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Appendix A. Breakdown of Selling Formats

Table 1 Here

Appendix B. Methodology: Structural Parametric and Nonparametric Methods

In this section we outline standard approaches in the literature to estimating bidders' values and the entry process in

eBay auctions using parametric and nonparametric methodologies. We assume throughout that the analyst is analyzing

single item auctions, that the item has private values, entry is exogenous, and that the following insight from Haile and

Tamer (2003) holds. This assumption is that bidders follow two intuitive rules:
1. No bidder ever bids more than he is willing to pay.

2. No bidder allows opponents to win at a price he is willing to pay.

The second assumption must be applied with care in eBay auctions. Even if one considers exit as long as one

assumes that the steady state hypothesis holds then this insight should be correct. Why would the second highest

bidder leave "money on the table" in this auction to go to another auction where the competition will be just as strict?

As explained above, bidding takes place by a proxy program. The bidder submits a reservation price and the

computer raises the price until only one bidder remains. In such an auction the obvious action is to enter your reservation

value (or simply "value") as your reservation price, and the assumptions above makes sure that the second highest bidder

will do this. For each bidder there will be a common set of auction speci�c characteristics xn (where n indicates the

auction) and a private component �j (where j indicates the person). If the winning price is bwn , rn is the traditional

open reservation price, and values are log linear then the formula for the winning bid is:

bwn = max
n
rn; e

x0n��(2)n � c
o

(B-1)

where �(2)n is the private component of the second highest bidder in auction n given there are I potential bidders, and c

is the continuation value of bidders. We follow Sailer (2006) by assuming that bidders can not exit an auction until the
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auction is �nished and simplify the analysis by assuming this constant is independent of the bidder.

Note that while �in will be from a standard distribution, �
(2)
n , is not since it is the second order statistic from a

sample of I bids. One method to estimate (B-1) is to use a Tobit model controlling for heteroskedasticity:However

while this method is consistent it is a reduced form approach, leaving the analyst with no information about the true

distribution of private values or how competitive the auction is. An auction is competitive if the number of potential

bidders, I , is large, and this variable can not be estimated using reduced form techniques from this equation.

A straightforward methodology at this point would be to utilize formal maximum likelihood techniques, and extend

them to allow for an exogenous entry process. Let Fn (z; �) be the cumulative distribution function of the bidders' val-

ues at z and fn (z; �) be the probability density function�where � may include some distribution speci�c coef�cients.

Let Ian be the number of active bidders in auction n�or the number who actually submitted bids, and for i 2 f0; 1g

Di
n = 1 if Ian = i, Di

n = 0 otherwise. If I � Ian is the number of potential bidders in auction n the likelihood of

auction n given I is:

ln (�jI) =
�
Fn (rn; �)

I
�D0

n ��
IFn (rn; �)

I�1
(1� Fn (rn; �))

�D1
n � (B-2)�

I (I � 1)Fn (bwn ; �)
I�2

(1� Fn (bwn ; �)) fn (bwn ; �)
�(1�D0

n�D
1
n)
.

Inactive bidders are somewhat problematic. Although there must have been at least Ian who have bid there might also

be any number of bidders who thought about bidding and did not. Therefore I is often treated as a random variable that

can range from Ian to I�an arbitrary upper bound. One can view this treatment of identi�cation and estimation of the

number of bidders I as a direct treatment for what would otherwise be unobserved heterogeneity in each auction that

potentially could be correlated with outcomes of the bidding process. In this section we do not explicitly correlate the

number of bidders with other potential heterogeneity controls or the feed-back rating of the seller, but rather estimate

this potential auction speci�c unobservable. For an extensive treatment of unobserved heterogeneity in �rst-price

auctions see Bierens and Song (2008).

