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Abstract

LeSage and Pace (2009) make an econometric case for the spatial Durbin model

over, among others, the spatial error model. We make an economic case for the

spatial error model because it captures spatial dependence more fully (i.e. beyond

that which can be attributed to the dependent variables in neighboring units). Also,

when faced with the choice between aggregate or disaggregated data the spatial

error model or a related model (e.g. the seemingly unrelated spatial error model)

should be fitted. This is to ensure that Wald tests of whole sets of coeffi cients

against one another to establish if disaggregation is necessary are not invalidated.

To illustrate the economic case which we make we extend the literature on the

determinants of vehicle usage by modelling the spatial dependence of state travel

for the U.S. over the period 1980−2008. On the basis of Wald tests, aggregate data
on state vehicle usage is progressively disaggregated and spatial error models for

travel on all twelve types of highway are fitted. In all cases the spatial dependence

in the spatial error models is greater than or approximately equal to that in the

spatial lag models, confirming that the former does capture any additional sources

of spatial dependence.
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1 Introduction

Elhorst (2010) believes that LeSage and Pace (2009) (LSP from hereon) initiated a ‘sea

change’ in applied spatial econometrics because, among other things, they set out an

econometric case for the spatial Durbin model over, for example, the spatial lag model and

the spatial error model. In the spatial lag model, the spatially lagged dependent variable

captures the spatial dependence between the cross sectional units. The spatial Durbin

model is an extension of the spatial lag model to include spatially lagged independent

variables. In the spatial error model, the spatial autocorrelation term captures the spatial

dependence.

There are two strands to the econometric case which LSP make in support of the spa-

tial Durbin model. The first is based on the belief that analyzing the spillovers should be

the principal focus in spatial modelling (Anselin, 1988 and LSP). If this is the overriding

aim, the spatial Durbin model is appealing because a distinction can be made between the

direct impact and the indirect impact of a change in an explanatory variable. The direct

impact estimates the effect of changing an explanatory variable in a particular cross sec-

tional unit on that unit’s dependent variable, which incorporates feedback effects which

pass through the neighboring units and back to the unit which initiated the adjustment

process. The indirect impact is an estimate of the effect of changing an explanatory vari-

able in a particular unit on the dependent variables of all the other units.1 The second

strand of the econometric case for the spatial Durbin model concerns the unbiased para-

meters which the spatial Durbin model yields, even if the true Data Generating Process

(DGP) is, among others, the spatial error model or the spatial lag model. We expand on

both strands of the econometric case for the spatial Durbin model in due course.

Notwithstanding the strength of the econometric case which LSP make in favor of the

spatial Durbin model, we posit two economic arguments in support of the spatial error

model over the spatial Durbin and spatial lag models. Firstly, we argue that the spatial

error model (and related models such as the seemingly unrelated spatial error model)

constitutes a fuller representation of the spatial dependence than a spatial model without

a spatial autocorrelation variable. This is because with the spatial error model the spatial

dependence can be affected by other factors in addition to shocks to the spatially lagged

dependent variable. Secondly, suppose total demand is disaggregated into two categories

1 and 2, a Wald test of the whole set of coeffi cients from the model for category 1 against

2



the set of coeffi cients from the model for category 2 cannot be performed on a pair of

spatial Durbin models or a pair of spatial lag models. This is because the spatially lagged

dependent variables will differ between the two spatial Durbin models or the two spatial

lag models. In contrast, the set of explanatory variables will be the same for a pair of

spatial error models so such a test can be performed and is necessary to establish if there

is more to be learnt from disaggregating the data. In light of the dramatic rise in interest

in applied spatial econometrics in recent years, we feel it is important to bring these

arguments to the attention of practitioners in the field. Both arguments are discussed in

more detail further in the paper.

We illustrate the economic case which we make in favor of the spatial error model

by extending the travel demand literature by modelling the spatial dependence of state

vehicle usage for the U.S. over the period 1980 − 2008. A complete set of significant

Wald statistics for tests of whole sets of parameters against each other provides clear

justification for fitting spatial error models for vehicle usage on all twelve types of highway,

as classified by the Federal Highway Administration (FHWA, 1996; 1997 − 2009).2 As
we would expect in light of the observed Wald statistics, in the spatial error models

of disaggregated usage there are a number of cases where significant coeffi cients on a

variable (e.g. real personal income per capita and family size) have different signs and

are significantly different from one another. For example, we find that an increase in

family size leads to an increase in travel on urban highways and a decrease in travel on

rural highways. In all cases the spatial dependence in the spatial error models is greater

than or approximately equal to that in the spatial lag models, confirming that the former

does in fact capture any additional sources of spatial dependence.

Monocentric theories of urban travel behavior incorporate congestion by assuming

that the marginal cost of travel time at a given distance from the central business district

(CBD) is a positive function of the accumulated number of households residing beyond

this point (or in other words accumulated travel demand) and a negative function of the

amount of land that is devoted to roads at that point (Wheaton, 1998; and Bento et

al., 2003). Implicit in these models is the idea of spatial dependence because a rise in

congestion further from the CBD, other things being equal, will lead to more congestion

closer to the CBD. In practice, however, congestion spillovers do not occur simultaneously

during a peak period which is not a feature of the above theories. Dynamic travel time

spillovers between neighboring points in a city in the peak occur over a short period of
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time and are therefore unlikey to be accurately captured by variables such as residential

density and road capacity. This is because residential density and road capacity will

change very little from one day to the next. For this reason variation in daily travel time

would be better explained by travel time at neighboring points in the city.

Several key empirical studies of the determinants of travel demand (Duranton and

Turner, 2011; Cervero and Hansen, 2002; Small and Van Dender, 2007; Hymel et al.,

2010; Noland, 2001; Bento et al., 2005; and Voith, 1997) have chosen not to explicitly

focus on spatial dependence and have instead made seminal contributions on other issues

such as induced vehicle usage from an increase in highway length and the rebound effect

(the rise in vehicle usage following an increase in the fuel effi ciency of vehicles). In

recent years a small number of discrete choice studies of travel behavior have explicitly

modelled spatial dependence (Dugundi and Walker, 2005; Páez and Scott, 2007; and

Goetzke, 2008), although only the latter captures this dependence using a spatial weights

matrix, albeit without taking account of the endogeneity of the spatial autoregressive

variable. A logical extension of the empirical travel demand literature at the intensive

margin is to appropriately model spatial dependence using a spatial weights matrix. The

application in this paper also suggests that spatial econometric studies of travel demand

would benefit from the development of theoretical models of travel behavior which do not

rely on variables such as residential density and roadway capacity to model the spillover

dynamics. Development of such theories would aid the construction of the spatial weights

matrix which must be pre-specified. For a detailed discussion of the role of economic

theory in the specification of the spatial weights matrix see Corrado and Fingleton (2011).

