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SUMMARY

This paper explores a relatively new methodology, the directional distance function method,
to analyze productivity growth. The method allows us to explicitly evaluate the role that
undesirable outputs of the economy, such as carbon dioxide and other green-house gases, have
on the frontier production process which we specify as a piece-wise linear and convex boundary
function. We decompose productivity growth into efficiency change (catching up) and technology
change (innovation). We test the statistical significance of the estimates using recently developed
bootstrap methods. We also explore implications for growth of total factor productivity in the
OECD and Asian economies.
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1. INTRODUCTION

In traditional productivity analysis environmental by-products of the production or develop-
ment process are ignored and, as such, are assumed to be freely disposable. Using a recently
developed technique, the directional distance method, we analyze the impact that explicit treat-
ment of the external costs of carbon dioxide has on the productivity growth of OECD and Asian
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economies. We examine how the econometric developments may affect our comfort in and use
of productivity forecasts for growth in the U. S., OECD, and in Asia. Our paper speaks to the
international debate on trade-offs between growth and environmental protection.
We decompose productivity growth into changes in technical efficiency over time and shifts

in technology. These allow us to identify the major factors in each country’s growth process.
We do not observe the true production frontier but construct it from our sample and we provide
a statistical interpretation of the indices via recently developed bootstrap methods introduced
by Simar and Wilson (1998, 1999, 2000a,b).
Radial technical efficiency measures were first developed by Farrell (1957). Caves, Chris-

tensen, and Diewert (1982) defined the input-based Malmquist productivity index as the ratio
of two input distance function while assuming no technical inefficiency in the sense of Farrell
(1957). Färe, Grosskopf, Norris, and Zhang (1994) extend the Caves et al. approach by drop-
ping the assumption of no technical inefficiency and developed a Malmquist index of productivity
that could be decomposed into indices describing changes in technology and efficiency. This
approach has been used widely. These indices have been used to study issues ranging from
deregulatory dynamics in the U. S. airline industry (Alam and Sickles, 2000) to the convergence
of per capita incomes of the OECD countries (Färe et al., 1994).
Chung, Färe, and Grosskopf (1997) introduce a directional distance function approach, the

Malmquist-Luenberger index, to analyze models of joint production of goods and bads. Al-
though these terms may be pejorative, they provide a convenient delineation between the goods
and services that trade in a formal market and those for which the formal market has not yet been
established and are generally viewed as having an unallocated cost. The method credits firms
for reductions in bads and increases in goods. The Malmquist index can also be applied to the
undesirable output case by modifying the direction in which the goods and bads are traded-off.
Boyd, Färe and Grosskopf (1999) have recently analyzed OECD countries assumed to possess
a two output/two input technology using deterministic Malmquist and Malmquist-Luenberger
indices.
We apply Malmquist and Malmquist-Luenberger index methods to a sample of OECD and

Asian countries that are assumed to possess a two output/three input technology over the period
1980-1990 and 1980-1995, respectively. We analyze how productivity growth is affected by lifting
the free disposability assumption and test the statistical significance of the indices of productivity
growth using newly developed bootstrap methods. Historically, the growth in an economy has
been due to the growth of inputs and growth in the productivity of those inputs. Factors that
influence the latter will influence wealth creation as well as the ability of the economy to maintain
wealth levels as it reallocates resources to pay for pollution abatement.
The paper is organized as follows. We begin with the review of the distance functions and

productivity index models in section 2. This is followed by a discussion of the bootstrapping
algorithm in section 3. Section 4 contains a discussion of data and results. Section 5 concludes.

2. THE PRODUCTIVITY INDICES

To define the output based productivity index, we assume that the production technology F t

for each time period t = 1, ...., T , transforms the inputs, xt ∈ RL
+, into outputs, goods y

t ∈ RM
+
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and bads bt ∈ RN
+ ,

F t =
©
(xt, yt, bt)| xt can produce (yt, bt)ª (1)

The production technology consists of the set of all feasible input and output vectors. In order
to address the fact that the reduction of bad outputs is costly, we impose weak disposability of
outputs, i.e.

(xt, yt, bt) ∈ F t and 0 ≤ θ ≤ 1 imply (xt, θyt, θbt) ∈ F t (2)

Thus a reduction of undesirable outputs can be attained by the reduction of goods, given fixed
input levels. Clearly, if undesirable outputs could be disposed of freely, we could reduce only
undesirable outputs. The production technology also is assumed to produce both desirable and
undesirable outputs and it is assumed that it cannot produce one without the other, i. e.,

(xt, yt, bt) ∈ F t and bt = 0 then yt = 0

2.1 The Malmquist Productivity Index

Caves et al. (1982) defined the Malmquist productivity index as the ratio of two distance
functions. However, they encountered computational complications in calculating the distance
function directly and were forced to approximate the Malmquist productivity index with the
discrete approximation to the Divisia index, the T

..
ornqvist index. The conditions under which

the use of the T
..
ornqvist index was justified are rather strong, in particular the firm is assumed

to be technically efficient. F
..
are et al. (1995, 1998) provided a method to calculate the index

directly in the presence of technical inefficiency by noting that the output distance function and
the radial output-based technical efficiency measure constructed from nonparametric frontier
methods were inversely related. Following Shephard (1970), the output distance function at
time t is written as

Dt
0(x

t, yt, bt) = inf
©
θ|(xt, yt/θ, bt/θ) ∈ F t

ª
(3)

=
¡
sup

©
θ|(xt, θyt, θbt) ∈ F t

ª¢−1
where superscript t of the distance function denotes the time of production. By construction
Dt
0(x

t, yt, bt) ≤ 1 if and only if (xt, yt, bt) ∈ F t. When Dt
0(x

t, yt, bt) = 1 the country is on the
boundary of the production set and thus is employing the frontier technology.
To construct the Malmquist productivity index one first needs to specify the distance function

with respect to the two adjacent time periods wherein the technology is in place and the resource
allocation decisions are made:

Dt
0(x

t+1, yt+1, bt+1) = inf
©
θ|(xt+1, yt+1/θ, bt+1/θ) ∈ F t

ª
(4)

The index measures the maximum proportional change of outputs required to produce (yt+1, bt+1)
at the technology level in place at time t. This may not be feasible if the combination of the
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outputs, say yt+1, bt+1 for a single desirable and undesirable output, is not on the hyperplane
generated from outputs at time t.
The output-based Malmquist productivity change index (Malmquist, 1953) is defined as

M t,t+1
0 =

µ
Dt
0(x

t+1, yt+1, bt+1)

Dt
0(x

t, yt, bt)
· D

t+1
0 (xt+1, yt+1, bt+1)

Dt+1
0 (xt, yt, bt)

¶1/2
(5)

and is the geometric mean of the two output distance function’s ratios with respect to time t
and (t + 1). The Malmquist index is the most widely used output index and is particularly
attractive for our purposes since it does not rely on prices, specifically the price of CO2, in order
to construction it. It is based on the ratio of two output distance functions defined for period
t and period t + 1 technologies. If the distance functions for period t and t + 1 technologies
are translog then the geometric mean of two Malmquist output indices using period t and t+ 1

technologies and period t and t+ 1 input vectors is equivalent to the T
..
ornqvist index which is

flexible and superlative. If the distance functions are quadratic then the geometric mean of
the two Malmquist output indices is equivalent to the Fisher (1922) ideal index which is the
geometric mean of Laspeyres and Paasche indices. The set of axiomatic properties such indices
possess are substantial and are the reasons for their wide use in productivity measurement. The
linear program used below constructs the distance functions as piece-wise linear approximations
to any convex function. The advantages of the Malmquist productivity index have been pointed
out by Diewert (1981, 1983, 1992), and Balk (1995, 1997), and are discussed at length in Coelli,
Rao, and Battese (1998).
We illustrate this formulation of the Malmquist index in Figure 1 below.1 Assume that there

are two best practice frontiers based on period t and t+1 data. Observed input and output data
from period t+1 are above the period t best practice frontier and the period t data are below
the period t+1 best practice frontier. This is consistent with positive productivity growth.