One could estimate the number of potential bidders in each auction as a constant (perhaps varying with the length

of auction or other discrete variables) or alternatively one could estimate an entry process. The number of bidders in

an auction is often modeled as a Poisson entry process. The parameter of the entry process, �n, is often assumed to be
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log-linear in a set of auction speci�c characteristics zn. Notice that some auction characteristics might affect entry but

not private values and vice a versa, although it is dif�cult to understand what these non-overlapping variables might

be a priori. However based on the analysis in the literature it seems clear that feedback�for example�has a much

stronger effect on entry than it does on the sales price. A convenient functional form for entry is:

ln�n = z
0
n : (B-3)

Let Tn be the length of the auction and Dsr
n be an indicator set to one if there is a secret reservation price and zero

otherwise. Then the total likelihood for auction n with exogenous entry is:

ln (�; ) =
�Ii=Ian+Dsr

n

(�nTn)
i

i! e��nTn ln (�ji)

�Ii=Dsr
n

(�nTn)
i

i! e��nTn
. (B-4)

The lower bound on i in both the denominator and the numerator is increased by one if there is a secret reservation

price, following the treatment in Bajari and Hortaçsu (2003a) wherein the auctioneer is treated as another bidder if

there is a secret reservation price. When analyzing eBay data sets based on spider programs that collect information

on auctions that do not result in sales as well as those that do, full likelihood can be utilized, of course based on a

parametric assumption for distribution of private values and the entry process.

Since one cannot be certain a-priori of the true distribution of bidders' values, an array of distributions can be used

and results based on these different parametric distributions can be compared and analyzed, possibly with nonparamet-

ric diagnostic methods. Results can also be compared with nonparametric methods. Common one-sided distributions

proposed in the literature are the folded logistic, gamma, Weibull, log-normal, and Pareto.

Another methodology proposed by Laffont, Ossard, and Vuong (1995) is to simulate the auction. Laffont et

al. focused on �rst price auctions but the methodology is the same for eBay auctions. Imagine running S auc-

tions with I bidders in each auction. In each simulation the second highest value is selected (Xsn (�; I)) and these

values are averaged to form �Xn (�; I) =
1
S�

S
s=1Xsn (�; I). If S is large then the distance between �Xn (�; I)

and E
�
v(2)

�
will be small, and assuming one has the correct value for I then the distance between �Xn (�; I) and

E [bwn ] will be small. However, an unbiased methodology must take into account that in practice S is not large,

and thus the objective function should compensate for the variance of the simulated estimator. This variance is

VSn (�; I) =
1

S(S�1)�
S
s=1

�
Xsn (�; I)� �Xn (�; I)

�2. Estimation of � and I are then given by:
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argmin
�;I

QS;N (�; I) =
1

N
�Nn=1

h�
bwn � �Xn (�; I)

�2 � VSn (�; I)i (B-5)

whereN is the number of auctions. Note that the distribution of v(2) will be a non-degenerate function of � and I: This
allows identi�cation of I . On an intuitive level this is because I determines the amount of "skewness" in the observed

prices. Theoretically one could allow for exogenous entry as outlined above, but this could prove computationally

burdensome.

Another simulation based, parametric estimation approach comes from Bajari and Hortacsu (2003a). Bajari and

Hortacsu (2003a) speci�es a structural econometric model of eBay auctions, where Bayesian approach is taken to

estimate the parameters of the model. They model the eBay bidding problem in a second price sealed bid auction setting

with symmetric common value assumptions and stochastic entry, where the entry of the potential bidders depends on

a zero pro�t condition and the number of actual bidders is determined by a Poisson process with mean �t: At each

auction, bidders only observe a private signal xit about the value of the auctioned good vt, where xit = vt + "it, "i is

distributed i:i:d, and v s N(�t; �2t ) and x s N(�t; k�2t ) (here t is the auction, and i is the bidder subscript). Being

motivated by some empirical regularities in the observed characteristics of the auction data, they estimate reduced form

relations between some observable auction variables and the structural parameters. Then, they specify the likelihood

function of the observed bids using the data of the bidders who have not bid at all for each auction. By this way they

assign a positive likelihood to auctions with no bidders, hence make a good use of all the available data. Showing the

form of the likelihood function of the bids conditional on the auction speci�c data and the structural parameters to be

estimated, they use this likelihood function to update their prior in the Markov-chain Monte Carlo method by which

they simulate the posterior distribution of the model parameters. In the paper they emphasize the advantages to using

a Bayesian approach when estimating parametric auction models. First, Bayesian methods are computationally simple

and easier to implement than maximum likelihood. Since in many auction models, support of the distribution of the

bids depends on the parameters, it is not possible to apply standard asymptotic theory straightforwardly. Moreover,

con�dence intervals in a classical framework require second order asymptotic approximations, whereas the results in

this paper are correct in �nite samples and do not require invoking the assumptions used in second order asymptotics.

