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Abstract

This paper introduces a new estimation method for time-varying individual effects in
a panel data model. An important application is the estimation of time-varying tech-
nical inefficiencies of individual firms using the fixed effects model. Most models of
the stochastic frontier production function require rather strong assumptions about
the distribution of technical inefficiency (e.g., half-normal) and random noise (e.g.,
normal), and/or impose explicit restrictions on the temporal pattern of technical inef-
ficiency. These assumptions, however, are not easily justifiable, and thus it is not clear
how robust one’s results are to these assumptions. This paper drops the assumption
of a prespecified model of inefficiency, and provides a semiparametric method for es-
timation of the time-varying effects. The methods proposed in the paper are related
to principal component analysis, and estimate the time-varying effects using a small
number of common functions calculated from the data. Finite sample performance of
the estimators is examined via Monte Carlo simulations. We apply our methods to the
analysis of technical efficiency of the U.S. banking industry.
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1. Introduction

Substantial research interest has focused on the topic of assessing a firm’s level of technical
efficiency using panel data. Two panel data methodologies that have been widely used in
the empirical literature are the random effects and the fixed effects stochastic frontier pro-
duction function model. The random effects (or composed error) stochastic panel frontier
production function is characterized by an error term that has two components, a non-
negative error term (e.g., half normal) to account for technical inefficiency and a symmetric
error term (e.g., normal) to account for other random noise. The parameters of the model
are often estimated using the method of maximum likelihood (Aigner, Lovell, and Schmidt,
1977, and Meeusen and van den Broeck, 1977). Schmidt and Sickles (1984) considered
feasible generalized least squares (GLS) estimators for the random effects (RE) stochas-
tic panel frontier production function as an alternative to maximum likelihood estimation
(MLE) and also introduced the fixed effects (FE) stochastic panel frontier estimator. These
RE and FE estimators do not require strong distributional assumptions about technical
inefficiency or random noise. Moreover, the FE estimator does not require the assumption
of independence between technical inefficiency and the explanatory variables (inputs) for
parameter consistency. Although the MLE estimator for the stochastic panel frontier does
not in principle require inefficiency and the regressors to be independent, this is the spec-
ification that is used in most likelihood based estimators for the stochastic panel frontier
model.

All of these models have one thing in common: technical inefficiency is assumed to be
time invariant. Although these models contributed to the literature substantially, it is ob-
vious that in many applications the assumption of time-invariant technical inefficiency is
too restrictive. For example, during the period of U. S. financial deregulation in the 1980’s,
financial intermediaries experienced an abrupt and rapid change in business practices and in
the competitive environments and were forced to adjust their efficiency levels to a changing
best-practice benchmark as the industry was deregulated. To accommodate time-variant
inefficiency terms, Battese and Coelli (1992) extended previous MLE-based stochastic fron-
tier production function models by allowing inefficiency terms to be an exponential function
of time. However, their approach has limitations in that each firm has the same pattern of
variation and thus the rankings of efficiencies across firms do not change over the sample
period. On the other hand, Cornwell, Schmidt, and Sickles (1990) extended the traditional
panel data model to allow for time-varying efficiency and in their empirical application of
efficiency change in the U. S. airline industry after deregulation used a different quadratic
function of time for each firm.

In this paper, we further extend the fixed effects model in such a way that we do not
impose any explicit restrictions on the temporal pattern of individual effects. Thus, our
model is more general than, say fitting quadratic functions of time, and can be used for
virtually any pattern of efficiency change. This generality is accomplished by approximating
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the effect terms nonparametrically utilizing a suggestion in Kneip (1994). The basic idea is
related to principal component analysis coupled with smoothing spline techniques, and the
time-varying effects are represented using a small number of common functions calculated
from the data, with coefficients varying across firms. This approach provides the most
general framework available for time-varying effects, other than using time dummy variables
to construct the productivity index (Baltagi and Griffin, 1988). Asymptotic distributions of
the new estimator are also derived. Simulation experiments indicate that in finite samples
our method works much better than other well known time-varying effects estimators. As
an illustration, the method is applied to the analysis of technical efficiency in the U.S.
banking industry.

The remainder of the paper is organized as follows. Section 2 introduces our new es-
timator for arbitrary time-varying mixed effects, derives its asymptotic distribution, and
provides other analytical results for optimal choice for the number of principal components
and smoothing parameters, and for a Durbin-Watson type specification tests. The finite
sample performance of our new estimator is evaluated using Monte Carlo simulations in
section 3. In section 4 we use the new estimator to analyze the technical efficiency of banks
in the U. S. banking system. Concluding remarks follow in section 5. The mathematical
proofs are collected in Appendix.

2. Model

We will assume panel data based on a balanced design with T equally spaced repeated
measurements per individual. The resulting observations of n individuals can then be
represented in the form (Yit,Xit), where t = 1, . . . T and i = 1, . . . , n.

We consider the model

Yit =

pX
j=1

βjXitj + w(t) + vi(t) + it, i = 1, . . . , n, t = 1, . . . , T (1)

where the index i denotes individual units (e.g. firms,households, etc.) and the index t

denotes time periods. The functions vi(t) represent individual effects. In the context of
stochastic frontier analysis thus quantify efficiencies of individual firms. The function w(t)

quantifies a general mean process. Identifiability is ensured by requiring that
P

i vi(t) = 0.
In stochastic frontier analysis, Y and X will usually refer to the logarithms of the original
output and input variables. Note that the model does not contain a general constant β0.
Of course, (??) could be rewritten in the form

Yit = β0 +

pX
j=1

βjXitj + w∗(t) + vi(t) + it

with β0 =
1
T

P
tw(t) and w∗(t) = w(t) − β0 However, the form (??) avoids problems of

identifiability and is easier to analyze.
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We additionally assume that for some fixed L ∈ {0, 1, 2, . . . } the vi(t) can be decomposed
as in

vi(t) =
LX
r=1

θirgr(t). (2)

We will additionally assume that

(a)
P

i θ
2
i1 ≥

P
i θ
2
i2 ≥ . . .

(b)
P

i θirθis = 0 for r 6= s.

(c) 1
T

PT
t=1 gr(t)

2 = 1 and
PT

t=1 gr(t)gs(t) = 0 for all r, s ∈ {1, . . . , L}, r 6= s.

Conditions (a) - (c) do not impose any restrictions, and they introduce a suitable nor-
malization which ensures identifiability of the components up to sign changes (instead of
θir, gr one may also use −θir,−gr).

Some simple algebra [compare, e.g., with Kneip (1994)] now shows that, if the vi were
known, the components gr could be determined from the eigenvectors of the empirical
covariance matrix Σn of v1 = (v1(1), . . . , v1(T ))0, . . . , vn = (vn(1), . . . , vn(T ))0:

Σn =
1

n

X
i

vivi
0 (3)

and use λ1 ≥ λ2 ≥ · · · ≥ λT as well as γ1, γ2, . . . , γT to denote the resulting eigenvalues and
orthonormal eigenvectors of Σn. Then

λr =
T

n

X
i

θ2ir for all r = 1, 2, . . . , L, (4)

gr(t) =
√
T · γrt for all r = 1, . . . , L, t = 1, . . . , T. (5)

Furthermore, it is easily checked that for all l ≤ L

X
i,t

(vi(t)−
lX

r=1

θirgr(t))
2 = min

g̃1,...,g̃l

X
i

min
ϑi1,...,ϑil

(vi(t)−
lX

r=1

ϑirg̃r(t))
2. (6)

In other words, vi(t) ≈
Pl

r=1 θirgr(t) provides the best possible approximation of the effects
vi in terms of an l-dimensional linear model.

Obviously, Σn and, hence, also the components gr depend on the observed sample and its
sample size n. This does not constitute a serious drawback. In fact, in model (??) only the
L dimensional linear space spanned by g1, . . . , gL is identifiable. There are infinitely many
possible choices of basis functions, and by using conditions (a) - (c) we select a particularly
well-interpretable basis which satisfies (??) - (??).

We want to emphasize that gr and θir stabilize as n increases. As n→∞ (with T fixed)
the empirical covariance matrix Σn converges in probability to the population covariance
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matrix Σ = E(Σn). Consequently, T
n

P
i θ
2
ir and gr converge in probability to λ∞r and√

T · γ∞r , where λ∞1 , λ∞2 , . . . as well as γ∞1 , γ∞2 , . . . denote eigenvalues and eigenvectors of
Σ.

2. Estimation

In practice, v1, . . . , vn are unknown and all components of model (??) thus have to be esti-
mated from the data.The idea of our estimation prosedure is easily described: In a first step
partial spline methods as introduced by Speckman (1988) are used to determine estimates
β̂j and v̂i. The mean function w is estimated nonparametrically, and then estimates ĝr are
determined from the empirical covariance matrix Σ̂n of v̂1, . . . , v̂n.