<Insert Figure 1 here >

For this particular country the Malmquist index can be expressed asM t,t+1
0 =

³
0c/0a
0f/0b

0c/0d
0f/0e

´1/2
or equivalently as M t,t+1

0 =
³
0c/0a
0f/0e

´³
0a/0d
0e/0b

´1/2
. The first term is the change in efficiency be-

tween period t and t+1 while the second term measures the shift in the frontier. This de-
composition can be formalized by rewriting the general form of the output-based Malmquist
productivity change index as equivalently as

M t,t+1
0 =

Dt+1
0 (xt+1, yt+1, bt+1)

Dt
0(x

t, yt, bt)
·
µ

Dt
0(x

t+1, yt+1, bt+1)

Dt+1
0 (xt+1, yt+1, bt+1)

· Dt
0(x

t, yt, bt)

Dt+1
0 (xt, yt, bt)

¶1/2
(6)

where the first term measures the change in relative efficiency between t and t + 1 (ECH),
and the second term captures the shift in technology between the two periods (TCH). The
decomposition of the Malmquist total factor productivity (TFP) index into a portion due to

1This example can be found in Färe and Grosskopf (1996).
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technological and efficiency change is based on a simple algebraic manipulation of the Malmquist
output oriented TFP index and is discussed in Färe et al. (1994) using non-parametric methods.
Nishimizu and Page (1982) provide a parametric approach to the same problem. Using the Färe
et al. (1994) approach we construct the distance functions, the Malmquist TFP index, and then
manipulate it to represent two terms. The first term is the Farrell technical efficiency change
between period t and t+1. Efficiency change is the ratio of Farrell technical efficiency in period
t+1 to Farrell technical efficiency in period t. The second term is the index of technical change.
It is the geometric mean of technical change between period t and t+1 using input vectors from
the two periods.
We can thus write

ECH =
Dt+1
0 (xt+1, yt+1, bt+1)

Dt
0(x

t, yt, bt)
(7)

TCH =

µ
Dt
0(x

t+1, yt+1, bt+1)

Dt+1
0 (xt+1, yt+1, bt+1)

· Dt
0(x

t, yt, bt)

Dt+1
0 (xt, yt, bt)

¶1/2
The standard Malmquist index assumes free disposability of undesirable outputs. Four dif-

ferent types of distance functions are needed by (5). The distance function of country k0 at t
will be constructed by the linear program:³ bDt

0(x
t(k0), yt(k0), bt(k0))

´−1
= Max θ(k0) (8)

Subject to θ(k0)ytm(k
0) ≤

KX
k=1

zt(k)ytm(k) m = 1, ....,M

KX
k=1

zt(k)xtl(k) ≤ xtl(k
0) l = 1, ...., L

zt(k) ≥ 0 k = 1, ....,K

whereM,L, and K are the number of desirable outputs, inputs, and countries respectively while
the z0s are intensities variables whose interpretation will be explained below. Construction of
the distance function by linear programming methods is relatively intuitive. Let us assume as
an example2 that the technology is characterized by a two output-one input production process
with no bads and that there are only three countries measured at time t. For k0 = 1 (country
1) the level of output at time t is yt(1) = {2, 1} and its level of input is xt(1) = {1}. For k0 = 2
(country 2) the level of output at time t is yt(2) = {1, 2} and its level of input is xt(2) = {1}.
For k0 = 3 (country 3) the level of output at time t is yt(3) = {1, 1} and its level of input is
xt(1) = {1}. The output-distance function for, say country k0 = 3 at time t,is constructed as

2This example also can be found in Färe and Grosskopf (1996).
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bDt
0(1, 1, 1)

−1 = Max θ (9)

Subject to θ · 1 ≤ zt(1) · 2 + zt(2) · 1 + zt(3) · 1
θ · 1 ≤ zt(1) · 1 + zt(2) · 2 + zt(3) · 1 (10)

1 ≤ zt(1) · 1 + zt(2) · 1 + zt(3) · 1
0 ¹ zt(1), zt(2), zt(3)

The output possibility set for the constant returns to scale technology is characterized in
Figure 2 as a piece-wise linear and convex boundary function which for large K can approximate
any smooth convex function. The solution is zt(1) = zt(2) = 1/2, and zt(3) = 0. The Farrell
radial technical efficiency score is 1.5 meaning that country 3 can increase both outputs by
50% if it operated on the boundary. This corresponds to a distance function value of 0.667.
Countries 1 and 2 in this example are on the boundary and thus have distance function values
of 1.0 and values of the intensity variables of {1, 0, 0} and {0, 1, 0} respectively.

<Insert Figure 2 here >

Since the free disposability of undesirable outputs is a rather strong assumption, especially
in the context of environmental waste by-products, we can define another type of Malmquist
index that relaxes this assumption. A Malmquist index can be constructed by measuring the
productivity change of desirable outputs while holding undesirable outputs constant. This may
be the appropriate productivity measure when there are production quotas for undesirable out-
puts. The (more goods direction) distance function measures the relative distance to the highest
feasible mix without changing the level of undesirable outputs. The four different distance func-
tions needed to construct this index are Dt

0(x
t, yt, bt), Dt+1

0 (xt, yt, bt), Dt
0(x

t+1, yt+1, bt+1) and
Dt+1
0 (xt+1, yt+1, bt+1). The formulations of the linear programs are in Appendix 1.

2.2 The Malmquist-Luenberger Productivity Index

The Malmquist-Luenberger productivity index is based on the output oriented directional
distance function (Chung et al., 1997). This is different from the Malmquist index which changes
the desirable outputs and undesirable outputs proportionally because it chooses the direction
to be g = (yt,−bt), more good outputs and less bad outputs. The rationale of this kind of
directional choice is that there might be institutional regulations limiting an increase in bad
outputs, in particular pollutant emission. Figure 3 shows three different reference directions for
each index. The direction vector labeled More Ouputs is an example of output growth in which
CO2 production is viewed as a recognized concomitant of aggregate growth but it ignores the
deleterious aspect of CO2, increasing it along with the production of goods and services that
provide direct benefit to consumers. The direction vector labeled More Goods fixes the level of
CO2 production at current levels, similar to what is proposed in certain versions of the Kyoto
negotiations that target levels of OECD production of CO2 based on then current (1990 or so)
levels. Finally, the direction vector labeled ML reduces the level of CO2 emissions by the same

6



amount as the increase in the production of marketable goods and services. This is a direction
vector that is favored by many in the environmental movement and can be viewed as the polar
case to the More Outputs direction vector.

<Insert Figure 3 here >

In order to develop a productivity index that accommodates these various directions for a
movement to the frontier we define the production technology in terms of the output set (yt, bt)

P (xt) =
©
(yt, bt)| (xt, yt, bt) ∈ F t

ª
(11)

and then define the directional distance function as

−→
D t
0(x

t, yt, bt; g) = sup
©
β|(yt + βgy, b

t − βgb) ∈ P (xt)
ª

(12)

where gy and gb are subvectors for yt and bt of the direction vector g.
Chung et al. (1997) define the output oriented Malmquist-Luenberger productivity index

between periods t and t+ 1 as

MLt,t+1
0 =

Ã
{1 +−→D t

0(x
t, yt, bt; yt,−bt)}

{1 +−→D t
0(x

t+1, yt+1, bt+1; yt+1,−bt+1)}
{1 +−→D t+1

0 (xt, yt, bt; yt,−bt)}
{1 +−→D t+1

0 (xt+1, yt+1, bt+1; yt+1,−bt+1)}

!1/2
(13)

The Malmquist-Luenberger index coincides with the Malmquist index when the direction g

is (y, b) rather than (y,−b). The relationship between Shephard’s distance function and the
directional distance function is

−→
D t
0(x

t, yt, bt; y, b) = sup
©
β|(yt + βgy, b

t + βgb) ∈ P (xt)
ª

= sup
©
β|(yt(1 + β), bt(1 + β)) ∈ P (xt)

ª
= sup

©−1 + (1 + β)|(yt(1 + β), bt(1 + β)) ∈ P (xt)
ª

= −1 + sup©(1 + β)|(yt(1 + β), bt(1 + β)) ∈ P (xt)
ª

= −1 + 1

Dt
0(x

t, yt, bt)

The Malmquist-Luenberger index can equivalently be decomposed as

MLt,t+1
0 =MLECHt+1

t ·MLTCHt+1
t (14)

MLECHt+1
t and MLTCHt+1

t denote efficiency change and technological change respectively
where

MLECHt,t+1
0 =

1 +
−→
D t
0(x

t, yt, bt; yt,−bt)
1 +
−→
D t+1
0 (xt+1, yt+1, bt+1; yt+1,−bt+1)

MLTCHt,t+1
0 =

"
{1 +−→D t+1

0 (xt+1, yt+1, bt+1; yt+1,−bt+1)}
{1 +−→D t

0(x
t+1, yt+1, bt+1; yt+1,−bt+1)}

{1 +−→D t+1
0 (xt, yt, bt; yt,−bt)}

{1 +−→D t
0(x

t, yt, bt; yt,−bt)}

#1/2
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Construction of the Malmquist-Luenberger index can be carried out by solving a linear pro-

gram detailed in Appendix 1. The distance function
c−→
D

t

0(x
t+1, yt+1, bt+1; y,−b) yields an infea-

sible solution if a set of inputs and outputs (xt+1, yt+1, bt+1) is outside the production set and
the movement along the direction vector g does not intersect the production frontier (Figure
4). Construction of the productivity index requires the existence of four distance functions,−→
D t,t
0 ,
−→
D t+1,t+1
0 ,

−→
D t,t+1
0 ,

−→
D t+1,t
0 which measure distance to the frontier. Here

−→
D t,t+1
0 denotes the

distance function under the frontier at t using (t+ 1) data, i.e.
−→
D t
0(x

t+1, yt+1, bt+1). Since the
frontier expands as time goes on, we expect that the (t+ 1) data point would be outside of the
frontier of previous year(t). So, the inter-period distance function

−→
D t,t+1
0 cannot be calculated if

the movement along the direction vector g does not intersect the production frontier. This will
happen if the data at (t+ 1) is located outside of the current frontier. Therefore, productivity
estimates may not be available for a country that is very innovative or has a unique input-output
structure so that the shape of the frontier near that country heavily depends on her performance.

