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ABSTRACT

Specification of Distance Functions Using Semi- and Nonparametric

Methods With An Application to the Dynamic Performance

 of Eastern and Western European Air Carriers

by

Robin C. Sickles

Rice University

David H. Good

Indiana University

and

Lullit Getachew

Rice University

In this paper we examine the productive performance of a group of three East European carriers and compare it to

thirteen of their West European competitors during the period 1977-1990.  We first model the multiple output/multiple

input technology with a stochastic distance frontier using recently developed semiparametric efficient methods.  The

endogeneity of multiple outputs is addressed in part by introducing multivariate kernel estimators for the joint distribution

of the multiple outputs and potentially correlated firm random effects.  We augment estimates from our semiparametric

stochastic distance function with nonparametric distance function methods, using linear programming techniques, as well

as with extended decomposition methods, based on the Malmquist index number.  Both semi- and nonparametric methods

indicate significant slack in resource utilization in the East European carriers relative to their Western counterparts, and

limited  convergence in efficiency or technical change between them.  The implications are rather stark for the long run

viability of the East European carriers in our sample.

Keywords:  Distance function, stochastic frontiers, data envelopment analysis, nonparametric methods, European airline

industry.

JEL Classification: C6, C14, O3, P5.

1.  Introduction

The European airline industry has entered a period of significant restructuring.  Exempted from the competition

rules of the Treaty of Rome for almost 30 years, the West European civil aviation industry faced liberalization starting



2

in 1986.2 At the time, the European Court of Justice ruled that the industry should be subject to competition rules in place

or envisioned for other industries in the European Union.  As a consequence, several waves of reforms were introduced

which have led  to substantial restructuring and reorganization in the industry.  Even though full liberalization can hardly

be expected within the next few years, air carriers are currently feeling the impact of a more competitive environment.

 Several carriers are going through strategic evaluations of their competitive position, not only vis-a-vis other European

competitors, but also vis-a-vis carriers in the rest of the world.  East European carriers are clearly going through an even

more traumatic transformation.  With an inability to expect large subsidies from their central governments, these airlines

must prepare themselves for a more market oriented economic environment.  The absorption of Interflug, the East

German carrier, by Lufthansa in 1991 provides but one example that they are not up to this challenge.  It is, thus, not a

surprise that studies point to a gap in the level of economic activity between market and planned economies.

Blanchard, et al. (1991) and Portes (1992), among others, have pointed to the disparity of economic

performance in planned and market economies. Bergson (1987) examined four planned and seven market economies and

found that the former had smaller capital and agricultural land productivities than the latter in 1975.  Moroney (1990)

found that seven East European planned economies were less efficient than seventeen West European economies during

1978-90.  Moroney and Lovell (1992) reexamined the Moroney data using more sophisticated random effects stochastic

frontier methods and decomposed performance into relative technical and efficiency changes.  The total shortfall in

productive performance between planned and market economies was estimated to be about 25% during their 1978-80

sample period, indicating considerable slack in the East European economies.  Few empirical studies, however, have been

carried out at the firm level.

In this paper we examine the productive performance of a group of three Eastern European carriers, and

compare it to thirteen of their Western European competitors during the period 1977-1990. This expands on earlier work

by Good, Röller and Sickles (1993a,b, 1995), in terms of the number of carriers covered, the period under study, and

the modeling framework, and complementing work by Barla and Perelman (1989).3

We model productive performance using semiparametric and nonparametric techniques. We first model the

stochastic distance frontier using a semiparametric efficient estimator of a panel frontier (Park, Simar and Sickles, 1997).4

 The endogeneity of multiple outputs is addressed in part by introducing multivariate kernel estimators for the joint

                        
2
For a description of the institutional aspects of regulation and deregulation in international air transport, see

de Murias (1990) or Kaspar (1991).

3The impact of differing carrier specific institutional constraints, due to varying regulatory climates and
efficiency incentives, also has been studied by  Captain and Sickles (1997), Röller and Sickles (2000),  Park, Sickles,
and Simar (1998) for Western Europe and the U.S. during the 1970's and 1980's, and by Coelli, Perelman, and Romano
(1999), Oum and Yu (1998), Good,Nadiri and Sickles (1997), and Good, Postert and Sickles (1997) for a set of
international carriers through more recent periods.

4Elsewhere, Adams, Berger, and Sickles (1999) have used such a stochastic distance function to examine
efficiencies in the U. S. banking industry.
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distribution of the multiple outputs and potentially correlated firm random effects. The semiparametric estimator is

efficient within the class of estimators which make minimal assumptions about the parametric form of the stochastic

structure of firm inefficiencies and other random disturbances that are usually appended to the regression model.  The

model imposes rather weak distributional assumptions and economic structure on the data.  Details of the estimator are

outlined in the Appendix.  We also compare our estimates to those generated with nonparametric methods based on Data

Envelopment Analysis and a Malmquist decomposition of productivity into two components--one measuring a catchup

or movement to the frontier by a firm--and the other technological change--a shift in the frontier itself.5  We compare

the efficiency results from these three modeling approaches by modifying the nonparametric efficiency scores to control

for differences in the characteristics of the inputs of the carriers, as these are controlled for in the semiparametric

stochastic frontier distance model.

The paper is organized as follows.  Section 2 outlines the modeling details of the three alternative constructions

of productive efficiency.  Section 3 describes the sample of 13 West European and 3 East European carriers which we

follow with annual observations between 1977 and 1990. Section 4 discusses our empirical findings while section 5

concludes.

2.  Estimation and Construction of Technical Efficiency from the Distance Function

The radial measures of technical efficiency we consider in this paper are based on the output distance function.6

 The goal of both the semiparametric and linear programming approaches is to identify the distance function and hence

relative technical efficiencies.  For a particular observation i, the output distance function is given by:

                        
5The Malmquist nondeterministic and nonparametric index number approach stands in contrast to the regression

based approaches used in the macroeconomic convergence literature by, among others, Dowrick (1992). Recently, it has
been modeled using time series methods by Alam and Sickles (2000) and using dynamic stochastic frontiers by Ahn,
Good, and Sickles (1999, 2000) and Hultberg, Nadiri, and Sickles (1999). Recent applications using the Malmquist index
have examined regulatory reform in Spanish banking (Grifell-Tatjé and Lovell, 1996), and public service production
(Bjurek, Førsund , and Hjalmarrson, 1997).  For recent comprehensive studies of the Malmquist index see Førsund
(1997) and Färe, Grosskopf and Russell (1997).

6Formally the Shepard output distance function is defined as:
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where xki and yji are the levels of input k and output j, respectively.  The qji and rki are weights which describe the

tradeoffs among outputs and inputs that are imposed by the technology.  These tradeoffs will vary from one point on the

transformation function to another.  A distance function takes the value of 1 if the decision making unit is productively

efficient. When the firm is not efficient, the distance function describes the fraction of the efficient aggregated output,

given the chosen inputs, that is actually produced by the decision making unit.  As such, it provides a measure of the

firm's productive efficiency.