The remainder of this paper is organized as follows. In section 2, we use a brief

overview of the spatial lag, spatial Durbin and spatial error models for panel data to

present the econometric case which LSP make in favor of the spatial Durbin model and

also to set out the economic case which we make for the spatial error model.3 The spec-

ification of the spatial weights matrix and issues which arise in the estimation of the

spatial error and spatial lag models are discussed in section 3. The salient features of

the data set are discussed in section 4 and in section 5 the fitted aggregate and disaggre-

gated spatial error models are presented and analyzed. We also present and analyze the

spatial autoregressive parameters from the corresponding spatial lag models. In section

6 we conclude by arguing that there is merit in estimating a spatial error model even

if analysts favor the spatial Durbin model because they are primarily interested in the
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spatial spillover effects. We also use the fitted spatial error models to make some policy

recommendations in the concluding section.

2 Choice of Model Specification: The Econometric

and Economic Arguments

Suppose total demand for a cross sectional spatial unit i in period t is denoted Dit, where

the cross sectional units are indexed i = 1,...,N and time is indexed t = 1,...,T . Assume

Dit can be disaggregated into M demand categories indexed m = 1,...,M and denoted

Dm,it

Dit = D1,it +D2,it + ...+DM,it. (1)

The general forms of the spatial lag, spatial Durbin and spatial error models for them−th
category of demand are given in (2), (3) and (4), respectively.

Dm,it = δm

N∑
j=1

wijDm,jt + αm + xitβm + µm,i + εm,it (2)

Dm,it = δm

N∑
j=1

wijDm,jt + αm + xitβm +
N∑
j=1

wijxijtθm + µm,i + εm,it (3)

Dm,it = αm + xitβm + µm,i + φm,it (4)

φm,it = ρm

N∑
j=1

wijφm,jt + εm,it,

where xit is a (1 × K) vector of observations for the independent variables for all M

categories of demand; βm is a (K × 1) vector of fixed parameters to be estimated for
the m−th category of demand; δm is the spatial autoregressive coeffi cient; εm,it is an

i.i.d disturbance for i and t with zero mean and variance σ2m; µm,i is an unobserved

time-invariant effect which is included to capture spatial heterogeneity (i.e. spatial fixed

effects, SFEs, or spatial random effects, SREs).∑N
j=1wijDm,jt denotes the effect of the dependent variable for the j−th neighboring

5



unit on the dependent variable for the i−th unit where wij is the ij−th element of the
pre-specified spatial weights matrixW. W is a non-negative (N×N) matrix of constants
which describes the spatial arrangement of the cross sectional units and also the strength

of the spatial interaction between the units. All the elements on the main diagonal of W

will be zero and as is usual in the literatureW is row normalized in the empirical analysis.

In the spatial Durbin model, xijt is a (1×K) vector of observations for the independent
variables for the j−th neighboring unit and θm is a (K × 1) vector of fixed parameters
to be estimated. Finally, in the spatial error model ρm is the spatial autocorrelation

coeffi cient and φm,it is the spatial autocorrelated disturbance.

I − δmW and I − ρmW, where I denotes the (N × N) identity matrix, should be

non-singular. This will be the case if δm or ρm lie in the interval (1/τmin, 1) where τmin
is the most negative real characteristic root of W and 1 is its largest real characteristic

root because W is row normalized. When the spatial weights matrix prior to row nor-

malization, W0, is a binary matrix as is the case here, which is something we discuss

in the next section, the row and column sums of W0, (I− δmW0)
−1 and (I− ρmW0)

−1

are uniformly bounded in absolute value as N tends to infinity (Elhorst, 2010; Kapoor et

al., 2007; Kelejian and Prucha, 1998; 1999). This is necessary to ensure that the spatial

correlation in the cross section is constrained such that the correlation between the units

converges to zero as the distance between the units increases to infinity.

As we noted above there are two strands to the econometric case which LSP make

in support of the spatial Durbin model over, among others, the spatial lag and the

spatial error models. The first is because the spatial Durbin model yields unbiased

parameters irrespective of the whether the true DGP is the spatial error model or the

spatial lag model. This is because including spatially lagged independent variables when

the coeffi cients on these variables are zero will not affect the estimates of the other

parameters. The second strand, which is what we now consider formally, is because the

spatial Durbin model can estimate direct and indirect elasticities without imposing an a

priori restriction on their values.

Overlooking for the moment SFEs or SREs and rewriting the spatial Durbin model

in vector form:

Dm,t = (I− δmW)−1 αmιN + (I− δmW)−1 (Xtβm+WXtθm) + (I− δmW)−1 εm,t, (5)
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where Dm,t is an (N×1) vector, ιN is an (N×1) vector of ones, Xt is an (N ×K) matrix
of observations and εm,t is an (N×1) vector. Differentiating (5) with respect to the k−th
explanatory variable xk,it yields the following vector of partial derivatives:

[
∂Dm
∂xk,1

. ∂Dm
∂xk,N

]
t
=


∂dm,1
∂xk,1

. ∂dm,1
∂xk,N

. . .
∂dm,N
∂xk,1

.
∂dm,N
∂xk,N


t

(6a)

= (I− δmW)−1


βk w12θk . w1Nθk

w21θk βk . w2Nθk

. . . .

wN1θk wN2θk . βk

 , (6b)

where the right-hand side of (6b) is independent of the time index. By setting θk in (6b)

equal to zero, which follows from the construction of the spatial lag model, we obtain a

vector of partial derivatives where the ratio of the indirect and direct effects are the same

for all explanatory variables, which is unrealistic. In the spatial Durbin model no such

restrictions are imposed on the value of θk and as a result the ratio of the indirect and

direct effects will not be the same for all the explanatory variables, which is much more

plausible. See Elhorst (2010) for a simple illustrative example to verify this is the case

because unfortunately general expressions for the direct and indirect effects cannot be

derived as each empirical application will have unique N and W. Moreover, the spatial

Durbin model yields different direct and indirect effects on a unit so to facilitate inter-

pretation LSP suggest reporting a mean direct effect (average of the diagonal elements

on the right-hand side of (6a)) and a mean indirect effect (average row or column sum

of the non-diagonal elements on the right-hand side of (6a)). It is suffi cient for our pur-

poses to show that it is possible to estimate unrestricted direct and indirect effects from

a spatial Durbin model but for details on the estimation of the associated t−statistics
and confidence intervals see LSP and Elhorst (2010; 2011).