<Insert Figure 4 here >

The procedures outlined above provide us with index number approaches to point estimates
of productivity growth and its decomposition. A reasonable criticism of the methodology so
far discussed is that there is no inference possible since we have a nonparametric model that
does not assume any form for the production function (it is estimated nonparametrically as a
piece-wise linear convex function) and that no statistical model has been introduced. Results in
the next section provide researchers with methods with which to construct significance bounds.
Instead of relying on a simple point estimate for growth based on the index number, we can
evaluate whether or not productivity growth and its decompositions are significantly different
from zero.

3. BOOTSTRAPPING THE PRODUCTIVITY INDEX

The index numbers outlined above provide us with point estimates of productivity growth
rates and the decompositions into their technical and efficiency components. Clearly, there is
sampling variability and thus statistical uncertainty about these estimates. We address this
issue by turning to economic theory (Debreu, 1951). We follow neoclassical theory and assume
a data generating process (DGP) wherein firms randomly deviate from the underlying true
frontier. Random deviations from the contemporaneous frontier at time t is measured by the
distance function. The Simar and Wilson (2000a) bootstrapping method can be used to provide
a statistical interpretation to the Malmquist/ Malmquist-Luenberger index which has been used
by Boyd et al. (1999).
Although the non-parametric programming estimators outlined above are taken to be de-

terministic, they measure performance relative to an estimate of the true and unobservable
production frontier. Since estimates of the frontier are based on finite samples, efficiency and
productivity measures based on these estimates are subject to sampling variation of the frontier.
Simar and Wilson (1998, 2000a) outline a smooth bootstrap procedure to examine the sensitivity
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of distance functions, and hence efficiency, to sampling variation of the frontier.3

Extending these further, Simar and Wilson (1999) develop bootstrap methods to estimate the
sampling distribution and confidence intervals for the Malmquist index which we extend here to
the directed distance measure. We focus our discussion below on the bootstrapping algorithm
for the standard Malmquist index for notational convenience. To anticipate results, the proce-
dure yields bootstrap values {cM∗

i (t, t+1)(b)
B
b=1},

n bE∗i (t, t+ 1)o (b)Bb=1 and nbT ∗i (t, t+ 1)o (b)Bb=1,
where B is the number of bootstrap estimates. The bootstrap procedure then uses these val-
ues to approximate the unknown distribution and confidence interval of the original estimates.
Thus, [cMi(t, t+ 1)−Mi(t, t+ 1)]

approx.v [cM∗
i (t, t+ 1)− cMi(t, t+ 1)|c] and prob(−bα ≤ cMi(t, t+

1) −Mi(t, t + 1) ≤ −aα) is approximated by prob(−b∗α ≤ cM∗
i (t, t + 1) − cMi(t, t + 1) ≤ −a∗α|c),

where c is the original data and α is set to the desired confidence level.
In general, bootstrapping involves simulating the data generating process (DGP), and ap-

plying the estimator to each simulated sample in order to mimic the sampling distribution of
the original estimator. The naive bootstrap involves estimation of f(x, y), the distribution of
the input-output pair, by the empirical distribution of the observed sample, through resampling
with replacement. However, this yields inconsistent bootstrap approximations since empirical
distributions are used to estimate distribution functions with bounded and unknown support on
the production set. Specifically, by placing a positive probability mass at the boundary of the
estimated production set, the empirical distribution gives inconsistent estimates of the underly-
ing efficiency measures. Therefore, the key behind bootstrapping in this case lies in simulating
the DGP appropriately. This can be done by using a smooth bootstrap.
For panel data, with the possibility of temporal correlation in the data, this can be ac-

complished by using a bivariate kernel estimator of the joint density of the original distance

function estimates,
n bDt

o(yit, xit), bDt+1
o (yit+1, xit+1)

oN
i=1
. Such an estimator is given by bf(z) =

1
Nh2

NP
i=1

k( (z−zi)h ) where z is (1× 2), zi = [ bDt
o(yit, xit) bDt+1

o (yit+1, xit+1)] is the i − th row of the

(N ×2) matrix of the original distance function estimates, h is bandwidth and k(·) is the bivari-
ate kernel function. Since { bDt

o(yit, xit), bDt+1
o (yit+1, xit+1), i = 1...N}, is bounded from below by

unity, the support of f(z) is bounded and hence the density estimated by bf(z) is inconsistent and
asymptotically biased. Using the reflection method proposed by Silverman (1986) overcomes this

3Simar and Wilson (2000b) summarize asympotitic results for efficiency estimates based on the DEA approach.
Given certain regularity assumptions for the DGP, the DEA efficiency estimator is consistent for the univariate
case; p = 1 and q ≥ 1, where p and q are the number of inputs and outputs respectively. This result comes from
Banker (1993) who proves weak consistency for the DEA efficiency estimator where bθDEA(x, y) p→ θ(x, y). For
the multivariate case, p ≥ 1, q ≥ 1, Kneip et. al. (1998, 2001) provide results on the consistency of DEA as

well as its ate of convergence. They prove that bθDEA(x, y)− θ(x, y) = Op(n
− 2
p+q+1 ). These results highlight the

curse of dimensionality, where convergence of the efficiency estimator will suffer for large p and q. In addition to
consistency, asympotitic results on the sampling distributions of DEA estimators are provided by Gijbels et. al.
(1999) for the univariate case, where p = q = 1. They demonstrate that bθDEA(x, y)− θ(x, y)

asymp.v F (·, ·) where
F is a regular distribution function defined up to some unknown constants. However, these results have some
drawbacks. They include asymptotic results, which may be misleading in small sample contexts, the introduction
of additional noise in estimating the unknown parameters of the limiting distribution, and the availablity of
only univariate results for the DEA estimators of efficiency. These limitations make the bootstrap an attractive
alternative.
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problem. This involves using kernel methods to estimate the density of the original observations
and their reflections about the boundaries, which is unity, in two-dimensional space. Details of
the nine-step bootstrapping algorithm are provided in Appendix.2
We form confidence intervals for each index by sorting the bootstrap values in ascending

order, deleting
¡
α
2

¢
of the elements at either end and setting −b∗α and −a∗α equal to the end

points of the resulting sorted vector. This yields an estimated (1− α) percent confidence interval,cMi(t, t+1)+a
∗
α ≤Mi(t, t+1) ≤ cMi(t, t+1)+b

∗
α, for the Malmquist index. Confidence intervals for

its components are obtained similarly. The estimated index is statistically significantly different
from unity if the interval does not contain one.
We next turn to how these econometric developments may affect our comfort in and use of

productivity forecasts for growth in the U. S., OECD, and in Asia in the international debate
on trade-offs between growth and environmental protection.

4. ANALYSIS OF PRODUCTIVITY GROWTH CONTROLLING FOR CO2
EMISSION

We calculate productivity growth and its components from a sample of 17 OECD countries
during the period 1980-1990 using the data from the Penn World Tables (Mark 5.6) and the
U. S. Energy Information Administration. We then examine similar measures for a sample of
11 Asian countries during the period 1980-1995. Our measure of aggregate outputs are gross
domestic product (GDP ) as the desirable output and carbon dioxide (CO2) emission from the
combustion of energy as the undesirable output. Capital stock, employment and energy are
aggregate input proxies. GDP and capital stock are measured in 1985 international prices.
Employment is calculated from real GDP per worker and capital is obtained from capital stock
per worker. CO2 emission accounts for only the combustion of energy. Although the Kyoto
accords suggested establishment of a market in CO2 emission credits for OECD countries, it
exempted developing countries such as those in Asia, e.g. China.