The semiparametric approach finds its roots in the distance function (1) and stresses from the outset a process

where production is incompletely measured: the stochastic error term of this model  incorporates measurement errors

in addition to inefficiency.  If we let the aggregator functions in the numerator and denominator of (1) be linearized in

the natural logarithms of the outputs and inputs,  then we can approximate (1) with a Cobb-Douglas distance function.

 An alternative form which we use in estimation is the translog distance function (c.f. Lovell, Richardson, Travers and

Wood, 1994).  In particular, we follow the normalization used in Lovell et al. (1994) which takes advantage of the linear

homogeneity of the output distance function by renormalizing outputs in terms of one of the outputs, in our case capacity

output, and placing it as a left-hand side dependent variable. We specify a translog production process which is separable

in inputs (capital, labor, and network size) and outputs (revenue and capacity output) for parsimony.7 The equation we

estimate then becomes

(2) itiititkithhko
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where ;...1;...1 TtNi ==  the sz '  are conditioning variables which include time trend and variables which account

for firm heterogeneities not accounted for by the outputs and inputs;  and where the effects �i  model firm differences

in efficiency.

We adopt the notational conventions used by Park and Simar (1994), and Park, Sickles, and Simar (1998) in

their work on semiparametric efficient estimators for generic panel models.  The latter study develops the framework

for estimating the sort of model in which we are interested: Namely, a panel model in which the stochastic efficiency

effects are allowed to be correlated with selected regressors, in particular the y's. This ensures the endogenous treatment

of multiple outputs in this regression-based distance function specification. The basic motivation for constructing a

semiparametric efficient estimator of the distance frontier is to provide an improvement, in terms of a reduction in

standard errors, to standard fixed effect panel treatments of (2).  This is done by relying on kernel based estimates of the

joint distribution of the effects and the regressors with which they are potentially correlated.  In our case, all terms on

the right-hand-side of (2) involving the outputs are treated as endogenous regressors which are correlated with the firm

                        
7The separability assumption is made to because of the curse of dimensionality problem that arises in the

semiparametric estimation. In particular, the focus on the correlation between the inefficiency effect and the output ratio
(a single regressor) is due to the curse of dimensionality problem of multivariate kernel density estimation in higher
dimensions.



5

random effects.  Essentially we are trying to soak up as much potential endogeneity in the right-hand-side outputs as

possible via a Hausman-Taylor type random effects model while at the same time maintaining statistical efficiency by

utilizing information that the other rgressors and the effects are orthogonal.  In this particular model, it is clear that if the

only source of unexplained variation that is orthogonal to the disturbance term is due to radial technical inefficiency, then

by assumption it should be orthogonal to the output ratios (or their logarithms). These are what appear on the right-hand-

side after the linear homogeneity restriction is imposed.   Our estimator can be viewed as illustrative of how one could

begin to bridge the gap between fully nonparametric (DEA) and fully parametric (MLE stochastic frontier) models of

inefficiency. It can also be viewed as an empirical fix up to unobserved firm-specific heterogeneity that is not due to

radial technical inefficiency in output levels but rather in output allocations.  Ideally, a nonparametric treatment of

endogenous right-hand-side output ratios would be handled by specifying multivariate kernels for the random disturbance

and the appropriate regressors correlated with them. Unfortunately, the data size requirements for the proper limiting

behavior of such kernels based methods are extreme (Park, et al., 1998) and are not pursued in this empirical illustration.

Derivation of the semiparametric efficient estimator for the slope coefficients and the corresponding estimator

for the boundary function, which leads naturally to the construction of a relative efficiency measure in terms of the

distance function, is sketched in the Appendix.  The effects are allowed to vary over time.  We regress the estimated firm

effects against a constant and time trend as in Cornwell, Schmidt and Sickles (1990). Further discussion of this type of

estimator for single output stochastic panel frontier analysis can be found in Park and Simar (1994), and Park, Sickles

and Simar (1998).

A second frontier modeling approach is constructed by linear programming using the Data Envelopment

Analysis (DEA) framework introduced by Charnes, Cooper and Rhodes (CCR) (1978).  Their approach can be described

in terms of the output distance function evaluated for observation i.  The rationale used in DEA is to find a set of positive

weights relevant to the portion of the technology for firm i which leads to the largest possible value of efficiency but is

also consistent with no firm in the sample being more than 100% efficient.  This criteria leads to a sequence of fractional

programming problems:

xryq            (3) kiki

k
jiji

j
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with respect to Ri= [r1i,...,rpi] and Qi= [q1i,...,qmi]  subject to

1  x r yq               kiki

k
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j
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The result is a piecewise linear description of the production technology which envelops all of the data.

Operationally, the problem is one of obtaining the weights.  CCR show that the qji and rki weights are the dual

variables in the following linear programming problem for each observation, i, in the sample:



6

Pkinputsallforx  x                    

M1,..., =j  outputs all for  0   y      y                                (4) 

:to subject

0      where ... ,

 

  kll

lnei
ki

jll
lnei

iji

NTii

i

...10

max

=≥−

≤−

≥

∑
∑
λ

λφ

λλλφ
φ

CCR also prove that the optimal values of the linear and fractional programming problems are identical.  Thus, iφ

provides a measure of the productive efficiency of the firm in observation i .  While several embellishments have been

made to the CCR formulation (for surveys see Charnes and Cooper, 1985,  Sieford and Thrall, 1990 or Cooper, Seiford

and Tone, 2000), the original formulation of the model with its constant returns to scale assumption is consistent with

the vast majority of the airline literature and is not rejected in our own tests using our semimparametric model with this

data.8

The panel nature of our data requires that we evaluate efficiency both across time and across firms and control

for variables other than just the inputs and outputs.  This is accomplished with a two step process.  The first step leads

to an initial evaluation of efficiency for every firm at every time period using information from all other firms and time

periods to construct the weights.  The subscripts and sums for firms in equation (4) are replaced with firm and time

subscripts and sums.  This initial evaluation of efficiency does not necessarily reflect the true performance of the firm

since it excludes effects due to technological change and measurable quality variations in inputs (particularly the mix

of types of airplanes in the fleets of different carriers).  Consequently, the second stage projects the DEA efficiency

scores on the vector of input characteristics (zi), firm specific intercepts and time variables.  These yield measures of the

firm specific and time varying efficiency scores as well as those of relative technical efficiency scores that are

comparable to those based on the regression model introduced in section 3 above.