Once again overlooking for the moment SFEs and SREs and rewriting the spatial

error model in vector form:

Dm,t = αmιN +Xtβm+(I− ρmW)−1 εm,t. (7)
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In contrast to the spatial Durbin and spatial lag models the β parameters from a spatial

error model are direct effects and can be interpreted in the usual way. This is because

the partial derivative with respect to an explanatory variable in the same unit is not a

function of the spatial autocorrelation variable, whereas for the spatial Durbin and spatial

lag models it is a function of the spatial autoregressive variable(s). Moreover, since W

is row normalized in the estimation of the spatial error models, the total and spillover

effects of a change in εm,t are simply 1/(1− ρm) and [1/(1− ρm)]− 1, respectively, where
in the application the spillover effect is taken to be the sum of the higher order direct

effect and the indirect effect. The total and spillover effects are discussed in more detail

in the analysis of the results.

Moving onto discuss the two economic arguments which we make in favor of the spatial

error model. Firstly, it can capture more fully the sources of spatial dependence vis-à-

vis a model with a spatially lagged dependent variable and no spatial autocorrelation

term. This is because δm in a spatial lag or spatial Durbin model will only capture the

spatial dependence pertaining to Dm,jt. In contrast, the spatial error model captures

spatial dependence which relates to shocks to a wider range of unspecified variables. If

the spatial error model does capture additional sources of spatial dependence ρm will be

greater than δm. In general, we would expect this to be the case because if there is spatial

dependence shocks to a range of variables in neighboring units are likely to be spatially

correlated and not just shocks to the dependent variables. It is possible, however, that

shocks to a wider range of variables in neighboring units may pick up some shocks which

partially offset shocks to the spatially correlated dependent variables. In this case ρm will

be less than δm. Irrespective of whether ρm is less than or greater than δm, by comparing

ρm and δm we can see the effect of assuming that the spatial dependence is due to a wider

range of shocks.

Secondly, the spatial error model permits Wald tests of whole sets of coeffi cients

against one another. Suppose total demand Dit can be disaggregated into two demand

categoriesD1,it andD2,it. Wald tests can be used to test whole sets of coeffi cients from the

models for D1,it and D2,it against the whole set of coeffi cients pertaining to Dit, providing

the sets of explanatory variables are the same for any pairwise combination, which can

be the case with spatial error models. If one or both test statistics are significant this

suggests we can learn more by estimating at least one disaggregated model. Wald tests

cannot be used to test a whole set of coeffi cients from a spatial lag or spatial Durbin
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model for D1,it or D2,it against the coeffi cients pertaining to Dit because the spatially

lagged dependent variables will differ for any pairwise combination. If, for example, at

least δ1 or δ was significant we would have to reject the null in advance and conclude

that the sets of coeffi cients pertaining to D1,it and Dit are different.

3 Specification of W and Estimation

The classification of highways by the FHWA into twelve types constitutes an ordering of

the spatial dependence because the distance travelled and hence the degree of cross bor-

der mobility will rise with a move up the relevant FHWA hierarchy of highways (FHWA,

1989). This classification of highways will also influence the spatial dependence of ag-

gregate travel because aggregate travel will be more spatially dependent if a relatively

large proportion of travel is on highways which are at or towards the top of the FHWA

hierarchy. We therefore posit that row normalizing the simple Rook contiguity matrix

W0, where the ij−th element in W0 takes a value of 1 if i shares a border with j and

0 otherwise, is appropriate. This is because the classification of the highways will ensure

that the degree of cross border mobility will be captured by φjt and φm,jt in the spatial

error models and Djt and Dm,jt in the spatial lag models. The degree of ‘neighborliness’

will also affect the connectedness of neighboring highway networks and thus the spatial

dependence of vehicle usage. Trying to further capture the connectedness of highway

networks by weighting W by the average trade flow over the sample or by the length of

borders were other possibilities. We did not explore these possibilities because using a

row normalized contiguity matrix yielded models which fit the data very well. Moreover,

the ranking of the spatial dependence of aggregate travel (Total Usage, Total Urban

Usage and Total Rural Usage) and disaggregated travel by type of highway is in line

with our priors, which suggests that a row normalized contiguity matrix has accurately

captured the spillover of traffi c.

The spatial lag and spatial error models with SFEs and SREs are estimated using

the maximum likelihood principle. Since the spatially lagged dependent variable and the

spatially lagged disturbance are endogenous, the assumption of the standard regression

model that E[
(∑N

j=1wijDm,jt

)
εm,it] = 0 or E[

(∑N
j=1wijεm,jt

)
εm,it] = 0 is violated. We

adjust for this endogeneity and also the fact that εm,t is not observed by introducing a

Jacobian term of the transformation of εm,t to Dm,t to the log-likelihood function (i.e.
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T log |I− δW| and T log |I− ρW| in the log-likelihood functions associated with the spa-
tial lag and spatial error models, respectively). This is the same way in which these issues

are dealt with when estimating a cross sectional spatial model using maximum likelihood

(see Anselin, 1988). For a comprehensive discussion of the estimation procedures see

Elhorst (2009). There are two points, however, worth noting about the estimation pro-

cedures which relate to the presentation of the spatial error models. The first relates to

the SFEs, where µm,i denotes a dummy variable for the i-th unit. In the standard FEs

model only the slope coeffi cients can be estimated consistently when T is small and fixed,

and N → ∞. Elhorst (2003) notes, however, if interest centres on estimating the slope
coeffi cients and not the SFEs, which is usually the case, demeaning the dependent and

independent variables for the i-th unit by subtracting the average of the relevant variable

for the i-th unit over the sample will eliminate the intercept and the SFEs; thereby ensur-

ing that the inconsistency of the SFEs parameters does not influence the estimates of the

slope coeffi cients. The second point relates to the SREs models where µm,i denotes the

i-th element of a random variable µm which is i.i.d with zero mean and variance σ
2
µm
. All

the spatial error models with SREs which we report include the weight which is attached

to the variation in the cross section, ϕm , where ϕm = σ2µm/σ
2
m.

