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A Model of World Aircraft Demand
R.C. Sickles*, D. Good', A K. Postert*, L. Getachew *

Abstract

The paper develops an econometric model for predicting aircraft demand
by the major world airlines. This model is based on economic theory where firm
behavior is assumed to rest on cost minimization and profit maximization.
Demand for factors of production, here aircraft, emanate from such behavioral
underpinnings. In contrast, we also forecast aircraft demand based on time series
methods. These methods are atheoretical in nature and postulate that demand is
based on past values and disturbance terms.

1 Introduction

The nature of international trade has changed dramatically over the last
decade. Where once the world was a place of nations seeking their own interests
individually, it is today a collection of large trading blocks. In one high profile
instance of such integration, the European Union (EU) has embarked on an
ambitious effort to remove economic barriers among the twelve member states
and to establish an integrated market system. The 1992 EU integration effort in
fact presages the momentum of global changes in international trading
arrangements which place special demands on the global economic community.
Arguably, the passage of the North American Free Trade Agreement was a direct
outcome of these European initiatives.

This changing environment means that those governments and industries
that have enjoyed success in some international and/or domestic markets will find
that the terms of trade have changed. Continuation of current subsidies and
“business as usual” may prove difficult. On the other hand, economic entities
which may have been unable to successfully compete in some markets may find
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new business opportunities and avenues for profitable exploitation. As countries
around the world have developed within this new environment, so has the pattern
of air traffic. For example, the share of international traffic generated over and
near the Pacific Ocean has been increasing at a rate of more than 10% per year, far
above the 6.6% annual growth rate for the rest of the world. Projections indicate
that by the end of the century over one-third of all international flights will
emanate from the Pacific. No doubt another important factor behind this growth in
air travel has been the emergence of strong industrial economies in the region,
including those of Hong Kong, Indonesia, Singapore, Japan, Korea and Taiwan.
China, in fact, represents the world’s largest unexploited market. As these newly
industrialized economies grow, so too do their demands for air travel and their
ability to produce it. In fact, it can be argued that these countries already possess
comparative advantage because of low labor costs, an ability to increasingly
exploit the advantages of large equipment size, and recent improvements in their
productive efficiency. Moreover, the $8 billion loss in the U.S. industry over the
last three years and the open-sky policy of the U.S. in its bilateral negotiations
point to strong forces for change in government policies toward shared equity
stakes, interlining, and integration of networks among international airlines.

In this paper, we estimate the demand for both passenger and cargo
services provided by each major international carrier’s network. We link the
carrier-specific demand schedules with a cost analysis of the carriers in terms of
the prices of the firm’s factors of production - labor, fuel, materials, and flight
equipment.

Our cost model is used to generate derived demand schedules for the
factors of production, in particular flying capital. The demand schedules will be
functions of the price of the factor of production, prices of other factors,
characteristics of the aircraft used by the airline system, and the level of passenger
and cargo service.

Our joint model of supply and demand for commercial air service (along
with the inferences about the demand for airplanes which are imbedded in that
model) allows us to simulate the effects of emerging technologies in engine
design capabilities and in airframe capacities in terms of modifications in the
hedonic characteristics of the planes in service. We can also simulate the growth
in total system demand for service and, thus, for such inputs as planes. We can
examine the impacts of emerging technologies that focus on engine fuel
efficiencies and noise abatement characteristics (since the former will reduce fuel
requirements and since fuel is one of the factors of production).

In addition, we develop forecasts for aircraft demand using time series
forecasting. The atheoretical approach assumes that all relevant information of a
single series, here the size of each carrier’s aircraft fleet, is contained in the
history of the data.

We describe the data in section 2. Section 3 specifies the demand
functions which we estimate using the world data set. The cost function is
explained in section 4. Discussion of the predictions made, based on the above
functions, is presented in section 5. Section 6 provides an overview of the
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methodology of time series forecasting. The results of this approach are presented
in section 7 and a brief comparison of the two methods is made in section 8.
Finally, section 9 provides concluding comments.