Let us first introduce some additional notations. Let Ȳt = 1
n

P
i Yit, Ȳ = (Ȳ1, . . . , ȲT )

0,
Yi = (Yi1 . . . , YiT )

0 and i = ( i1, . . . , iT ). Furthermore, let Xij = (Xi1j , . . . ,XiTj)
0, X̄tj =

1
n

P
iXitj , and X̄j = (X̄1j , . . . , X̄Tj)

0. We will use Xi and X̄ to denote the T × p matrices
with elements Xitj and X̄tj .

Step 1: Determine estimates β̂1, . . . , β̂p and v̂i(t) by minimzing

X
i

1

T

X
t

(yit − ȳt −
pX

j=1

βj(xitj − x̄tj)− vi(t))
2

+
X
i

κ
1

T

Z T

1
(v
(m)
i (s))2ds (7)

over all m-times continuously differentiable functions v1, . . . , vn on [1, T ]. Here, κ > 0 is a
preselected smoothing parameter and v

(m)
i denotes the m-th derivative of vi.

Spline theory implies that any solution v̂i, i = 1, . . . , n of (??) possess an expansion
v̂i(t) =

P
j ζ̂jizj(t) in terms of a natural spline basis z1, . . . , zT of order 2m. In practice,

one will often choose m = 2 which leads to cubic smoothing splines.
If Z and A denote T × T matrices with elements zj(t) and

R T
1 z

(m)
j (s)z

(m)
j (t), the above

minimization problem can be reformulated in matrix notation: Determine β̂ = (β̂1, . . . , β̂p)
0

and ζ̂i = (ζ̂1i, . . . , ζ̂Ti)
0 by minimizingX
i

¡kYi − Ȳ − (Xi − X̄)β − Zζik22 + κζ 0iAζi
¢
, (8)

where k · k denotes the usual Euclidean norm in IRT , kak = √a0a.
It is easily seen that with

Zκ = Z(Z 0Z + κA)−1Z 0
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the solutions are given by

β̂ =

ÃX
i

(Xi − X̄)0(I −Zκ)(Xi − X̄)

!−1X
i

(Xi − X̄)0(I −Zκ)(Yi − Ȳ ) (9)

as well as as well as

ζ̂i = (Z
0Z + κA)−1Z 0(Yi − Ȳ − (Xi − X̄)β̂).

Therefore,
v̂i = Zζ̂i = Zκ(Yi − Ȳ − (Xi − X̄)β̂) (10)

estimates vi = (vi(1), . . . , vi(T ))0.

Remark 1

• An obvious problem is the choice of κ. A straightforward approach then is to use
(generalized) cross-validation procedures in order to estimate an optimal smoothing
parameter κ̂opt. Note, however, that the goal is not to obtain optimal estimates of
the vi(t) but to approximate the functions gr in (??). Estimating g in the subse-
quent steps of the algorithm involves a specific way of averaging over individual data
which substantially reduces variability. In order to reduce bias, a small degree of
undersmoothing, i.e. choosing κ < κ̂opt, will usually be advantageous.

• Our setup is based on assuming a balanced design. However, in practice one will
often have to deal with the situation that there are missing observations for some
individuals. In principle, the above estimation procedure can easily be adapted to
this case. If for an individual k observations are missing, then only the remaining
T − k are used for minimizing (??). Estimates of v̂i(t) at all t = 1, . . . , T are then
obtained by spline interpolation.

• In any case, Zκ is a positive semi-definite, symmetric matrix. All eigenvalues of Zκ

take values between 0 and 1. Moreover, tr(Z2κ) ≤ tr(Zκ) ≤ T .

Step 2: Estimate w = (w(1), . . . , w(T ))0 by by minimizing

1

T

X
t

Ȳt −
pX

j=1

β̂jX̄tj − w(t)

2 + κ∗
1

T

Z T

1
(w(m)(s))2ds.

In principle, a smoothing parameter κ∗ 6= κ may be chosen in this step.
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Step 3: Determine the empirical covariance matrix Σ̂n of
v̂1 = (v̂1(1), v̂1(2), . . . , v̂1(T ))

0, . . . , v̂n = (v̂n(1), v̂n(2), . . . , v̂n(T ))0 by

Σ̂n =
1

n

X
i

v̂iv̂
0
i

and calculate its eigenvalues λ̂1 ≥ λ̂2 ≥ . . . λ̂T and the corresponding eigenvectors γ̂1, γ̂2, . . . , γ̂T .

Step 4: Set ĝr(t) =
√
T · γ̂rt, r = 1, 2, . . . , L, t = 1, . . . , T , and for all i = 1, . . . , n

determine θ̂1i, . . . , θ̂Li by minimizingX
t

(Yit − Ȳt − (Xi − X̄)β̂ −
LX
r=1

ϑriĝr(t))
2 (11)

with respect to ϑ1i, . . . , ϑLi.

3. Asymptotic Theory

We now consider properties of our estimators. We assume an i.i.d. sample of individual
firms and analyze the asymptotic behavior as n, T →∞. h ≡ h(n, T ) ≤ T and κ ≡ κ(n, T )

may either remain fixed or may increase with n. Model (??) is assumed to posses a fixed
dimension L for all n, T . The following assumption then provides the basis of our analysis.
We will write λmin(A) and λmax(A) to denote the minimal and maximal eigenvalues of a
symmetric matrix A.

Assumptions

1) For some fixed L ∈ IN there exists an L-dimensional subspace LT of IRT such that
vi ∈ LT a.e. for all sufficiently large T . Furthermore, LT is independent of Xit.

2) There exists a monotonically increasing function c(T ) of T such that as n, T →∞

— E( 1T
PT

t=1w(t)
2) = O(c(T )), E( 1T

PT
t=1 X̄

2
it,j) = O(c(T )),

— E( 1T
PT

t=1 vi(t)
2) = O(c(T )),

— 1
n

P
i θ
2
ir = OP (c(T )), ( 1n

P
i θ
2
ir)
−1 = OP (

1
c(T )),

and | 1n
P

i θ
2
ir − 1

n

P
i θ
2
is|−1 = OP (

1
c(T ))

hold for all r, s = 1, . . . , L, r 6= s, j = 1, . . . , p .

3) There exists a monotonically increasing function d(T ) of T such that as n, T →∞
E( 1T

PT
t=1w(t)

2) = O(d(T )), 1
E( 1

T
T
t=1 w(t)

2)
= O(1/d(T )),

E( 1
T

T
t=1 X̄

2
it,j)

E( 1
T

T
t=1 w(t)

2)
= O(1),

hold for all r, s = 1, . . . , L, r 6= s, j = 1, . . . , p .
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4) As n, T → ∞ the smoothing parameters κ ≡ κn,T > 0, κ∗ ≡ κ∗n,T > 0 are non-
decreasing functions of n, T . Smoothness of vi, w and selection of smoothing parame-
ters κ ≡ κn,T , κ

∗ ≡ κ∗n,T are such that the smoothing biases

bw(n, T ) =
q
T−1Ek(I −Zκ)wk22), bv(n, T ) =

q
T−1E(k(I −Zκ)vik22)

satisfy

bv(n, T ) = O(1),
bv(n, t)

c(T )1/2
= o(1), bw(n, T ) = O(1)

as n, T →∞.

5) E( 1T
PT

t=1X
2
it,j) = O(1) holds for all j = 1, . . . , p as n, T →∞. Furthermore,

λmax

Ã
[
X
i

(Xi − X̄)0(I −Zκ)(Xi − X̄)]−1
!
= Op(

1

nT
) (12)

and there exists a fixed constant D <∞ such that for all j = 1, . . . , p and all vectors
a ∈ RT

a0(I −Zh,κ) ·E
¡
(Xij − X̄)(Xij − X̄)0

¢
(I −Zκ)a ≤ D · k(I −Zκ)ak2. (13)

holds for all sufficiently large n, T .

6) The error terms it are i.i.d. with E( it) = 0, var( it) = σ2 > 0, and E( 8it) < ∞.
Moreover, it is independent from vi(s) and Xis,j for all t, s, j.

Subsequent theoretical results rely on asymptotic arguments based on Assumptions 1)
-6). It is therefore important to understand these assumptions correctly.

First note that Assumptions 1) and 2) formalize our model introduced in the proceeding
sections. However, a crucial point is Assumption 4) which quantifies our requirement of
”smooth functions” vi.

Spline Theory provides a basis to understand the impact of Assumption 4 (see, for
example, de Boor 1978, or Eubank 1999). We will concentrate on cubic smoothing splines
(m = 4). Let ṽi(t) denote the corresponding spline interpolant of v(1), . . . , vi(T ), i.e. ṽi is
a spline function with ṽi(t) = vi(t) for t = 1, . . . , T . By definition, the vector (I − Zκ)vi is
obtained by evaluating the function v minimizing 1

T

P
t(vi(t)− v(t))2 + κ 1T

R T
1 v(2)(t)2dt at

t = 1, . . . , T . Consequently, 1T k(I −Zκ)vik2 ≤ κ 1T
R T
1 ṽ

(2)
i (t)2dt. When analyzing properties

of Zκ it turns out that there exists a constant 0 < q < ∞ such that tr(Z2κ) ≤ q · T
κ1/4

.
Furthermore, in a simple regression model of the form yi = vi(t) + it the average variance
of the resulting estimator will be of order σ2tr(Z2κ)/T . As will be seen in the proof of
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Theorem 1 below, this generalizes to the variance of the estimators v̂i to be obtained in the
context of our model. These arguments show that for all n, T

1

T
|(I −Zκ)vik2 ≤ κ

1

T

Z T

1
ṽ
(2)
i (t)2dt, tr(Z2κ) =≤ q · T

κ1/4
, (14)

1

T

X
t

var (v̂i(t)) = OP (σ
2tr(Z2κ)/T )

where var denotes conditional variance given vi, Xit. Similar relations can, of course, be
obtained with respect to w.

