, and computing resources 

required, for a national model would be large even if the data were available. 

2. Dynamic Modeling of Oil Production Decisions 

Several issues are especially relevant to Saudi Arabia’s oil production decisions.  

First, Saudi Arabia is a large producer in the world oil market and especially large 

in terms of the reserves available for future production. We model Saudi Arabia as 

a firm with monopoly power facing downward-sloping world oil demand net of 

other supply. Second, oil production costs include exploration and development 
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costs in addition to the costs of producing output from existing wells. The third 

issue that needs to be addressed, namely the dynamic nature of oil production, is 

the main novelty of our paper. The optimal scheduling of production needs to take 

effects on future reservoir productivity into account. Specifically, we assume that 

current oil production affects reservoir conditions and hence future production 

costs and ultimately the total resources that will be extracted from the reservoir. 

A dynamic programming framework is essential to answering such questions as 

the sensitivity of current output to changes in the presumed date of arrival or price 

of a backstop energy technology. In turn, this is a critical issue in the current 

world oil market. How much alternative supply will current oil prices engender? 

The short-run investment responses may depend critically on expectations about 

the future availability of alternative energy sources. 

Our characterization of the dynamic programming problem differs from the 

simple Hotelling model of resource extraction where a fixed level of resource is 

gradually extracted over time until no resource remains. In practice, oil wells 

typically are abandoned well before the reservoirs are depleted. Depletion raises 

the costs of extraction until continued recovery becomes unprofitable. 

In principle, one could imagine the price of oil rising continuously so that 

increasingly costly secondary recovery techniques become profitable. Our model 

is instead based on what we view as a far more likely scenario whereby, beyond 

some period, the energy market is dominated by a backstop technology that 

controls the demand for oil.4 Other recent papers examining optimal OPEC policy, 

such as Berg et al. (1997), have taken some unspecified carbon-free backstop 

technology, available in copious supply at a fixed price, as determining the 

terminal value of oil production beyond some finite time horizon. Under those 

circumstances, a well with remaining oil can be abandoned if the costs of 

producing from it become too high. 

Formally, we take cumulative production from the oil field as the state variable in 

the dynamic optimization problem rather than the more usual level of reserves 

remaining. Furthermore, we exploit the fact that the future price-taking world will 

result in a stationary “tail problem” with a time invariant value function. By 

                                                
4 The alternative technologies could include solar energy, nuclear fusion, the so-called “hydrogen 
economy”, or even the exploitation of unconventional sources of oil or the more widespread use of 
liquefied natural gas through expansion of the natural gas industry (Jensen, 2003). 
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contrast, the optimization problem in earlier periods will not be stationary because 

we assume that the demand function for Saudi oil (total demand net of supply 

from the competitive fringe) varies over time. The time-varying value functions in 

the initial periods are solved using backwards recursion. 

We model the optimal production policy for our hypothetical light oil field using 

the following Bellman equation5 

v
t
N

t
,CP

t( ) = MaxXt ,dNt {r X
t( ) ! c X

t
,dN

t
,W

t
,N

t( ) + "v
t+1

N
t+1
,CP

t+1( )}  (2.1) 

subject to 

 Nt+1 = (1 – δ)Nt + dNt and dNt ≥ 0 
 CPt+1 = CPt + 365Xt 

 W
t
= w X

t
,N

t
,dN

t( )  

 0 ! Xt ! f Nt ,dNt ,Wt ,CPt( )  
where X, dN, W, N, and CP stand correspondingly for oil production rate (in 

millions of barrels per day, mmbd), the number of new oil wells drilled during the 

period, water injected (in mmbd) to maintain the reservoir liquid pressure, the 

number of producing wells at the beginning of the period, and the cumulative 

production of the field. X and dN are policy variables and N and CP are state 

variables. β is the discount factor, while δ reflects the proportion of producing 

wells watering out during each period. The revenue function, r(X) = p(X)X, where 

p is the inverse demand equation relating the equilibrium world oil market price to 

Saudi supply. Increasing output requires additional water injection as specified in 

the function w. The function f represents the short-term field capacity that 

constitutes an upper bound for oil production during a certain period. The value 

function v represents the discounted present value of profits given N and CP and 

assuming that the policy variables are chosen optimally from period t forward. 

                                                
5Under certain general and nonrestrictive conditions (2.1) can be shown to be equivalent to a 
sequence problem (SP). For these conditions, see Theorem 4.2 and 4.3 in Stokey, Lucas, and 
Prescott (1989). Allowing for field heterogeneity would increase the number of state variables and 
the dimension of the space over which v is defined. It is also easy, in principle, to extend the 
dynamic optimization model to allow for uncertainty. The period t+1 value function on the right 
side of (2.1) is replaced by its expected value conditional on information known at t. Random 
variables with a continuous distribution are replaced by discrete approximations and intertemporal 
correlation is expressed as a finite state Markov process. The current value of a random variable 
becomes a new state variable. 
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The time discount factor and Saudi expectations about the assumed availability of 

the backstop are subjective factors about which we have very little information. 

While some other critical information also is difficult to obtain, the subjective 

factors are inherently uncertain. In addition, Powell (1990) argues that the 

solutions to intertemporal optimization models for OPEC countries will be 

strongly influenced by the future cost of oil substitutes in the terminal stationary 

environment and the discount rate of the decision-makers. We have thus focused 

on varying these assumed subjective factors in our scenario analysis. 

We simulate the optimal production paths based on four scenarios. In all cases, the 

model is non-stationary before the substitute backstop technologies are available. 

In the first two scenarios, the demand curve becomes stationary at some date. The 

difference between these two cases arises from different discount rates. Our 

choices of discount rates (10% and 30%) are consistent with the results of 

Adelman (1993a) who discusses oil-producing countries’ discount factors. 

According to his research, 10% is a standard (real) discount rate for oil firms in 

countries like the United States. On the other hand, for some OPEC countries like 

Saudi Arabia there is substantial risk associated with exploiting oil resources 

because the government relies so heavily on oil income. In effect, since oil 

reserves are a risky undiversified asset, the implicit rent from leaving oil in the 

ground has to yield a substantial risk premium. Hence, the discount rate may 

exceed 20% or even three times the standard rate.  

In the other two scenarios, future cost reductions in an oil substitute (we assume it 

is solar energy) reduce the demand for oil in the terminal stationary state. These 

two cases differ only in the timing of a breakthrough in producing solar energy on 

a massive scale. The solar energy literature contains different predictions for the 

likely cost reduction of solar energy. 