2 Data

Our airline data set consists of a panel of the largest air carriers from Asia,
Europe and North America. These carriers supply approximately 85% of the
scheduled passenger traffic in the world. The primary sources for our data include
the Digest of Statistics for Commercial Air Carriers from the International Civil
Aviation Organization (ICAO) and the Penn World Table (Summers and Heston,
1994). There are frequent instances where this source was not complete.
Consequently, these data were supplemented with those obtained from the
International Air Transport Association’s World Air Transport Statistics and
Federal Express Aviation Service’s Commercial Jet Fleets. Using these sources,
we constructed a set of four airline inputs; Labor, Energy, Materials, and Aircraft
Fleet. In addition we constructed several aggregate airline output, along with
characteristics of these outputs.

Inconsistencies in the definition of labor categories, differences in
aggregation, and missing data demanded that our labor index be constructed from
a single sub-component. Our labor index uses the number of employees at mid-
year as the measure of quantity. Prices are calculated by dividing expenditures by
this quantity.

ICAO complies annual information about jet fuel prices within each of its
12 regions. We use this information as a price measure in cents/liter. Quantities
are calculated by dividing fuel expenses by this price.

Our materials index is based on the financial data obtained from ICAO. It
uses total operating expenses minus the amounts spent on aircraft rental,
depreciation, fuel, and labor.

We use an inventory of aircraft fleet provided by ICAO to determine the
number of aircraft in over 80 separate aircraft types. For each aircraft type, we
construct a user price, roughly comparable to an annual rental price. Total
expenses are then the sum of these user prices, weighted by the number of aircraft
in a carrier’s fleet in each category. Our valuations of individual aircraft types is
based on the average of Avmark’s January and July subjective valuations of each
type of aircraft for every year. These valuations are based on recent sales and
perceptions of changing market conditions for aircraft in half-time condition.
Because we value aircraft in half-time condition, we assume that their remaining
useful life is 14 years and use a 1.5 declining balance method to calculate
economic depreciation. In addition to constructing price and quantity measures,
we also generate several characteristics of the capital stock: its size (maximum
seats per plane), its technological age (in years), and a classification of the aircraft
as turboprop, jet or wide-bodied jet.

Our scheduled passenger output is measured in revenue ton kilometers.
This is calculated under the assumption that a passenger, along with checked

AIRPORT FACILITIES 43

baggage, constitutes 200 pounds in weight. Our nonscheduled output measure
combines charter, mail, and cargo operations. Charter passenger traffic again
assumes 200 pounds per passenger. For scheduled and non-scheduled outputs,
both quantity and expense information is available. For incidental output, we use
the country’s purchasing power parity as a deflator to construct a quantity
measure.

Finally, we construct two traditional measures of the carrier’s output: stage
length and load factor. Load factor provides a measure of service quality and is
often used as a proxy for service competition. Stage length provides a measure of
the length of individual route segments in the carrier’s network.

3 Demand Equation

We develop a specific model of international demand for an airline firm’s
provision of passenger and cargo services. Demand for a carrier’s service is driven
by the carrier’s price (measured by the average ticket price for flights on carrier i )
and the size and economic prosperity of the market measured by population, per
capita income, and labor force participation rate. The period under consideration
is 1977 to 1992. Demand is defined as

N-1
log¥, =a + 3, 0,CARRIER, + B, log P, ,
i=l

+ Bpop log POP, + B, log PCI,, (4]
+ B, log LFP, +¢,

where Y is revenue passenger mile originating at time ¢ for carrier k, P, is the
average ticket price for service originating at time ¢ for carrier k, POP, is the
population at time ¢ of country k, PCI, is the per capita income at time ¢ of
country k, LFP, is the labor force participation rate at time ¢ for country k. The
CARRIER, represents the conventional treatment for fixed effects.