Lastly, in some parametric auction models, Bayesian models are asymptotically ef�cient while some commonly used
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classical methods are not ef�cient.3

Sailer (2006) is another interesting paper in terms of modeling and identi�cation strategy, preferring parametric

techniques for estimation. Sailer (2006) sets up an intertemporal optimization problem for an eBay bidder who faces

an in�nite sequence of Vickrey auctions for heterogenous products (She argues that only the bids at the last minutes

of the auction, when bidders are no more able to observe the bids by their opponents, determine the sales price and

the winner of the auction; that's why we can take into account only the last minutes of an eBay auction and evaluate

it as a sealed bid second price auction.45 ) The intertemporal optimization setting is designed to re�ect the tradeoff

between bidding today and waiting for tomorrow, where the bidder optimally chooses a bid to maximize her expected

bene�t from bidding minus the cost of bidding, but still can choose to wait for the next auction without bidding in

the current auction (hence not incurring the cost of bidding now) if the expected future payoff of waiting for the next

auction is higher than the maximum of what she can expect to get from bidding in the current auction. The problem

can be summarized as the following:

Vi(vi; s) =

8<: max

�
max
bi>r

Eb(1)
�
1
�
b(1) < bi

	 �
vi � b(1)

�
� ci + 1

�
b(1) � bi

	
V ei js

�
; V ei

�
; before win

0 ; after win

9=;
where Vi(vi; s) is the value of having the opportunity of bidding in the current auction given the realization of

the valuation of bidder i for the currently auctioned good (vi), the realizations of the characteristics of the currently

auctioned good and the current auction (s). bi is the bid of bidder i if she decides to participate in the current auction,

b(1) is the maximum bid of the bidder i's opponents, vi is the realization of bidder i's valuation of the auctioned

good after seing the characteristics of the good and the auction, ci is the cost of bidding for bidder i, and V ei is the

continuation value of bidder i (the value she expects to get from the next auctions if she fails to win in the current

auction or does not bid at all). The optimal bidding behaviour of bidder i requires the following equality:

ci = Es;b�i
�
Eb(1)

�
1
�
b(1) < b

�
i

	 �
b�i � b(1)

�
js
�
j��i = 1

�
(B-6)

where ��i = 1 denotes that it is optimal for bidder i to participate in the current auction (the entry decision is af�rmative),

3 see Porter and Hirano (2001).
4 Bajari and Hortacsu (2003) take a similar approach for the eBay auctions of some common value goods.
5 Nekipelov (2007) actually shows that early bidding can bene�t the bidder by entry deterrence, hence the early bids may have
an effect on the result of the auction.
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and b�i is the optimal bid of her. Clearly, we could calculate the cost of bidder i if we could observe b�i when it is a

winning bid. (We can only get biased estimates of the cost if we use the observed highest bid in place of the highest

bid b�i ). This is the point where Sailer(2006) suggests a stepwise procedure which allows her to show that both the

distribution of valuations of the bidders and their costs are non-parametrically identi�ed. Given that the model is set

under the assumption of asymmetric bidders and that the available data are the bids of all loosing bidders together with

the transactions prices and the identities of the bidders in each auction, the identi�cation results from Athey and Haile

(2007), Brendstrup and Paarsch (2006) and Song (2004) allow inference about the underlying parent bid distributions.