Nemet (2006) notes that simple learning curve models fit to world surveys of 

photovoltaic (PV) panel prices suggest that PV power could become competitive 

with conventional alternatives any time between 2039 and 2067. Nemet also 

argues, however, that simple learning curve models are unlikely to yield accurate 

predictions since the factors with the largest effect on PV cost, namely plant size, 

improvements in conversion efficiency and the cost of silicon, do not appear to be 

strongly affected by learning by doing. On the other hand, plant size is strongly 

affected by the size of the market. Nemet suggests that an industry growth rate of 



7 

11% for 45 years may not make PV competitive. Maycock (2005), however, 

presents data showing that PV production worldwide grew about 43% per annum 

over the five years to 2004. 

The National Renewable Energy Laboratory (2007) notes that the U.S. 

Department of Energy Solar Energy Technologies Program aims to reduce the 

average installed cost of all grid-tied PV systems to levels competitive with 

conventional alternatives by 2015. As part of that program, in March 2007 the 

Department provided grants to expand annual U.S. manufacturing capacity of 

solar PV from 240 MW in 2005 to 2,850 MW by 2010. 

Spain recently commissioned a 20MW solar thermal plant and has started 

construction on a 20MW solar PV plant. The Spanish government has announced 

a target of 400 MW of grid-connected solar generating capacity by 2010. In 

October 2006, an Australian firm announced a project to build a 154 MW grid-

connected PV solar plant, while in June 2007 a California firm announced a 

project to build an 80 MW grid-connected PV solar plant. 

In light of these developments, we adopt relatively conservative expectations in 

our simulations. In one scenario, the cost of photovoltaic electricity starts to fall 

below that of electricity from fossil fuel in 2036, and in the other it starts in 2026. 

A ten-year transition period is assumed in both cases during which much of the 

demand for Saudi Arabian oil gradually switches to solar energy.6  

3. Data and Estimations 

This section outlines how we obtain functional representations for the required 

revenue and cost functions and the production process.  

3.1 The Dynamic Production Function  

Salehi-Isfahani (1995) provides a review of models of the oil market that updates 

his earlier joint work in Cremér and Salehi-Isfahani (1991). In his review, Salehi-

Isfahani notes, “…Depending on the type of geological structure, oil may be lost 

due to pressure and seepage. Unfortunately, the economic literature has so far not 

                                                
6 Another issue that could be investigated in more detail is that different components of the energy 
market could abandon fossil fuel at different times. Fuel Cells or other technologies such as the use 
of ethanol as a fuel could displace oil from transportation applications before solar energy and 
electric vehicles become more competitive. 
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incorporated much technical knowledge about the operation of the fields. Mining 

engineers often predict a production path from a given field as an inverted U, with 

a unique peak. Economists on the other hand emphasize the role of prices in 

extraction. Adelman (1993b) correctly criticizes the exhaustible resource models 

for their lack of realism in the description of reserves.” Below we attempt to 

address these concerns by formally modeling oil field fluid dynamics. 

We use the Workbench Black Oil Simulator to model the dynamic production 

characteristics of an oil field with properties typical of the giant Saudi Ghawar 

field. Detail on geological characteristics and the black oil simulation exercise can 

be found in the Appendix. In summary, the laws of physics, expressed as partial 

differential equations, control how fluids are distributed in oil reservoirs that are 

undisturbed for geologic time and how those fluids move in a reservoir once they 

are disturbed by production. The fluids in place at the time of discovery become 

the set of initial conditions for the partial differential equations. Mathematical 

representations of wells then are added to the description and the partial 

differential equations are stepped through time to predict the movement of the 

fluids through the reservoir. 

Wells can be used to produce fluid from the reservoir or to inject fluid into the 

reservoir. Technology can control only what happens at the wells as fluid is 

injected and a producing well extracts some of those fluids in its immediate 

vicinity. Nature controls everything in the reservoir between the wells. The Black 

Oil Simulator predicts how the fluids move in the reservoir based on the reservoir 

properties and how hard the wells are produced. 

We accumulated the temporal production, water injection, and well drilling 

schedules from the simulations of the Workbench Black Oil software. The model 

simulation algorithm varies X and finds the amount of W and N required to meet 

the production levels.  This allows us to characterize the input requirement set 

corresponding to different (dynamic) levels of X.  We then summarize 

parametrically the constructed technology set using regression functions. 

Regression is used here as a purely descriptive device. Using the simulation 

results, we then describe two important relationships that comprise our dynamic 

production function (at the full capacity) for the oil field – a water injection 

function and a short-term capacity function. 
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The water injection rate is modeled as a function of oil output and the number of 

producing wells as follows: 

 logW
t
= ! 0 + ! 1 log Xt

+ ! 2 log N
t

*( )  (3.1) 

where 
  
N

t

*
= N

t
+ dN

t
 is the total number of producing oil wells during period t.   

Table 1 presents the results of estimating (3.1) using OLS.  Given the results, we 

can rewrite the water injection function as, 

 W
t
= e

0.7999
X
t

0.9509
N

t

*0.0306  (3.2) 

The estimated relation (3.2) could be viewed as revealing the physical relationship 

between oil extraction and water injection in the field. 

Table 1 Estimated Water Injection Equation 

 γ0 γ1 γ2 

Estimates 0.7999 0.9509 0.0306 

Standard Deviation 0.0284 0.0022 0.0007 

R2 0.9225   

 

The dynamic7 production function (at full capacity) of an average oil well in the 

field is modeled in the following semi-log form.  

 max(X
t
) = !0 + !1 logWt

+ !2 logWt
logCP

t
+ !3 logCPt + "t  (3.3) 

where max(.) denotes the maximum producing capacity in the neighborhood of an 

oil well in the reservoir for a period. The estimation of (3.3) yields an 

approximated feasible set for oil production dependent on the reservoir 

engineering conditions.  Regression results are reported in Table 2. 

Table 2 Estimated Dynamic Production Equation  

 λ0 λ1 λ2 λ3 

Estimates 0.0451 0.0362 -0.0038 -0.0044 

Standard Deviation 0.00023 0.00053 0.000064 0.000027 

R2 0.7950    

 
We examined a variety of approximations (e.g. translog, generalized-Leontief) to 

the sets of simulated dynamic production paths discussed in the Appendix but 

found that the relatively parsimonious functional form specified in equation (3.3) 

                                                
7 ‘Dynamic’ here refers to the effects of current production on future capacity and choices of 
policy variables. 
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worked well and provided a robust and good-fitting approximation to the 

simulated data. More highly parameterized production approximations have been 

shown to be problematic in simple static settings when the data is not contained 

within a relatively small set of the input-output space (see, for example, Guilkey, 

Lovell, and Sickles, 1983; Gong and Sickles, 1990; Good, Nadiri, and Sickles, 

1997).  Because our simulations are long run, they utilize input and output data 

that is not close to the sample means and thus regularity conditions for the 

standard flexible forms are often not met. 