4 Data

All the models are estimated using data from 1980−2008 and all the variables are logged
prior to estimation, with the exception of Urbanization, Urban Rail, Speed Limit1

and Speed Limit2. In the analysis of aggregate vehicle usage the dependent variables

in the estimations are: total vehicle miles per adult, Total Usage; total vehicle miles

per adult on urban highways, Total Urban Usage; and total vehicle miles per adult on

rural highways, Total Rural Usage. The cross sections of the panels for Total Usage

and Total Urban Usage consist of the contiguous states plus the District of Columbia

whereas the cross section for Total Rural Usage consists of the 48 contiguous states

because there are no rural roads in the District of Columbia.4 In the same vain as the

aggregate analysis, Total Urban Usage is disaggregated into vehicle miles per adult on six

categories of urban highway: Urban Interstate Usage; Urban Merged Usage;5 Urban

Collector Usage; Urban Local Usage; Urban Minor Arterial Usage; and Urban Other

Prinicpal Arterial Usage.6,7 Total Rural Usage is also disaggregated into vehicle miles
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per adult on six types of rural highway: Rural Interstate Usage; Rural Local Usage;

Rural Major Collector Usage; Rural Minor Collector Usage; Rural Minor Arterial

Usage; and Rural Other Principal Arterial Usage.8,9

The interrelationships between the six types of urban highway and the six types of

rural highway are depicted in the FHWA highway hierarchies for urbanized areas, small

urban areas and rural areas (FHWA, 1989). The three hierarchies have the same struc-

ture from top to bottom: (i) Principal arterials; (ii) Minor arterial roads/streets; (iii)

Collector roads/streets; and (iv) Local roads/streets. The first and third nests of the

rural highways is subclassified into interstates and other principal arterials, and major

and minor collectors, respectively. Similarly, the first nest of the hierarchies for urbanized

and small urban areas are subclassified into interstates, other freeways and expressways

and other principal arterials. Most importantly, each hierarchy ‘...relates directly to the

hierarchy of travel distances which they serve’ (FHWA, 1989). The different charac-

teristics, however, of urbanized, small urban and rural areas in terms of, for example,

population density, land use, and travel patterns necessitates that corresponding nests

of the hierarchies perform very different functions in serving the flow of trips. For more

details on the different functions of highways in corresponding nests see FHWA (1989).

The specification of the models is largely based on the fitted equation for total vehicle

miles per adult in Small and Van Dender (2007) with four modifications. (i) As was

noted above the spatial dependence of vehicle miles per adult is modelled here. (ii) Three

further explanatory variables are included, Population Density, and two variables to

capture the effect of changes to the law on speed limits, Speed Limit1 and Speed Limit2

(see Table 1 for a detailed discussion of the dependent and independent variables and

details of the data sources). (iii) Here adults per lane mile is an explanatory variable

instead of adults per road mile. Small and Van Dender (2007) use adults per road mile

as an explanatory variable because data on lane miles is not available for their entire

study period. (iv) No lags of the dependent variable are included. This is because the

application in this paper focuses on spatial dependence and disaggregation rather than

drawing a distinction between short run and long run elasticities, which is frequently

done in the travel demand literature. It is logical to extend our work by introducing at

least one lag of the dependent variable to analyze inertia. This could be done using the

dynamic maximum likelihood estimator for spatial panels in Elhorst (2005).
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[Insert Table 1]

The adults per lane mile variable is worthy of further discussion. It is posited that

adults per lane mile is a proxy for the level of urban congestion if the coeffi cient is

negative. It turns out that the coeffi cient is sometimes positive, in which case it is

argued that adults per lane mile is capturing the pool of potential drivers. The approach

of Hymel et al. (2010) is slightly different from that of Small and Van Dender (2007)

because rather than using adults per road mile to capture the effect of congestion they

use an estimate of average delay time for a state. They calculate average delay time for a

state using delay time data from the 2004 Urban Mobility Report (Texas Transportation

Institute, 2004) for the largest 85 urban areas in the U.S.. It is only possible, however, to

estimate delay time for every state if at least one of the 85 urban areas is located in each

state. The 2009 Urban Mobility Report (Texas Transportation Institute, 2009) contains

delay time data for the largest 90 urban areas in the U.S., none of which are located in

eight states, so for this reason we attempt to capture the effect of congestion using adults

per lane mile. The summary statistics for the continuous variables are presented in Table

2 and are for the raw data. The correlations between the dependent variables, which as

we would expect can vary greatly across the pairs, are available from the corresponding

author on request.

[Insert Table 2]

5 Results and Analysis

5.1 Results for Aggregate Usage

Throughout the preferred models are based on a Hausman test of the spatial error model

with SREs against the corresponding model with SFEs. To test the significance of the

SFEs or the SREs in the preferred model a likelihood ratio (LR) test is used. The null

for the LR test of the joint significance of the SFEs in the preferred model for the m-th

category of demand is µ1,m = ... = µN,m = αm, where the test statistic has a chi-squared

distribution with degrees of freedom equal to the number of restrictions which must be

imposed on the unrestricted model to obtain the restricted model, which in this case is

N − 1. For an LR test of the SREs in the preferred model the null is ϕm = 0 as this
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implies σ2µm = 0, where the test statistic has a chi-squared distribution with 1 degree of

freedom. Throughout each LR test statistic rejects the null which suggests that the SFEs

or the SREs in the preferred model are significant, thereby justifying their inclusion.

As suggested by Elhorst (2009), throughout two measures of goodness-of-fit are re-

ported for each model, R2 and Corr2. The R2 reported here, which is widely used in

the applied spatial econometrics literature, differs from the R2 for an OLS regression

with a disturbance variance-covariance matrix σ2I. This is because there is no direct

counterpart of the R2 for an OLS regression for a generalized regression with a distur-

bance variance-covariance matrix σ2Ω, where I 6= Ω. In contrast to the R2, the Corr2

ignores the contribution to the goodness-of-fit of the SFEs and SREs. For details on how

R2 and Corr2 are calculated for spatial error models with SFEs and SREs see Elhorst

(2009). Furthermore, Wald tests of each set of coeffi cients for aggregate usage or disag-

gregated usage against every other set suggest that each set is significantly different from

one another at the 1% level. This provides unanimous support for the highest level of

disaggregation of Total Usage i.e. disaggregation of Total Usage into usage on all twelve

types of highway. The Wald statistics are available from the corresponding author on

request. t−tests of the difference between corresponding coeffi cients from the models of

aggregate and disaggregated usage are used to shed some light on the contribution which

pairs of coeffi cients make to the significant Wald statistics. The full set of t-statistics are

also available from the corresponding author on request.