Then, given these bid distributions, estimates of the unobserved winning bids can be built, which in turn are used to

compute the costs from (B-6). The likelihood function of the problem is shown to be the following:

l =
TX
t=1

ln

�
fblt (b(2);tjxt)(1� Fbmt

(b(2);tjxt))
(1� Fblt (b(3);tjxt))(1� Fbmt

(b(3);tjxt))

�
which is obtained from the summation of different auctions t due to the fact that the auctions are independent of

each other. Since the parent bid distributions are bidder speci�c, the t dimension of the panel is not long enough to

legitimize a non-parametric approach. Hence the author assumes a normal form for the bid distributions such that

fbi(bijx) = N
�
�bi ; �

�
with �bi = cons+ x� � V

0
i , where cons includes the part of the continuation value of bidder

i that is common for everyone, and the individual speci�c part of the continuation value of i (V 0i ) is assumed to be

a function of bidder i's cost ci. Hence we can approximate the V 0i by a polynomial in ci. However, the plan is to

calculate the value of ci from (B-6) after inferring the unobserved winning bids from the estimated bid distribution,

for which we need to know the value of ci. Therefore we start with a guess about the value of ci, and this would be

the beginning of an iterative process which goes on until convergence of the estimated bid distributions bFbijx and the
bidding costs ci.

A non-parametric methodology can be based on Song (2004). Much attention has been given to nonparametric

alternatives to the structural models discussed above. Athey and Haile (2007) show that the parent distribution is

uniquely determined if the distribution of any order statistic with a known sample size is identi�ed. However, in eBay

auctions, the number of potential bidders is generally not observable. Song (2004) addressed this issue by showing

that within the symmetric independent private values model, observation of any two valuations of which ranking from

the top is known non-parametrically identi�es the bidders' underlying value distribution. Based on this theorem, Song
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argues that we can use the second and third highest bids to identify the distribution of bidders' private values.

In this technique one must assume not only that the second highest bidder bids his true value but also the third

highest bidder does, thus we assume explicitly that

vjn = e
x0n��jn � c

for at least the second and third highest bidders. These bidders' values are denoted v(2)n and v(3)n with the corresponding

error terms �(2)n , and �(3)n �note that I may vary by auction and is unknown throughout this analysis. Since we need

both the second and third highest bids for estimation, all auctions with two or fewer bidders must be dropped. This

methodology is not without attendant problems, however, since whether or not the third highest bids re�ect the third

highest bidders' true private valuations can be questioned. To deal with this issue, Song suggests that we should "use

data from auctions where the �rst or the second highest bidder submitted a cutoff price greater than the third highest

valuation late in the auction". With this in mind, she details an econometric method to decide "how late" is proper. The

interested reader should see Song (2004).

In this methodology we can only use the partial likelihood of �(2)n given �(3)n since the full likelihood requires the

unknown number of potential bidders. According to the basic theory of order statistics, the sample likelihood function

can be written as:

LN

�
f̂
�
=
1

N

NX
n=1

ln
2
h
1� F̂

�
�
(2)
n

�i
f̂
�
�
(2)
n

�
h
1� F̂

�
�
(3)
n

�i2 ;

where

F̂ (z) =

Z z

v

f̂ (t) dt:

Here and below, v is the lower bound of bidders' private value. Denote m = min
�
v
(2)
n

�
. Note that no information

about F (v) for v < m can be observed. If a starting price set by a seller is below m with positive probability, then

m is a consistent estimate of v : In order to estimate the unknown distribution one can employ the method proposed by

Coppejans and Gallant (2002) and use the hermite series to approximate the unknown distribution:

bf (z) =
h
1 + a1

�
z�u
�

�
+ � � �+ ak

�
z�u
�

�ki2
� (z;u; �; v)R1

v

h
1 + a1

�
z�u
�

�
+ � � �+ ak

�
z�u
�

�ki2
� (z;u; �; v) dz

where � (z;u; �; v) is the density of N(u; �) truncated at m .Then an estimator of bf (z) , denoted as bfN (z), is the
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maximizer of LN
�
f̂
�
, such that

(ba1; :::;bak; bu; b�) = argmax
a1;:::;ak;u2R;�>0

LN ( bf) = 1

N

NX
n=1

ln
2
h
1� F̂

�
�
(2)
n

�i
f̂
�
�
(2)
n

�
h
1� F̂

�
�
(3)
n

�i2

Gallant and Nychka (1987), Fenton and Gallant (1996) and Coppejans and Gallant (2002) provide details of this

method to approximate the unknown distribution of private values. The optimal series length varies according to the

data set under consideration. One can choose the optimal series length, k�, using the cross-validation strategy employ-

ing the Integrated Squared Error (ISE) criterion (Coppejans and Gallant, 2002).