It is important to mention that our DEA efficiencies are based on the output distance function much the same

way that our semiparametric model is.  We might expect then the results to be similar.  They differ primarily in the way

                        
8 Because of the complex nature of output in the air transport industry, care needs to be taken as to what scale

economies mean and how they are interpreted.  There are three competing ideas which have been referred to in the
literature as economies of equipment size, economies of density and economies of scale.  Larger aircraft are more
productive than smaller ones since fixed inputs for the pilot, landing fees and terminal facilities can be spread across a
larger number of passengers.  These can be accommodated in our model by controlling for equipment size in the distance
function.  Economies of density occur when more flights, holding aircraft size fixed, are offered in individual routes.
  Caves, Christensen and Tretheway (1984) find that there are substantial fixed costs associated with the size of airline
networks (number of cities served and average distance between those cities).  Empirical work as early as Eads (1974)
has suggested that economies of scale are exhausted after a carrier reaches five or six aircraft, that is, economies of scale
in the production of capacity output (measured by available seat kilometers). To this discussion of the production of
capacity, there are potential economies associated with how that capacity is actually filled.  We might call this economies
of network feed.  This last feature is, in part, responsible for the international alliances formed between carriers.  By
funneling passengers and coordinating schedules, one partner may make the effective market size larger for the other
partner.
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that the weights in equation (1) are determined.  Our semiparametric model uses global information in the determination

of those weights while DEA uses only local information from observations with similar output/input mixes.  This has

some implications with how the technology is “filled out” where there are insufficient numbers of reference firms and

involves the use of slacks, nonradial efficiency components.9  Because our semiparametric model incorporates a

parametric description of the frontier, these slacks are not necessary: The reference technology is specified for all

efficient or inefficient input and output combinations.  Both methodologies are operationally similar in the determination

of inefficiency.  The DEA model identifies the convex hull of the data and, in effect, minimizes the sum of the

inefficiencies.  Our semiparametric model separates out stochastic movements of the frontier from inefficiencies.  It

attributes as much explanatory power to the measured variables as possible, minimizing a function of the residuals, which

are directly related to inefficiency.

As a  final approach we consider the Malmquist productivity index.  This method allows us to determine

whether or not the gap between the inefficient and efficient carriers was being closed during the sample period.  This

convergence approach extends those currently used in the economic growth literature to test how productivity

components of technology and efficiency have moved over our sample period in the European industry.  The Malmquist

productivity index procedure was introduced by Caves, Christensen and Diewert (1982) and further developed by Färe,

Grosskopf, Lindgrin and Ross (1992), Färe, Grosskopf, Norris and Zang  (1993) and Färe, Grosskopf and Russell (1997).

 These authors note that the Shephard distance function, which is the basis of the Malmquist index, and the Farrell (1957)

measure of technical efficiency are reciprocals.  Färe, Grosskopf, Norris and Zang  (1993) show that a decomposition

based on the geometric mean of two Malmquist indices can account for changes in both technical efficiency (catching

up) and changes in frontier technology (innovation).  The production technology, output distance function and DEA

linear programming problem are amended to use only data at time t.  The programming problem then becomes a series

of DEA problems using only the contemporaneous information set to facilitate a comparison between the distance

functions for two adjacent time periods.  The distance function  scales the outputs in time t+1 such that (yt+1, xt+1) is

feasible in period t.   It is possible that this observed input-output combination was not possible in time t, and thus the

value of this expression could exceed unity, representing technical change.

 The output based Malmquist index is then defined as a geometric mean of two Malmquist indices, which are

themselves ratios of output distance functions:

(5)
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which has an equivalent representation as:

                        
9In particular, output slack occurs when a firm forms part of the envelope or efficient frontier, but in the piece-

wise linear construct of the frontier in DEA, the observation from the firm falls on the section of the frontier which is
parallel to an axis. In this case, it is possible to increase the amount of output produced using the same amount of input.
Hence, to the extent that slacks are present, the DEA gives measures which overstate technical efficiency.
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The first term in (6) reflects changes in relative efficiency between period t and t+1 and the second term relates changes

in technology between the time periods.  This index can capture productivity change by accounting for technical and

efficiency advances which incorporate data from two adjacent time periods.

Once the four programming problems are solved for each set of observations we can substitute these into

equation (6) to obtain the Malmquist index and its two components of efficiency and frontier advances. To capture

quality differences in inputs, the z-variables are also included as inputs in the linear programming problems used to

calculate the Malmquist indices and their two components. Since the Malmquist index uses data from adjacent periods,

there is no natural way of projecting this index on the input characteristics and time: Hence, the inclusion of the z-

variables as inputs.  An index less than unity indicates productivity decline while a value greater than unity indicates

growth.

3.  Data

Our study follows sixteen European carriers with annual observations from 1977 through 1990.  We have

thirteen West European carriers along with thier Official Airline Guide two letter ticket designation: Air France (France,

AF), Alitalia (Italy, AZ), Austrian Airlines (Austria, AU), British Airways (Great Britain, BA),  Finnair (Finland, FN),

Iberia (Spain, IB), KLM (Netherlands, KL), Lufthansa (Germany, LF), Olympic (Greece, OL), Sabena (Belgium, SN),

SAS (Sweden, Denmark, Norway, SA), Swissair (Switzerland, SW), and TAP (Portugal, TP); and three carriers from

East Europe: CSA (Czechoslovakia, CS), JAT (Yugoslavia, JA), and MALEV (Hungary, MA).10 

The source of information is the International Air Transport Association's (IATA) World Air Transport

Statistics (issues 1977 through 1990).  This has some advantages and disadvantages when compared to data based on

International Civil Aviation Organization (ICAO) information which has been used in our previous work (see, for

example, Good, Röller and Sickles (1993,1995) for detailed construction of international airline data using ICAO

information).  The primary advantage of our data is that IATA provides systematic information on all of the carriers in

our sample while ICAO systematically excludes the East European carriers.  The IATA annual report provides detailed

information on Association members’ physical inputs and outputs. But, unfortunately unlike ICAO, it provides virtually

no information on financial variables that could be used to generate price series for inputs or outputs, or details about

broad categories of inputs such as fuel or materials where measurement is based on financial data.  For that reason, we

                        
10Except for Ireland and Luxembourg, our sample of Western European airlines includes all of the European

Union (EU) member countries and also those of Finland and Switzerland. The Eastern European sample includes airlines
of Hungary and Czech/Slovak Republics, which are countries that have applied for membership in the EU.
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restrict our attention to construction of distance functions which do not require information on prices.  Our assumption

is that these variables are strongly correlated with other variables which are explicitly included in our model, notably the

correlation between labor and materials, or that these variables may be a small factor in cost (for U.S. carriers fuel and

materials expenditures comprise about 25% of total cost with the bulk of expenditures being on  capital and labor).  At

any rate, it is not clear how meaningful such price information would be in the East European command economies.