The estimated coefficients from equation (3.3) are consistent with the hypotheses 

that short-term overproduction jeopardizes production from a well, and also that 

water injection generally has a linear and positive relation to the amount of oil that 

can be extracted. If the cumulative production of a well is too high, however, it is 

possible that water injection could further reduce the short-term capacity. 

Since the dynamic production function depends on the state variables in our 

optimization model and describes the feasible production set, equation (3.3) 

extended to the entire field is used as a short-term capacity constraint in our 

model, which is function f in (2.1).  

 Xt ! f Nt

*
,Wt ,CPt( ) =  

0.0451+ 0.0362 log W
t( ) ! 0.0038 log Wt( ) log CP

t( ) ! 0.0044 log CP
t( ){ } "Nt

*  (3.4) 

The water injection equation (3.2) implies that the short-term field production 

capacity is not simply the function f. However, equation (3.4) determines the 

maximum production from the field as a function of the reservoir state variables 

(CP and N). We refer to equation (3.4) as the ‘short-term’ capacity constraint in 

part because decision makers’ choices affect the next period state variables, which 

thus evolve over time.  In addition, Wt is a time-varying indicator for the reservoir 

fluid pressure and is directly and indirectly affected by the choice variables. 

3.2 The Revenue Function 

Since Saudi Arabia is a large producer, the oil price will depend on the rate of 

extraction from the field. In order to solve the dynamic optimization model, 

however, we need a simple functional representation of the way that revenue 

responds to changes in Saudi oil output. This requires information not only about 

elasticities of demand for oil but also elasticities of supply from other producers. 
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Developing an equilibrium model of the world oil market is not our main focus. 

As an alternative, we base our revenue function on the Oil Market Simulation 

(OMS) model developed by the Energy Information Administration (EIA) of the 

United States.8 The OMS is an annual model with worldwide coverage. Oil 

exporting countries outside OPEC are assumed to be price takers. Specifically, 

supply and demand from non-OPEC market economies is assumed to depend only 

on the current oil price, GDP growth rates, exchange rates, and the previous years’ 

supplies and demands, while net imports from the formerly centrally planned 

economies are taken as exogenous. OPEC is assumed to set the market price by 

following a price-reaction function that increases price with increased capacity 

utilization, where capacity is defined as maximum sustainable production.9 The 

resulting OMS model consists of 12 equations (5 supply, 5 demand, OPEC 

production, and world price) and 2 identities. The model computes a market 

clearing oil price for each year to equate world oil demand to the sum of oil 

production from all sources, including inventory changes. The EIA has used the 

model extensively in analyses and its annual report to the United States Congress. 

After simulating 25 different trajectories for the exogenous variables in the model 

over the period (1986–2010), we used the OMS model to solve for the 

corresponding price (Pt in 1986 U.S. dollars) and production choices (yt) by the 

OPEC countries. Note that these calculated paths implicitly incorporate the 

reactions of non-OPEC suppliers and consumers to any changes in OPEC 

production. We then fit a parsimonious reduced form inverse demand equation 

                                                
8 We used the 1992 version documented in EIA (1996), which projects the world oil market to 
2010 from data beginning in 1979. The EIA has recently replaced the OMS model with a World 
Oil Market (WOM) model, which in turn is part of their International Energy Module (IEM). 
According to the EIA web site, the structure of the WOM is similar to the structure of the OMS, 
but with more detail on the United States. Gately (1984) and Cremer and Salehi-Isfahani (1991) 
review a number of similar models of OPEC behavior. A more recent example is Gately (2004). 
9 There are other models of OPEC pricing behavior that could have been used. While Griffin 
(1985) found support for cartel behavior by OPEC, Griffin and Neilson (1995) find that strategic 
behavior may have changed in the mid-1980’s from a dominant firm with strong cartel overtones 
to a tit-for-tat strategy (Salehi-Isfahani (1995, p. 16). Cremer, J., and D. Salehi-Isfahani (1989) 
argue that “…absorptive capacity constraints and imperfections in the international capital 
markets…” (p. 431) cause the supply curve of oil to be backward bending.  Relatively low demand 
elasticities then may give two stable equilibria, one consistent with the low price era that existed 
between the high price eras following the price jumps of the oil crises. 
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that describes the relationship between the average daily supply of OPEC oil and 

its resulting price:  

 logP
t
= !0 +!1yt +!2T + "  (3.5) 

where T is the time trend index defined as: T =  t/60 if t ≤ 60 and T = 1 if  t > 60, 

and t starts at 1 in year 1986 and equals 60 in year 2045. The time index is 

included to capture influences on demand such as changing preferences and levels 

of development. The specification (3.5) surely ignores important details.  We wish 

to keep the format relatively uncomplicated, however, to facilitate calculation of 

the value function while still allowing for monopolistic behavior.10 Table 3 reports 

the ordinary least squares regression estimates of (3.5). 

Table 3 Estimated Inverse Demand Equation 

 α0 α1 α2 

Estimates 3.5323 -0.0398 3.9656 

Standard Deviation 0.0520 0.0023 0.1557 

R2 0.7476   

 

The OMS model treats OPEC as a single block. For determining the world oil 

price and non-OPEC production and consumption, the allocation of oil production 

across OPEC countries makes little difference. For our simulation, however, the 

internal dynamics of OPEC behavior is important. For example, if other OPEC 

countries completely offset any change in Saudi production, Saudi behavior would 

not affect the price. We assume in our base case simulations that other OPEC 

member countries match any change in Saudi production, so output shares within 

the organization do not change. In a fifth scenario, we examine the effect of 

changes in the Saudi share of OPEC output.11 Output from our simulation 

                                                
10 The method could in principle accommodate a more detailed approximation of the reduced form 
of the game.  Adding state variables, for example world GDP, is one possibility.  However, it 
would complicate the model and the computations, and cloud interpretation of key relationships. 
Additional exogenous variables would also need to be forecast. Our goal was to allow feedback 
from output decisions to prices while keeping complications to a minimum. As a referee 
suggested, the modeling framework also could be extended to allow for stochastic variables 
without changing the basic solution methodology. Allowing for more state variables and an 
explicit stochastic setting may provide added realism and also allow us to better fit the observed 
output path.  These are issues that would be interesting to pursue in future research. 
11 Our model focuses on longer-term issues. Hence, even if Saudi production is varied to 
accommodate shocks to the world oil market and moderate price changes, the longer-term 
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represents 10% of Saudi output.12 If we assume the long-term average share of 

Saudi output in total OPEC output is around 27%,13 a given change in output X 

from our simulated field would result in a price change commensurate with a total 

OPEC change of 37X. If we assume that the daily production rate X is maintained 

for a full year, the estimates in Table 3 then allow us to express the annual 

revenue function for the field during non-stationary periods as: 

 R X
t( ) = 365X

t( ) ! e3.5323"0.0398!37!Xt +3.9656T  (3.6) 

3.3 The Production Cost Function 

Studies of optimal oil production in OPEC countries typically do not include a 

detailed model of production cost. This is no doubt explained by the difficulty of 

obtaining accurate information. Oil production costs can be classified into three 

parts: (1) exploration cost, (2) development cost, and (3) operating costs. We use 

information from different sources to construct a complete cost function. 