Another work that makes use of the SNP approach developed by Gallant and Nychka (1987) is by Brendstrup

and Paarsch (2006). Brendstrup and Paarsch (2006) work under the assumption of asymmetric valuations and known

number of potential bidders. They develop a theoretical model of bidder behaviour at single unit English auctions when

valuations of the bidders are assumed to be independent draws from one of the J different classes of distributions. Then,

in the light of Theorem 2 in Athey and Haile (2007), they demonstrate that the distribution of the different classes of

latent valuations are nonparametrically identi�ed when the winning bid, identity of the winner and the number of

potential bidders n is observed. They propose a semi-nonparametric (SNP) estimation strategy. Finally, they extend

the analysis to multi-unit auctions.

In order to show the identi�cation of the J different classes of distributions, Brendstrup and Paarsch (2006) start

from the probability density function of the second highest order statistics of n independent draws each from one of the

J different types of distributions, due to Balakrishnan and Rao (1998):

g(2:n)(yjF) =
1

(n� 2)!Perm

0BBBBBBBB@

Ftype(1)(y) : : : Ftype(n)(y)
: : :
: : :
: : :

Ftype(1)(y) : : : Ftype(n)(y)
ftype(1)(y) : : : ftype(n)(y)�

1� Ftype(1)(y)
�
: : :

�
1� Ftype(n)(y)

�

1CCCCCCCCA
where F is the vector of the cumulative distribution functions of the J parent classes of distributions, Ftype(i)(y) and

ftype(i)(y) stand for the CDF and the PDF of the i'th bidder's valuation respectively, and Perm is the permanent

operator. Then they develop the following system of Pfaf�an integral equations:
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F0type(y) = exp

�
A�1 log

�
diag

�Z y

0

exp
�
� log

�
�n � F0type(u)

�	
dG0(u)T

���
where F0type and dG0 are (n�1) column vectors whose ith rows equal F 0type(i)(y) (the true population cumulative dis-

tribution function for the class type(i)) and dG0
(2:n)(y; i) (the derivative of the true population cumulative distribution

function of the winning bid at an auction won by a bidder whose identity is i), respectively. From Meilijson (1981),

this system of Pfaf�an integral equations have a unique solution, which in turn leads the authors to conclude that the

distributions of the valuations are identi�ed from the winning bids and the identities of the winners.

Having shown the identi�cation of the latent distributions of the valuations, the authors propose an estimator using

the SNP estimator developed by Gallant and Nychka (1987) in a way to introduce covariates into the system. They

de�ne the draw of bidder i who is in class j in the tth auction as follows:

log V ijt = xt�j + U
ij
t

They approximate fj(u) by

fpTj (u) =

"
pTX
k=0

jkHk(u)

#2
exp

�
�u2=2

�
+ " exp

�
�u2=2

�
where Hk(u) denotes an Hermite polynomial of order k. Then they implement this �nite order approximation into the

method of quasi-maximum likelihood , de�ning the estimatorndfjToJ
j=1

= arg max
fj2zjT

1

T

TX
t=1

log g(2:n)(yt; itjF)

where

zjT =

8<:fjT 2 zj : fjT (ujj) =
"
pTX
k=0

jkHk(u)

#2
exp

�
�u2=2

�
+ " exp(�u2=2);j 2 �jT

9=;
and

�jT =

�
j = (j0; :::; jpT ) :

Z 1

0

fjT (ujj)du = 1
�

The approximation will converge to the truth by letting pT increase at a rate that is slower than the rate at which the

sample size T increases.