The output variables are the total revenue output and capacity output. These two measures classify output into

purchased output and available output respectively.  Revenue output measures passengers and cargo actually flown. 

Capacity output measure seats flown whether or not they are occupied by a passenger.  The capacity output measure

describes the potential output of the airline and provides an important measure of service quality.  A carrier offering a

lot of flights (and consequently having a large capacity output) will be more likely to have a seat available when a

passenger wants it.  Both outpus are nominally measured in tonne-kilometers with the standard assumption made that

an average passenger and associated baggage weigh 100 kilograms.11

The input variables used in this study are the total number of employees, the number of aircraft, and scheduled

network size (in route kilometers).  Our use of  network size as an input stems from the view that international air travel

is not an open, competitive market. Service can be provided between two points only when bilateral agreements are

negotiated between the two countries.   Further, those airlines which operate more extensive networks typically must keep

personnel at more diverse parts of the world, increasing their costs.  A final reason for including this important variable

is that it interacts importantly with capital.  Previous work has shown that econonomies of route density can be important

(see, Caves, Christensen and Tretheway, 1984). Network size also allows us to include one more correlate of fuel

consumption as an input, minimizing the consequences of our inability to measure it directly.

In addition, we construct two variables which more completely describe the nature of the fleet (proportion jet

and proportion wide bodied jet).  These two additional variables, which we interpret as controls for input heterogeneity,

incorporate the productivity advantages of speed (with proportion jet) and the advantages of increasing returns to

equipment size (with proportion wide bodied jets).  Jet aircrafts lead to approximately twice the speed and consequently

twice the number of revenue tone kilometers for aircrafts of the same size.  Wide bodied aircrafts spread out landing

slots, pilots, airport gates, fuel consumption and other factors over more passengers.  Alternatively, larger aircrafts are

more difficult to fill in a competitive environment.   While more characteristics describing the capital stock may be useful

under some circumstances, our need for parsimony, particularly with DEA models, requires we keep only the most

important fleet characteristic measures.  Variable means and standard deviations for the East and West European carriers

in our sample are provided in Table 1. 

                        
11Note that capacity output is a ratio of revenue output and passenger load factor. The actual equation in the

SDF formulation we estimate shows that our multi-output consists of capacity output - LHS variable - and load factor
- RHS variable. These two variables describe the multi-output production of an airline firm in a satisfactory way since
they are not much correlated.
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4.  Estimation Results

Parameter estimates from the semiparametric stochastic distance frontier are presented in Table 2 while relative

efficiency scores during the sample period, exp[�it - max(�jt)], are presented in Table 3.12  We tested a number of

hypotheses regarding model specification.  Our  analysis indicated no explanatory power for the second-order terms

involving input variables.  Consequently, our final estimates in Table 2 are based on a functional form that is a translog

model in outputs and Cobb-Douglas in inputs. We test a hypothesis of constant returns to scale and could not reject it

at nominal significance levels. This is a particularly important feature in our model since Eastern European carriers tend

to be much smaller than Western European carriers.  Our finding of approximately constant returns to scale is consistent

with the vast majority of empirical work in the airline industry over the last fifty years and our own work in a variety of

aviation contexts (U.S. domestic aviation: Eads, 1972; White, 1979; Caves, Christensen and Tretheway; 1984, Sickles

(1985), Alam and Sickles, 2000; Ahn, Good and Sickles, 2000; and in international aviation: Good and Rhodes, 1990,

Avmark, 1992, Good, Röller and Sickles, 1993a, 1993b, 1995, and Ahn, Good and Sickles, 1999).  It should be noted

that our economies of scale  measure is very different from economies of equipment size: We hold equipment size

approximately constant by controlling for jet and wide body aircraft.  Larger aircraft are more productive than smaller

ones.  To the extent that larger carriers have a higher tendency to employ larger planes it is a potential source of

competitive advantage. Our results suggest that the size of the airline “plant” is the aircraft level and that larger airlines

 do not have access to different technologies, they simply replicate the same “plant” more times.  To the extent that there

are cost advantages associated with operating more aircraft and larger networks, they are offset by increasing

complexities in network and managerial coordination.  Our efficiency modeling describes the supply side of the industry

only, and does not preclude advantages which operate on the demand side of the market. For example, the strategic

alliances which are common in the industry  do nothing to alter the carrier’s cost of providing service.  These alliances

can have a major effect in increasing the demand for services at a point where the carriers connect.

We also tested for and rejected at nominal significance levels heterogeneity as well as non-linearities in

technical change for the East and West European carriers and thus have proxied technical change with a single time trend.

 Heterogeneity controls for the inputs, the z variables in equation  (2), are the proportions of a fleet which utilizes wide

bodied aircraft (PWIDEB) and jet aircraft (PJET), with the omitted category being the proportion of a fleet that is

turboprop aircraft.

The parameter estimates of the three heterogeneity controls based on the DEA method are 0.013 for time trend,

0.420 for PWIDEB and -0.0864 for PJET with t-statistics of 6.84, 5.58 and -1.29 respectively. The DEA programming

estimates of efficiency and relative scores are presented in Table 4.  The Malmquist indices and their decomposition into

the technical and efficiency change components are presented in Tables 5, 6, and 7.

Our findings point to substantial agreement between the semiparametric stochastic distance frontier (SDF)

                        
12The parameter estimates from the SDF given in Table 2 can be interpreted as input and load factor elasticities

of capacity output.
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estimates of firm technical efficiency and those from conventional DEA programming methods.  This is not surprising

given the radial nature of our efficiency measurement and the reliance of both techniques on the output distance function.

 Lufthansa and KLM are the most efficient while CSA and MALEV are the least efficient with the remaining twelve firms

in between, some showing quite similar levels.  It is also sensible that JAT, the Yugoslavian carrier, is the most efficient

among the East European airlines since its form of socialism was quite different from either Hungary or Czechoslovakia.

 This finding may also be a result of JAT having access to western equipment; they could purchase Boeing and

McDonnel-Douglas aircraft while other Eastern European carriers were politically prohibited from doing so.

One interesting discrepancy between the SDF and DEA estimates is the temporal pattern of efficiency change

for British Air, where  the two methods registered a relative efficiency of about 60% and 70% in 1977, but only the SDF

estimates showed the dramatic efficiency gains from privatization by 1990.  Figures 1 and 2 show the relative difference

in levels and the relative comparability in temporal patterns for SDF and DEA efficiency scores during the sample period

for the East and West European carriers.  Taken together, the results point to a relatively wide gap in the technical

efficiencies between the Eastern and Western firms of about 45% in 1977 and decreasing to only 43% in 1990.