The estimation results for the preferred aggregate models are presented in Table 3.

The fit of the aggregate spatial error models is very good as indicated by the high R2

values. The low Corr2 for the Total Rural Usage model vis-à-vis the R2 suggests that

the SFEs make a much larger contribution to the fit of the model than the SFEs and

SREs in the models for Total Usage and Total Urban Usage, respectively. In light of

the complete set of significant Wald statistics it is not surprising that the t−tests suggest
that there are numerous cases where corresponding coeffi cients are significantly different.

To illustrate, t-tests of the difference between the ρ parameters from the models for Total

Usage, Total Urban Usage and Total Rural Usage suggest that all three parameters

are significantly different at the 1% level.

[Insert Table 3]

The ρ coeffi cients in the models for Total Usage, Total Urban Usage and Total
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Rural Usage are all sizeable and significant at the 1% level. This is a key finding because

it suggests that spatial dependence should not be overlooked in future theoretical and

empirical travel demand models- doing so would be a big source of misspecified dynamics.

Moreover, it is evident from the ρ coeffi cients that the spatial dependence of Total Usage

is primarily due to the spatial dependence of rural travel. Also reported in Table 3 are

the spatial autoregressive coeffi cients from the corresponding spatial lag models. For

Total Usage ρ > δ which suggests that the ρ parameter is picking up spatial dependence

beyond that which can be attributed to Total Usage in neighboring units. ρ > δ is also

the case for Total Urban Usage and Total Rural Usage, albeit to a lesser degree than

for Total Usage, which is to be expected because the models for Total Urban Usage and

Total Rural Usage are only capturing the spatial dependence of travel on part of the

i−th unit’s network.
Since all the β coeffi cients from a spatial error model are direct effects, in Table 3 we

report the total effect (TE) of a change in εit or εm,it using the relevant estimate of ρ.

From the results for Total Usage, for example, we can see that the total effect of a 1%

increase in εit is a 3.07% increase in
∑N

i=1 Total Usageit. If the total effect of a change in

εit or εm,it is 1 all the total effect is due to an own direct effect. In other words, there are

no spillover effects i.e. no indirect or higher order direct effects. To illustrate, we expand

(I− ρmW)−1 which yields:

I+ρmW+ρ2mW2 + ... . (8)

The diagonal elements of I are the own direct effects of a change in εm,it. The diagonal

elements of ρmW are zero and the non-diagonal elements are the first order indirect

effects of a change in εm,it. The other terms on the right-hand side of (8) consist of

higher order indirect and direct effects. Higher order direct effects come about because

of feedback effects i.e. effects passing through units and back to the unit which initiated

the adjustment process. We can therefore conclude for Total Usage that following a 1%

increase in εit, 2.07% of the 3.07% increase in
∑N

i=1 Total Usageit is due to spillovers.

This spillover effect is greater than the corresponding effect for Total Urban Usage or

Total Rural Usage, which is again to be expected for the same reason that was given

above to justify why (ρ − δ) for Total Usage is greater than what we observe for Total
Rural Usage and Total Urban Usage.

14



The coeffi cients on the explanatory variables which typically feature in regression

equations for vehicle miles (No. of V ehicles, Real Fuel Cost and Real Income/Head)

have the expected signs but only the Real Fuel Cost parameters in all three models

and the coeffi cient on Real Income/Head in the model for Total Usage are large and

significant. The consensus in the literature is that the short run fuel price elasticity of

vehicle miles is less than the income elasticity (Graham and Glaister, 2004). Interestingly,

the results reported here are at odds with this widely held view. This is most probably

because the real price of gasoline increased sharply in the last portion of the sample

i.e. from 2002 onwards (for verification see Summary Figure 1 in the report by the

Congressional Budget Offi ce (CBO), 2008).

The large and significant Population Density parameter in the model for Total Rural

Usage is negative because a state with a high population density will be more urbanized

and will most probably have a smaller rural highway network resulting in less rural travel.

In the models for Total Usage and Total Urban Usage the Adults/Lane Mile parameters

are positive which suggests the variable is capturing the pool of potential drivers and not

the effect of urban congestion. Furthermore, it is interesting to note that family size

(Population/Adult) has a significant but very different effect on Total Urban Usage and

Total Rural Usage. This explains why the Population/Adult parameter in the model

for Total Usage is not significant. Specifically, an increase in Population/Adult leads to

an increase in Total Urban Usage and a substantial fall in Total Rural Usage. Why

do the Population/Adult parameters in the fitted equations for Total Urban Usage and

Total Rural Usage have different signs? One possible reason is that urban households

do not travel as far afield when family size increases because they need to remain closer

to urban amenities. From the model for Total Rural Usage it is evident that the higher

speed limits which followed the rescinding of the federal controls resulted in an increase

in vehicle miles per adult on rural highways. This is because the opportunity to cut

journey time on rural highways as a result of the higher speed limits would not have been

dampened by congestion.

5.2 Results for Disaggregated Urban Vehicle Usage

The preferred models for disaggregated urban usage are presented in Table 4. The fit of

the models, as indicated by the R2 values, ranges from quite good (Urban Local Usage)
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to excellent (Urban Merged Usage). The ρ parameters are significant in five of the six

models, the exception being the model for Urban Local Usage. It is perfectly plausible to

find that Urban Local Usage is not spatially dependent because it is characterized by very

short distance travel and urban local roads/streets do not tend to be located near state

borders. A comparison of the ρ parameters in the models for Urban Interstate Usage

and Urban Merged Usage suggests that travel on urban other freeways and expressways

is likely to be only mildly spatially dependent. We can therefore conclude from the ρ

parameters for aggregate and disaggregated urban usage that the spatial dependence

of Total Urban Usage is primarily due to the spatial dependence of Urban Interstate

Usage. As we would expect ρ is much larger in the model for Total Urban Usage than in

the model for Urban Interstate Usage. This is because the model for Total Urban Usage

captures the spatial dependence of travel on the whole of the i−th unit’s urban network,
whereas the model for Urban Interstate Usage is capturing the spatial dependence of

travel on just one type of highway in the i−th unit. This is also the reason why for
Urban Interstate Usage following a 1% increase in εm,it there is only a 0.37% increase

in
∑N

i=1 Urban Interstate Usageit from spillovers.