Note that in our it is only required that the above assumptions hold as ”n, T → ∞”.
Of course, n → ∞ will correspond to drawing more and more individuals at random, but
different asymptotic setups may be used to describe the situation as ”T →∞. The point is
that any asymptotic theory aims to provide first order approximations of a complex finite
sample behavior. In practice, one always has to consider the question which asymptotic
setup is best suited to approximate the respective finite sample situation.
Situation 1. in the context of nonparametric regression the usual asymptotic setup

consists in assuming that the distance between adjacent observational points tends to zero.
In other words, in this setup, instead of adding new equidistant period, the time interval in
which observations are taken is held fixed but the distance between observations is reduced.
For example, for a fixed number of years, T will increase if instead of yearly data we consider
monthly or even daily observations. This will clearly be the natural asymptotic setup in
application, where t does not represent chronological time, but, for example, measurements
at different ages of individuals.

Formally this asymptotic setup can be described as follows. For each individual there
are data from T equidistant observations in a fixed time interval [0, 1]. There exist a twice
differentiable functions µ as well as i.i.d. twice differentiable random functions ν1, . . . , ν on
L2[0, 1] such that µi(

t
T ) = w(t) and νi(

t
T ) = vi(t) for t = 1, . . . , T .

In this case we, of course, obtain 1
T

P
t vi(t) = O(1), 1T

P
tw(t) = O(1) as T →∞ and,

hence, Assumptions 2) and 3) refer to a constant functions c(T ) = 1, d(t) = 1. Moreover,
In this case v(2)i (t) = 1

T 2 ν
(2)
i (t), and κ 1T

R T
1 v

(2)
i (t)dt = κ 1

T4

R 1
0 ν

(2)
i (t)dt+O(1/T ).

From (??) we can infer that an optimal smoothing parameter then satisfies κ
/T

4 = κT ∼
T−4/5, which means that the smoothing parameter κ in (??) has to increase rapidly as
T → ∞. Similar results are to be obtained with respect to w. Assumption 4) then holds
with

bv(n, T )
2 = E(

1

T
k(I −Zκ)vik2 = O(T−4/5), tr(Z2κ)/T = O(T−4/5). (15)

Similar rates of convergence then can also be derived for bw(n, T ). Also note that in order
to satisfy Assumptions 5) we implicitly assume that Xitj are generated by non-smooth
stochastic processes.
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From a practical point of view it is important to well interprete this asymptotic setup.
Construction of spline smoothers implies that the value of the integral 1

T

R T
1 ṽ

(2)
i (t)2dt in

(??) is of the same order of magnitude as the average squared second differences 1T
P

t(vi(t+

1)− 2vi(t)+ vi(t− 1))2. Therefore, for a given finite sample theoretical results based on the
above setup will provide a reasonable first order approximation if it can be assumed that
the functions vi are smooth enough such that 1

T

P
t(vi(t+ 1)− 2vi(t) + vi(t− 1))2 is much

smaller than the error variance σ2. In this case a fairly large smoothing parameter κ will
still result in a small bias while at the same time the average variance of the estimator will
be much smaller than σ2 (due to tr(Z2κ)¿ T ).

Situation 2. Smoothness can also be formalized in a setup which corresponds to
the usual time series asymptotics. Indeed, w(t), vi(t) may be generated by I(1) or I(2)
processes. In this case the asymptotic setup of Situation 1 may not be appropriate since
1
T

P
t(vi(t+1)−2vi(t)+vi(t−1))2 may be of the same order of magnitude as σ2. However,

reasonable convergence results can still be established due to the fact that 1T
P

t(vi(t+1)−
2vi(t) + vi(t− 1))2 is of a smaller stochastic order of magnitude as 1

T

P
t vi(t)

2.
Let us consider the example of a random walk. Assume that

w(t) + vi(t) = ϑirt, with rt+1 = rt + δt,

where δ1, δ2, . . . are i.i.d with E(δt) = 0, var(δ(t)) = σ2δ , and δt is independent of ϑi.
Our model then holds with L = 1, w(t) = ϑ̄irt, gr(t) = rt√

T
and θ1i =

√
T (ϑi−ϑ̄i). Since,

1
TE(ϑi)

2)E(r2t ) = O(T ), Assumptions 2) and 3) are then satisfied with c(T ) = d(T ) = T .
On the other hand, averages of squared first or second differences (rt+1− rt)

2 or (rt+2−
2rt + rt−1)2 are bounded in probability which implies that for a cubic spline interpolant
r(t) of r− t we obtain E( 1T

R T
1 r(2)(t)dt) = O(1) as T →∞. It is then easy to show that an

optimal smoothing parameter may be chosen as a constant (independent of n and T ) such
that

bv(n, T ) = E(
1

T
k(I −Zκ)vik) = O(1), tr(Z2κ)/T = O(1). (16)

This, of course implies that there is convergence when considering the difference vi − Zκvi
relative to the size of vi:

E(
1

kvik2 k(I −Zκ)vik2) = O(1/T )

Assumption 5) contains regularity conditions which imposes a restriction on the design
matrix. It essentially requires that the time paths {Xitj − X̄ij}t are “less smooth” than
those of {vi(t)}t. In particular, stationary processes generate non-smooth time parts.

When considering the simplest case p = 1, Assumption 5) is, for example, fulfilled if
the individual processes {Xit}t are independent realizations of some ARMA(q1, q2) process.
Then E((Xi−X̄)(Xi−X̄)0) corresponds to the autocovariance matrix of this ARMA process,
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and if tr(Z2κ) = o(T ) (??) as well as (??) follow from the well known structure of such
autocovariance matrices.

Assumption 5) also holds if {Xit}t are generated by ARMA(q1, q2) with individually
different parameters. For example assume thatXit = X̃it+δi, where {X̃it}t are independent
realizations of an MA(q) process and δi are independent, zero mean random variables with
variance ∆2. Then

E
¡
(Xij − X̄)(Xij − X̄)0

¢
= Γ+∆2 · 110,

where Γ is the autocovariance matrix of the underlyingMA(q) process. Since by assumption
Zκ1 = 1 for 1 = (1, 1, . . . , 1)0 we arrive at

(I −Zκ)E
¡
(Xij − X̄)(Xij − X̄)0

¢
(I −Zκ) = (I −Zκ)Γ(I −Zκ).

Since by Assumption 4) there exists a q < 1 such that tr(Z2κ) ≤ q · T relations (??) as well
as (??) are an immediate consequence.

We are now ready to state our main theorem. We will use the notation “E ” to denote
conditional expectation given vi andXi, i = 1, . . . n. Moreover, X̃i = Xi−X̄, and we will say
that vi and Xi are uncorrelated, if E(vi|Xi) = 0 as well as E(vi(s)vi(t)|Xi) = E(vi(s)vi(t))

for all, s, t.

Theorem 1 Under Assumption A we obtain as n, T →∞

(a) kβ −E (β̂)k = OP (bβ(n, T )), where

bβ(n, T ) :=


bv(n,T ))√

Tn
if Xi and vi are uncorrelated,

bv(n,T ))√
T

else,

and V
−1/2
n,T (β̂ −E (β̂)) ∼ N(0, I), where

Vn,T = σ2

ÃX
i

X̃ 0
i(I −Zκ)X̃i

!−1ÃX
i

X̃ 0
i(I −Zκ)(I −

1

n
110)(I −Zκ)X̃i

!ÃX
i

X̃ 0
i(I −Zκ)X̃i

!−1
= OP

µ
1

nT

¶
.

(b) kw−ŵk
kwk = OP

³
bw(n,T )

d(T )1/2
+ bβ(n, t)) +

q
tr(Z2κ)
nTd(T )

´
.

(c) For all r = 1, . . . , L

T−1/2kgr − ĝrk = OP

Ã
bv(n, T )

c(T )1/2
+

1

T 2c(T )2
+

s
tr(Z2κ)
nTc(T )

!
.
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(d) For all r = 1, . . . , L

θ̂ri − θri = OP

µ
bv(n, T )

2

c(T )
+

tr(Z2κ)
nT

+
1√
T

¶
.

Furthermore, if bv(n,T )2

c(T ) + bβ(n, t) +
tr(Z2κ)
nT = o(T−1/2), then

√
T (θ̂1i − θ1i, . . . , θ̂Li − θLi)

0 →d N(0, σ
2I).

(e) If additionally tr(Z2κ)/n→ 0 as well as T · bβ(n, T )2 + 1
Tc(T ) = o

³p
tr(Z4κ)/n

´
, then

n
PT

r=L+1 λ̂r − (n− 1)σ2 · tr(ZκP̂LZκ)q
2nσ4 · tr((ZκP̂LZκ)2)

→d N(0, 1),

where P̂L = I −PL
r=1 γ̂rγ̂

0
r.