Exploration cost includes the cost of geological and geophysical surveys for 

discovery and delineation of reservoirs, and the drilling of exploration wells. 

While past exploration expenditures are sunk and irrelevant to calculating on-

going costs, Saudi Arabia incurs exploration and geophysical expenditures not 

only for finding new fields but also for determining how to best exploit current 

reservoirs. The cost of an exploration well or of geophysical surveys in Saudi 

Arabia is not available. Nor do we have sufficient data to express exploration 

expenditure as a function of total oil production. However, according to Masseron 

(1990, p. 98), exploration expenditure accounts for about 10–20% of the total 

production cost. Therefore, after estimating the development and production costs, 

we simply add 20% to account for exploration expenditure. 

Development costs can be divided into two general categories: (1) infrastructure 

and maintenance costs for surface installations, and (2) oil well costs, which 

                                                                                                                                 

objective of Saudi policy may be to maintain a stable share of OPEC output. 
12The simulated oil field only accounts for part of the Ghawar field in terms of its production and 
number of wells.  However, it still represents Ghawar in the sense that the geological features and 
field properties assumed in the Black Oil simulations match those of the Ghawar field. 
13 The EIA web site reports that the Saudi share of OPEC output was stable at around 25% from 
1985–90. It jumped to over 35% in 1991 at the time of the first Gulf war, then declined gradually 
to around 30% from 1998-2002, only to rise again to over 32% in 2003. However, we might 
expect the Saudi share to decline again when the Iraqi industry recovers. We took 27% as an 
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include investment for new wells and maintenance cost for old ones. Due to data 

limitations, only a weighted annual average infrastructure cost per mmbd of 

capacity is calculated for Arabian light fields (like Ghawar, Abu Hadriya, etc.), 

and Arabian medium fields (like Zuluf, Qatif, etc.), which together usually 

account for about 70% of total Saudi output. The weights used for calculating 

average surface cost are the relative production ratios of each type of field in 

1992. The calculation is based on the information contained in Oil Production 

Capacity in the Gulf, vol. II: Saudi Arabia (Center for Global Energy Studies, 

1993), which suggests that an additional producing well will require on average an 

additional $482,000 of surface infrastructure, while annual surface infrastructure 

maintenance cost is about $0.44 per daily barrel (in 1986 dollars). Thus, total 

annual surface infrastructure maintenance cost (in millions of 1986 dollars) as a 

function of total production (in millions of barrels per day) is 

 µ
t
= 365 !0.44X

t
. 

The surface installation cost for expanding capacity is included in the cost of 

drilling a new producing well. For an Arabian light crude field the latter is about 

$2.4 million per well after accounting also for the need to add injection wells. 

Thus, we assume that the total cost of a new well with additional surface 

infrastructure is 

 ! = 2.882dN
t
. 

While maintenance of surface infrastructure has already been accounted for, 

continuing investment is needed to maintain well productivity. Information on 

these costs also is hard to obtain. The Black Oil simulation implies a producing 

well will operate for 20 years, which is in line with industry averages. We assume 

that the equivalent annual cost of the depreciation payments on the in-well 

equipment at a 10% discount rate is such that the present value of these charges 

over a 20-year horizon matches the up-front capital cost of the well infrastructure. 

This gives rise to an approximate annual maintenance cost (in $million) of 

 M
t
= 0.2819N

t
 

Consistent with the assumption that a producing well will operate for 20 years, we 

set the proportion δ of wells watering out during each period equal to 0.05.14 

                                                                                                                                 

approximation to the long run share. 
14 A more complete model would allow for different vintages of wells. If wells last 20 periods, 
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Production cost refers to operation costs and reservoir engineering costs that vary 

with output. These include the expenditures on manpower and other variable 

production costs. According to a report from the EIA (1996), variable operating 

expenses per barrel range from $0.25 to $1.00, depending on the rate of 

extraction. The EIA provides the following estimated functional relationship 

between annual production (365X) and variable operating costs15: 

 
  
V

t
= 0.7714(365X

t
)!0.2423  (3.7) 

Water must be injected into the reservoir to maintain the reservoir fluid pressure. 

We use the water injection costs to capture the reservoir engineering costs. 

Industry studies indicate that these costs are on the order of about $0.20 per daily 

barrel of water per day for Saudi Arabia. This leads to an annual water injection 

cost (in millions of dollars) of  

 !
t
= 365 "0.20W

t
 

Summing these components, and multiplying by 1.2 to account for exploration 

expenditure, the resulting oil production cost (in $million) per year becomes 

C
t
=1.2{µ +V

t
(365X)+!

t
+M

t
+"

t
} =1.2{365 # 0.44X

t
+

(0.7714(365X
t
)
-0.2423

)$ (365X
t
)+ 365 $ (0.2W

t
)+ 0.2819N

t
+ 2.882dN

t
}

 (3.8) 

where X, W, N, dN  follow the same notation as in (2.1).  The water injection rate 

(W) was modeled as a function of the number of producing wells (N) and the daily 

production rate (X) in section 3.1. 