[Insert Table 4]

The models for Urban Interstate Usage and Urban Merged Usage are the only cases

where ρ and δ are both significant and ρ is relatively large vis-à-vis δ. This suggests the

ρ parameter in the model for Urban Interstate Usage (Urban Merged Usage) is picking

up spatial dependence beyond that which can be attributed to Urban Interstate Usage

(Urban Merged Usage) in neighboring units. This is entirely reasonable for two reasons.

Firstly, travel on urban interstates and urban other freeways and expressways is at the

top of the urban highway hierarchies and is therefore associated with longer journeys

which are relatively income elastic and therefore more sensitive to economic conditions in

neighboring units. Secondly, in the j−th neighboring unit travel on urban interstates and
urban other freeways and expressways is likely to depend on changes in travel on highways

further down the hierarchy. This is because traffi c will tend to feed into highways further

up the hierarchy as journey distance increases. This may explain why for other types

of urban usage where ρ and δ are significant (i.e. Urban Collector Usage and Urban

Minor Arterial Usage) ρ ≈ δ. This suggests that the model for Urban Collector Usage

(Urban Minor Arterial Usage) is capturing very little spatial dependence beyond that
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which can be attributed to Urban Collector Usage (Urban Minor Arterial Usage) in

neighboring units.

Whereas the No. of V ehicles, Real Fuel Cost and Real Income/Head parameters

have the expected signs in the model for Total Urban Usage this is not the case for all the

models of disaggregated urban usage. In particular, the No. of V ehicles and Real Fuel

Cost parameters in the model for Urban Collector Usage and the Real Income/Head

parameter in the model for Urban Other Principal Arterial Usage do not have the

expected signs but only the latter is significant. The large negative Real Income/Head

parameter in the model for Urban Other Principal Arterial Usage and the large positive

and significant Real Income/Head parameters in the models for Urban Interstate Usage

and Urban Merged Usage suggest that people make longer journeys when real personal

income per head rises.

Interestingly, the large and significant Population Density parameters are very di-

verse. Such differences in the effect of Population Density is most probably because

differences in the area of states gives rise to differences in the relative stock of particular

categories of urban highway. The diversity of the Population Density parameters in the

models of disaggregated urban usage means that some parameters are at odds with the

Population Density parameter in the model for Total Urban Usage. Comparing the

Population Density parameters in the models for Urban Interstate Usage and Urban

Merged Usage suggests that the population density elasticity for travel on urban other

freeways and expressways is likely to be large, positive and significant.

The Population/Adult parameters in the models for Urban Collector Usage, Urban

Local Usage and Urban Minor Arterial Usage are very large, positive and signif-

icant. In the model for Urban Other Principal Arterial Usage the coeffi cient on

Population/Adult is large, significant and negative. These findings are consistent with

urban households cutting journey distance when family size increases and travelling

shorter distances more frequently instead. Moreover, the large negative coeffi cient on

Adults/Lane Mile in the model for Urban Minor Arterial Usage suggests that an in-

crease in the pool of drivers leads to more urban congestion which dissuades drivers from

travelling on urban minor arterials.
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5.3 Results for Disaggregated Rural Vehicle Usage

The preferred models for disaggregated rural usage are presented in Table 5. The fit of

all six models is very good, as indicated by the high values for the R2. As was the case for

the models of disaggregated urban usage, the ρ coeffi cients are significant in five models.

It is not surprising that Rural Local Usage is not spatially dependent because it tends

to be relatively short distance travel and rural local roads do not tend to be located close

to state borders. A comparison of the ρ parameters from the models of aggregate and

disaggregated rural usage suggests that the spatial dependence of Total Rural Usage is

primarily due to the spatial dependence of Rural Other Principal Arterial Usage. For

the most spatial dependent type of urban travel (Urban Interstate Usage), following a

1% increase in εm,it we observe a smaller increase in
∑N

i=1 Urban Interstate Usageit from

spillovers than for Rural Other Principal Arterial Usage. Specifically, for Rural Other

Principal Arterial Usage following a 1% increase in εm,it there is a 0.75% increase in∑N
i=1Rural Other Principal Arterial Usageit from spillovers.

[Insert Table 5]

The only type of rural travel for which ρ and δ are both significant and ρ is relatively

large compared to δ is Rural Interstate Usage. This suggests the ρ parameter in the

model for Rural Interstate Usage is capturing spatial dependence beyond that which can

be attributed to Rural Interstate Usage in neighboring units. This is perfectly feasible

for the reasons given above to explain why the ρ parameters in the models for Urban

Interstate Usage and Urban Merged Usage are capturing spatial dependence which is

not confined to the corresponding type of vehicle usage in neighboring units. For other

types of rural travel where ρ and δ are both significant ρ ≈ δ, which suggests that the

only source of spatial dependence for, say, Rural Other Principal Arterial Usage is the

corresponding type of travel in the j−th neighboring unit. The large ρ in the model
for Rural Other Principal Arterial Usage is therefore likely to be because rural other

principal arterials tend to straddle state borders.

All the Real Fuel Cost parameters in the six models have the expected sign and

are significant. In contrast, only in the model for Rural Local Usage is the Real

Income/Head parameter significant at the 5% level with the expected sign. The coeffi -

cients on ReaI Income/Head in the models for Rural Major Collector Usage and Rural
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Minor Collector Usage are negative, large (particularly in the model for Rural Minor

Collector Usage) and significant. It would seem therefore when ReaI Income/Head rises

short distance rural journeys become more frequent but get shorter, hence the increase

in travel on rural local roads/streets and the fall in travel on rural minor and major

collectors.

Unlike the fitted models for disaggregated urban usage, in the models for disaggre-

gated rural usage all the large and significant Population Density parameters have the

same sign and, as expected, are negative. This is because states with a relatively high

population density will be more urbanized and so there is likely to be less rural usage.

Comparing the results for aggregate and disaggregated rural usage it is evident that the

negative Population Density parameter in the model for Total Rural Usage is primar-

ily due to the effect of population density on travel on rural interstates, rural major

collectors and rural other principal arterials. Where Population/Adult has a large and

significant effect on disaggregated urban usage the coeffi cient is always positive. In di-

rect contrast, the models for disaggregated rural usage indicate that all the large and

significant Population/Adult parameters are negative. In particular, the modelling of

disaggregated rural usage suggests that an increase in Population/Adult will lead to a

decrease in short distance rural travel (i.e. Rural Local Usage and Rural Minor and

Major Collector Usage).