3.2 Choice of Dimension

Theorem 1(e) may be used to estimate the dimension L. A prerequisite is of course the
availability of a reasonable estimator of σ2. We propose to use

σ̂2 :=
1

(n− 1) · tr(I −Zκ)2

X
i

k(I −Zκ)(Yi − Ȳ − (Xi − X̄)β̂)k2. (17)

We then use the following procedure to determine an estimate L̂ of L:
First select an α > 0 (e.g., α = 1%). For l = 1, 2, . . . determine

C(l) :=
n
PT

r=l+1 λ̂r − (n− 1)σ̂2 · tr(ZκP̂lZκ)q
2nσ̂4 · tr((ZκP̂lZκ)2)

. (18)

Choose L̂ as the smallest l = 1, 2, . . . such that

C(l) ≤ z1−α,

where z1−α is the 1− α quantile of a standard normal distribution.

The following theorem provides a theoretical justification for this procedure.
Theorem 2 In addition to the assumptions of Theorem 1, assume that tr(I−Zκ) ≥ D1 ·T
for some constant D1 > 0 as well as tr(Z2κ)/n→ 0 and T ·B(n, T )2 + 1

T = o
³p

tr(Z4κ)/n
´

as n, T →∞. Then,
lim inf
n,T→∞

P(L̂ = L) ≥ 1− α.

11



3.3 Durbin-Watson Type Test

An interesting question is whether in a particular application it is necessary to use our
complicated procedure to estimate time varying individual effects, or whether it is simply
possible to assume constant effects θi = vi(1) = vi(2) = · · · = vi(T ). This question can be
resolved by a Durbin-Watson type test.

The procedure aims to test the null hypothesis H0 : θi = vi(1) = vi(2) = · · · = vi(T )

against the general alternative H1: vi is time varying. Note that under H0 our model takes
the form

Yit = β0 +

pX
j=1

βjXitj + θi + it, i = 1, . . . , n, t = 1, . . . , T (19)

with 1
nθi = 0.

Let θ∗i = β0 + θi. Our test of H0 then is constructed in the following way.

• Fit the null model to the data by determining parameter estimates β̂1, . . . , β̂p and θ̂
∗
i

via minimizing X
i

X
t

(Yit −
pX

j=1

βjXitj − θ∗i )
2.

The solutions are given by

β̂ =

ÃX
i

X 0
i(I −

1

T
110)Xi

!−1X
i

X 0
i(I −

1

T
110)Yi (20)

as well as
θ̂
∗
i =

1

T
10(Yi −Xiβ̂).

• Calculate the residuals
ît = Yit −

pX
j=1

β̂jXitj − θ̂
∗
i .

• Determine the test statistic

D =

Pn
i=1

PT
t=2( ît − î,t−1)2Pn
i=1

PT
t=1 ˆ

2
it

.

• For a selected significance level α > 0, reject H0 if

D 6∈
·
2− z1−α/2

2√
nT

, 2 + z1−α/2
2√
nT

¸
.
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The above critical values for the test statistic are justified by the following Theorem 3,
which provides an asymptotic approximation of the null distribution of D. Asymptotics is
based on n→∞, while T ≡ T (n) may either be constant or increase with n.

Theorem 3 Suppose that H0 : θi = vi(1) = vi(2) = · · · = vi(T ) is true and that
Assumptions A(1) as well as A(3) are fulfilled for Zκ :=

1
T 11

0. Then, as n→∞
√
nT

2
(D − 2)→d N(0, 1).

4. Simulations

In this section, we investigate the finite sample performances of the new estimator described
in Section 2 (hereafter we will call it KSS estimator) through Monte Carlo experiment. Two
of the existing time-varying individual effects estimators [Cornwell, Schmidt, and Sickles
(1990) and Battese and Coelli (1992)] as well as the fixed and the random effects estimators
are also considered to compare with our estimator.

We consider the following panel data model:

Yit =

pX
j=1

βjXitj + vit + it

where vit will be discussed later. We simulate samples of size n = 30, 100, 300 with T =

12, 30 in a model with p = 2 regressors. The error process it is drawn randomly from i.i.d.
N(0, 1). The values of true β are set equal to (0.5, 0.5). In each Monte Carlo sample, the
regressors are generated according to a bivariate VAR model as in Park, Sickles, and Simar
(2002):

Xit = RXi,t−1 + ηit, where ηit ∼ N(0, I2), (21)

and

R =

Ã
0.4 0.05

0.05 0.4

!
.

To initialize the simulation, we choose Xi1 ∼ N(0, (I2 − R2)−1) and generate the samples
using (??) for t ≥ 2. Then, the obtained values of Xit are shifted around three different
means to obtain almost 3 balanced groups of firms from small to large. We fix each group
at µ1 = (5, 5)0, µ2 = (7.5, 7.5)0, and µ3 = (10, 10)0. The idea is to generate a reasonable
cloud of points for X.

We generate time-varying individual effects in the following ways:

DGP1 : vit = θi0 + θi1t+ θi2t
2

DGP2 : vit = − exp(−η(t− T ))ui

DGP3 : vit = υi1g1t + υi2g2t

DGP4 : vit = −ui

13



where θij (j = 0, 1, 2) ∼ N(0, 1)/102, η = 0.15, ui ∼ i.i.d. |N(0, 1)| , υij (j = 1, 2) ∼ N(0, 1),
g1t = sin(πt/4) and g2t = cos(πt/4). DGP1 is the model considered in Cornwell, Schmidt
and Sickles (1990), and DGP2 in Battese and Coelli (1992). DGP3 is considered here to
model effects with large temporal variations. DGP4 is the usual constant effects model.
Thus, we may consider DGP3 and 4 as two extreme cases among the possible functional
forms of time-varying individual effects.

For the KSS estimator, cubic smoothing splines were used to approximate vit in Step 1,
and the smoothing parameter κ was selected by using generalized cross-validation.2 Most
simulation experiments were repeated 1,000 times except the cases for n = 300 for which 500
times repetitions were carried out. To measure the performances of the effect and efficiency
estimators, we used normalized mean squared error (MSE):

R(bv, v) = P
i,t (bvit − vit)

2P
i,t v

2
it

.

For the estimates of technical efficiency, we also considered the Spearman rank order cor-
relation.

Before we present the simulation results, we briefly introduce the other estimators. For
Within and GLS estimators, once individual effects vi are estimated, technical efficiency
is calculated as TE = exp {vi −max(vi)} following Schmidt and Sickles (1984). Battese
and Coelli (1992) (hereafter BC) employ the maximum likelihood estimation method to
estimate the following equation

Yit = β0 +

pX
j=1

βjXitj + it − uit

where the time-varying effects terms are defined as uit = ηitui = {exp[−η(t− T )]}ui for i =
1, . . . , n. Technical efficiency is then calculated as TEBC = exp(−uit). Cornwell, Schmidt,
and Sickles (1990) (hereafter CSS) approximate time-varying effects by a quadratic function
of time. Thus, the CSS estimator is

βCSS = (X
0MQX)

−1X 0MQy

where MQ = I − Q(Q0Q)−1Q0, Q = diag(Wi), i = 1, . . . , n, and Wit = [1, t, t2]. Technical
efficiency is defined as TECSS = exp {vit −max(vit)} . For the KSS estimator, technical
efficiency is calculated similarly as for the CSS estimator.

Now we present the simulation results. Tables 1-4 present mean squared errors (MSE)
of coefficients, effects, and efficiencies, and the Spearman rank order correlation coefficient
of efficiencies for each DGP. Also, average optimal dimensions, L, chosen by C(l) criterion

2We let κ = (1− p)/p and chose p among a selected grid of 9 equally spaced values between 0.1 and 0.9
so that generalized cross-validation rule is minimized.
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are reported in the last column of second panel in each Table. Note first that optimal
dimension, L, is correctly chosen for the KSS estimator in all DGPs.3 Thus, we can verify
the validity of the dimension test C(l) discussed in Section 2.

For DGP1, the performances of the KSS estimator are better than the other estimators
by any standards. This is true even when the data is as small as n = 30 and T = 12. In
particular, the KSS estimator outperforms the other estimators in terms of MSE of efficiency.
Since the data are generated by DGP1, we may expect that CSS estimator performs well.
This is true for T = 30. However, if T is small (T = 12), the CSS estimator is no better
than the other estimators. The performances of Within, GLS, and BC estimators generally
get worse as T increases.

For DGP2, note that the data is generated using the model specification of the BC esti-
mator. Even in this situation, overall the performances of the KSS estimator are comparable
to or sometimes better than those of the BC estimator. The BC estimator seems to work
fine for the estimation of effects and efficiencies. In terms of MSE of coefficients, however,
it appears that the BC estimator is not reliable when T is large (T = 30). The Within and
GLS estimators also suffer from tremendous distortions in their coefficients estimates when
T is large.