Equation 1 was estimated using ordinary least squares (OLS)'. Estimates
for the three world demand equations are shown in Table 1. The estimates from
these three equations do not seem to be reasonable, given previous studies. The
Europe equation has a price variable which is insignificant and the sign on the
population variable is negative, which is not expected. For Asia, we have price
having a positive effect on demand. Further, the sign on the labor force
participation rate is not what we would expect. For the North American demand
estimation, the population variable is quite large. These poor estimates could stem
from aggregation of the data and from omitted variable bias in the demand
equation. We would expect that less aggregated data that included airport-to-

1OLS estimation of a least squares dummy variables (LSDV) model such as (1)
allows for correlation between the regressors and the effects.
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airport travel would improve the estimates. Also, having a variable for
competitors’ prices on competing routes could only improve the quality of the
estimates.

4 Cost Equation

Cost function estimates for the airline industry are necessary to predict
fleet size. We do this under two different sets of assumptions:

i) carriers are cost minimizers, and

ii) carriers are profit maximizers.
Under cost minimization, outputs are taken to be exogenous. With profit
maximization, outputs are endogenous variables. These different assumptions will
affect how our cost model will be estimated. This will be explained in the sections
below. We use a translog functional form for our cost equations.

4.1 Cost Minimization

The cost function is given by

4 4 3 1<
logC=a+ Zﬂilogp,. +226U log p; log p; +526ﬁ log” p,
i=l i=l

joi i=1

2 l 2
+Z7’i log¥; + '2_27:‘.' 1032 Y, +7,logY logk,
i1

i=l

+6, log p, log AA + &; log p, log AS + 8, PJlog p, )

36
+8,PWlogp, + B, logSL+ B, log LF + 3,0, AIR; +&,

i=l

where p, is the i* input price, ¥; is one of the two outputs (scheduled output,

and non-scheduled and incidental output), AA is the average age of an airframe in
months, AS is the average size in seats of the fleet, PJ is the percentage of jet
aircraft in the fleet, PWB is the percentage of wide-bodied aircraft in the fleet,
SL is stage length, and LF is the load factor.

The o; AIR, represents fixed firm effects in the cost equation. These firm
effects can be given the reduced form interpretation of omitted variables that are
specific to the firm and display little variability over the sample period, or can be
given a more structural interpretation as time-invariant technical inefficiencies
from a stochastic frontier cost function (Schmidt and Sickles, 1984; Cornwell,
Schmidt and Sickles, 1990).

The cost share of capital is given by

4

S, =58 +Z¢‘5,.,t log p, + 6, log p, log AA + 6, log p, log AS 3
i=l

+8,PJlogp, +8,PWlogp,
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Before we do any estimation, we normalize the data so that all the
variables are unity at the data median. We estimate the cost function and all but
one of the cost share equations using iterated seemingly unrelated regression
(ITSUR). Asymptotically, upon convergence, ITSUR will be equivalent to the
maximum likelihood estimates, which are invariant to that cost share equation we
leave out of the estimation. The parameter estimates (excluding the fixed effects)
are found in Tables 2 and 4.

These equations produced estimates which we consider reasonable. The
fitted function is concave in prices at the mean of the data as required. The
function is concave at 99.6% of the data points. Also, the fit of the model is quite
good, with a system weighted R* value of 0.9672.

4.2 Profit Maximization

Under profit maximization, companies optimally choose outputs given a
set of input prices. This means that output is no longer exogenous and we must
use a different method to estimate the cost function above. The estimation we use
is a modification of iterated three-stage least squares (I3SLS). The results are
shown in Tables 3 and 4.

The parameter estimates found under the assumption of profit
maximization should be questioned. The fitted function meets the requirement
that it be concave in prices at the mean of the data, and is concave at 98.8% of the
data points. The fit of the model is good, with a system weighted R? value of
0.9104.

§ Prediction

To predict the number of aircraft which would be in a particular carrier’s
fleet over a given period, we do the following:

i) predict the growth of service demand over the period using an estimated
demand function;

ii) predict the change in total cost per carrier over the time period using
our predicted demand growth and an estimated cost function;

iii) use the capital share equation to predict what the total capital expense
will be over the period;

iv) assume the number of planes in a period is equal to the total
expenditure on capital divided by the cost per plane.