Further differences between the fitted models for disaggregated urban and rural usage

relate to the speed limit parameters. These parameters tend to be larger in the models

for disaggregated rural usage. There are two possible reasons for this. Firstly, Speed

Limit1 relates specifically to rural interstate speed limits and secondly, when the speed

limits were increased following the rescinding of the federal controls, congestion will not

have limited the opportunity to cut rural journey time. Additionally, where Adults/Lane

Mile has a large and significant effect on disaggregated urban and rural usage, in general,

the coeffi cient is positive (Urban Interstate Usage, Urban Merged Usage and Urban

Local Usage) and negative (Rural Local Usage and Rural Minor Collector Usage),

respectively.
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6 Concluding Remarks and Policy Recommendations

In summary, we make two simple economic arguments in support of the spatial error

model over the spatial lag and spatial Durbin models. The basis of the first argument is

that the spatial error model constitutes a fuller representation of spatial dependence than

models which do not include a spatial autocorrelation term. The second argument which

we make in favor of the spatial error model is that it is particularly appropriate when

analysts are faced with the choice between using aggregate or disaggregated data. This

is because the spatial error model permits Wald tests of whole sets of coeffi cients against

one another to ascertain if models which are estimated using disaggregated data contain

more information than the aggregate model. An application to state vehicle usage in the

U.S. is used to provide support for the case which we make for the spatial error model.

On the basis of the Wald test results aggregate data on state vehicle usage is progres-

sively disaggregated as far as possible and spatial error models for travel on all twelve

types of highway, as classified by the FHWA (1996; 1997 − 2009), are estimated. We
report several spatial error and spatial lag models where ρ is substantially greater than δ

(Total Usage; Total Urban Usage; Total Rural Usage; Rural Interstate Usage; Urban

Interstate Usage; and Urban Merged Usage), which suggests that the spatial error

models are picking up spatial dependence beyond that which can be attributed to the

dependent variables in neighboring units. For all the other types of vehicle usage we find

that ρ ≈ δ, the implication being that spatial dependence does not extend beyond the

dependent variables in neighboring units.

Finding that ρ is greater than δ is not uncommon, although we are the first to crys-

tallize an economic interpretation of this finding. For example, having developed a SUR

model with a spatial autoregressive variable, a spatial autocorrelation term and an er-

ror component to capture heterogeneity, Baltagi and Bresson (2011) apply the model to

estimate equations for the price of three types of flat in Paris. In all three equations

for both specifications of the model, the spatial autocorrelation coeffi cient is large and

significant and the coeffi cient on the spatial autoregressive variable is not significant. To

investigate if there is yardstick property tax competition between Italian municipalities

Bordignon et al. (2003) estimate spatial lag and spatial error models. The spatial au-

toregressive parameter is not significant, whereas the spatial autocorrelation coeffi cient is

large and significant. Notwithstanding the strength of the econometric case which LSP
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make in favor of the spatial Durbin model we set out a clear economic case for the spatial

error model, especially when using disaggregated data. When using aggregate data if

analysts choose to fit a spatial Durbin model because they are primarily interested in the

spillovers (i.e. they want to report indirect elasticities for the explanatory variables), we

suggest that it is also useful to fit a spatial error model to analyze the effect of a broader

interpretation of spatial dependence.

Since the Wald test results suggest that the disaggregated travel demand models

are additional sources of information, they can be used to make more specific policy

recommendations than is possible using a model of aggregate travel demand. We find

that the Real Income/Head parameters in the models for Urban Interstate Usage and

Urban Merged Usage are positive and significant, whereas for Urban Other Principal

Arterial Usage the income elasticity is negative and significant. These results suggest

that, other things being equal, the relative allocation of resources for the maintenance

of different types of highway should reflect the business cycle. In an upturn relatively

more resources should be dedicated to maintenance of urban interstates and urban other

freeways and expressways, and relatively less to urban other principal arterials.

The income elasticities for disaggregated travel also have implications for policy on

road safety. A number of road safety studies where the dependent variable is road fatalities

or fatalities per head find that vehicle usage is a significant explanatory variable (e.g.

McCarthy, 1994; Mast et al., 1999; Merrell, et al., 1999; Cohen and Dehejia, 2004; and

Gayer, 2004, although it should be noted that it is much more common for the dependent

variable to be road fatalities per vehicle mile). We suggest therefore that in an upturn

in the business cycle more traffi c police offi cers should be located on urban interstates

and urban other freeways and expressways, and less on urban other principal arterials.

Moreover, the income elasticities for Urban Interstate Usage, Urban Merged Usage

and Urban Other Principal Arterial Usage can inform policy on road building. Given

real personal income per capita will rise over time, if future road building is to reflect

future changes in demand for road space less resources should be used to build urban

other principal arterials and more resources should be used to build urban interstates

and urban other freeways and expressways.
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Notes

1The spatial lag model also distinguishes between the direct and indirect effects when an explanatory

variable changes. That said, by construction the spatial lag model imposes an a priori restriction on the

size of the direct and indirect effects. In particular, the ratio of the indirect and direct effects will be

the same for all explanatory variables, which is unrealistic. This is not the case for the spatial Durbin

model.

2It may appear that we should estimate seemingly unrelated spatial error and spatial lag models

to allow for the correlation between shocks to vehicle usage on different types of highway. The data,

however, on vehicle usage on different types of highway does not contain the same number of cross

sectional units. To illustrate, there were only rural interstates in Delaware from 1980−1982, so to ensure
that the panel for rural interstate usage is balanced Delaware was omitted. Had the panels for usage on

different types of highway contained the same number of cross sectional units we would have estimated

seemingly unrelated spatial error and spatial lag models.

3For a more comprehensive discussion which covers a wider range of spatial panel data models see

Anselin et al. (2008).

4On average over the study period Total Urban Usage makes up 52.76% of Total Usage with Total

Rural Usage making up the remainder.

5The data on vehicle miles per adult on urban other freeways and expressways is an unbalanced panel.

This is because for nine states no urban highways were classified as other freeways and expressways for

all or part of the study period. It is, however, usual to fit a spatial model with a balanced panel. To

create a balanced panel, vehicle miles per adult on urban interstates is merged with the unbalanced panel

for vehicle miles per adult on urban other freeways and expressways. The new data is denoted Urban

Merged Usage. By comparing the fitted models for Urban Interstate Usage and Urban Merged Usage

some inferences can be made about the determinants of vehicle miles per adult on urban other freeways

and expressways.