4.1 OECD Country Results

We estimate three types of Malmquist productivity indices and the Malmquist-Luenberger
index. We use the terminology of Boyd et al. (1999). The first index is labeled Standard and
ignores carbon dioxide completely. This is the traditional index calculated in the productivity
growth literature. The second is labeled More Outputs and recognizes the jointness of the
aggregate production frontier in output and in carbon dioxide but does nothing to account for
the deleterious aspect of CO2 production. The third is labeled More Goods and holds CO2
emissions constant between the two periods of comparison and allows the level of good outputs
to increase. This is a direction that seems most in agreement with the goals of the Kyoto
Protocols. The fourth is the Malmquist-Luenberger index and reduces CO2 emissions between
the two periods by the same proportion that GDP is allowed to increase. This direction can
be viewed as a compromise between the goals of the pro-growth and anti-growth environmental
movements. Table I lists the output and input growth rates for the OECD countries. A
summary of productivity changes for each of the seventeen countries, based on the four scenarios
for treating environmental factors in the growth accounting exercise, are tabulated in Tables II,
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III, and IV. The results suggest that there has been improvement in productivity due largely to
technical change.

CO2 emissions account for over 80% of total greenhouse gas emissions. When we account
for the effect of CO2 emissions on productivity growth (More goods) we find marginally higher
productivity growth rates. Table II shows total factor productivity growth rates under vari-
ous assumptions on CO2 emissions. Since the distance function measures the distance to the
production frontier using a particular direction vector, total factor productivity growth depends
on both the change in a country’s input-output combination and the shape of the production
frontier in the neighborhood of that country’s input-output observation. When frontier produc-
tion of desirable outputs increases when production of undesirable (CO2) output increases, total
factor productivity growth(TFP) depends on the change in CO2 emissions. If CO2 emissions
are constrained not to increase in the calculation of productivity growth (the More Goods case),
then we would expect a higher TFP growth rate for the country that reduces CO2 emissions over
the sample period. Finland, France, and Sweden show improved TFP growth rates because they
decreased CO2 emissions. Countries whose CO2 emissions increased, such as Ireland, Italy, and
Spain, have lower productivity growth rates. If the change in CO2 emissions is small relative
to TFP growth (in our sample less than one percent per year) the effects are reversed. This
occurs in Austria, Belgium, Canada, Germany, Japan, and Norway. Denmark and Greece show
unexpected movements with relatively larger changes in CO2 emissions. When the production
frontier does not expand toward the GDP direction when CO2 emissions increase then this can
occur. It can also occur when the sample size is small. Though we recognize the negative effect
of CO2 emissions and assume that the desirable direction is not to increase CO2 emissions, the
positive trend of the countries’ TFP growth rates does not change with the modification of the
direction vector.
The results of Table II might be viewed as counterintuitive. For example, Canada had

positive CO2 growth and might seem to imply that the More Goods approach (which constrains
CO2) should have less output and therefore less productivity growth. However, the results for
More Growth indicate a higher productivity growth rate. The reason is that the productivity
measure depends on the change of a country’s relative location on the production set, in other
words, the change of the distance between the frontier and the data. Thus productivity depends
on the change of each country’s performance and the frontier. Therefore, we cannot conjecture
the size of the productivity growth by looking at country data only. Positive CO2 growth of
Canada does not imply low productivity growth since the frontier also changes. Only relative
change matters.
The Malmquist-Luenberger productivity index imposes a more strict restriction on CO2 out-

puts and is consistent with concerns of global warming. It assumes that an expansion of goods
and a reduction of bads is the desirable direction of development. As CO2 emissions change, we
expect that TFP growth rates will move in the opposite direction of the trend in CO2 emissions.
France and Sweden indicate higher growth rates because of the reductions of CO2 emissions.
Austria, Canada, Ireland, Japan, and Norway are the countries that increase CO2 emissions, so
they show slower TFP growth rates than the standard Malmquist productivity index which ig-
nores CO2 emissions. This result is consistent with the findings of Ball et al. (2001) and Boyd et
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al. (1999). The rest of the countries do not show the inverse relationship between the change in
CO2 emissions and TFP growth rates because of the shape of their production frontier. Greece
shows a slight increase in its TFP growth rate, though CO2 emissions increased by 4.01% per
year. This can be explained in part by the location of Greece’s output mix. The carbon intensity
of Greece, 0.3260 carbon ton/$1000, is well outside of the interval in which most countries lie
(Table V). We have few data around Greece and the frontier does not expand toward the GDP
direction with the increase of CO2 emission. Though we use a directional distance function to
address the negative effect of CO2 emissions, most OECD countries still show positive TFP
growth rates. OECD countries accomplish their growth in a lesser carbon-emitting way. This
can be verified from the trend of carbon intensity. This result is consistent with the findings of
Ball et al. (2001) and Boyd et al. (1999).
Table V reports the trends in each member country’s carbon intensities during the sample

period and shows significant improvement made by the OECD during the 1980’s. This result
may be explained in part by environmental regulations in place in the member countries which
are intended to reduce sulfur dioxide and nitrogen dioxide emissions because of public health
concerns. Policies that reduce sulfur dioxide or nitrogen dioxide play a complementary role in
reducing carbon dioxide emission.
The indices are point estimates and an innovation of this paper is to provide a statistical

interpretation to the index number measures. In order to bound them with a confidence interval
we turn to the bootstrapping procedures discussed above4. We use the original estimator in
constructing the confidence interval of the true index. Based on the Malmquist-Luenberger
index, in the 1980’s (Table VI) confidence intervals derived from the bootstrap show that there
is significant aggregate productivity change for most countries. However, we cannot tell whether
efficiency change or technological change drives this productivity change. The disaggregated
indices do not show statistically significant change (Tables VII and VIII)5.

4.2 Asian Results

We next turn to our analysis of Asia. The countries are: China, Hong Kong, India, Indone-
sia, Japan, Korea, Malaysia, Singapore, Philippines, Taiwan, and Thailand. Aggregate country
data are from the Penn World Tables (Mark 5.6) and the International Monetary Fund’s Inter-
national Financial Statistics. The CO2 emission data come from the U. S. Energy Information
Administration.
Table IX shows the output and input growth rates for the sample of Asian countries. Tables

X, XI, and XII provide results analogous to those contained in Tables II, III, and IV for the
OECD countries. If carbon dioxide emissions are ignored productivity growth can be found
only in Japan, Korea, Taiwan, Singapore and Hong Kong. This is consistent with the finding of
Young (1995) who pointed out that the bulk of post-WWII growth in Asian countries was due
to input growth and not TFP growth.

4The bootstrap results indicate that the corrected estimator has the higher mean squared error:

var
ndML

t,t+1

0 (p)
o
> 1

3

³dbiasB hdML
t,t+1

0

i´2
5There is no guarentee that the solutions from the programming problems yield a feasible solution and in fact

this happens in several countries. In this case productivity index is not available (n. a.).
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When we apply the directional distance function methods, Japan is the only country that
shows positive productivity growth over the entire sample period. This is consistent with the
other OECD countries. No productivity growth now can be found for Korea, Taiwan, Singapore
and Hong Kong, countries that showed positive TFP growth without the consideration of CO2.
This may indicate that measured TFP growth in these countries was distorted by a failure to
properly account for the growth in environmental bads.
The developing countries are arguably less interested in and well-equipped to handle waste

by-products in pursuing their economic policy. Confidence intervals derived from the bootstrap
show that there is also significant aggregate productivity change for most Asian countries (Table
XIII). However, we cannot tell whether efficiency change or technological change drives this
productivity change. The disaggregated indices do not show statistically significant change
(Tables XIV and XV).
Table XVI shows each country’s efficient production combination in 1995, the end of the

Asian sample. This is obtained using the Malmquist-Luenberger distance function and scaling
radially its actual outputs to their frontier efficient levels. If the largest polluting country in
Asia, China, could operate at her frontier, she could increase GDP and decrease carbon dioxide
emission by 38% and attain a 0.146 Ton/$1000 carbon intensity. This is in line with the least
polluting countries in the OECD (Table V).