One of the important papers in terms of identi�cation strategy is Adams (2007). In a setting similar to Song (2004),
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Adams (2007) generalizes the result that the value distribution is identi�ed from the observed auction prices when the

number of bidders is known or randomly determined (Athey and Haile, 2007). Although the number of actual bidders

in an eBay auction is observable, we cannot say that it is randomly determined, because of the selection bias resulting

from the format of the eBay auctions. It can be argued that there is a set of potential bidders which are randomly

determined, but for which the number is not known (Song, 2004). Adams (2007) shows that the value distribution is

identi�ed when the auction prices are observed and the probability distribution over the number of potential bidders

is known, under the assumption that the potential number of bidders is independent from the values of bidders in an

auction. Nevertheless, it is not clear if it is possible to determine this distribution, since the existence of potential

bidders in an auction can be censored. The author argues and shows in a formal proof, that some auction characteristics

that affect the number of bidders but not the distribution of bidder valuations in an auction will allow us approximate

this distribution arbitrarily closely under some assumptions.The auction length can be given as an example of such

a characteristic: with varying auction length, the probability of having n bidders in an auction varies, but the value

distribution does not. Hence, for the estimation of the structural parameters, the length of the auction is included in

the function de�ning the probability of having n people in the auction, but not in the value function of the bidder.

The author applies OLS on the price data, and uses the order statistics approach in a maximum likelihood estimation,

preferring a log-normal assumption for the distribution of the value. Results of the two estimations show that OLS may

substantially overestimate the average value.

Another non-parametric estimation approach comes from Haile and Tamer (2003). As mentiod at the beginning

of the current section, the authors have two weak assumptions as to how to interprete the observed bids in an English

auction. But it is clear that the distribution of the bidder valuations is not identi�ed having assumed these rules which

imply neither (i) a unique distribution of bids given a distribution of valuations nor (ii) a unique distribution of valua-

tions given a distribution of bids. However, they argue that informative bounds on the distribution functions of bidder

valuations are possible to identify out of this incomplete model of bidding. The identi�cation of the upper bound for

the distribution of the valuations F (v) is provided by the property of the i.i.d random variables that the distribution of
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the i'th order statistic Fi:n(:) is related to the parent distribution F (:) by

F (v) = �(Fi:n(:); i; n)
6 (B-7)

together with the implication of the �rst assumption that bi:n � vi:n for all i. Therefore

Fi:n(v) � Gi:n(v) 8i; n; v (B-8)

where i denotes the bidder, n is the total number of bids, Gi:n(:) denotes the distribution of the i'th lowest bid, and

�(:; i; n) is a strictly increasing differentiable function. Applying the monotone transformation �(:; i; n) on both sides

of (B-8) implies the identi�cation of the upper bound FU (v) as the following:

F (v) � FU (v) � min
n2f2;:::;Mg;i2f1;:::;ng

�(Gi:n(v); i; n) (B-9)

for all v in the relevant range and higher than the reservation price. Note that there is a different bound on F (v) for

each pair of indices (i; n), thus the minimization operator chooses the tightest one among them. For the identi�cation

of the lower bound, the following implication of the second assumption (bidders do not allow an opponent to win at

a price they are willing to beat) gains importance: The second highest valuation has to be smaller than or equal to the

highest bid plus the minimum bid increment:

vn�1:n � bn:n+ M (B-10)

Obviously this provides an upper bound on the realization of only one order statistic of the valuation at each auction,

but (B-7) enables us to construct a lower bound for the latent distribution. From (B-10) we can easily write

Fn�1:n(v) � GMn:n(v) 8n; v (B-11)

where GMn:n(:) is the distribution of Bn:n+ M. Then, analogous to the derivation of the upper bound, we apply the

monotone transformation to both sides of (B-11) and recall (B-7) to �nally get the identi�cation of the lower bound

FL(v):

F (v) � FL(v) � max
n
�(GMn:n(v);n� 1; n) (B-12)

for all v in the relevant range and greater than the reservation price. Note that whenever vn�1:n = bn:n for some n,

the lower bound implied by (B-10) is the true distribution; and whenever bi:n = vi:n for some (i; n), the upper bound

obtained from above is the true distribution. Therefore we can say that there is no cost to taking this bound approach

6 see for example Arnold,Balakrishnan and Nagaraja (1992)
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rather than assuming the full structure of the standard model, since only when the data is inconsistant with the standard

model we identify bounds on F (:) rather than identify F (:) itself. Consistent non-paarmetric estimators for the upper

and lower bounds FU (v) and FL(v) are obtained by substituting the relevant empirical distribution functions for their

population analogs in (B-9) and (B-12) respectively. The estimators are

bFU (v) � min
n2f2;:::;Mg;i2f1;:::;ng

�( bGi:n(v); i; n);
bFL(v) � max

n2f2;:::;Mg
�( bGMn:n(v);n� 1; n)

where

bGi:n(v) =
1

Tn

TX
t=1

1 [nt = n; bi:nt � v] ;

bGMn:n(v) =
1

Tn

TX
t=1

1 [nt = n; bnt:nt+ Mt� v]

and

Tn =

TX
t=1

1 [nt = n]

A negative property of these fairly simple non-parametric estimators is that, although they are uniformly consistent7,

these estimators can be badly biased in small samples. The authors propose a smoothing operation in order to improve

the small sample performance of the estimators.