From our estimates shown in Table 1, this scenario leads to an annual
service increase of 3.64% in Asia, 1.98% in Europe, and 8.32% in North America.
These numbers do not seem as reasonable as we would have hoped. The 3.64%
service increase in Asia is below the observed growth rate of 10% in air travel.
The increase in demand in North America is much too high when compared to
other studies. Obviously, this will affect the quality of the forecast of the fleet
size.
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With these demand estimates in hand, we can use our estimated cost
function and capital share equation(s) to forecast future aircraft demand. We do
this by first forecasting total cost and capital share. Capital expenditure can then
be found. Aircraft in a fleet is then just the capital expenditure divided by the
capital price.

5.1 Cost Minimization

Using the cost minimization procedure, we predict a 1.58% increase in
planes in Europe, a 3.11% increase in Asia, and a 7.65% increase in North
America. These results are biased by the demand estimates. The 7.65% increase in
fleet size in North America is about two times as large as predicted in previous
studies which looked only at the U.S. Also, since the Asia demand growth seems
to be too low, growth in fleet size would be biased downward.

5.2 Profit Maximization

In this area, our models did not perform as well as we would have liked.
For example, we predict a 2.06% increase in planes in Europe, a 4.37% increase
in Asia, and a 12.6% increase in North America. As with the cost minimization,
the results rely on questionable demand functions.

The projected average number of total aircraft from cost minimization and
profit maximization, by individual carriers, are presented in Table 5 at the end.

6 Time Series Methodology

Forecast for aircraft demand by the major world airlines can also be made
using time series data of each firm’s aircraft fleet size. The data, used in the
econometric models described in the previous sections, cover the period 1976 to
1994 and forecasts are made to the year 2004.

To make these time series forecasts, it is necessary to use some important
tools. A major diagnostic tool for fitting probability models to time series is the
autocorrelation function. This function helps to describe the evolution of a
stochastic process through time. The autocorrelation function (ACF) is given by

yk) cov(x,,x,,,)
7(0)  Jvar(x,)*Jvar(x,,,)

pk) = @

A related concept to the ACF is the partial autocorrelation function
(PACF). It measures the partial correlation between x, and x,_, with intervening
X,_,.--X, 4, Vvariables held constant. Like the ACF, the plot of the PACF against k
lags is important in identifying the stochastic process underlying a time series.
(Johnston, 1997, p.212)
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Some useful stochastic processes in time series analysis include a purely
random process, a moving average (MA) process, an autoregressive (AR) process
and a mixed ARMA process. A purely random process, also called white noise, is
one where the time series, x,, consists of a sequence of independent and

identically distributed (iid) random variables {z,}. The process has a constant
mean, variance and covariance over time. Therefore, it is stationary. A moving
average process is where the current time series, x,, is related to random errors
{z,} from the present and previous time periods: these errors have mean of zero

and variance equal to O'f. MA processes are important because they describe
effects of ‘random’ events, such as strikes and shortages, on various economic
variables. These events will have an immediate effect and can also have some
limited impact in several subsequent periods (Chatfield, 1989, p.35). An
autoregressive (AR) process is one where the stochastic process underlying the
time series exhibits autocorrelation: the current value of the series, x,, is a linear
combination of p most recent past values of itself and an error term.

In general, the following theoretical properties of the ACF and the PACF
can be used to identify sample processes.

AR(p) MA(q) ARMA(p.q)

ACF | decreases exponentially | cuts off to zero | decreases
(dies out slowly) or | afterlagq exponentially (dies out

decreases in sine wave slowly)
manner

PACF | cuts off to zero after dies out slowly dies out slowly
lag p

A method, known as the Box-Jenkins approach which is used to analyze
univariate time series, forms the basis for the time series analysis and forecasting
that follows. This method, which relies on the above theoretical processes,
involves three phases.

i) The first phase is identification, or model selection, where we
determine the type of underlying probabilistic process that governs the
behavior of the series.

ii) The second phase is estimation of the model parameters. Least squares
or maximum likelihood estimation methods can be used.

iii) The third phase is diagnostic checking where we asses the adequacy of
the model parameters. It may be necessary to re-specify the model and
reestimate parameters until a well fitting model can be found.