DGP3 generates effects with large temporal variations. Hence, simple functions of time
such as used in the CSS or BC estimators are not sufficient for this type of DGP. However,
the KSS estimator does not impose any specific forms on the temporal pattern of effects,
and thus it can approximate any shape of time varying effects. We may then expect good
performances of the KSS estimator even in this situation, and results in Table 3 confirm
such belief. On the other hand, the other estimators suffer from severe distortions in the
estimates of effects and efficiencies, although coefficient estimates look reasonably good. In
particular, rank correlations of efficiencies are almost zero when T is large.

DGP4 represents the reverse situation so that there is no temporal variation in the
effects. Hence, the Within and GLS estimators work very well. Now, our primary question
is what are the performances of KSS estimator in this situation. As seen in Table 4, its
performances are fairly well and comparable to those of the Within and GLS estimators.
Therefore, the KSS estimator may be safely used even when temporal variation is not
noticeable.

In summary, simulation experiments show that either if constant effects are assumed
when the effects are actually time-variant, or if the temporal patterns of effects are mis-
specified, parameters as well as effect and efficiency estimates become severely biased. In
these cases, large T increases the bias, and large n does not help solve the problem. On the
other hand, our estimator performs very well regardless of the assumption on the temporal
pattern of effects, and therefore, our estimator is preferred to other existing estimators.

3Although DGP1 consists of three different functions, [1, t, t2], t2 term is dominating as T gets large.
Thus one dimensional model is sufficient to approximate the effects generated by DGP1.
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5. Efficiency Analysis of Banking Industry

5.1 Empirical Model

Wemodel the multiple output/multiple input technology using the output distance function.
The output distance function, D(Y,X) ≤ 1, provides a radial measure of technical efficiency
by specifying the fraction of aggregated outputs (Y ) produced by given inputs (X). An
m-output, n-input deterministic distance function can be approximated byQm

j Y
γj
jQn

k X
βk
k

≤ 1,

where the γ0js and the β
0
ks are weights describing the technology of a firm. If it is not possible

to increase the index of total output without either decreasing an output or increasing an
input, the firm is producing efficiently or the value of the distance function equals 1.

The Cobb-Douglas stochastic distance frontier that we utilize below in our empirical
illustration is derived by simply multiplying through by the denominator, approximating
the terms using natural logarithms of outputs and inputs, and adding a disturbance term

it to account for statistical noise. We also specify a nonnegative stochastic term uit for
the firm specific level of radial technical inefficiency, with variations in time allowed. The
Cobb-Douglas stochastic distance frontier is thus

0 =
X
j

γj ln yj,it −
X

βk lnxk,it + uit + it.

Then, we normalize the outputs with respect to the first output and rearrange to get

ln yJ =
X
j

γj(− ln byj,it)−Xβk(− lnxk,it)− uit + it,

where yJ is the normalizing output and byj = yj/yJ , j = 1, . . . ,m, j 6= J. To streamline
notations, let Yit = ln yJ , Y ∗it = − ln byj,it, Xit = − lnxk,it, and vit = −uit, in which case we
can write the stochastic distance frontier as

Yit = Y ∗0it γ −X 0
itβ + vit + it. (22)

This model can be viewed as a generic panel data model in which the effects are interpreted
as time-varying firm efficiencies, and fits into the class of frontier models developed and
extended by Aigner, Lovell, and Schmidt (1977), Meeusen and van den Broeck (1977),
Schmidt and Sickles (1984), and Cornwell, Schmidt, and Sickles (1990).

5.2 Data

We use panel data from 1984 through 1995 for U.S. commercial banks in limited branching
regulatory environment. The data are taken from the Report of Condition and Income
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(Call Report) and the FDIC Summary of Deposits.4 The data set include 1220 banks or
14,640 total observations. Table 5 provides variables description and gives the means of the
samples.

The variables used to estimate the Cobb-Douglas stochastic distance frontier are Y =

ln(real estate loans); X = − ln(certificate of deposit), − ln(demand deposit), − ln(retail
time and savings deposit), − ln(labor), − ln(capital), and − ln(purchased funds); Y ∗ =
− ln(commercial and industrial loans/real estate loans), and − ln(installment loans/real
estate loans). For a complete discussion of the approach used in this paper, see Adams,
Berger, and Sickles (1999).

5.3 Empirical Results

The Hausman-Wu test, which tests the correlation assumptions for regressors and individ-
ual effects, was performed. The null hypothesis of no correlation was rejected at the 1%
significance level. Thus there is strong evidence against the exogeneity assumption un-
derlying the GLS estimator. Consequently, in the following analysis we do not report the
results from the GLS estimator. The assumption is also fatal to the consistency of the BC
estimator. However, we will provide estimation results for the BC estimator to compare
them with those from the other estimators (Within, CSS, and KSS) which are robust to
the existence of correlation between regressors and effects. The Durbin-Watson type test
was also performed to test the null hypothesis of constant individual effects. Test statistic
is D = −90.876, which leads to strong rejection of the null. This implies that individual ef-
fects are better approximated by time-varying effects estimators rather than time-invariant
effects estimators.

Table 6 displays the results for parameter estimates from the Within, BC, CSS, and KSS
estimators. The dimension L is chosen according to the rule described in Section 2 with the
maximum dimension set to 8. In calculating efficiency scores from the effects estimators,
the effects estimates are truncated at the top and bottom 5% level (see Berger 1993).5

To calculate technological changes, time trend is included in the estimation of the Within
and BC estimators. For KSS, w(t) estimates the time-specific effects. Resulting average
technological changes are 1.40%/year from Within, 0.43%/year from BC, and 3.53%/year
from the KSS estimator.

Results for the respective estimators do not indicate any significant scale economies.
Estimated technical efficiencies range from 50.26% to 65.7% (ignoring the result from the
BC estimator). Figure 1 displays the temporal pattern of efficiency changes for time-variant

4For a more detailed discussion of data, see the Appendix in Jayasiriya (2000).
5This does not apply to the BC estimator because it directly calculates efficiencies. For the time-varying

effects estimators, the firms which enter the top and bottom 5% range of effects in any time periods were
excluded in calculating average efficiencies. Therefore, in this sense, it is not fair to directly compare the
efficiencies from the Within or BC estimators from those from the CSS and KSS estimators.
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efficiency estimators. Technical efficiencies calculated from the BC estimator increase during
the sample period, while those from the CSS and KSS estimators slightly decrease. The
pattern is more clear with the KSS estimator: technical efficiency decreases from 51% in
1984 to 47% in 1995. Therefore, we may conclude that overall technical efficiencies decreased
during the sample period.

One may expect that, during the period of deregulation, firms tend to become more
efficient due to increased competitive pressures in the industry.6 According to our results,
however, there has not been efficiency improvements in the U.S. banks of limited branching
regulatory environment. To shed a light on the observation that efficiencies decreased even
under deregulation, we note Adams, Berger, and Sickles’s (1999) comment that analysis
of banks with varying total asset size might be more appropriate to account for possible
heterogeneities across banks. Thus we divided the sample into two groups by bank size. It
is known that bank size (in terms of total assets) is highly correlated with the size of a given
output (Jayasiriya 2000). So we divided the sample into large and small banks depending
on whether the output of a bank is larger than the median output of entire banks.

Coefficients estimates for large and small banks are not reported here because they are
very similar to those for entire banks. Table 7 shows the efficiency estimates for large and
small banks. With only large banks, we find that there is an increase in the overall level
of technical efficiency. It ranges from 60.5% to 71.6%. Figure 2 displays the time pattern
of efficiencies for large banks. Notice that the pattern is very close to that of efficiencies
for entire banks, although efficiency levels and magnitude of fluctuations are somewhat
different. The average technical efficiency estimates from the KSS estimator decrease from
61.6% in 1984 to 54.0% in 1995. With only small banks, however, we get different results.
Overall efficiency level for small banks is lower than that for large banks, ranging from
43.8% to 61.9%. However, efficiency estimates from the KSS estimator now increase from
57.8% in 1984 to 62.2% in 1995. This results provide us with information which is not seen
from entire banks, and we may conclude that small banks responded more efficiently to
deregulation during the sample period.

6. Conclusion

In this paper we introduced a new approach to estimating time-varying technical efficiency
levels for individual firms, without making strong distributional assumptions for technical
inefficiency or random noise. We do so by using the fixed effects model allowing for temporal
variations in individual effects. More specifically, we estimate the effects using the procedure
combining smoothing spline techniques with principal component analysis. In this way, we
can approximate virtually any shapes of time-varying effects.

6For comprehensive discussions of deregulatory issues and the banking industry’s reactions and adjust-
ments to them, see Berger et al. (1995).
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Simulation experiments show that previous estimators, which fail to allow for temporal
variations in effects terms or misspecify the temporal pattern of variations, suffer from
serious distortions in their estimates. On the other hand, our new estimator performs very
well regardless of the assumption on the temporal pattern of individual effects. We have
used this estimator to analyze the technical efficiency of U.S. banks in limited branching
regulatory environment for the period of 1984-1995, and discovered that small banks became
more efficient over the years, while large banks suffered efficiency loss.