4.3 Incremental Costs of Pollution Abatement

The choices of the direction vectors for CO2 levels used in our analysis are consistent with
current practices and proposed treatments of CO2 in the discussions of world environmental
policies. We have examined growth accounting across the spectrum of direction vectors, from
no constraints on pollution, to no increase over current levels, to a partial reduction, and have
estimated productivity growth levels and their standard errors under these different scenarios.
A final question we consider is what are the incremental costs of the various angles of the
direction vector that directly determine the force of the constraint on the CO2 levels that
are not freely disposable as compared with the case in which no consideration is given to the
environmental by-products, that is they are assumed to be freely disposable. We adopt the
following computational procedure. We first estimate the distance function under the set of
restrictions on the bads considered above using the input/output data. Given the distance
function, we then derive the production frontier using the specific restriction on CO2 emissions.
We calculate incremental costs by dividing the change in the frontier value of GDP under the
different scenarios under the assumption of free disposability by the corresponding frontier level
of CO2 emissions. Calculation of the incremental costs of reductions in CO2 emissions for
non-frontier observations is problematic. These calculations involve observations for which
no constraint and hence no implicit valuation can be applied to incremental changes in inputs
and/or outputs. Thus for countries that are not on the frontier, we must assume that the
adjustment costs involving a movement toward the frontier are minimal. Since the bulk of the
OECD countries appear to be near or at the frontier and few of the Asian countries are, we
focus on the former set of countries. We estimate the median incremental cost of a reduction of
CO2 emission to be to be on the order of $131/ton for the direction in which emission levels are
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maintained at their current levels and on the order of $159/ton when we reduce CO2 emissions
by the projection of the ML index. These do not differ greatly, in part because for this exercise
the countries are assumed to be at the frontier and when then technology displays little convexity
the two treatments are quite similar. They also are estimated based on a technology that was in
place in the 1980’s. They are in the middle of the range of estimates for the carbon permit prices
(c.f., Weyant and Hill, 1999; Nordhaus, 2001). There appears to be a strong positive relation
between the incremental cost of CO2 emissions and the carbon intensity of a country’s economy,
a result that has significant implications for developing economies whose carbon intensities are
substantially larger that the OECD countries.

5. CONCLUSIONS

In this paper we have analyzed the productivity growth of OECD and Asian countries, taking
explicit account of environmental waste by-products such as CO2 which account for over 80%
of total green house gas emissions. The Malmquist-Luenberger productivity index is estimated
to account for CO2 and is compared with a reference Malmquist index that does not account
for CO2 emissions. When we include carbon dioxide as a bad output of the economies, average
growth rates in total factor productivity for OECD countries show little change. Ball et al.
(2001) and Boyd et al. (1999) found a marginal increase in TFP growth. Such marginally higher
rates are found in our analysis when we only constrain levels of CO2 to remain at sample levels
(the More Goods case). The Asian economies on average show little apparent impact of such
environmental accounting on their total factor productivity growth rates.
The confidence intervals derived by bootstrapping methods indicate that significant aggregate

productivity growth in the Malmquist-Luenberger sense has taken place in the last decade in
OECD. Asian countries showed significant negative productivity growth except Japan. This
is consistent with the finding of Young (1995) who pointed out that the bulk of post-WWII
growth in Asian countries was due to input growth and not TFP growth. However, we cannot
determine with nominal statistical confidence whether it is due to catching up (efficiency change)
or innovation (technology change). We view the lack of significant results as some of the most
important findings from our research. Index numbers are simply point estimates without any
standard error. We have provided a methodology that can be used to further the debate on the
effects of carbon taxes on productivity growth whose statistical significance can be assessed via
the bootstrapping algorithms.
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Table I. Average growth rate of inputs and outputs(%)(1980-1990)
GDP Carbon Dioxide Capital Labor Energy

Australia 2.96 3.18 3.91 1.88 3.01
Austria 2.12 0.45 3.93 0.83 0.79
Belgium 1.89 -0.90 2.12 0.54 -0.05
Canada 2.97 0.15 5.17 1.14 1.34
Denmark 2.10 -1.84 2.21 0.58 -0.60
Finland 3.05 -0.45 3.91 0.73 1.52
France 2.22 -2.69 3.01 0.96 0.35
Germany 2.14 -0.94 2.73 1.34 0.18
Greece 1.87 4.01 2.21 0.53 3.29
Ireland 3.43 1.21 2.83 0.69 1.46
Italy 2.14 1.01 2.99 0.75 1.28
Japan 4.17 0.51 5.99 0.80 1.75
Norway 2.43 0.22 2.52 0.92 1.66
Spain 3.05 0.51 4.44 0.95 1.76
Sweden 2.01 -4.71 3.89 0.68 0.38
U.K. 2.85 0.03 3.01 0.51 0.72
U.S.A. 2.64 0.43 3.49 1.13 1.05
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Table II. Comparison of average annual productivity growth (1980-1990)
Malmquist Malmquist-Luenberger

Country Standard More Outputs∗ More Goods∗∗ Standard∗∗∗

Australia 1.0078 1.0048 n.a n.a
Austria 1.0104 1.0051 1.0147 1.0067
Belgium 1.0142 1.0061 1.0136 1.0127
Canada 1.0181 1.0155 1.0203 1.0157
Denmark 1.0212 0.9970 1.0153 n.a
Finland 1.0207 1.0137 1.0244 1.0202
France 1.0133 1.0133 1.0216 1.0148
Germany 1.0100 1.0061 1.0079 1.0087
Greece 0.9946 1.0092 1.0099 0.9950
Ireland 1.0086 1.0029 1.0060 1.0060
Italy 1.0069 1.0053 1.0062 1.0072
Japan 1.0238 1.0096 1.0330 1.0181
Norway 1.0154 1.0154 1.0207 1.0136
Spain 0.9988 0.9975 0.9979 1.0078
Sweden 1.0135 1.0135 1.0347 1.0247
U.K. 1.0065 1.0095 n.a n.a
U.S.A. 1.0080 0.9907 n.a n.a
Average 1.0113∗∗∗∗ 1.0068 1.0162 1.0116

* USA for 1980-1987, 1988-1990
** Belgium for 1980-1981, 1982-1990, Denmark for 1988-1990, Greece for 1980-1983, 1985-1986.
*** Ireland for 1980-1987, Italy for 1983-1990, Spain for 1982-1990
**** 1.0014 for the countries which corresponds to the Malmquist-Luenberger indices.
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Table III. Comparison of average annual efficiency change growth (1980-1990)
Malmquist Malmquist-Luenberger

Country Standard More Outputs∗ More Goods∗∗ Standard∗∗∗

Australia 0.9946 1.0000 n.a n.a
Austria 0.9993 0.9989 0.9994 0.9965
Belgium 1.0003 0.9986 0.9934 1.0005
Canada 1.0031 1.0031 1.0040 1.0033
Denmark 1.0097 1.0000 1.0000 n.a
Finland 1.0075 1.0022 1.0097 1.0082
France 1.0001 1.0001 1.0027 1.0024
Germany 0.9964 0.9963 0.9950 0.9955
Greece 0.9883 1.0017 0.9923 0.9901
Ireland 1.0080 1.0000 1.0001 1.0118
Italy 1.0000 1.0000 1.0000 1.0000
Japan 1.0152 1.0036 1.0152 1.0096
Norway 0.9996 0.9996 1.0009 0.9985
Spain 0.9965 0.9961 0.9974 1.0023
Sweden 0.9997 0.9997 1.0104 1.0090
U.K. 1.0000 1.0256 n.a 1.0000
U.S.A. 1.0000 1.0000 n.a 1.0000
Average 1.0011 1.0015 1.0015 1.0021

* USA for 1980-1987, 1988-1990
** Belgium for 1980-1981, 1982-1990, Denmark for 1988-1990, Greece for 1980-1983, 1985-1986.
*** Ireland for 1980-1987, Italy for 1983-1990, Spain for 1982-1990
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Table IV. Comparison of average annual technical change growth (1980-1990)
Malmquist Malmquist-Luenberger

Country Standard More Outputs∗ More Goods∗∗ Standard∗∗∗

Australia 1.0132 1.0048 n.a n.a
Austria 1.0111 1.0063 1.0153 1.0102
Belgium 1.0140 1.0075 1.0203 1.0122
Canada 1.0150 1.0123 1.0162 1.0124
Denmark 1.0113 0.9970 1.0153 n.a
Finland 1.0131 1.0115 1.0145 1.0119
France 1.0133 1.0133 1.0188 1.0124
Germany 1.0137 1.0098 1.0130 1.0132
Greece 1.0064 1.0075 1.0178 1.0049
Ireland 1.0006 1.0029 1.0059 0.9943
Italy 1.0069 1.0053 1.0062 1.0072
Japan 1.0085 1.0060 1.0175 1.0083
Norway 1.0158 1.0158 1.0198 1.0151
Spain 1.0023 1.0014 1.0005 1.0054
Sweden 1.0138 1.0138 1.0241 1.0156
U.K. 1.0065 0.9843 n.a n.a
U.S.A. 1.0080 0.9907 n.a n.a
Average 1.0102 1.0053 1.0146 1.0095

* USA for 1980-1987, 1988-1990
** Belgium for 1980-1981, 1982-1990, Denmark for 1988-1990, Greece for 1980-1983, 1985-1986.
*** Ireland for 1980-1987, Italy for 1983-1990, Spain for 1982-1990
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Table V. The trend of carbon intensity (Ton/1985 Thou.$)
1980 1985 1990 AAGR(%)