A �nal non-parametric methodology comes from Nekipelov (2007). In his paper, he explains two types of agressive

bidder behavior induced by the multi-auction structure of eBay in a continuous time stochastic auction model with

endogenous entry, in which bidder types are differentiated by their initial information regarding the entry process. It

is the only continuous time auction model that we are aware of in the literature, though there are more aspects that are

speci�c to this paper. One is the visibility parameter � of a given auction, which brings a stochastic component into

the model: even if the bidder is completely certain about the quality of the object itself, she can be uncertain about the

group of potential rivals. Bidders have prior beliefs in the form of probability distributions over the value of visibility,

and they can update their beliefs over the course of the auction. The other is that the bidder who arrives in the auction

gives a best response to the entire path of price process rather than to actions of particular rival bidders.The model

is composed of four key structural functions: the instantaneous demand function (this is the frequency of the poisson

7 The asymptotic distribution of the estimators and the consistency of the bootstrap bands are shown in Haile and Tamer (2002).
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process that speci�es the entry rate to an auction) �(t; pt; �), the price jump size function h(t; pt; �) (where � is the bid

increment), the distribution of valuations of the bidders F (v), and the distribution of bidders' beliefs about the visibility

parameter (the mean and the variance of it)G�(�0) andG�(�0). These structural functions of the model are de�ned to

be non-parametrically identi�ed from the data if no two different sets of characteristics of the model produces the same

distribution of simulated prices. This de�nition requires two conditions to hold. First, the observable distribution (this

is the joint distribution of timing and the sizes of price jumps for the data set used in the paper) should contain suf�cient

information about the structural functions of the model. Second, the structural functions of the model can be recovered

by using some method of inversion of the observed joint distribution. The author lists the assumptions that allow the

unique recovery from the data the set of structural functions of the model. The distribution of bidders' valuation is

identi�ed from the distribution of the number of active bidders across auctions given the price, if the bidding function

is assumed to be monotone with respect to the valuation in each moment of time and that the beliefs are independent

from valuations.After the distribution of the valuations is identi�ed, it is possible to identify the mean beliefs of the

bidders by the distance between their observed bidding patterns given their infomation and the pattern computed for an

auction with given visibility and given structural functions. Lastly, sorting the bidders according to the relative number

of their bids will identify the variance of the beliefs of bidders, as the model predicts that bidders with more diffuse

priors bid more frequently. Finally, given the distributions of valuations and beliefs, the path of the second highest

bid can be simulated for any given instantaneous demand and price jump size function, and minimizing the distance

between the observed price path and the simulated price path gives us the estimate for the parameters of the Poisson

process. The multi-step estimation procedure starts with non-parametric estimation of the distribution of the observed

price and timing of jump data f(pt; Nt; t; 0), which is characterized by the structural parameter 0, using a kernel:

bf(p; t) = 1

n

nX
k=1

1

hpht

IkX
i=1

�

 
p
(k)
i � p
hp

!
�

 
t
(k)
i � t
ht

!
where Nt is the total number of bidders who have entered the auction up to time t, n is the number of observed

auctions, k is the index of an auction, Ik is the number of price jumps in the auction k, �(:) is a kernel function and

hp and ht are bandwith parameters. This density estimate is consistent and asymptotically normal. In the second step

the entry of the bidders Nt is simulated given the parameter vector , then optimal bidding problem of each bidder

is solved to calculate the second highest bid in the auction at any given instant. This simulated price data is named
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as the response of the structural model to the data. Then the same non-parametric estimation procedure is applied to

the simulated price data to get the estimated distribution bf(p; t), which is also a consistent estimate. Then, Kullback-
Leibler Information Criterion (KLIC) is used to compare the joint distribution of the observed and the simulated price

and time of the price jump data:

\KLIC =
1

n

nX
k=1

IkX
i=1

log

" bf(p(k)i ; t
(k)
i )cf(p(k)i ; t
(k)
i )

#
(B-13)

The idea here is to compare the empirical model with the structural model. Note that minimizing the KLIC is equivalent

to maximizing

Ln() =
1

n

nX
k=1

IkX
i=1

log
hcf(p(k)i ; t

(k)
i )
i

The author shows the estimate of the parameter  obtained by minimizing (B-13) is asymptotically normal. Marcov-

Chain Monte Carlo method is used to minimize (B-13) with a substantially reduced computational burden.This also

gives an asymptotically normally distributed estimator, though the asymptotic variance of the estimate needs a small

correction.

Hong and Nekipelov (2009) develop an ef�cient local instrumental variable estimation of an empirical auction

model. In particular, they derive semiparametric ef�ciency bounds and ef�cient estimators for the conditional monotone

local instrumental variable model studied in Abadie, Angrist and Imbens (2002). They apply this semiparametrically

ef�cient estimation method to analyze the relation between bid dispersion and early bidding in the dataset which is

collected from a natural experiment conducted in Nekipelov (2007). One of the implications of the theoretical model

developed in Nekipelov (2007) is that early bidding has competing effects on the dispersion of bids. On the one

hand, early bidding deters entry and decreases the bid dispersion. On the other hand, early bidding provides more

information and potentially increases both learning and bid dispersion. In an attempt to test which effect is dominant,

Hong and Nekipelov (2009) apply the local instrumental variable approach trying to walk around the endogeneity

problem that can arise with a simple regression of bid variation on an early bidding indicator because of the correlation

of some unobserved characteristics of auction (visibility) with both early jump bidding and bid dispersion. A local

instrumental variable is given by an exogenous change of supply in the natural experiment conducted in Nekipelov

(2007), who auctioned off additional supply of Robbie Williams' CD on eBay. Such an exogenous increase in the

supply weakly increases the incentive for early jump bidding. The set of compliers are de�ned as the auctions which

have no early jump bid prior to the supply increase but have early jump bid after the supply increases. In the �rst
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step of the estimation, the basic result in Abadie, Angrist and Imbens (2002) is used to �nd the initial consistent

but inef�cient estimate of the parameter vector.In the second step, an estimate of the weighting matrix is formed, and

ef�cient estimates of the parameter vector is obtained. Results of the estimation actually reveal the inef�ciency of the

�rst step estimates; although the same parameter values were obtained from the �rst step and at the end of second

step, the standard errors from the second step are much smaller than the ones obtained from the �rst step estimation.

Moreover, the estimates from OLS and 2SLS are compared. They �nd that the coef�cient of the early bid indicator

is positive in both, but signi�cantly greater in 2SLS than in OLS : a result consistent with the prediction of omitted

variable bias.

The �eld of econometrics has been providing methods for investigation of bidder behavior in eBay auctions that are

well grounded in economic theory. Today, a researcher has a number of commonly used alternative structural meth-

ods like maximum likelihood (Adams 2007), non parametric methods (Song, 2004; Brendstrup and Paarsch, 2006;

Nekipelov, 2007), simulation based methods (Bajari and Hortacsu, 2003) and bounds estimation of incomplete models

(Haile and Tamer, 2003), as well as methods for identifying empirical relationship between various characteristics of

online auctions (Lucking-Reiley et al. 2007; Hong and Nekipelov, 2009). As long as one has enough sample size for

standard asymptotic results to hold, using non-parametric methods have advantages in terms of robustness to distrib-

utional misspeci�cation, although parametric methods are more convenient with small sample sizes and high number

of covariates included in the analyses, besides having a higher convergence rate. Another issue that gains importance

with non-parametric estimation of structural models is the identi�cation problem. Although we have some standard

results about identi�cation under different assumptions (Athey and Haile, 2007), development of new structural models

will require new identi�cation results (Nekipelov, 2007 ).
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