6The models for vehicle usage on different types of urban highway are all estimated using data for

the contiguous states plus the District of Columbia.

7On average over the study period Urban Interstate Usage makes up 11.44% of Total Usage; Urban

Merged Usage makes up 15.60%; Urban Collector Usage makes up 4.78%; Urban Local Usage makes

up 7.61%; Urban Minor Arterial Usagemakes up 10.77%; and Urban Other Principal Artierial Usage

makes up 14.00%.

8The models for Rural Local Usage, Rural Major Collector Usage, Rural Minor Arterial Usage
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and Rural Other Principal Arterial Usage are estimated using data for the contiguous states. In the

same way that data for the contiguous states with the exception of Delaware is used to estimate the

models for Rural Interstate Usage, the data set which is used to estimate the models for Rural Minor

Collector Usage comprises observations for the contiguous states with the exception of North Dakota.

This is because for North Dakota data on vehicle miles on rural minor collectors is only available for

1980− 1994.

9On average over the study period Rural Interstate Usage makes up 11.64% of Total Usage; Rural

Local Usage makes up 5.98%; Rural Major Collector Usage makes up 9.71%; Rural Minor Collector

Usage makes up 2.44%; Rural Minor Arterial Usage makes up 8.13%; and Rural Other Principal

Arterial Usage makes up 10.56%. These shares do not sum exactly to the share of Total Rural Usage

for the reasons explained in the previous endnote.
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Table 2: Summary Statistics
Mean Std. Dev. Min Max

Dependent Variables: Aggregate Usage
Total Usage 12, 598.93 2, 631.55 6, 031.08 24, 228.70

Total Urban Usage 6, 426.99 2, 009.47 1, 907.10 11, 998.55

Total Rural Usage 6, 300.52 2, 951.90 814.84 17, 823.65

Dependent Variables: Disaggregated Urban Usage
Urban Interstate Usage 1, 408.54 718.30 120.22 3, 665.88

Urban Merged Usage (interstates plus other freeways 1, 890.55 1, 023.62 161.20 5, 103.47

and expressways)
Urban Collector Usage 582.26 210.52 168.75 1, 469.63

Urban Local Usage 945.97 492.38 124.79 2, 823.13

Urban Minor Arterial Usage 1, 304.23 404.17 459.50 3, 037.78

Urban Other Principal Arterial Usage 1, 703.99 517.38 552.39 3, 429.35

Dependent Variables: Disaggregated Rural Usage
Rural Interstate Usage 1, 548.78 928.71 163.69 6, 693.81

Rural Local Usage 790.96 557.15 25.10 6, 303.45

Rural Major Collector Usage 1, 248.62 643.40 122.89 2, 961.49

Rural Minor Collector Usage 313.78 248.23 30.76 1, 857.27

Rural Minor Arterial Usage 1, 040.62 513.70 105.20 2, 800.03

Rural Other Principal Arterial Usage 1, 392.01 760.46 54.37 4, 863.63

Explanatory Variables
Population Density 326.10 1, 237.24 4.64 9, 339.83

Number of Vehicles per Adult, No. of V ehicles 1.06 0.22 0.11 1.75

Real Fuel Cost per Vehicle Mile, Real Fuel Cost 5.63 1.80 3.05 12.39

Real Personal Income per Capita, Real Income/Head 14, 442.70 3, 057.58 8, 203.67 29, 805.15

Population per Adult, Population/Adult 1.36 0.05 1.23 1.60

Adults per Lane Mile, Adults/Lane Mile 27.85 26.31 2.64 190.32

Urbanization 72.57 19.15 28.95 100

Urban Rail 32.08 42.25 0 100
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Table 3: Estimation Results for Aggregate Vehicle Usage
Dependent Variable and Model Specification

Total Usage Total Urban Total Rural
(SFEs) Usage (SREs) Usage (SFEs)

α − 6.7779∗∗∗

(13.08)
−

Time
0.0105∗∗∗

(7.61)
0.0174∗∗∗

(12.98)
−0.0093∗∗∗
(−4.19)

Population Density
−0.2703∗∗∗
(−9.88)

−0.0903∗∗∗
(−4.03)

−0.5224∗∗∗
(−8.23)

No. of V ehicles 0.0340∗∗∗

(3.14)
0.0106
(0.75)

0.0637∗∗∗

(2.93)
Real Fuel Cost −0.2371∗∗∗

(−19.04)
−0.1178∗∗∗
(−9.02)

−0.2144∗∗∗
(−10.48)

Real Income/Head 0.1235∗∗∗

(3.33)
0.0794
(1.44)

0.1280
(1.55)

Population/Adult
−0.1375
(−1.34)

0.4050∗∗∗

(2.90)
−1.56∗∗∗
(−6.78)

Adults/Lane Mile
0.1377∗∗∗

(7.74)
0.1696∗∗∗

(6.88)
0.0359
(0.88)

Urbanization
0.0059∗∗∗

(5.23)
0.0120∗∗∗

(9.75)
0.0199∗∗∗

(7.84)

Urban Rail
−0.0001∗
(−1.79)

−0.0003∗∗∗
(−2.84)

0.0003∗∗

(1.97)

Speed Limit1
−0.0374∗∗
(−2.32)

0.0115
(0.78)

0.0598∗∗

(2.51)

Speed Limit2
0.0448∗∗∗

(3.05)
−0.0187
(−1.50)

0.1750∗∗∗

(8.59)

ρ
0.6740∗∗∗

(32.74)
0.3025∗∗∗

(9.20)
0.4560∗∗∗

(15.99)

ϕ − 5.048∗∗∗

(6.05)
−

NOBS [N ] 1421 [49] 1421 [49] 1392 [48]
Hausman Test Stat 23.99∗∗ 13.66 87.90∗∗∗

Log-Likelihood 2446.95 1598.23 1331.45
R2 0.93 0.96 0.97
Corr2 0.83 0.75 0.46
LR Test Stat 2949.88∗∗∗ 1990.21∗∗∗ 2936.09∗∗∗

TE 3.07 1.43 1.84

δ
0.3490∗∗∗

(11.74)
0.1670∗∗∗

(4.96)
0.3370∗∗∗

(11.62)

Notes:
NOBS and N denote the number of observations and the size of the cross section
in the panel, respectively.
Asymptotic t-statistics are in (.)
***, ** and * denote significance at the 1%, 5% and 10% levels, respectively.
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