6. Appendix: Mathematical Proofs

Proof of Theorem 1: It is easily seen that

β̂ = (
X
i

X̃ 0
i(I −Zκ)X̃i)

−1X
i

X̃ 0
i(I −Zκ)(Yi − Ȳ )

= β + (
X
i

X̃ 0
i(I −Zκ)X̃i)

−1X
i

X̃ 0
i(I −Zκ)vi

+(
X
i

X̃ 0
i(I −Zκ)X̃i)

−1X
i

X̃ 0
i(I −Zκ)( i − ˆ).

Consequently, E (β̂)−β = (Pi X̃
0
i(I−Zκ)X̃i)

−1P
i X̃

0
i(I−Zκ)vi. By Assumption 1) there

exists a fixed basis b1, . . . , bL of LT which can be chosen independent of Xit. Therefore,
vi =

PL
r=1 ϑirbr. Let Xij denote the T -vectors with elements Xitj , t = 1, . . . , T . In the

general case, the j = 1, . . . , p elements of the vectors
P

i X̃
0
i(I −Zκ)vi can thus be bounded

by

|
X
i

X̃ 0
ij(I −Zκ)vi| ≤ n

LX
r=1

s
| 1
n

X
i

ϑ2ir| · |b0r(I −Zκ)(
1

n

X
i

X̃ijX̃ 0
ij)(I −Zκ)br|

= OP

µ
n

LX
r=1

q
E(ϑ2ir) · |b0r(I −Zκ)E(X̃ijX̃ 0

ij)(I −Zκ)br|
¶

But by Assumptions 4) and 5) we obtain

n
LX
r=1

q
E(ϑ2ir) · |b0r(I −Zκ)E(X̃ijX̃ 0

ij)(I −Zκ)br| ≤ n
LX
r=1

q
E(ϑ2ir) ·D · k(I −Zκ)brk2 = O(n

√
Tbv(n, T )).

Condition (??) of Assumption 5) then leads to kE (β̂)− βk = OP ((
bv(n,T )

T 1/2
). On the other

hand, if vi and Xi are uncorrelated, then

|
X
i

X̃ 0
ij(I −Zκ)vi| = OP

µq
n ·E(ϑ2ir)|b0r(I −Zκ)E(X̃ijX̃ 0

ij))(I −Zκ)br|
¶

= OP (
p
nT · bv(n, T )2)

and kE (β̂) − βk = OP ((nT )
−1/2 · bv(n, T )). By Assumptions 5) and 6) the assertion on

β̂ −E (β̂) = (Pi X̃
0
i(I −Zκ)X̃i)

−1P
i X̃

0
i(I −Zκ)( i − ¯) follows from standard arguments.
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Consider Assertion (b). Obviously,

w − ŵ = (I −Zκ)w −Zκ¯−ZκX̄(β − β̂)

and T−1/2kZκ¯k = OP (
p
tr(Zκ)/(nT )). The assertion then follows from Assumptions 4)

and 5) as well as the above results on the convergence of kβ − β̂k.
In order to prove Assertion (c) first note that

v̂i = vi + ri, with ri = −(I −Zκ)vi +Zκ i +ZκX̃i(β − β̂).

Therefore,

Σ̂n = Σn +B, B =
1

n

X
i

(vir
0
i + riv

0
i + rir

0
i). (23)

Assertion (b) of Lemma A.1 of Kneip and Utikal (2001) implies that for all r = 1, . . . , L

γr − γ̂r = −SrBγr +R, with kRk ≤ 6 supkak=1 a
0B0Ba

mins |λr − λs|2 (24)

and with Sr =
P

s 6=r
1

λs−λrPs, where Ps denotes the projection matrix projecting into the
eigenspace corresponding to λs.

In order to evaluate the above expression we first have to analyze the stochastic order of
magnitude of the different elements of B. Consider the terms appearing in 1

n

P
i(vir

0
i+riv

0
i).

Using Assumptions 1) - 5) some straightforward arguments now lead to

sup
kak=1

k 1
n

X
i

(I −Zκ)viv0iak ≤
1

n

X
i

sup
kak=1

|v0ia|
q
v0i(I −Zκ)(I −Zκ)vi = OP (Tc(T )

1/2bv(n, T )),

(25)

sup
kak=1

k 1
n

X
i

viv
0
i(I −Zκ)ak ≤ sup

kak=1

1

n

X
i

p
v0ivi |v0i(I −Zκ)a| = OP (Tc(T )

1/2bv(n, T )), (26)

sup
kak=1

k 1
n

X
i

(ZκX̃i(β − β̂))v0iak ≤
1

n

X
i

|v0ia|
q
(β − β̂)0X̃ 0

iZ2κX̃i(β − β̂)

= OP

µ
Tc(T )1/2(bβ(n, T ) +

1√
nT
)

¶
. (27)

If Xi and vi are uncorrelated, then due to E(Xijv
0
i) = 0 relation (??) can be replaced by

sup
kak=1

k 1
n

X
i

(ZκX̃i(β − β̂))v0iak = OP

Ã
T

r
c(T )

n
(bβ(n, T ) +

1√
nT
)

!
. (28)

By similar arguments

sup
kak=1

k 1
n

X
i

vi(ZκX̃i(β− β̂))0ak =
(
OP (T

q
c(T )
n (bβ(n, T ) +

1√
nT
)) if Xi and vi are uncorrelated

OP (Tc(T )
1/2bβ(n, T )) else

(29)
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Obviously, E (tr(( 1n
P

i vi
0
iZκ) · ( 1n

P
iZκ iv

0
i))) = O(

Tc(T )·tr(Z2
κ)

n ), and therefore

sup
kak=1

k 1
n

X
i

Zκ iv
0
iγrk2 ≤ tr((

1

n

X
i

vi
0
iZκ) · (

1

n

X
i

Zκ iv
0
i)
0))) = OP

Ãr
Tc(T ) · tr(Z2κ)

n

!
, (30)

Similarly,

sup
kak=1

k 1
n

X
i

vi
0
iZκγrk2) = OP

Ãr
Tc(T ) · tr(Z2κ)

n

!
. (31)

For the leading terms appearing in 1
n

P
i rir

0
i we obtain

sup
kak=1

k 1
n

X
i

(I −Zκ)viv
0
i(I −Zκ)ak = Op(T · bv(n, T )2), (32)

sup
kak=1

k 1
n

X
i

(ZκX̃i(β − β̂))(ZκX̃i(β − β̂))0ak = OP

µ
T · (bβ(n, T )2 + 1

nT
)

¶
. (33)

Obviously,
E (tr(( 1n

P
iZκ i

0
iZκ−σ2Z2κ) · ( 1n

P
iZκ i

0
iZκ−σ2Z2κ)))) = 1

nE(tr(Zκ i
0
iZκZκ i

0
iZκ−σ4Z4κ)) =

OP (
tr(Z2

κ)
2

n ), and therefore

sup
kak=1

k 1
n

X
i

(Zκ i
0
iZκ − σ2Z2κ)ak = OP

µ
tr(Zκ)

2

√
n

¶
(34)

Assumptions 1) and 2) additionally imply that 1
mins |λr−λs| = OP (

1
T ·C(T )). When combining

(??) with (??) - (??) we thus obtain

kSrBγrk ≤ kσ2SrZ2κγrk+
1

mins |λr − λs|k(B − σ2SrZ2κ)γrk

= kσ2SrZ2κγrk+OP

Ã
bv(n, T )

c(T )1/2
+

s
tr(Z2κ)
nTc(T )

!
(35)

By definition of Sr we have Srγr = 0. Furthermore, Assumption 3 implies that k(I −
Zκ)γrk = OP (

bv(n,T )

c(T )1/2
). Hence,

kσ2SrZ2κγrk ≤ kσ2Sr(I −Zκ)γrk+ kσ2SrZκ(I −Zκ)γrk = OP (
bv(n, T )

Tc(T )3/2
), (36)

Let us now consider the remainder term R in (??). Note that all eigenvalues of Zκ are
less or equal to 1, and thus supkak=1 a0Z4κa ≤ 1. Relations (??) - (??) then imply

supkak=1 a0B0Ba
mins |λr − λs|2 ≤ 2

supkak=1 a0(B − σ2Z2κ)0(B − σ2Z2κ)a
mins |λr − λs|2 + 2

supkak=1 a0Z4κa
mins |λr − λs|2

= OP

µ
bv(n, T )

2

c(T )
+

1

T 2c(T )2
+

tr(Z2κ)
nTc(T )

)

¶
(37)
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By (??), (??), (??) and (??) Assertion (c) follows from

T−1/2kgr − ĝrk = kγr − γ̂rk = OP

Ã
bv(n, T )

c(T )1/2
+

1

T 2c(T )2
+

s
tr(Z2κ)
nTc(T )

!
. (38)

Let us switch to Assertion (d). Definition of θ̂ir as well as Assertions a) and c) imply that

θ̂ri =
1

T
ĝ0r(Yi − Ȳ − X̃iβ̂)

= θri +
1

T
g0r( i − ¯) + 1

T
(ĝr − gr)

0vi +OP (bβ(n, T ) + oP (T
−1/2)

However, one can infer from relations (??) - (??) that

1

T
(ĝr − gr)

0vi =
1

n
√
T

X
j

γ0rvjv
0
j(I −Zκ)Srvi +

1

n
√
T

X
j

γ0r(I −Zκ)vjv
0
jSrvi

+OP

µ
bv(n, T )

2

c(T )1/2
+ bβ(n, T ) +

tr(Z2κ)
nT

¶
However, the well-known properties of Zκ imply that 1

T g
0
r(I −Zκ)gr is of the same order of

magnitude as 1
T g

0
r(I −Zκ)(I −Zκ)gr. Hence,

1

n
√
T

X
j

γ0rvjv
0
j(I −Zκ)Srvi ≤ 1

n

X
s6=r

X
j

|v0iγr|√
T |λr − λs|

|v0j(I −Zκ)θsigs| = OP (
bv(n, T )

2

c(T )1/2
)

as well as

1

n
√
T

X
j

γ0r(I −Zκ)vjv
0
jSrvi ≤

1

n

X
j

|v0ivj |√
T mins |λr − λs|

|v0j(I −Zκ)γr| = OP (
bv(n, T )

2

c(T )1/2
).