The dynamics of potential catching-up and convergence of the productivity of East European carriers to that

of their more efficient West European competitors can be examined by focusing on the nonparametric Malmquist index

and its decomposition.  The indices are constructed so that values larger than one indicate progress while those less than

one indicate regress.  Figures 3, 4 and 5 display the temporal patterns of the Malmquist index and its decompositions.

 On average, results indicate that the efficiency and technical change components for East European carriers are slightly

below those for their Western counterparts at the beginning of the study period and that this pattern was rather stable over

the sample period; the malmquist index averages to 0.9557 over the12 year period for the East European carriers

compared to 1.0176 for the Western airlines. Moreover, East European carriers had an annual technical change which

was somewhat below that for the  Western firms, 0.9846 versus 1.0177. The se figures are, however, close enough which

is not surprising given the ubiquitousness of the technology of commercial aviation and its rapid international diffusion;

for example, JAT's fleet consisted of Boeing and McDonnell-Douglas aircraft during the study period.

These results of efficiency and technical change point to little change in the relative position of the two

European airline industries. Together with the other two methodologies, they point to a substantial disparity in technical

efficiency differences between the East and West commercial airline industries, averaging about 43% in 1990, the end

of the sample period, and suggesting substantial underutilization of productive resources in the East.  A large reservoir

of commercial airline service could be launched by the East European firms if they implement the market incentives and

organizational changes contemplated by, or already in place in, their West European counterparts. Even with a robust

growth of 2% per year, the East European airlines could provide service through the early next century with the factor

inputs in place.  Alternatively, a 30% reduction in labor force in the commercial airline industry could put the East

European carriers in a productively competitive posture vis-a-vis Western Europe.  The wrenching changes in labor

markets under way in the former East Germany, for example, point to unemployment rates in excess of 20% as a result

of integration with West Germany and imply a rather stark future for East Europe.  Our results point to comparable
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reallocation in other East Europan countries for one of its most most modern and technological industries, its commercial

aitr transportation industry.

5.  Conclusions

In this study we have outlined a general methodology which can be employed to examine the productive

performance of multiproduct technologies.  The statistical method, which has previously been applied to estimate

stochastic frontier production functions, has been extended here to handle multi-output distance function estimation as

well.  The programming alternatives, DEA and the Malmquist index, are approaches which have been used extensively

to model productive performance in multi-product technologies. Their use has often been motivated on the basis of not

requiring the price data necessary to estimate parametric multi-output technologies through the dual cost function.  Our

semiparametric stochastic distance frontier, besides extending prior statistical methods to estimate multi-output distance

functions, reveals differences in productive performance at the firm level between East and West European carriers. Our

study also expands on previous studies of efficiency by covering the performance of more carriers over longer periods.

Our new estimator,  along with the  DEA and Malmquist index number approaches, uncovers a disparity in

productive performance between West and East European airline firms suggesting substantial slack in resource utilization

by the Eastern carriers.  The implications of our analysis are rather stark.  Either the East European carriers adopt a more

rational production strategy or receive increasing subsidies, which will place further strains on already financially

stretched national economies.

Appendix

Assume there are N independent observations (X*
i , Yi), where X*

i
' = ( xi1 ,....,xiT ,zi1,...,ziT)' and Yi' = (y1,i1 ,...,

y1,iT , Yi
*)', where Yi

* contains terms involving all outputs except the level of the first dependant variable which is moved
to the left-hand-side of (2); Xi

* and Y*
i are i.i.d. (L x T) and (M-1 x T)-dimensional random vectors.  The Xi

* have an

unknown density function g;  ( )1,βββ o=  and *γ  are (Lx1) and (M-1 x 1)-dimensional unknown vectors of

parameters.  The ( iα i, Y
*
i) are i.i.d. from unknown distribution h and ε it are considered i.i.d. random variables from

N(o,σ 2) with unknown σ 2.  The support of the marginal density of iα i is considered bounded from above.  Let (α ,Y)

denote generic observations from ( iα ,Yi
*) and   Y T = Y

*
i

T

1=i

1* ∑ . Consider the joint distribution h and assume the

following form:

)Y)p(Y,(h = )Y,h(          (a.1) **
M

* αα

where hM is the joint density function of )Y,( *α  and p(Y*) is an arbitrary function.  This distribution assumes that

changes in Y* depend on  only through changes in Y
*

 , through long run changes in Yi
*.  In other words, firm specific

effects depend only on the long run mix of product outputs.
To derive the semiparametric efficient estimator for the distance function (2) we need to first derived the

information bound.  Let (X*,Y) represent a "generic" observation and ),( *γβθ = . Let P represent the set of all

possible joint distributions of (X*,Y).  Consider a regular subset P0 of all the possible joint distributions endowed with

α
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a set of regularity conditions discussed therein.  Let ),Y,,XL( * ηθ  denote the log likelihood of an observation from

P ),( ηθ  and Y),X( *
lθ  and Y),X( *

j
lη  be the derivative of the log likelihood function with respect to θ  and the

vector of nuisance parameters η .   The information bound for θ  is then given by:

)|(-=          (a.3) *
llll ηθθ Π

where and the notation ])[|( ll ηΠ  denotes the vector of projections of each component of l onto the space l� in L2(P),

that is, based on the least squares projections.  The information bound for equation (2) above is gotten by first letting
St(θ ) = y1,t - X

*
t� - Yt

*�* and Ut=St(�) - )(St θ , where

).(S T = )(S t

T

1=t

1-
t θθ ∑

Next let

)z)(z (., h =)duz (u, h u)-z( =)z,z(          (a.4) 12M
*

2M121 φφω σσ∫

be the joint density of )Y , S( *
t , where 

T
 = 
σσ  ,  and 

be the Fisher information for location of ω , where 'ω  is the derivative with respect to the first component of the vector.

 Consider the within and between covariances, which are defined as follows:

Y),X(  E = )P,I(P;          (a.2) ***
p0 ll

′θ

zddz)z,z(
)(

)(
 = I          (a.5) 21212

2

o ω
ω′∫

)X  X)(XX( T E = )X(          (a.6) **
t

**
t

T

=1t

1
p

*
W ′−−Σ ∑

))X(E  X))(X(E X( T E = )X(          (a.7) *
p

**
p

*
T

=1t

1
p

*
B ′−−Σ ∑

)Y  Y)(Y  Y( T E = )Y(          (a.8) **
t

**
t

T

=1t

1
p

*
W ′−−Σ ∑

)X  X)(Y  Y( T E = )Y,X(          (a.9) **
t

**
t

T

=1t

1
p

**
W ′−−Σ ∑
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where X T = X
*
t

T

1=t

1* ∑ .  Assume that I0 < ∞ and (X)WΣ  and (X)BΣ  both exist and are nonsingular.  In this model the

efficient score ),( = ***
* ′′′

lll γβ  and information bound can be obtained by maximizing the log likelihood function with

respect to β  and *γ  and then by subtracting the conditional expectations of these derivatives from the actual derivative

to get the efficient score function (Theorem 2.1, Park and Simar, 1994):