Once an adequate model is selected, forecasting follows. For AR(1)
process, x, =a,x,_, +z,, using & we produce forecast for one period into the
future. Specifically, we use £, =d,x, for forecasting. For %,,, we use
%, =@3%,, =d,(dx,). Generally, forecasts L periods into the future use
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£,,, =dx,. Since var(z,) = 67, the variance of z, is the forecast error variance
for one future period of an AR process. For L future periods, forecast error
variance becomes (1+a; +a;' +....+0 )02 ; the error variance increases as
forecasts are made further into the future (ibid).

For MA(1) process, x, =6, +z, + Bz,_,, we produce forecasts for one
period into the future using %,,, =6, + B,Z, where Z, =x, -, — ﬁlz,_l. Forecasts
for subsequent periods simply equal to 6,, the mean, since Z,,,Z,.,,...are not

known at time t. Thus an MA(q) model has forecast values based on only the
mean after period q. Forecast error variance for MA (q) is given by

var(z, ) + var(z, )i B! =cl+0o? i B’ =o? iﬁf )
i=0

i=1 i=0
For ARMA(1,1) model, x, =a,x, , +6, +z, + Bz,_,, %, =Cx, +6,+fZ, and
£,,, = Glx, +8,. Generally, for ARMA(p,q) forecasts L periods into the future
are based on (Cryer, 1986, pp.168-169)
Ro=otx, 4. drx,, ,+6,+B'2 +B 2y for L=1...q

~

L oL
Xy =0 X et Q)% +6 forL>gq

7 Results

Tables that give forecasts for each airlines using both the econometric and
Box-Jenkins approaches appear at the end of the paper; they extend from 1997 to
2004 for each airlines.

The identification phase revealed that nine out of the thirty-three series
followed a random process: any autoregressive or moving average processes were
absent. As a result, forecasting was based on the mean level of the data. Out of the
nine, one series was stationary and exhibited a random process without any
differencing. For this case, forecast L periods into the future rested on
%,,. = 6,, where 6, is the mean. For the rest of the random processes, for which
stationarity was induced by differencing, forecast L periods into the future used
£x+L = 60 + i"u»l.--l .

The majority of the remaining 24 series exhibited autoregressive processes
of varying degrees: specifically, 22 had damped exponential or damped sine wave
ACEF plots which suggested autoregressive processes. Closer examination revealed
spikes at lag one of the PACF plots for 11; spikes at the first two lags for 5; spikes
at the first three lags for 2; and spikes at lags four, at lags one and five, and at lags
two, three, and five for the remaining 4. Diagnostic checking, involving the
examination of the residuals based on initial estimation, the goodness-of-fit of
several initially fitted models, and parameter significance provided support for the
above findings.

Two series exhibited a moving average process of order 1; their PACF
plots tailed off in sine wave manner while their ACF plots cut off to zero after lag
1. Again diagnostic checking supported fitting such a model to the data.
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For those following a random process, the one alternative available for
forecasting is the use of the mean. It seems that in these cases, such forecasts are
highly tentative: in any future period L, the variable being forecasted is random
and could take on any value other than the mean. Perhaps, the use of the
econometric approach is far better for such instances.

Since the forecast error variance increases overtime, for the rest of the
models, predictions only for few periods into the future are senmsible. Moving
average models are fit for series that were beset by some random shock which
persisted into q subsequent periods. AR models are fit for data whose present
values depend on p past values of the series. It is surprising that only two series
" appear to exhibit MA processes since it seems reasonable to expect more airlines
to be subjected to shocks, such as a recession, which would affect consequent
values of aircraft demand. The predominance of AR processes might suggest that
girlines respond to previous periods circumstances more than to a one time shock
when acquiring aircraft.

8 Comparing the Two Approaches

D In general, the forecasts made using the Box-Jenkins approach tend to be
under those made using the econometric models.