Australia 0.2950 0.2868 0.3014 0.2
Austria 0.2084 0.1898 0.1767 -1.6
Belgium 0.3422 0.2884 0.2593 -2.7
Canada 0.3683 0.3026 0.2790 -2.7
Denmark 0.3179 0.2672 0.2146 -3.9
Finland 0.3013 0.2231 0.2131 -3.4
France 0.2138 0.1602 0.1307 -4.8
Germany 0.2831 0.2463 0.2084 -3.0
Greece 0.2650 0.2791 0.3260 2.1
Ireland 0.2655 0.2181 0.2140 -2.1
Italy 0.1758 0.1663 0.1573 -1.1
Japan 0.2214 0.1723 0.1548 -3.5
Norway 0.1864 0.1501 0.1497 -2.2
Spain 0.2136 0.2051 0.1664 -2.5
Sweden 0.2329 0.1557 0.1179 -6.6
U.K. 0.2929 0.2527 0.2217 -2.7
U.S.A. 0.3705 0.3146 0.2981 -2.2

Note: AAGR means average annual growth rate(%).
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Table VI. Changes in Malmquist-Luenberger productivity index (CRS)

’80-’81 ’81-’82 ’82-’83 ’83-’84 ’84-’85 ’85-’86 ’86-’87 ’87-’88 ’88-’89 ’89-’90
Austria 0.9931 1.0351∗ 1.0312∗ 0.9685∗ 1.0094∗ 0.9852∗ 1.0126 1.0167 1.0192∗ 0.9978
Belgium 0.9756∗ 1.0187∗ 1.0123 1.0116∗ 0.9970 1.0091∗ 1.0193∗ 1.0431∗ 1.0220∗ 1.0194∗

Canada 1.0340∗ 0.9644 1.0225∗ 1.0388∗ 1.0244∗ 1.0308∗ 1.0217∗ 1.0177 1.0081 0.9965∗

Finland 1.0082 1.0435∗ 1.0297∗ 1.0229∗ 0.9929∗ 1.0070∗ 1.0246∗ 1.0454∗ 1.0450∗ 0.9847∗

France 1.0093 1.0174∗ 1.0014 1.0131∗ 1.0062∗ 1.0397∗ 1.0139∗ 1.0449∗ 0.9984 1.0044
Germany 0.9829∗ 0.9759∗ 1.0198∗ 1.0241∗ 1.0036 1.0131∗ 1.0140∗ 1.0294∗ 0.9960 1.0295∗

Greece 1.0022 1.0205 0.9753∗ 0.9963 0.9874∗ 0.9957 0.9704 0.9988 1.0162∗ 0.9881
Ireland 1.0035 0.9940 0.9719∗ 1.0386 0.9677∗ 0.9603∗ 1.1144∗ n.a n.a n.a
Italy n.a n.a n.a 0.9867∗ 1.0022 1.0078 1.0080∗ 0.9820 1.0207 1.0446∗

Japan 1.0262∗ 1.0509∗ 1.0283∗ 0.9834∗ 1.0335∗ 1.0273∗ 1.0140∗ 0.9994 1.0079∗ 1.0112∗

Norway 1.0527∗ 1.0291∗ 1.0168∗ 1.0213∗ 1.0101 1.0085 0.9890∗ 1.0139 0.9802∗ 1.0164∗

Spain n.a n.a 0.9936 1.0012 1.0105 1.0159∗ 1.0293∗ 1.0172∗ 0.9800∗ 1.0153
Sweden 1.0119 1.0606∗ 1.0395∗ 1.0386∗ 0.9866∗ 1.0156∗ 1.0159∗ 1.0173∗ 1.0446∗ 1.0186∗

Note: Single asterisks(*) denotes significant differences from unity at 0.05



Table VII. Changes in efficiency (CRS)

’80-’81 ’81-’82 ’82-’83 ’83-’84 ’84-’85 ’85-’86 ’86-’87 ’87-’88 ’88-’89 ’89-’90
Austria 0.9982 1.0239 1.0170 0.9546∗ 1.0102 0.9539∗ 1.0140 0.9772 1.0266 0.9922
Belgium 0.9687 1.0290 1.0001 0.9883 0.9823 0.9914 1.0092 1.0179 1.0065 1.0126
Canada 1.0228 0.9762 1.0073 1.0031 1.0067 1.0153 1.0156 1.0019 0.9920 0.9925
Finland 1.0161 1.0357∗ 1.0196 1.0077 0.9874 0.9862 1.0140 1.0129 1.0296∗ 0.9741∗

France 1.0162 1.0078 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Germany 0.9761 0.9997 1.0020 0.9942 0.9882 0.9938 1.0023 1.0010 0.9805 1.0179
Greece 1.0079 1.0110 0.9628∗ 0.9869 0.9879 0.9765 0.9779 0.9801 1.0219 0.9900
Ireland 1.0298 0.9967 0.9684 1.0484 0.9545∗ 0.9476∗ 1.1515∗ n.a n.a n.a
Italy n.a n.a n.a 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Japan 1.0316 1.0388∗ 1.0126 0.9719 1.0340 1.0016 1.0207 0.9735 1.0157 0.9985
Norway 1.0291 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9884 0.9654∗ 1.0036
Spain n.a n.a 0.9865 0.9900 1.0088 1.0019 1.0334 0.9938 0.9869 1.0184
Sweden 1.0177 1.0513∗ 1.0224 1.0000 1.0000 0.9838 1.0019 0.9740 1.0415 1.0000



Table VIII. Changes in technology (CRS)

’80-’81 ’81-’82 ’82-’83 ’83-’84 ’84-’85 ’85-’86 ’86-’87 ’87-’88 ’88-’89 ’89-’90
Austria 0.9949 1.0109 1.0139 1.0145 0.9991 1.0328∗ 0.9986 1.0405 0.9928 1.0056
Belgium 1.0071 0.9900 1.0122 1.0236 1.0150 1.0179 1.0101 1.0247 1.0155 1.0067
Canada 1.0109 0.9879 1.0151 1.0356 1.0176 1.0153 1.0060 1.0158 1.0162 1.0041
Finland 0.9923 1.0075 1.0099 1.0150 1.0056 1.0211 1.0104 1.0321∗ 1.0150 1.0109
France 0.9933 1.0095 1.0014 1.0131 1.0062 1.0397∗ 1.0139 1.0449 0.9984 1.0044
Germany 1.0069 0.9762 1.0177 1.0301 1.0155 1.0194 1.0117 1.0284 1.0158 1.0114
Greece 0.9944 1.0094 1.0130 1.0095 0.9995 1.0196 0.9923 1.0191 0.9945 0.9981
Ireland 0.9744 0.9973 1.0037 0.9906 1.0138 1.0134 0.9677∗ n.a n.a n.a
Italy n.a n.a n.a 0.9867 1.0022 1.0078 1.0080 0.9820 1.0207 1.0446
Japan 0.9948 1.0117 1.0154 1.0119 0.9995 1.0257∗ 0.9935 1.0265 0.9924 1.0128
Norway 1.0230 1.0291 1.0168 1.0213 1.0101 1.0085 0.9890 1.0258 1.0153 1.0128
Spain n.a n.a 1.0072 1.0113 1.0018 1.0140 0.9961 1.0235 0.9930 0.9970
Sweden 0.9944 1.0089 1.0166 1.0386∗ 0.9866 1.0323∗ 1.0140 1.0444 1.0029 1.0186



Table IX. Average growth rate of inputs and outputs (1980-1995)
GDP Carbon Dioxide Capital Labor Energy

China 6.50 4.79 7.64 2.06 5.11
Hong Kong 6.40 5.27 7.89 1.72 5.89
India 5.64 6.90 5.58 1.84 6.77

Indonesia 6.36 6.21 10.67 2.29 7.59
Japan 3.31 0.50 5.12 0.65 2.09
Korea 8.70 7.41 11.99 2.03 9.23
Malaysia 6.71 8.04 9.74 2.96 8.79
Philippines 1.94 2.51 3.96 2.64 3.40
Singapore 7.45 6.05 8.58 2.25 6.80
Taiwan 7.61 5.71 7.52 1.89 6.49
Thailand 7.33 10.21 9.79 2.00 10.33
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Table X. Comparison of average annual productivity growth (1980-1995)
Malmquist Malmquist-Luenberger∗∗

Country Standard More Outputs More Goods∗

China 0.9952∗∗∗ 0.9875 n.a 1.0079
Hong Kong 1.0147 1.0083 1.1099 n.a
India 0.9998 1.0020 0.9996 n.a

Indonesia 0.9736 0.9759 0.9701 0.9847
Japan 1.0254 1.0246 1.0268 1.0259
Korea 1.0048 0.9808 0.9897 0.9921
Malaysia 0.9749 0.9922 0.9778 0.9964
Philippines 0.9819 0.9823 0.9874 0.9934
Singapore 1.0446 1.0146 n.a n.a
Taiwan 1.0046 0.9965 0.9960 0.9957
Thailand 0.9759 0.9785 0.9785 0.9744
Average 0.9996∗∗∗∗ 0.9948 1.0040 0.9963