3.4 Summary 

The results derived in this section can be summarized by restating the dynamic 

programming model using the estimated functions. Notice that the first two 

equations in the constraints represent the state transition equations in the model. 

v
t
N

t
,CP

t( ) = MaxXt ,dNt { 365Xt( ) ! e3.5323"0.0398#37#Xt +3.9656t -1.2{(0.44 # 365)Xt

+(0.7714(365X
t
)
–0.2423

)# (365X
t
)+ 365 # (0.2W

t
)+ 0.2819N

t
+ 2.882dN

t
}

+$v
t+1 Nt+1,CPt+1( )}

 (3.9) 

subject to 

                                                                                                                                 

however, this would add 20 new state variables. In addition, we would need to know the vintages 
of current wells in order to solve the model and this information was not available to us. 
15 The EIA’s Estimator database contains field and production characteristics for eight geological 
plays (a group of discovered and/or undiscovered fields with similar geological, geographic, and 
temporal characteristics) as well as varying field sizes based on expected ultimate recovery. 
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Nt+1 = (1 – δ)Nt + dNt 

CPt+1 = CPt + 365Xt 

W
t
= e

0.7999
X
t

0.9509
N

t

*0.0306

 

X
t
! 0.0451+ 0.0362 log W

t( ) " 0.0038 log Wt( ) log CP
t( ) " 0.0044 log CP

t( ){ } # Nt

*  

  
N

t

*
= N

t
+ dN

t  
X
t
! 0 and dN

t
! 0  

To derive the optimal policy path we need the functional form of the value 

function v. Different iterative methods have been used to approximate the value 

function. For example, Hartley (1996) proposes spline approximation of the value 

function in models with inequality constraints. Since we have multiple state 

variables, we use tensor splines to approximate v on a two-dimensional grid.16 

4. Existence and Uniqueness of the Optimal 

Stationary State Solution 

The value function in (3.9) depends on time, t, because the revenue function is 

time varying.  In order to apply iterative techniques to solve for a value function 

we need the choice environment to become stationary at some point. The optimal 

policies will not be constant in this regime, but they will be stationary functions of 

the time-varying state variables. After obtaining the terminal value function, 

which has as an argument the state prevailing at the time we enter the stationary 

world, we use a finite number of backward recursions of (3.9) to solve for optimal 

policy and value functions in the earlier non-stationary periods. 

It is easier to discuss the existence and uniqueness of the optimal solution in the 

terminal stationary state if we introduce some notation. Let π denote the policy 

variables, with Π the set of all possible values for π, and σ the state variables, with 

Σ the set of all possible values for σ.  Let Φ: Σ→Π be the correspondence 

describing the feasibility constraints, namely the short-term capacity function 

(3.8) and the non-negativity of the policy variables. Let !̂ :Π×Σ→ denote the 

                                                
16Due to their flexibility and smoothness, splines are widely applied in approximating functions 
and solving functional equations. The Spline and Optimization toolboxes in MatLab were used to 
obtain the value function approximations and subsequent solutions for the optimal policies.  
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estimated profit function (“∧” stands for the estimated function) r – c in (2.1). Use 

M to denote the state transition function, M: Π×Σ → Σ described in (3.9). 

Once the choice environment is stationary, the dynamic programming model (3.9) 

can be summarized as (4.1) with an operator, T, on the space of continuous and 

bounded functions. 

 
  
T ! v( ) " t( ) = max

#
t
$% "

t( )
&̂ #

t
,"

t( ) + 'v "
t+1( ){ }  (4.1) 

A reasonably straight-forward application of Theorem 4.6 in Stokey, Lucas and 

Prescott (1989) implies that T as defined in (4.1) has a unique fixed point 

v* ∈ (σ) such that for all v0 ∈ (σ), 

 
   
T

n
v

0
! v * " # n

v
0
! v * ,  n =1,2,…  

Moreover, given v*, the optimal policy correspondence P: Σ→Π, defined as  

 
  
P(! ) = " # $ !( ) : v * !( ) = %̂ " ,!( ) + &v * M " ,!( )( ){ }  

is compact-valued and upper hemi-continuous. The existence of a fixed point for 

the operator T justifies using iterative methods to approximate the stationary state 

value function. The theorem from Stokey, Lucas and Prescott (1989) also provides 

a bound on the rate of convergence. 

Using Theorem 4.7 in Stokey, Lucas and Prescott (1989), one can also show that, 

for our functional forms, v* is strictly decreasing in CP. We verify that the 

calculated value functions in the next section are consistent with this result. 

5. Simulation Results 

This section presents numerical approximations to the value function and the 

optimal policy paths under five scenarios. Scenario I assumes that the discount 

factor is 0.9 (discount rate  !  0.1) and the states with a stationary demand curve 

begin in 2045. Scenario II keeps the beginning stationary state date as 2045, but 

sets the discount factor to 0.7 to capture Saudi Arabia’s heavy reliance on its oil 

income. The difference in outcome between scenarios I and II can be used to 

gauge the effect the discount factor has on the solution. 

Scenarios III and IV retain β = 0.9 but study the impact of an anticipated 

technology breakthrough that significantly reduces the cost of solar energy or 

other backstop technologies for generating electricity and using it to power 

vehicles. Only the revenue function is affected by such a shock to oil demand. In 
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scenario III, the alternative technology is assumed to become competitive with oil 

in 2036 and continue to improve and reduce oil demand over a ten-year period. To 

be specific, we assume that by the end of the transition period, the inverse demand 

equation will have contracted proportionately by a factor of 2 so (3.5) becomes 

 log2P
t
= !0 +!12yt +!2T  

with the reduction in demand occurring uniformly over the transition period. The 

transition pattern is purely hypothetical. We are interested in how expectations of 

such a transition would affect Saudi Arabia’s oil production policy in the short to 

medium term. 

Scenario IV repeats scenario III with a more optimistic projection that implies the 

technological breakthrough will occur in 2026 instead of 2036.  This allows us to 

see how the expected timing of such a shock affects Saudi’s oil production 

decisions. Changing the timing of the solar technology shock from 2036 to 2026 

does not effect the value function v* in the stationary state, although the values of 

the state variables when the stationary state begins would be different. 

Finally, scenario V repeats scenario III but varies the ratio of total OPEC to Saudi 

production. Specifically, we now take the ratio of OPEC production to production 

from our simulated field to be 40 from 1986-1990 (implying a Saudi share of 

OPEC production of around 25%), 35 in 1991 (implying a Saudi share of around 

28.5%), and 31 thereafter (corresponding to a Saudi share of around 32.25%). 

Figures 1–4 graph the tensor spline numerical approximations to the value 

function in the terminal stationary state as a function of the number of wells N and 

cumulative production to date CP.17 Contour levels of the function are included on 

the floor of the 3-D space to help the reader understand the shape of the surface. 

The time-varying value functions in earlier periods are derived using backward 

recursion. From the shape of these surfaces it is clear that once cumulative 

production from this simulated field reaches around 20 billion barrels 

(corresponding to overall Saudi production of 200 billion barrels), Saudi 

production will begin to fall off rather sharply. 