This implies

(θ̂ri − θri) =
1

T
g0r i +OP

µ
bv(n, T )

2

c(T )1/2
+ bβ(n, T ) +

tr(Z2κ)
nT

¶
+ oP

³
T−1/2

´
Since 1

T g
0
rgr = 1 we immediately obtain

√
T · 1T g0r i →d N(0, σ

2). The asserted rate of
convergence is an immediate consequence. Note that due to g0rgs = 0 the random variables
g0r i and g0s i are uncorrelated for r 6= s. Hence, if additionally bv(n,T )2

c(T )1/2
+ bβ(n, T )+

tr(Z2κ)
nT =

o(T−1/2), the assertion on the multivariate distribution of
√
T (θ̂1i−θ1i, . . . , θ̂Li−θLi)0 follows

from standard arguments.

It remains to prove assertion (e). First note that

v̂i = Zκvi + r̃i, with r̃i = Zκ( i − ¯) +ZκX̃i(β − β̂).
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Consequently, with Σ̃n = Zκ(
1
n

P
i viv

0
i)Zκ we obtain

Σ̂n = Σ̃n + B̃, B̃ =
1

n

X
i

(Zκvir̃
0
i + r̃iv

0
iZκ + r̃ir̃

0
i).

Σ̃n possesses only L nonzero eigenvalues λ̃1 ≥ · · · ≥ λ̃L with corresponding eigenvectors
γ̃1, . . . , γ̃L. Our assumptions and arguments similar to (??) - (??) then show that λ̃r =
O(Tc(T )), 1

mins |λ̃r−λ̃s| = OP (
1

T ·C(T )), kγr− γ̃rk = OP (b(κ)), and kγ̂r− γ̃rk = OP (B(n, T )+

1
T 2
+ tr(Z2κ)

nT ) for all r, s = 1, . . . , L, r 6= s.
Assertion (a) of Lemma A.1. of Kneip and Utikal (2001) implies that

TX
r=L+1

λ̂r = tr(PLB̃) +R∗, with R∗ ≤ 6L supkak=1 a
0B̃0B̃a

mins |λ̃r − λ̃s|
(39)

where PL = I −PL
r=1 γ̃rγ̃

0
r. Using again arguments similar to the proof of Assertion (c) it

is easily seen that

6L supkak=1 a0B̃0B̃a

mins |λ̃r − λ̃s|
= OP

µ
T · bβ(n, T )2 + 1

Tc(T )
+

tr(Z2κ)
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¶
. (40)

On the other hand,

tr(PLB̃) = tr

Ã
1

n

X
i

PLZκX̃i(β − β̂)(β − β̂)0X̃ 0
iZκ

!
+ tr

Ã
PLZκ(

1

n

X
i

( i − ¯)( i − ¯)0)Zκ

!
(41)

Some straightforward computations lead to

E

Ã
tr(PLZκ(

1

n

X
i

( i − ¯)( i − ¯)0)Zκ)

!
= σ2(1− 1

n
)tr(ZκPLZκ),

Var

Ã
tr(PLZκ(

1

n

X
i

( i − ¯)( i − ¯)0)Zκ)

!
=
2σ4

n
· tr((ZκP̂LZκ)

2) · (1 + oP (1)) = OP

µ
tr(Z4κ)

n

¶

Since tr( 1n
P

i PLZκX̃i(β − β̂)(β − β̂)0X̃ 0
iZκPL) = OP

¡
T · bβ(n, T )2 + 1

n

¢
and since by as-

sumption T · bβ(n, T )2 = o
³p

tr(Z4κ)/n
´
one may invoke standard arguments to show that

Ph
r=L+1 λ̂r − σ2

¡
1− 1

n

¢
tr(ZκPLZκ)q

2σ4

n · tr((ZκPLZκ)2)
→d N(0, 1). (42)

By (??), Relation (??) remains valid when PL is replaced by P̂L. This proves assertion (e).
¤
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Proof of Theorem 2: It follows from arguments similar to those used in the proof of
Theorem 1 that

σ̂2 =
1

(n− 1) · tr(I −Zκ)2

X
i

( i − ¯)0(I −Zκ)
2( i − ¯)
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¶
.
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Ã
1
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X
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= σ2
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Consequently, with

0 ≤ Rn,T =
1

(n− 1) · tr(I −Zκ)2

X
i

v0i(I −Zκ)
2vi = Op(bv(n, T )

2) (43)

we obtain
σ̂2 = σ2 +Rn,T + op (1) . (44)

Let us now consider the behavior of C(l) for l < L. We can immediately infer from (??)
that

C(l) =

nPL
r=l+1 λ̂r − (n− 1)(σ2 +Rn,T ) · tr(Zκ(P̂l − P̂L)Zκ)− (n− 1)Rn,T · tr(ZκP̂lZκ)q

2nσ̂4 · tr((ZκP̂lZκ)2)

(45)

+
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r=L+1 λ̂r − (n− 1)σ2 · tr(ZκP̂LZκ)q
2nσ̂4 · tr((ZκP̂lZκ)2)

 (1 + oP (1)). (46)

By Assumption 2) n
PL

r=l+1 λ̂r =
PL

r=l+1 T
P

i θ
2
ir is of order nTc(T ), while (n − 1)(σ2 +

Rn,T ) · tr(Zκ(P̂l − P̂L)Zκ) = OP (n), (n− 1)Rn,T · tr(ZκP̂lZκ) = oP (nTc(T )), andq
2nσ̂4 · tr((ZκP̂lZκ)2) = OP ((nT )

1/2). Consequently, the term on the right hand side of
(??) increases as n, T →∞, while the first term in (??) is still bounded in probability. We
can thus infer that for l < L

P(C(l) > z1−α)→ 1 and therefore P(L̂ 6= l)→ 1 (47)

as n, T →∞.
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For l = L we obtain

C(l) =
n
PT

r=L+1 λ̂r − (n− 1)σ2 · tr(ZκP̂LZκ)q
2nσ4 · tr((ZκP̂LZκ)2)
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Since Rn,T ≥ 0 we can infer from Theorem 1(e) that

lim sup
n,T→∞

P(C(L) ≥ z1−α) ≤ α. (48)

The assertion of the theorem now is an immediate consequence of (??) and (??). ¤

Proof of Theorem 3: When expanding D we obviously obtain
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It follows from standard arguments of linear regression theory that
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1
T

P
t it, and from (??) - (??) we can thus infer that
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Some straightforward computations now show that

E

Ã
nX
i=1

( i1 − ī)
2 +

nX
i=1

( iT − ī)
2 + 2

nX
i=1

TX
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( it − ī)( i,t−1 − ī)

!
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Ã
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!
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T
.
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When additionally applying standard central limit theorems, the assertion of the theorem
follows from (??) -(??). ¤
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Table 1. Monte Carlo Simulation Results for DGP1

MSE of Coefficients*

N T Within GLS BC CSS KSS
30 12 0.9107 0.6039 0.4933 0.8863 0.4998

30 4.5286 4.0001 1.1767 0.2329 0.1462

100 12 0.2635 0.1438 0.1454 0.2504 0.1170
30 1.2219 1.0068 1.4172 0.0726 0.0410

300 12 0.0801 0.0402 0.0360 0.0790 0.0343
30 0.3409 0.2848 0.1456 0.0258 0.0151

MSE of Effects

N T Within GLS CSS KSS L

30 12 0.6159 0.5692 0.4675 0.2278 1.1200
30 0.4476 0.4455 0.0051 0.0037 1.0510

100 12 0.5940 0.5755 0.4438 0.1769 1.0620
30 0.4539 0.4531 0.0050 0.0100 1.0590

300 12 0.6068 0.5990 0.5504 0.1964 1.0341
30 0.4379 0.4376 0.0064 0.0025 1.0500

MSE of Efficiencies

N T Within GLS BC CSS KSS
30 12 0.3429 0.3255 0.1485 0.3329 0.0921

30 0.6967 0.7005 0.8430 0.2069 0.0289

100 12 0.4415 0.4294 0.3817 0.3969 0.0529
30 0.8305 0.8279 1.1184 0.2790 0.0236

300 12 0.5102 0.5070 0.4574 0.4575 0.0364
30 0.9401 0.9400 1.6111 0.3470 0.0154

Spearman Rank Correlation of Efficiencies

N T Within GLS BC CSS KSS
30 12 0.5052 0.5004 0.8085 0.7692 0.9806

30 0.4829 0.4834 0.7533 0.9841 0.9980

100 12 0.3886 0.3886 0.5656 0.7837 0.9923
30 0.3885 0.3885 0.5900 0.9871 0.9993

300 12 0.3037 0.3037 0.6267 0.7771 0.9924
30 0.2805 0.2805 0.5469 0.9878 0.9995

Note: * is multiplied by 102.
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Table 2. Monte Carlo Simulation Results for DGP2