1) One of the reasons that might have contributed to this outcome is the
presence of many missing data points.

1) Another reason has been the shortness of the series. The longest series
consisted of only 19 data points. Some analysts believe that ARMA models
while very useful, are particularly good for series that have more than 50
observations. In general, the longer the series the better the fit of such models.
Therefore, the relatively short series in this study might not have resulted in
well fitting models.

IV) Finally, the highly subjective nature of the interpretation of the ACF and
PACEF in the identification phase can be problematic in that high level of
accuracy requires considerable experience.

9 Concluding Remarks

In this paper, we described methods for forecasting fleet size in the
_ international airline industry. The econometric model uses a demand model for air
- travel and links this to a cost model for air travel production. From derived
- demand equations for the factors of production, we can predict fleet size given any
: number of possible scenarios. Our method allows for the endogenity of outputs.
, While our cost model seems to be effective, our demand data are
somewhat lacking. Our estimates of demand growth seem unreasonable. We will
need to get world data on demand that is less aggregated. Ticket prices from
particular airports, competitors ticket prices, and unemployment data would
substantially improve the estimates. With airport-specific data, we could include
city dummies to capture “tourism effects.” There are problems, however. Except
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for OECD countries, unemployment data are difficult to find. While it may be
difficult to get better data on air travel demand, this will be of the greatest benefit
for our model, and we will be able to better predict world aircraft demand.

The airline industry is notorious for ordering equipment at points of peak
demand, but getting delivery at a point when demand is slow. If one were to take
common approaches and assume that carriers have myopic and naive expectations
about future demands for air travel, the negative correlation between the level of
new traffic and the number of aircraft deliveries would imply irrational behavior
on the part of airline managers. Our experience with these short run models is that
they do not work well and also typically imply negative shadow values of
increased capital. There are several avenues that we might employ to improve
these traditional models and obtain more sensible results. First, we might directly
incorporate the lead time necessary to acquire new aircraft. This may prove
difficult since there are different kinds of markets for new equipment and since
varying constraints are imposed by institutional arrangements and changes in tax
law. For example, a carrier has considerable flexibility in the disposition of owned
equipment than in that of equipment acquired through an operating or a
capitalized lease. This is somewhat complicated by the fact that lead time is a
function of the overall demand for equipment of that particular size/fuel efficiency
configuration.

Second we might more realistically capture the nature of expectations in
our models. Firms use more than a single period of information in developing
their expectations about future demands. The modeling strategy thus would be to
identify a lag structure of past traffic demands in the construction of expectations
regarding future demands. This approach is conceptually easier to describe than to
implement. Even fairly stylized and parsimonious lag structures complicate the
firm’s optimal control problem greatly and may necessitate the use of numerical
(instead of analytic) solutions to construct equipment demands.

A final necessary requirement for our modeling approach is that it be able
to address a wide range of characteristics of the fleet, including a behavioral
model which explains why some of these characteristics have been adopted and
others passed over. Not the least of these considerations is that some innovations
have not been available (such as the use of 800 passenger jet equipment). Further,
it is clear that equipment is chosen to serve a particular route structure. We have
begun to address these issues in some of our previous work (Good, Nadiri,
Sickles, 1992). However, further work is necessary, particularly with respect to
the characterization of the distribution of route types, as against merely averaging
their characteristics.
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Table 1: Demand Equation Parameter Estimates
Variable Parameter Estimates | Parameter Estimates | Parameter Estimates
for Europe for North America for Asia
LNPRICE | -0.120821 -0.682482 0.289537
(-1.423) (-2.963) (3.715)
LNPOP -2.645656 6.511079 1.397896
(-13.173) (3.320) (5.112)
LNPCI 2.720793 1.045872 1.578938
(13.154) (1.241) (10.840)
LNLFP 0.013678 0.010168 -0.007008
(5.533) (1.736) (-2.115)
[R? values | 0.9813 10.8534 [0.9735

Table 2: Fitted Shares under the cost minimization assumption.