                                                
17 Recall that the stationary v* is the same in scenarios III and IV. It may also be worth remarking 
that the ranges of values for N and CP for which v* has been graphed are larger than encountered 
in the time period that we subsequently examine. This has been done for the technical reason that 
the ranges of values have to be large enough to ensure the maximizing dN = 0 for large values of N 
in the approximation region. If this were not the case, we could not use an existing approximation 
to v* to evaluate the right hand side of the functional equation (3.9). 
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Fig. 1 Stationary value function for β = 0.9 and stationary terminal demand 

 
Fig. 2 Stationary value function for β = 0.7 and stationary terminal demand 
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Fig. 3 Stationary value function in scenarios III and IV with backstop technology that reduces 

demand in the stationary state 

 
Fig. 4 Stationary value function with backstop and changed Saudi share of OPEC output 
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Fig. 5 Optimal extraction rates and number of new wells for β = 0.9 and stationary terminal 

demand 

Figures 5 and 6 present the production paths, and corresponding number of new 

wells drilled in the field, that yield the optimal oil production policy for scenarios 

I and II.18 The initial conditions for the simulated oil field are assumed as: N0 = 57 

and CP0 = 2648 million barrels. The numbers are set to be about 10% of their 

actual values in Saudi Arabia. CP0 is calculated by accumulating the Saudi’s 

production data 1976–1985.19 

There are several interesting implications of the results. First, in both scenarios I 

and II output declines rather steeply beyond 2055. Since the demand curve for 

Saudi oil is assumed stationary from 2045 on, this primarily reflects the negative 

effect of cumulative past production on continuing field productivity. 

                                                
18 Although it might at first sight appear strange to allow for a non-integer number of new wells, 
wells can be bought on stream or retired part way through a year. 
19See PennWell Publishing (1997). Since we have no precise data on the total number of on-shore 
producing oil wells in 1986, we approximated it using the information, obtained from the U.S. 
Library of Congress Country Studies web site (http://lcweb2.loc.gov/ ), that Saudi Arabia had 
about 555 producing wells during the mid-1980’s. 
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Fig.6 Optimal extraction rates and number of new wells for β = 0.7 and stationary terminal 

demand 

Second, comparing scenario I where β = 0.9 with scenario II where β = 0.7, we 

find that a higher discount rate leads to higher production prior to 2061, but lower 

production in all years from 2062. With a higher discount rate, the present value 

of future oil income is relatively lower while the present value of the cost of 

drilling a well is higher, so production is shifted forward in time. The effects of a 

relatively large change in β are, however, surprisingly small. 

Third, although investment in new wells is reasonably smooth up to 2060, it can 

fluctuate considerably from one year to the next beyond 2060. The reason for this 

can be seen in Figure 7, which gives the optimal number of new wells in the 

stationary demand environment as a function of the existing number of wells and 

the cumulative production. In the region of the state space where the optimal 

number of new wells is positive, it is extremely sensitive to the values of the state 

variables. Thus, if the state ends up interior to this region at the end of a period, 

many new wells are added. The resulting change in the state variables can, 

however, move the state variables closer to the boundary of the region in the 
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following period resulting in a large reduction in the optimal number of new wells 

added at the end of that period. 

 
Fig. 7 Optimal number of new wells as a function of the existing number of wells and cumulative 

past production in the stationary demand environment for β = 0.9. 

 

Figures 8 and 9 present the production paths, and corresponding number of new 

wells drilled, in scenarios III and IV. These scenarios show that once the reduction 

in demand eventuates, Saudi drilling and production decline dramatically. In 

addition, although it is difficult to discern from the figures, we find that an 

expectation of earlier development of a backstop energy source also tends to raise 

production in initial periods before either demand reduction occurs. As with a 

lower value of β, the expectation of an earlier loss of demand reduces the 

opportunity cost of current production in terms of future oil income. The expected 

sharp decline in the return on oil reserves due to the substitution of an alternative 

energy for oil encourages more short-term drilling to extract resources more 

rapidly. Once again, however, the consequences of quite a dramatic change in 

expected future demand are surprisingly small. 
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Fig. 8 Optimal extraction rates and number of new wells for β = 0.9 and slow development of 

backstop technology that reduces demand in the stationary state 

 

Figure 10 compares the simulated optimal production paths (1986–2004) in the 

first four scenarios with 10% of the Saudi actual daily extraction rates during this 

period as reported by the EIA.20 Figure 5.10 emphasizes that the differences 

between the different scenarios are trivial compared with the divergence between 

the scenario production levels and the observed output. Evidently, different 

discount rates or expectations about the timing of developments in backstop 

energy technologies cannot explain the divergence between the simulated and the 

observed outputs. 

                                                
20 Recall that the 10% level is based on the size of the oil field studied in the Black-Oil simulation 
and the fact that the initial conditions were chosen under the assumption that the field accounts for 
about 10% of total Saudi oil reserves and production. 
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Fig. 9 Optimal extraction rates and number of new wells for β = 0.9 and early development of 

backstop technology that reduces demand in the stationary state 

 
Fig. 10 Simulated production paths 1986–2003 compared with 10% of Saudi output over this 

period 
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Fig. 11 Revenue and marginal revenue functions for output from the simulated field 

 

Figure 11 suggests an explanation for the small magnitude of the effects (in early 

periods) of changes in β or the timing of developments in backstop technologies.21 

This shows the revenue and marginal revenue functions for the simulated oil field 

in the terminal stationary regime.22 Revenue shows a sharp peak around an output 

of 0.68, which corresponds to overall Saudi output of 6.8 mmbd. Since the 

marginal revenue curve is steep, small shifts in marginal cost, including the 

opportunity cost of mining today rather than leaving resource to be exploited in 

the future, lead to small changes in the optimal output. Thus, the output path is 

very smooth until the cost changes from one period to the next get large (after 

2055 in scenarios I and II). In addition changes in factors that affect costs have 

little effect on optimal output prior to 2055. 

                                                
21 Scenarios I and II compare two different constant values for β rather than a time path that 
changes from year to year. If β could vary over time, however, an extremely large number of paths 
could be examined. To check whether a time varying β would alter our conclusions, we examined 
two additional scenarios based on scenario III. In one of them we assumed β was 0.7 for the first 
ten years but then 0.9 (as in scenario III) for the remaining periods, while the other examined the 
reverse case where β was 0.9 for ten years, but then falls to 0.7 for the remaining periods. In both 
cases, we assumed a slow development of the backstop as in scenario III. These different time 
paths for β had very little effect on the solution. We did not include these more complicated 
scenarios in the paper to save space, but the results are available from the authors upon request. 
22 The shifts in the demand curve in earlier periods essentially re-scale the y-axis since they 
multiply revenue and marginal revenue by the same constant. 
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By contrast, the effect of the introduction of the backstop technology is large 

because it greatly affects the output corresponding to maximum revenue. Scenario 

V further illustrates this point. A critical determinant of the output corresponding 

to peak revenue is the Saudi share of total OPEC output. Scenario V varies the 

Saudi share of OPEC output while otherwise retaining the discount rate and 

backstop technology assumptions of scenario III. Specifically, we now take the 

ratio of OPEC production to production from our simulated field to be 40 from 

1986-1990, 35 in 1991, and 31 thereafter. These values approximate the actual 

historical ratio of OPEC to Saudi production from 1986-2004. Figure 12 graphs 

the resulting optimal levels of output and new wells drilled. As in Figure 10, we 

have included 10% of actual Saudi output over the period 1986-2004. The 

increase in world demand from rapid economic growth may explain further 

increases in Saudi output from 2003 and beyond.  