MSE of Coefficients*

N T Within GLS BC CSS KSS
30 12 2.2939 1.6274 0.3427 0.8901 0.4661

30 161.0314 106.1230 9.6053 5.4253 0.1499

100 12 0.7709 0.6094 0.1149 0.2505 0.1206
30 53.4336 39.4729 8.1635 1.9065 0.0403

300 12 0.2873 0.1760 0.0339 0.0800 0.0371
30 18.4371 11.9706 1.3051 0.6689 0.0141

MSE of Effects

N T Within GLS CSS KSS L

30 12 0.3892 0.3753 0.0699 0.1401 1.0720
30 0.7443 0.7351 0.0202 0.0705 1.0430

100 12 0.4678 0.4642 0.0701 0.2120 1.0350
30 0.8029 0.8007 0.0217 0.1024 1.0050

300 12 0.4475 0.4452 0.0617 0.1966 1.0260
30 0.7911 0.7902 0.0213 0.0986 1.0020

MSE of Efficiencies

N T Within GLS BC CSS KSS
30 12 0.2260 0.1951 0.0321 0.2586 0.0786

30 0.7924 0.7321 0.0096 0.5236 0.0544

100 12 0.2598 0.2473 0.0400 0.2944 0.0787
30 0.7361 0.7548 0.0091 0.5788 0.0116

300 12 0.2695 0.2618 0.0338 0.3607 0.0916
30 0.7542 0.7342 0.0213 0.5568 0.0040

Spearman Rank Correlation of Efficiencies

N T Within GLS BC CSS KSS
30 12 0.8941 0.8914 0.9950 0.9716 0.9976

30 0.6239 0.6293 0.9993 0.8871 0.9946

100 12 0.8283 0.8249 0.9981 0.9784 0.9966
30 0.5349 0.5342 0.9997 0.8917 0.9999

300 12 0.8448 0.8446 0.9982 0.9726 0.9938
30 0.5478 0.5479 0.9982 0.8820 1.0000

Note: * is multiplied by 102.
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Table 3. Monte Carlo Simulation Results for DGP3

MSE of Coefficients*

N T Within GLS BC CSS KSS
30 12 1.6631 0.6852 0.6986 2.7261 0.7099

30 0.5340 0.2621 0.2779 0.6766 0.1821

100 12 0.4224 0.1597 0.1649 0.6866 0.1290
30 0.1468 0.0667 0.0715 0.1853 0.0396

300 12 0.1549 0.0606 0.0638 0.2429 0.0378
30 0.0516 0.0250 0.0281 0.0649 0.0138

MSE of Effects

N T Within GLS CSS KSS L

30 12 1.0897 1.0259 1.1143 0.2710 2.1609
30 1.0432 1.0240 1.0840 0.1140 2.0483

100 12 1.0602 1.0393 1.0672 0.2351 2.0585
30 1.0364 1.0294 1.0829 0.0929 2.0102

300 12 1.0424 1.0353 1.0197 0.2081 2.0061
30 1.0307 1.0285 1.0734 0.0822 2.0021

MSE of Efficiencies

N T Within GLS BC CSS KSS
30 12 2.1298 2.4086 7.9252 1.4860 0.2583

30 2.2636 2.5640 5.0451 1.6066 0.1031

100 12 2.4655 2.6934 12.8728 1.4582 0.2175
30 7.1729 7.6171 18.6293 4.2421 0.1109

300 12 3.8455 3.9679 25.7966 1.9365 0.2085
30 8.9848 9.2055 26.4074 4.8352 0.1122

Spearman Rank Correlation of Efficiencies

N T Within GLS BC CSS KSS
30 12 0.1754 0.1729 0.0408 0.2535 0.9298

30 0.0597 0.0600 -0.0181 0.0019 0.9842

100 12 0.2050 0.2051 0.1513 0.2674 0.9277
30 0.0499 0.0498 0.0477 0.0325 0.9731

300 12 0.2131 0.2130 0.0754 0.2615 0.9236
30 0.0575 0.0574 0.0136 -0.0248 0.9691

Note: * is multiplied by 102.
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Table 4. Monte Carlo Simulation Results for DGP4

MSE of Coefficients*

N T Within GLS BC CSS KSS
30 12 0.5732 0.3586 0.3734 0.8634 0.6515

30 0.2023 0.1513 0.1504 0.2319 0.2292

100 12 0.1741 0.1346 0.1260 0.2529 0.1816
30 0.0571 0.0537 0.0510 0.0695 0.0596

300 12 0.0609 0.0360 0.0364 0.0910 0.0617
30 0.0218 0.0164 0.0142 0.0258 0.0221

MSE of Effects

N T Within GLS CSS KSS L

30 12 0.4390 0.3500 1.2061 0.5407 1.0250
30 0.1681 0.1465 0.4526 0.2217 1.0130

100 12 0.2769 0.2631 0.8046 0.2988 1.0300
30 0.1082 0.1065 0.3145 0.1186 1.0200

300 12 0.2689 0.2614 0.7959 0.2799 1.0250
30 0.0969 0.0954 0.2871 0.1015 1.0220

MSE of Efficiencies

N T Within GLS BC CSS KSS
30 12 0.1211 0.0993 0.1178 0.2600 0.1344

30 0.0488 0.0421 0.0416 0.1205 0.0595

100 12 0.1719 0.1622 0.0478 0.3488 0.1778
30 0.0798 0.0763 0.0252 0.1857 0.0829

300 12 0.2124 0.2075 0.0449 0.4120 0.2157
30 0.0914 0.0907 0.0231 0.2168 0.0938

Spearman Rank Correlation of Efficiencies

N T Within GLS BC CSS KSS
30 12 0.9964 0.9742 0.9738 0.9481 0.9955

30 0.9982 0.9804 0.9787 0.9757 0.9977

100 12 0.9989 0.9883 0.9896 0.9106 0.9987
30 0.9997 0.9946 0.9949 0.9528 0.9996

300 12 0.9997 0.9997 0.9995 0.8946 0.9996
30 0.9997 0.9995 0.9997 0.9588 0.9997

Note: * is multiplied by 102.
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Table 5. Data Description: Sample Means

Variable Definition Mean
reln Log of real estate loans 9.334
ciln Log of commercial and industrial loans 8.215
inln Log of installment loans 8.424
CD Log of certificate of deposits 8.126
DD Log of demand deposits 8.601
OD Log of retail time and savings deposits 10.614
lab Log of labor 5.163
cap Log of capital 6.440
purf Log of purchased funds 10.721

Number of observations 14,640

Table 6. Estimation Results for Entire Banks

Within BC CSS KSS
CD -0.0410 (0.0036) -0.0342 (0.0031) -0.0235 (0.0026) -0.0025 (0.0015)
DD -0.0859 (0.0109) -0.0452 (0.0046) -0.1161 (0.0096) -0.0147 (0.0077)
OD -0.1629 (0.0068) -0.1662 (0.0063) -0.1240 (0.0051) -0.0326 (0.0142)
lab -0.1643 (0.0116) -0.1490 (0.0066) -0.1547 (0.0100) -0.0799 (0.0064)
cap -0.0497 (0.0042) -0.0532 (0.0031) -0.0521 (0.0041) -0.0321 (0.0040)
purf -0.5706 (0.0147) -0.6255 (0.0041) -0.4877 (0.0129) -0.5769 (0.0206)
ciln 0.1722 (0.0033) 0.1727 (0.0031) 0.1566 (0.0028) 0.1273 (0.0022)
inln 0.3239 (0.0042) 0.3142 (0.0039) 0.3224 (0.0041) 0.3341 (0.0036)
time 0.0140 (0.0006) 0.0043 (0.0008) - -

Avg TE 0.5026 0.6626 0.6570 0.5079

Table 7. Efficiencies of Banks

Within BC CSS KSS
Entire 0.5026 0.6626 0.6570 0.5079
Large 0.6050 0.7112 0.7156 0.6002
Small 0.4383 0.5921 0.6189 0.6032
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Figure 1. Efficiencies of Entire Banks
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Figure 2. Efficiencies of Large Banks

33



85 87 89 91 93 95
0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

Year

E
ffi

ci
en

cy

BC  
CSS
KSS 

Figure 3. Efficiencies of Small Banks
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