.
)Y(0

0)X(I + )X(
 = I          (a.13)

*
B

2

*
B0

*
W

2














Σ

ΣΣ

σ

σ

To construct an  estimator of ω  we use the logistic kernel estimator,

(1)+)-()-( oYtKStKN=);t ..., ,t ,t(          (a.14) p
*
ji1+jS

J

2=j
i1S

N

1=i

1-
1+j21 NN ∏∑θω

where Ks = K(t/s)/s, K(t) = e-t(1+ e-t)-2.  Define the estimate of σ 2 and the between covariance as:

1)  N(T

)(U
 = )(          (a.15)

2
it

T

1=t

N

1=i2

θ
θσ

~

~
∑∑












Σ′Σ

ΣΣ
Σ

)Y()Y,X(

)Y,X()X(
 =           (a.10)

*
W

**
W

**
W

*
W

W

)Y,S())X(E  X(  XU  = *          (a.11) **
p

**
tt

T

1=t

2

ω
ω

σβ
′∑l

YU  = *          (a.12) *
tt

T

1=t

2
* ∑σγl
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N

)X  X)(X  X(
 = )X(        (a.16)

**
t

**
t

T

1=t*
B

′
Σ

∑
~

where 
(NT)
X = X

*
it

T

1=t

N

1=i

* ∑∑  is the population mean. The efficient estimator is now defined by:














Σ

ΣΣ

σ

σ

~~

~~~
~

7
2*

W

*
Bo

2*
W

)/Y( T0

0)X( I + )/X( T
 = I          )(a.1

and where θ~N  is any consistent estimator, and where any expression superscripted by "~" has been evaluated at this

initial consistent estimator.  In our empirical work we use the within estimator of Cornwell, Schmidt and Sickles (1990)
as the initial consistent estimator and the bootstrap method for selecting the bandwidth in constructing the multivariate
kernel density estimates in eq. (16) discussed in Park and Simar (1994) and Park, Sickles and Simar (1998).

Given the efficient estimator θ̂ TN, , � i are predicted by:

Under the assumptions of the model above Park and Simar prove that as T and T�2
N,T go to infinity:

).N(0,    )  (T( = L          (a.19) 2
iiP σαα →ˆ

Relative technical inefficiencies of the i-th firm with respect to the j-th firm can  be predicted by: αα ˆˆ ji  .  We are most

interested in firm relative efficiencies with respect to the most efficient firm: )  ( jN1,...,=j α̂max .

)(S =           (a.18) TN,ii θα ˆˆ
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Table 1
Summary Statistics

For the Eastern and Western Airline Firms

EASTERN EUROPE

          _________________________________________________________________
                      

Variable   Mean    Std. Dev.
          _________________________________________________________________ 

Revenue Output 249,167.73 142,326.71     
Capacity Output 381,988.14 212,459.25
Number of Planes 35.94 10.22
Labor(workers) 5,942.08 1,099.08
Network Size 109,713.24 37,255.09    
Proportion Jet Aircraft 0.770 0.235
Proportion Wide Body 0.030 0.045

WESTERN EUROPE

________________________________________________________________

       Variable          Mean     Std. Dev.                                
________________________________________________________________

Revenue Output         2,097,418.49 1,887,366.54     
Capacity Output         3,239,202.99 2,793,744.67
Number of Planes 67.42 44.01
Labor(workers)          18,804.08 12,726.94
Network Size           304,470.75 217,803.28    
Proportion Jet Aircraft 0.931 0.104
Proportion Wide Body 0.257 0.157
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Table 2

Semiparametric Efficient Parameter Estimates
of the Stochastic Distance Frontier

Parameter Standard T-Statistic
       Variable Estimate Error (Ho: Parameter=0)        

       ln(Revenue Output)  1.712    0.5180     3.31

       ln(Rev. Output)2  0.864   0.4881     1.77

       ln(Planes) -0.151   0.0628    -2.40

       ln(Labor) -0.675   0.0663    -10.2    

       ln(Network) -0.175   0.0465    -3.76   

       PWideB  -0.273   0.1222    -2.23     

       PJet  0.802  0.1071     0.75         

       Time trend -0.036   0.0055    -6.45      
     

     

Adjusted R2 = 0.998
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Table 3
Stochastic Distance Frontier Relative Efficiencies  

Year AF AU AZ BA CS FN IB JA

1977 0.91661 0.43650 0.77787 0.73680 0.20834 0.37153 0.62596 0.41938

1978 0.91152 0.42991 0.77551 0.75015 0.20786 0.37523 0.62203 0.41858

1979 0.90646 0.42342 0.77315 0.76375 0.20738 0.37896 0.61813 0.41779

1980 0.90143 0.41702 0.77080 0.77759 0.20690 0.38274 0.61425 0.41700

1981 0.89642 0.41072 0.76845 0.79168 0.20642 0.38654 0.61039 0.41620

1982 0.89145 0.40451 0.76611 0.80603 0.20594 0.39039 0.60656 0.41541

1983 0.88650 0.39840 0.76378 0.82064 0.20546 0.39427 0.60275 0.41462

1984 0.88158 0.39238 0.76146 0.83552 0.20499 0.39820 0.59897 0.41384

1985 0.87669 0.38646 0.75914 0.85066 0.20451 0.40216 0.59521 0.41305

1986 0.87182 0.38062 0.75683 0.86608 0.20404 0.40616 0.59147 0.41227

1987 0.86698 0.37487 0.75453 0.88177 0.20357 0.41020 0.58776 0.41148

1988 0.86217 0.36920 0.75224 0.89776 0.20309 0.41428 0.58407 0.41070

1989 0.85739 0.36363 0.74995 0.91403 0.20262 0.41841 0.58040 0.40992

1990 0.85263 0.35813 0.74767 0.93059 0.20215 0.42257 0.57675 0.40914

Year KL LF MA OL SA SB SW TP

1977 0.99135 1.00000 NA 0.54652 0.77396 0.75606 0.79248 0.41011

1978 0.98977 1.00000 NA 0.53288 0.75012 0.76205 0.78210 0.40931

1979 0.98820 1.00000 NA 0.51958 0.72702 0.76809 0.77186 0.40852

1980 0.98663 1.00000 NA 0.50662 0.70463 0.77418 0.76176 0.40774

1981 0.98506 1.00000 NA 0.49398 0.68294 0.78314 0.75178 0.40695

1982 0.98349 1.00000 NA 0.48165 0.66190 0.78649 0.74194 0.40616

1983 0.98193 1.00000 NA 0.46964 0.64152 0.79273 0.73223 0.40538

1984 0.98037 1.00000 0.19093 0.45792 0.62177 0.79901 0.72264 0.40460

1985 0.97881 1.00000 0.18814 0.44649 0.60262 0.80534 0.71318 0.40381

1986 0.97725 1.00000 0.18540 0.43535 0.58406 0.81172 0.70384 0.40303

1987 0.97570 1.00000 0.18270 0.42449 0.56607 0.81815 0.69463 0.40226

1988 0.97415 1.00000 0.18003 0.41390 0.54864 0.82464 0.68553 0.40148

1989 0.97260 1.00000 0.17741 0.40357 0.53175 0.83117 0.67656 0.40070

1990 0.97105 1.00000 0.17482 0.39350 0.51537 0.83776 0.66770 0.39993
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   Table 4
DEA Relative Efficiencies

Year AF AU AZ BA CS FN IB JA
1977 0.77331 0.37319 0.69636 0.55862 0.16354 0.39872 0.71604 0.28152

1978 0.77592 0.37894 0.68677 0.54579 0.15969 0.38252 0.71150 0.30134

1979 0.77992 0.37957 0.68569 0.55026 0.15927 0.37371 0.70346 0.33208

1980 0.78787 0.38578 0.68936 0.55530 0.16103 0.37415 0.71081 0.33953

1981 0.81495 0.39534 0.73555 0.57647 0.17295 0.39614 0.72444 0.34975

1982 0.85845 0.40919 0.76770 0.60757 0.18955 0.40379 0.73484 0.35721

1983 0.86195 0.41720 0.76852 0.62016 0.20781 0.42678 0.74635 0.36164

1984 0.85570 0.42779 0.76207 0.62756 0.18478 0.43899 0.75673 0.36696

1985 0.85405 0.43431 0.76354 0.62647 0.20071 0.44113 0.76352 0.38689

1986 0.85598 0.43645 0.76917 0.63186 0.20693 0.44519 0.77295 0.39870

1987 0.84146 0.43049 0.68838 0.61357 0.20664 0.44702 0.76336 0.39488

1988 0.88422 0.46385 0.69783 0.60426 0.21678 0.45921 0.77076 0.41340

1989 0.92638 0.48912 0.70659 0.59544 0.22592 0.46940 0.77813 0.43952

1990 0.96214 0.50423 0.71123 0.58350 0.23783 0.47286 0.78086 0.42401

Year KL LF MA OL SA SB SW TP

1977 0.90002 1.00000 NA 0.64605 0.71715 0.90115 0.60943 0.33387

1978 0.88498 1.00000 NA 0.63464 0.70727 0.88744 0.60021 0.30902

1979 0.86905 1.00000 NA 0.64314 0.69728 0.89221 0.59444 0.29827

1980 0.87278 1.00000 NA 0.67370 0.69562 0.90028 0.60299 0.31586

1981 0.88053 1.00000 NA 0.68348 0.71283 0.90313 0.63604 0.33093

1982 0.89529 1.00000 NA 0.69321 0.72078 0.91811 0.66562 0.35219

1983 0.89787 1.00000 NA 0.71461 0.72256 0.92643 0.69321 0.35957

1984 0.89965 1.00000 0.22476 0.72754 0.72492 0.93329 0.70192 0.37459

1985 0.89697 1.00000 0.21915 0.75132 0.72722 0.94458 0.72035 0.38412

1986 0.90843 1.00000 0.21849 0.73875 0.73694 0.94265 0.73069 0.39299