Labor Share 0.286
Materials Share | 0.429
'| Energy Share | 0.202
Capital Share 0.066

Table 3: Fitted Shares under the profit maximization assumption.

Labor Share 0.287
Materials Share | 0.426
Energy Share 0.204
Capital Share | 0.068
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Table 4: Cost equation parameter estimates under the cost minimization and

profit maximization assumptions.

Variable Parameter Est. Parameter Est.

under cost Under profit

minimization | T-Value maximization | T-Value
LNLP 0.286218 . 0.286993 .
LNLPEP -0.010434 -2.369 -0.024074 -4.440
LNLPKP -0.005140 -1.386 -0.010554 -2.574
LNEP2 0.037455 7.804 0.038768 8.313
LNEPKP -0.020244 -6.728 -0.018627 -6.301
LNMP2 0.010030 1.058 -0.45730 -3.768
LNKP 0.082510 . 0.082350 .
LNSQ 0.908328 33.028 0.883560 19.494
LNNQ 0.016033 2.542 -0.008594 -0.771
LNSQNQ -0.031847 -3.033 -0.024780 -1.143
LNLF -0.533125 -4,765 -0.464192 -2.353
XWB -0.012174 -2.465 -0.009137 -1.849
XASZE 0.004371 0.866 0.003030 0.590
LNLP2 0.008244 1.117 -0.017905 -1.589
LNLPMP 0.007330 1.089 0.052533 5.312
LNEP 0.201809 . 0.204270 .
LNEPMP -0.006777 -1.187 0.003933 0.659
LNMP 0.429463 . 0.426388 .
LNMPKP -0.010583 -3.166 -0.010736 -3.081
LNKP2 0.035966 11.848 0.039917 13.154
LNSQ2 0.062263 1.504 0.406918 9.634
LNNQ2 0.010609 2.333 0.011143 2.846
LNSL 0.137056 3.061 0.014141 0.182
XPJ -0.013768 -6.075 -0.013088 -5.856
XAA 0.021570 4,605 0.019196 4.022

Table 5: Forecasts for Aircraft Demand
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Aiy Canada