* Korea for 1980-1981, 1983-1995, Hong Kong for 1980-1982.
** China for 1989-1995, Korea for 1980-1984 and 1985-1995, Taiwan for 1980-1994, Thailand
for 1981-1982 and 1983-1995, Indonesia for 1983-1995.
*** 1.0087 for 1989-1995, which corresponds to the period of Malmquist-Luenberger
**** 0.9937 for eight countries which corresponds to the Malmquist-Luenberger indices.
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Table XI. Comparison of average annual efficiency change growth (1980-1995)
Malmquist Malmquist-Luenberger

Country Standard More Outputs More Goods∗ Standard∗∗

China 1.0046 1.0000 n.a 1.0146
Hong Kong 1.0000 1.0000 1.0000 n.a
India 1.0116 1.0048 1.0097 n.a

Indonesia 0.9882 0.9926 0.9937 0.9963
Japan 0.9894 0.9894 0.9906 0.9913
Korea 1.0005 0.9908 0.9939 0.9970
Malaysia 0.9865 0.9991 0.9824 0.9916
Philippines 0.9934 0.9934 0.9964 0.9986
Singapore 1.0000 1.0000 n.a n.a
Taiwan 1.0147 1.0039 1.0057 1.0124
Thailand 0.9881 0.9960 0.9885 0.9906
Average 0.9979 0.9973 0.9957 0.9991

* Korea for 1980-1981, 1983-1995, Hong Kong for 1980-1982.
** China for 1989-1995, Korea for 1980-1984 and 1985-1995, Taiwan for 1980-1994, Thailand
for 1981-1982 and 1983-1995, Indonesia for 1983-1995.
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Table XII. Comparison of average annual technical change growth (1980-1995)
Malmquist Malmquist-Luenberger

Country Standard More Outputs More Goods∗ Standard∗∗

China 0.9907 0.9875 n.a 0.9935
Hong Kong 1.0147 1.0083 1.1099 n.a
India 0.9884 0.9972 0.9900 n.a

Indonesia 0.9852 0.9832 0.9762 0.9884
Japan 1.0363 1.0356 1.0365 1.0352
Korea 1.0043 0.9899 0.9958 0.9968
Malaysia 0.9883 0.9931 0.9953 1.0048
Philippines 0.9884 0.9888 0.9909 0.9950
Singapore 1.0446 1.0146 n.a n.a
Taiwan 0.9900 0.9927 0.9903 0.9837
Thailand 0.9877 0.9825 0.9898 0.9841
Average 1.0016 0.9976 1.0083 0.9977

* Korea for 1980-1981, 1983-1995, Hong Kong for 1980-1982.
** China for 1989-1995, Korea for 1980-1984 and 1985-1995, Taiwan for 1980-1994, Thailand
for 1981-1982 and 1983-1995, Indonesia for 1983-1995.
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Table XIII. Changes in Malmquist-Luenberger productivity index (CRS)

China Indonesia Japan Korea Malaysia Philippines Taiwan Thailand
’80-’81 n.a n.a 1.0443∗ 0.9441∗ 0.9984 1.0322∗ 0.8703∗ n.a
’81-’82 n.a n.a 1.0248∗ 0.9518 1.0043 1.0187∗ 0.9780∗ 1.0203∗

’82-’83 n.a n.a 1.0190∗ 0.9531∗ 0.9419∗ 0.9915 0.9934∗ n.a
’83-’84 n.a 0.9309∗ 1.0248∗ 0.9722∗ 0.9744 0.9887 0.9967∗ 0.9150∗

’84-’85 n.a 0.9355∗ 1.0426∗ n.a 0.9623 1.0012 0.8828∗ 0.9119∗

’85-’86 n.a 1.0212∗ 1.0174∗ 1.0031 0.9603∗ 0.9995 1.1614∗ 1.0114∗

’86-’87 n.a 0.9681∗ 1.0345∗ 1.0358∗ 1.0319∗ 0.9585∗ 1.0639∗ 1.0046
’87-’88 n.a 0.9968 1.0472∗ 1.0018 1.0454∗ 1.0073∗ 0.9861∗ 0.9852∗

’88-’89 n.a 0.9785∗ 1.0386∗ 1.0204∗ 1.0038 0.9719∗ 1.0047∗ 0.9670∗

’89-’90 0.9749 1.0250∗ 1.0416∗ 1.0095 0.9655∗ 1.0044∗ 0.9341∗ 0.9780∗

’90-’91 1.0001∗ 1.0025 1.0407∗ 0.9840∗ 1.0151 0.9836∗ 1.0866∗ 0.9686∗

’91-’92 1.0186∗ 0.9690∗ 1.0014∗ 1.0006 1.0082∗ 0.9647∗ 0.9733∗ 0.9830
’92-’93 1.0224 0.9681∗ 1.0073∗ 0.9319∗ 0.9743∗ 0.9628∗ 1.0662∗ 0.9756∗

’93-’94 1.0173 1.0303∗ 0.9905 1.0323∗ 1.0224∗ 1.0106∗ 0.9425∗ 1.0014
’94-’95 1.0151 0.9905 1.0144∗ 1.0488∗ 1.0371∗ 1.0054∗ n.a 0.9449∗

Note: Single asterisks(*) denotes significant differences from unity at 0.05
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Table XIV. Changes in efficiency (CRS)

China Indonesia Japan Korea Malaysia Philippines Taiwan Thailand
’80-’81 n.a n.a 1.0000 1.0052 0.9818 1.0221 0.9112∗ n.a
’81-’82 n.a n.a 1.0000 1.1144 1.0183 1.0022 1.0337∗ 1.0000
’82-’83 n.a n.a 1.0000 0.9873∗ 0.9581∗ 0.9829 1.0102 n.a
’83-’84 n.a 0.9648 1.0000 0.9563 0.9674∗ 0.9989 0.9892 1.0000
’84-’85 n.a 0.9905 1.0000 n.a 0.9651 1.0185 1.0333∗ 1.0000
’85-’86 n.a 1.0082 1.0000 0.9208 0.9606 1.0000 1.0198 1.0000
’86-’87 n.a 0.9894 0.9882 1.0255∗ 1.0221∗ 0.9939 1.0040 1.0000
’87-’88 n.a 1.0009 0.9811 1.0067 1.0485∗ 1.0061 0.9865 1.0000
’88-’89 n.a 1.0099 1.0162 1.0222 1.0070 1.0000 1.0613 1.0000
’89-’90 0.9884 1.0378 1.0020 0.9784 0.9395∗ 1.0000 1.0072 1.0000
’90-’91 1.0209 1.0000 0.9919 0.9791 1.0112 1.0000 1.1171∗ 1.0000
’91-’92 1.0242 1.0000 0.9389∗ 0.9966 1.0067 1.0000 0.9878 0.9962
’92-’93 1.0235 0.9986 1.0005 0.9364∗ 0.9820 1.0000 1.0123 0.9961
’93-’94 1.0045 0.9750 0.9545 0.9962 0.9775 0.9587 1.0000 0.9479
’94-’95 1.0264 0.9806 0.9946 1.0334 1.0288 0.9955 n.a 0.9372
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Table XV. Changes in technology (CRS)

China Indonesia Japan Korea Malaysia Philippines Taiwan Thailand
’80-’81 n.a n.a 1.0443 0.9393 1.0170 1.0099 0.9551 n.a
’81-’82 n.a n.a 1.0248 0.8541 0.9862 1.0165 0.9462∗ 1.0203
’82-’83 n.a n.a 1.0190 0.9654∗ 0.9830 1.0087 0.9834∗ n.a
’83-’84 n.a 0.9649∗ 1.0248 1.0166 1.0072 0.9899 1.0076∗ 0.9150∗

’84-’85 n.a 0.9445∗ 1.0426 n.a 0.9971 0.9830 0.8543∗ 0.9119∗

’85-’86 n.a 1.0129 1.0174 1.0894 0.9996 0.9995 1.1388∗ 1.0114
’86-’87 n.a 0.9784 1.0469 1.0101 1.0095 0.9644∗ 1.0597∗ 1.0046
’87-’88 n.a 0.9959 1.0675∗ 0.9951 0.9970 1.0012 0.9996 0.9852
’88-’89 n.a 0.9690 1.0221 0.9983 0.9968 0.9719 0.9466 0.9670
’89-’90 0.9863 0.9876 1.0395 1.0318 1.0276 1.0044 0.9273∗ 0.9780
’90-’91 0.9797 1.0025 1.0492 1.0050 1.0039 0.9836 0.9727 0.9686
’91-’92 0.9945 0.9690 1.0655 1.0040 1.0015 0.9647∗ 0.9853 0.9868
’92-’93 0.9989 0.9695 1.0068 0.9952 0.9921 0.9628∗ 1.0532∗ 0.9795
’93-’94 1.0127 1.0567∗ 1.0377 1.0362 1.0460∗ 1.0542∗ 0.9425∗ 1.0565
’94-’95 0.9890 1.0101 1.0199 1.0149 1.0080 1.0100 n.a 1.0082
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Table XVI. Malmquist Luenberger production frontier at 1995