1987 0.87414 1.00000 0.21569 0.71993 0.69297 0.97967 0.72695 0.39192

1988 0.86616 1.00000 0.22275 0.71316 0.71986 0.98852 0.71635 0.44714

1989 0.85860 1.00000 0.22637 0.71474 0.72591 0.99710 0.71347 0.48928

1990 0.84648 0.99460 0.23610 0.73380 0.72607 1.00000 0.71659 0.49776
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Table 5
Malmquist Indices

Year AF AU AZ BA CS FN IB JA

1977 - 1978 0.87112 0.83599 0.96608 0.79797 0.73020 0.95601 1.07885 1.08334

1978 - 1979 0.98497 0.87405 0.95060 1.02008 0.85488 0.98614 1.04658 1.01011

1979 - 1980 0.9613 0.92670 1.08677 0.86952 0.67552 1.07840 0.99573 0.99959

1980 - 1981 0.97246 0.94102 0.96479 0.86418 0.75952 1.04957 0.83609 0.98703

1981 - 1982 1.00851 0.98674 0.98812 0.85987 0.67388 1.07417 0.88064 0.97230

1982 - 1983 0.95725 0.96825 1.06860 0.94910 0.88420 1.06930 0.93768 0.98565

1983 - 1984 1.01175 1.00391 1.06473 1.05589 1.06450 0.95366 1.04121 1.06971

1984 - 1985 0.98433 0.96395 1.20726 1.01696 1.05042 1.05960 1.06711 1.13626

1985 - 1986 1.04417 1.03044 1.07337 1.01410 1.00295 1.03838 1.00021 1.07675

1986 - 1987 0.99682 1.03007 0.90936 1.01591 1.02309 1.03975 1.04310 1.04575

1987 - 1988 1.03164 1.03317 1.04108 1.11547 0.98466 1.04933 1.15844 1.00837

1988 - 1989 1.02794 1.05886 1.04488 1.10697 0.98479 1.01908 1.15348 1.02680

1989 - 1990 0.99791 1.07031 1.00744 1.07944 0.85619 1.15208 1.04331 0.94261

Year KL LF MA OL SA SB SW TP

1977 - 1978 0.94433 0.89312 NA 1.19132 1.01850 1.06133 1.06329 1.26228

1978 - 1979 0.95342 0.98429 NA 1.21625 0.95735 1.13275 0.99963 1.01440

1979 - 1980 1.06733 0.97576 NA 1.12799 0.95438 0.95851 1.02448 0.95022

1980 - 1981 1.00118 0.96281 NA 0.94916 0.93272 0.96695 1.04603 0.77178

1981 - 1982 1.07383 0.97692 NA 0.95329 0.95725 1.12418 1.04579 0.99024

1982 - 1983 1.02736 0.98363 NA 0.95689 1.00373 1.07906 1.04110 1.03529

1983 - 1984 0.99330 1.07294 NA 1.01358 1.11435 1.01339 1.02495 1.11058

1984 - 1985 1.09480 0.98563 0.92854 0.94879 0.95581 1.04171 0.97803 1.01864

1985 - 1986 0.97647 1.09847 1.02103 0.95793 1.07085 0.97780 0.96982 1.05381

1986 - 1987 1.03157 0.91496 1.03660 0.97802 1.09119 0.90953 1.10518 1.07471

1987 - 1988 1.12286 1.03514 0.98035 0.91543 0.99704 1.23215 1.02767 1.08049

1988 - 1989 1.02000 1.03196 0.98928 0.97647 1.00808 1.26658 1.04773 1.13259

1989 - 1990 1.01137 1.02035 1.08814 1.10843 0.99655 1.22395 1.01539 0.98182
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Table 6
Efficiency Change Component of the Malmquist Index

Year AF AU AZ BA CS FN IB JA

1977 - 1978 1.00000 1.00000 0.95327 1.00000 1.00000 0.89481 1.02336 1.06301

1978 - 1979 1.00000 1.00000 0.91915 1.00000 1.00000 0.94285 0.97652 1.05101

1979 - 1980 1.00000 1.00000 1.01537 1.00000 1.00000 1.01790 0.98544 0.92935

1980 - 1981 1.00000 1.00000 0.94359 1.00000 1.00000 1.00560 0.92421 0.94875

1981 - 1982 1.00000 1.00000 0.92408 1.00000 1.00000 1.00741 0.92345 0.91354

1982 - 1983 1.00000 1.00000 1.05602 1.00000 0.70076 1.04555 0.88265 0.95838

1983 - 1984 1.00000 1.00000 0.99765 0.97930 0.84519 0.91429 0.92688 1.00799

1984 - 1985 1.00000 1.00000 1.18676 1.02113 0.97215 1.06882 1.07032 1.11479

1985 - 1986 0.99086 1.00000 0.94841 0.94752 1.00000 0.91764 0.87484 0.97535

1986 - 1987 1.00922 1.00000 0.96601 1.05539 1.00000 1.06822 1.09449 1.04322

1987 - 1988 1.00000 1.00000 0.98634 1.00000 1.00000 1.02460 1.13362 0.98153

1988 - 1989 1.00000 1.02584 1.02071 1.00000 1.00000 0.99731 1.15036 0.99761

1989 - 1990 1.00000 1.00972 1.02694 1.00000 1.00000 1.16126 1.02637 0.87717

Year KL LF MA OL SA SB SW TP

1977 - 1978 1.00000 1.00000 NA 1.11622 1.01496 1.02504 1.03521 1.17475

1978 - 1979 1.00000 1.00000 NA 1.06072 0.92269 1.17320 0.96000 0.99078

1979 - 1980 1.00000 1.00000 NA 1.14940 0.93090 0.88005 0.98429 0.94718

1980 - 1981 1.00000 1.00000 NA 0.89627 0.90378 0.93480 0.99120 0.77010

1981 - 1982 1.00000 1.00000 NA 0.91034 0.91625 1.03479 0.97832 0.94524

1982 - 1983 1.00000 1.00000 NA 0.99775 1.04659 1.03800 1.00438 1.04100

1983 - 1984 1.00000 1.00000 NA 0.92414 1.01484 1.00420 1.01485 1.00852

1984 - 1985 1.00000 1.00000 1.00000 0.94218 0.94915 0.96568 0.93553 0.99517

1985 - 1986 1.00000 1.00000 1.00000 0.91962 1.02802 0.96745 0.92270 1.00228

1986 - 1987 1.00000 1.00000 1.00000 1.06604 1.14668 0.90682 1.14839 1.07080

1987 - 1988 1.00000 1.00000 1.00000 0.90708 0.96551 1.17983 0.96687 0.99251

1988 - 1989 1.00000 1.00000 1.00000 0.96877 1.00570 1.20373 1.04161 1.12472

1989 - 1990 1.00000 1.00000 1.00000 1.06346 0.93783 1.00000 1.03000 0.95512
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Table 7
Technical Change Component of the Malmquist Index

Year AF AU AZ BA CS FN IB JA

1977 - 1978 0.87112 0.83599 1.01344 0.79797 0.73020 1.06839 1.05423 1.01913

1978 - 1979 0.98497 0.87405 1.03422 1.02008 0.85488 1.04591 1.07174 1.06164

1979 - 1980 0.96130 0.92670 1.07032 0.86952 0.67552 1.05943 1.01045 1.07558

1980 - 1981 0.97246 0.94102 1.02247 0.86418 0.75952 1.04372 0.90465 1.04035

1981 - 1982 1.00851 0.98674 1.06930 0.85987 0.96164 1.06627 0.95364 1.06432

1982 - 1983 0.95725 0.96825 1.01190 0.94910 1.04641 1.02271 1.06235 1.02845

1983 - 1984 1.01175 1.00391 1.06724 1.07821 1.03461 1.04306 1.12335 1.06123

1984 - 1985 0.98433 0.96395 1.01727 0.99591 1.05042 0.99137 0.99700 1.01926

1985 - 1986 1.05380 1.03044 1.13176 1.07027 1.00295 1.13157 1.14331 1.10396

1986 - 1987 0.98772 1.03007 0.94136 0.96259 1.02309 0.97334 0.95305 1.00242

1987 - 1988 1.03164 1.03317 1.05549 1.11547 0.98466 1.02413 1.02189 1.02735

1988 - 1989 1.02794 1.03220 1.02367 1.10697 0.98479 1.02184 1.00271 1.02926

1989 - 1990 0.99791 1.06001 0.98101 1.07944 0.85619 0.99210 1.01651 1.07460

Year KL LF MA OL SA SB SW TP

1977 - 1978 0.94433 0.89312 NA 1.06728 1.00350 1.03540 1.02713 1.07450

1978 - 1979 0.95342 0.98429 NA 1.14663 1.03757 0.96552 1.04128 1.02383

1979 - 1980 1.06733 0.97576 NA 0.98137 1.02523 1.08915 1.04083 1.00322

1980 - 1981 1.00118 0.96281 NA 1.05901 1.03202 1.03440 1.05532 1.00217

1981 - 1982 1.07383 0.97692 NA 1.04718 1.04475 1.08638 1.06896 1.04760

1982 - 1983 1.02736 0.98363 NA 0.95905 0.95905 1.03956 1.03656 0.99452

1983 - 1984 0.99330 1.07294 NA 1.09679 1.09805 1.00915 1.00995 1.10120

1984 - 1985 1.09480 0.98563 0.92854 1.00702 1.00702 1.07873 1.04543 1.02358

1985 - 1986 0.97647 1.09847 1.02103 1.04166 1.04166 1.01070 1.05106 1.05141

1986 - 1987 1.03157 0.91496 1.03660 0.91954 0.95161 1.00298 0.96237 1.00365

1987 - 1988 1.12286 1.03514 0.98035 1.00920 1.03266 1.04434 1.06289 1.08865

1988 - 1989 1.02000 1.03196 0.98928 1.00795 1.00236 1.05221 1.00587 1.00699

1989 - 1990 1.01137 1.02095 1.08814 1.04229 1.06261 1.22395 0.98582 1.02796
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