 
Fig.12 Optimal extraction rates and number of new wells for β = 0.9, slow development of 

backstop technology and increased Saudi share of OPEC production 

 

Figure 13 compares the oil price paths in each of the five scenarios with the actual 

path of the real fob price for US imports of Saudi oil in 1986 dollars (using the US 
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CPI as deflator).23 Since the model is deterministic, it is not surprising that the 

actual price path is more volatile than the simulated price paths. The apparent flat 

trend in the actual price path, however, is inconsistent with the rising trend in the 

simulated paths.24 

 
Fig.13 Actual real Saudi oil prices compared with the simulation outcomes 

 

The actual price path could reflect a slower growth in the world economy, and 

hence in energy demand, in the 1990’s than the simulated trajectories using the 

OMS model. Of particular interest in this regard is the observation from Figure 12 

that the scenario V model approximates the quantity of Saudi output much better 

than it approximates the real price in Figure 13. Observing a similar quantity at a 

lower price suggests that demand is not as high as the model assumes. If a shift in 

the demand curve does explain the price discrepancy, the model suggests that it 

shifts in a way that does not greatly alter the level of output where marginal 

revenue approximates marginal cost (including the opportunity cost of mining 

today at the expense of higher mining costs in the future). Also of interest is that 

                                                
23 The oil price data were obtained from the EIA web site and the CPI from the FRED database at 
the Federal Reserve Bank of St Louis. 
24 Although the exponentially rising trend of the simulated price path is consistent with the 
prediction of the simplest version of Hotelling’s model (Prato 1997, p. 140 or Neher 1990, p. 95), 
in later periods, where cumulative production begins to strongly affect costs, the prices do not rise 
at a constant percentage rate. Solow and Wan (1976) and Heal (1976) were the first papers to 
allow extraction costs to depend on cumulative past exploitation. Part of their motivation was the 
observation that, contrary to the predictions of the simplest Hotelling model, real prices of natural 
resource commodities show a long-term decline. Slade and Thille (1997) observe that factors such 
as large unanticipated discoveries, technical change that lowers mining costs, and the development 
of substitute materials that reduce demand could also explain declining resource prices. 
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the recent rise in oil prices on the heals of dramatically growing demand from 

China, India and elsewhere has raised real prices much closer to the path forecast 

by the model scenarios. 

Another explanation for the divergence between the model and actual outcome is 

that the Saudi decision makers do not have profit maximization as their objective. 

The model could nevertheless prove useful in such a circumstance. If we assume 

that deviations between the actual and the simulated production paths represent 

the pursuit of other objectives, the simulation results would reveal the potential 

costs of pursuing those objectives in terms of foregone profits. 

In order to investigate this possibility, we further modified scenario V to allow the 

observed output, and corresponding real price, to be chosen as optimal. 

Specifically, we altered the demand curve intercept in (3.5) in years 1986–2004 to 

ensure that the curve passed through the observed quantity and real price pair.25 

Without making this change, the revenues earned in scenario V, for example, 

could be much larger than observed not because chosen output is not profit 

maximizing but rather because the assumed level of demand is unrealistic. 

Table 4 Observed and simulated profit-maximizing production, prices and revenues (millions of 

1986 dollars), 1986–2004 

Year Actual output Simulated 

output 

Actual real 

price 

Simulated 

real price 

Revenue 

difference 

1986 4.8700 5.4430 11.36 10.37 -2.0% 
1987 4.2650 5.5540 14.59 11.88 -5.7% 
1988 5.0860 5.4630 11.27 10.61 -1.1% 
1989 5.0640 5.6190 14.40 13.19 -1.6% 
1990 6.4100 5.7740 17.08 18.90 0.3% 
1991 8.1150 7.2480 11.77 13.28 -0.8% 
1992 8.3317 7.2180 12.38 14.20 0.6% 
1993 8.1978 7.0650 10.45 12.02 0.9% 
1994 8.1200 7.0530 10.44 11.91 0.9% 
1995 8.2312 7.2650 13.36 15.05 0.6% 
1996 8.2181 7.2700 13.47 15.14 0.6% 
1997 8.3620 7.0820 10.35 12.12 0.8% 
1998 8.3889 6.4770 5.96 7.55 2.3% 
1999 7.8334 7.1100 11.61 12.70 0.8% 
2000 8.4038 7.3820 15.67 17.78 0.4% 
2001 8.0311 7.1310 11.75 13.13 0.8% 
2002 7.6344 7.2730 14.58 15.24 0.4% 
2003 8.7750 7.3740 14.91 17.73 0.1% 
2004 9.1008 7.5540 19.78 23.93 -0.5% 

 

                                                
25 Beyond 2004, we assumed that the demand curve gradually reverted to the scenario V one. 
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Table 4 compares the actual outputs and prices with the profit maximizing levels 

under this altered scenario. The final column of the table gives the difference 

between the actual and the simulated profit maximizing revenues as a percentage 

of the latter. The first point to note is that the simulated profit-maximizing output 

tends to increase less, and the real price more, than the actual levels post-1990. 

This could reflect, for example, a price stabilization objective of Saudi decision-

makers. The second observation, however, is that the deviation between the actual 

and the profit-maximizing revenue is quite small. Third, the actual revenue 

exceeds the simulated revenue in 1990 and from 1992-2003. Evidently, even 

though revenue in those years is higher than the simulated value, the present value 

of costs on the actual path must also be higher. These additional costs could take 

the form not only of higher drilling costs for additional new wells, for example, 

but also anticipated effects of higher output on future production costs. By 

definition, the simulated path maximizes the net present value of profits taking 

account also of all the effects of current production on current and future costs. 

6. Conclusions 

We proposed and illustrated an integrated economic and engineering analysis of 

the dynamic production decisions for an idealized oil field approximating the 

largest oil field in Saudi Arabia – Ghawar. The Workbench Black Oil Simulator 

model was used to characterize the reservoir engineering aspects of the problem. 