Country Actual value Frontier
GDP CO2 Intensity GDP CO2 Intensity

China 2452.2 792.3 0.323 3377.2 493.5 0.146
Hong Kong 111.3 12.1 0.109 111.3 12.1 0.109
India 1380.8 223.6 0.162 1380.8 223.6 0.162

Indonesia 479.4 57.3 0.119 502.1 54.5 0.109
Japan 1916.8 280.8 0.146 2193.2 240.3 0.110
Korea 412.3 102.3 0.248 551.5 67.8 0.123
Malaysia 138.5 23.3 0.168 168.3 18.3 0.109
Philippines 121.2 14.5 0.120 127.0 13.8 0.109
Singapore 47.3 21.0 0.445 47.3 21.0 0.445
Taiwan 238.5 46.7 0.196 238.5 46.7 0.196
Thailand 293.8 42.1 0.143 333.3 36.5 0.109
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Figure 4. Mixed Periods Distance Functions
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APPENDIX 1

The distance functions are constructed by the following programs.³ bDt
0(x

t(k0), yt(k0), bt(k0))
´−1

= Max θ(k0)

Subject to θ(k0)ytm(k
0) ≤

KX
k=1

zt(k)ytm(k) m = 1, ....,M

KX
k=1

zt(k)btn(k) = btn(k
0) n = 1, ...., N

KX
k=1

zt(k)xtl(k) ≤ xtl(k
0) l = 1, ...., L

zt(k) ≥ 0 k = 1, ....,K

This formulation represents a constant returns to scale technology whose inputs and desirable
outputs are strongly disposable and whose undesirable outputs are weakly disposable. The
constant returns to scale technology assumption can be relaxed to allow nonincreasing returns
to scale or variable returns to scale. Those assumptions are applied by adding the restrictionsPK

k=1 z
t(k) ≤ 1 orPK

k=1 z
t(k) = 1, respectively, instead of zt(k) ≥ 0. zt(k) is an intensity variable

indicating at what intensity a particular country’s resources may be employed in production. The
change from weak to strong disposability of undesirable outputs entails changing the equality
of the second constraint to the inequality

PK
k=1 z

t(k)btn(k) ≥ btn(k
0). Similarly, an inter-period

distance function Dt
0(x

t+1, yt+1, bt+1) can be constructed from the linear program:³ bDt
0(x

t+1(k0), yt+1(k0), bt+1(k0))
´−1

= Max θ(k0)

Subject to θ(k0)yt+1m (k0) ≤
KX
k=1

zt(k)ytm(k) m = 1, ....,M

KX
k=1

zt(k)btn(k) = bt+1n (k0) n = 1, ...., N

KX
k=1

zt(k)xtl(k) ≤ xt+1l (k0) l = 1, ...., L

zt(k) ≥ 0 k = 1, ....,K

Note that the reference technology is constructed from observations at t. Also (xt+1, yt+1, bt+1)
need not belong to F t, so bDt

0(x
t+1(k0), yt+1(k0), bt+1(k0)) can have values greater than 1.

Another type of Malmquist index can be defined by not differentiating between the desirable
and undesirable outputs. The (more outputs) distance functions simply find a maximum possible
production point along the radial hyperplane. They can be constructed by solving the linear
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program: ³ bDt
0(x

t(k0), yt(k0), bt(k0))
´−1

= Max θ(k0)

Subject to θ(k0)ytm(k
0) ≤

KX
k=1

zt(k)ytm(k) m = 1, ....,M

KX
k=1

zt(k)btn(k) ≥ θ(k0)btn(k
0) n = 1, ...., N

KX
k=1

zt(k)xtl(k) ≤ xtl(k
0) l = 1, ...., L

zt(k) ≥ 0 k = 1, ....,K

The Malmquist-Luenberger index can be constructed by solving the set of linear programming
problems:

c−→
D

t

0(x
t+1(k0), yt+1(k0), bt+1(k0); yt+1(k0),−bt+1(k0)) = Max β

Subject to (1 + β)yt+1m (k0) ≤
KX
k=1

zt(k)ytm(k) m = 1, . . . ,M

KX
k=1

zt(k)btn(k) = (1− β)bt+1n (k0) n = 1, . . . , N

KX
k=1

zt(k)xtl(k) ≤ xt+1l (k0) l = 1, . . . , L

zt(k) ≥ 0 k = 1, . . . ,K
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APPENDIX 2

The following algorithm is used to implement the density estimation of the original estimators
and their reflections.
First, we form (N×1) vectorsA = [ bDt

o(y1, x1)... bDt
o(yN , xN )]

0 andB = [ bDt+1
o (y1, x1)... bDt+1

o (yN , xN )]
0.

Second, we reflect these values about the boundaries in two-dimensional space to form (4N×2)
matrix represented by:

∆ =


A B

2−A B

2−A 2−B

A 2−B


The estimated covariance matrix of the columns of [A B], cP, which is the same as that of the

reflected data [2−A 2−B], gives the temporal correlation of the original data. The covariance
matrix of [2−A B] and [A 2−B] is given by cPR.cP =

" bσ21 bσ12bσ12 bσ22
#
and cPR =

" bσ21 −bσ12
−bσ12 bσ22

#
Third, we randomly draw with replacement N rows from ∆ to form (Nx2) matrix ∆∗ =

[δij ], i = 1...N, j = 1, 2.

Fourth, we compute δ·j = 1
N

NP
i=1

δij , j = 1, 2.

Fifth, we simulate draws from a bivariate N(0,cP) and N(0,cPR) by generating iid pseu-
dorandom N(0, 1) deviates (z1, z2) s.t. (l1z1, l2z1 + l3z2) v N(0,cP) and (l1z1,−l2z1 + l3z2) v

N(0,cPR). Here, l1, l2, l3 are elements of a lower triangular matrix L =

"
l1 0

l2 l3

#
obtained

from the cholesky decomposition of the (2 × 2) matrix cP. These simulated draws form �∗, an
(N × 2) matrix containing independent draws from the kernel functions. If ∆∗i is drawn from
[A B] or [2−A 2−B], the ith row of �∗ is from N(0,cP), but if �∗ is drawn from [2−A B] or
[A 2−B], the ith row of �∗ is from N(0,cPR).
Sixth, we compute an (N × 2) matrix Γ:
Γ = (1 + h)−

1
2

Ã
∆∗ + h�∗ − C

"
δ·1 0

0 δ·2

#!
+ C

"
δ·1 0

0 δ·2

#
where C is an (N × 2) matrix

of ones. Following the suggestion for bivariate data by Silverman (1986), the bandwidth h is set
equal to (4/5N)1/6.

Seventh, for each element of γij of Γ, set γ
∗
ij =

(
γij if γij ≥ 1

2− γij otherwise
. The (N × 2) matrix

Γ∗ = [γ∗ij ] contains simulated distance function values.

Eigth, using these we form pseudosamples c∗ by setting x∗itj = xitj and y∗itj =
bDt
o(xitj ,yitj )yitj

γ∗ij
i = 1...N, j = 1, 2. Since we are using output oriented distance functions in our Malmquist
computations, we calculate bDt

o(xitj , yitj )yitj to scale the output vector to the estimated efficient
frontier and we divide it by γ∗ij to simulate a random deviation away from this frontier.

Ninth, we compute the four distance fucntions bD∗to (x∗it, y∗it), bD∗t+1o (x∗it, y
∗
it), bD∗to (x∗it+1, y∗it+1)
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and bD∗t+1o (x∗it+1, y
∗
it+1) on which the Malmquist TFP index and its components are based. We

repeat steps three to nine B times to get a set of bootstrap estimates. We form confidence
intervals for each index by sorting the bootstrap values in asecending order, deleting

¡
α
2

¢
of

the elements at either end and setting −b∗α and −a∗α equal to the end points of the resulting
sorted vector. This yields an estimated (1− α) percent confidence interval, cMi(t, t+ 1) + a∗α ≤
Mi(t, t+1) ≤ cMi(t, t+1)+b∗α, for the Malmquist index. Confidence intervals for its components
are obtained similarly. The estimated index is statistically significantly different from unity
if the interval does not contain one.The following algorithm is used to implement the density
estimation of the original estimators and their reflections.
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