Our analysis incorporates a game theoretical structure of the world oil market 

(taking Saudi Arabia as a Stackelberg leader) using the Oil Market Simulation 

model developed by the EIA. The results of the optimal production model 

approximate actual Saudi Arabia extraction rates. 

Comparing results under different scenarios helped elucidate influences on Saudi 

Arabia’s investment and production decisions. In particular, we found that 

changes in the time discount factor or the timing of developments in backstop 

technologies had a surprisingly small effect on near-term production decisions. 

The reason is that the marginal revenue curve is very steep, so small shifts in 

marginal cost, including the opportunity cost of producing now rather than later, 

lead to small changes in profit maximizing output. On the other hand, factors that 

change the marginal revenue curve, including a change in Saudi share in OPEC 

output, can produce significant changes in the maximizing level of output. 
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Although the model approximates Saudi Arabia’s oil production decisions, we 

have made many simplifications that could be relaxed in future work. The most 

important is that the assumption of perfect knowledge and foresight is unrealistic. 

Examining a number of different scenarios demonstrates the range of possible 

outcomes. However, as Powell (1990) pointed out, a decision maker who knows 

the environment is uncertain would take that into account by choosing production 

and investment paths to maximize the expected present value of profits. The 

model could be extended to encompass a stochastic demand environment and 

randomize the timing of the breakthrough in backstop technology. In this regard, a 

rather interesting feature of the value function graphed in Figures 1–4 is that it is 

convex over part of its domain. Where the value function is concave, the decision 

maker would be willing to take a lower expected value of profits if that also 

allowed profits to be less variable. If the value function is locally convex, 

however, the decision maker may behave as if he were not so risk averse. 

A second modification would involve using a multi-level optimization (MLO) 

approach instead of modeling Saudi Arabia’s oil production decision purely as 

maximization of the present value of its profits. This would allow a trade-off 

between profit maximization and other motivations of the Saudi Arabian 

government. Islam (1998) provides a good example of using MLO to model 

energy plans involving both the private sector and the government. 

Last, but not least, while using the OMS model simplified our task, this may have 

affected the accuracy of the model. A more ambitious approach would incorporate 

strategic behavior directly into the dynamic optimization model. 

7. Appendix  – The Workbench Black Oil Simulation 

Strategy 

The parameters are set to mimic the rock, fluid, and fluid/rock interaction 

properties typical of the Ghawar field, which is a Jurassic Arab-D calcarenitic 

limestone formation more akin to highly porous and permeable sandstone than 

fractured limestone (geological information can be found in Afifi (2005) or 

Durham (2005)). The reservoir gross thickness is about 75 meters. The dip of the 

formation varies from 0 degrees at the crest to about 5 degrees on the flank. 

The typical operational procedure is to drill producing wells downdip of the crest 

and injection wells for peripheral water injection below the oil/water contact. If 
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the reservoir were produced with no water injection, reservoir pressure and oil 

production fall considerably as gas is produced preferentially over oil or water. 

When water injection and fluid production balance, much more oil is produced 

because water effectively displaces and takes the place of oil. Figure 14 shows a 

cross section perpendicular to a line along the crest and through a line of wells. 

The vertical scale has been exaggerated to display details in the layering.  

 
Fig. 14 Injecting and producing wells 

 

Wells sufficient to meet the targeted production rate are drilled in a square pattern. 

Injected water travels across the reservoir until it encroaches upon the producing 

wells, at which point the oil production rate falls. New wells are drilled updip to 

maintain output until the wells at the crest of the formation water out.  

We used the Black Oil Simulator to run a suite of simulations investigating 

reservoir performance for a range of production and injection levels. The 

simulation model is a 3-dimensional wedge perpendicular to a line along the crest 

with its sides passing through adjacent lines of wells (0.707 kilometers apart). The 

model extends downdip to below the oil/water contact. These wedges then are 

stitched together side by side to approximately cover the Ghawar reservoir’s 

northern portion of Ain Dar. The eighty-four wedges in the model cover an area of 

about 10×40 kilometers, which is comparable to Ain Dar’s 10×30 kilometer size. 
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The main portion of Ghawar is about 180 kilometers wide. Reservoirs that are 

close by, and which are comparable to the representative reservoir we model, 

include Abqaiq (15×40 kilometers) and Harmaliyah (8×15 kilometers). 

The output of the simulations consists of time series of the pressure and the 

amount of oil, gas, and water present at selected points in the reservoir (the “state” 

of the reservoir) and the production rates of oil, gas, and water out of, and 

injection rates of water into, each of the wells. The amount of oil, gas, and water 

present in the reservoir around a well, and the pressure in the well, determine the 

ability of the well to produce or accept injected fluids. While well performance 

can be taken as a measure of the local state, it does not reflect the state of the 

entire reservoir. For this reason, correlating the performance of the producing 

wells against that of the injection wells is not always successful. 

The scheduling of the wells in each wedge takes place as follows. The model has 

five producing and two injection wells. Both of the injectors and the first 

producing well (the one lowest on the structure) are drilled at the same time and 

thus represent the initial investment. Subsequent capital investments are made as 

the additional producers are drilled following watering out of previous wells. The 

fifth producer well is drilled on the crest. Production and injection were balanced 

in the sense that any changes to the rates were made to the producers and injectors 

at the same time. The length of each simulation is 23 years. 

 
Fig. 15 Typical well production schedule when the production rate is 5% of reserves per year 
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In general, the higher the target production rate, the quicker the wells have to be 

drilled. In order to produce 5% of total reserves per year, only one well is needed. 

As each producing well waters out, one new well is drilled until the third well 

waters out. The deliverability of the next to highest well is insufficient to meet the 

target, however, so the fourth and fifth wells have to be drilled at the same time. 

At the highest target (9% of reserves per year), only the first well can meet the 

target by itself. When that well waters out, all the remaining wells have to be 

drilled. At the intermediate targets (6%, 7%, 8% of reserves per year), the results 

lie between these two extremes. The capital investment schedule for each of these 

cases would be different, because of the different schedules for drilling the wells. 

There is a trade-off between deferring capital investment at lower production rates 

and the loss of revenue in present value terms. 

Additional sets of simulations were performed to examine the effects of 

production rates on well requirements and water injection. Each simulation was 

started at one of the five levels of production target just described. After a length 

of time at that initial rate, the rate was either increased to the next higher, or 

decreased to the next lower level of production target and then maintained at that 

rate for the remainder of the time. Simulations were made with the rate change at 

two, four, and six years. In all, twenty-nine simulations were run.  
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