1997

1998

1999

2000

2001

2002

2003

2004

average number with cost
minimization and profit
1 maximization

136.3

146.7

158.1

170.6

184.3

199.4

216.0

2342

pom—— . ] .
number using time series
| forecasting

118.2

119.3

119.2

118.5

117.5

116.8

1164

116.4

I Air France

1997

1998

1999

2000

2001

2002

2003

2004

‘| average number with cost
4 minimization and profit
1 maximization

156.4

159.1

161.9

164.8

167.7

170.7

173.8

176.9

number using time series
| forecasting

172.7

176.4

179.7

182.7

185.4

188.1

190.7

193.2

T Air India

1997

1998

1999

2000

2001

2002

2003

2004

{ average number with cost
| minimization and profit
maximization

25.8

26.6

275

284

294

304

314

32.5

number using time series
forecasting

19.5

19.5

19.5

19.5

19.5

19.5

19.5

Air New Zeland

1997

1998

1999

2000

2001

2002

2003

2004

1 average number with cost
.| minimization and profit
| maximization

49.2

51.0

52.9

54.9

57.0

59.1

61.4

63.7

number using time series
forecasting

28.8

30.0

31.2

324

336

34.8

36.0

37.2

[ Air Pakistan

1997

1998

1999

2000

2001

2002

2003

2004

average number with cost
minimization and profit
imization

49.9

51.6

534

55.4

57.3

59.4

61.6

63.9

number using time series
forecasting

42.5

415

40.4

39.5

38.6

37.9

37.3

36.7

Alitalia

1997

1998

1999

2000

2001

2002

2003

2004

- | average number with cost

minimization and profit
maximization

102.8

104.6

108.0

108.4

111.1

112.3

1143

116.3

number using time series
forecasting

112.9

1147

115.9

116.8

117.5

118.0

118.3

118.6
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American 1997 | 1998 1999 | 2000 | 2001 | 2002 {2003 | 2004
average number with cost 876.1 963.4 1061 | 1170 | 1293 | 1432 | 1588 1765
minimization and profit
maximization
number using time series 7234 7478 } 7725 | 797 822 847 | 8724 897
forecasting
British Air 1997 | 1998 1999 12000 ) 2001 | 2002 | 2003 | 2004
average number with cost 229.5 233.6 | 237.8 | 242.1 | 246.5 | 251.0 | 255.6 260.3
minimization and profit
maximization
number using time series 219.6 2219 2242 | 226.5 | 228.8 | 231.2 | 2335 235.8
forecasting
Continental 1997 | 1998 1999 | 2000 | 2001 | 2002 {2003 | 2004
average number with cost 405.3 446.2 | 492.0 | 543.7 | 601.9 | 667.6 | 742.2 826.9
minimization and profit
maximization
number using time series 3375 350.8 | 364.1 | 377.4 | 390.6 | 403.9 | 417.2 430.4
forecasting
Delta 1997 | 1998 1999 | 2000 | 2001 | 2002 {2003 | 2004
average number with cost 741.7 814.1 | 895.0 | 985.7 | 1087 | 1201 { 1330.7 1476
minimization and profit
maximization
number using time series 631.7 6535 | 6754 | 6973 | 719.2 | 741.1 | 762.9 784.8
fol ting
Finnair 1997 | 1998 1999 | 2000 | 2001 | 2002 | 2003 | 2004
average number with cost 46.5 474 48.3 49.2 | 50.1 | 51.1 52.1 53.1
minimization and profit
maximization
number using time series 46.2 47.0 48.0 | 49.0 | 49.0 | 496 50.1 50.7
forecasting
Garuda 1997 11998 1999 2000 | 2001 | 2002 | 2003 | 2004
average number with cost 70.3 72.9 757 | 786 | 81.7 { 849 88.3 91.8
minimization and profit
maximization
number using time series 61.6 80.4 81.7 89.1 | 77.7 | 76.0 63.7 68.1
forecasting
Iberia 1997 | 1998 1999 | 2000 | 2001 | 2002 | 2003 | 2004
average number with cost 126.8 129.1 1315 | 1339 | 1364 | 139.0 | 141.6 144.3
minimization and profit
maximization
number using time series 126.4 128.4 1304 | 1324 | 1344 | 1364 | 1384 140.4
forecasting
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Indiana Airlines 1997 | 1998 1999 | 2000 |2001 | 2002 | 2003 | 2004
average number with cost 59.9 61.9 64.1 663 | 68.6 | 71.0 735 76.2
minimization and profit
maximization
pumber using time series 55.7 55.2 56.4 56.7 | 57.1 57.8 585 58.2
forecasting
JAL 1997 | 1998 1999 | 2000 | 2001 | 2002 | 2003 | 2004
average number with cost 97.1 102.1 | 105.8 | 110.0 | 113.5 | 117.7 | 122.0 126.5
minimization and profit
maximization
number using time series 91.2 91.8 92.3 929 | 935 | 94.1 94.7 953
forecasting
Japan Asia Airways 1997 | 1998 1999 2000 ] 2001 | 2002 | 2003 2004
average number with cost 8.9 93 9.6 100 | 104 | 10.8 11.2 11.6
minimization and profit
maximization
[ number using time series 7.5 74 73 72 7.1 7.0 7.0 6.9
forecasting
KAL 1997 | 1998 1999 | 2000 | 2001 | 2002 [ 2003 | 2004
average number with cost 98.2 101.9 105.8 | 1099 | 114.1 { 118.6 | 123.3 128
1 minimization and profit
maximization
[ number using time series 109.0 116.0 | 123.0 | 130.0 | 137.0 | 1440 | 151.0 158
forecasting
 KLM 1997 | 1998 1999 | 2000 | 2001 | 2002 | 2003 | 2004
average number with cost 594 60.5 61.6 | 627 | 639 | 65.1 66.3 67.5
{ minimization and profit
maximization
number using time series 535 53.8 54.0 543 | 545 | 548 55.0 55.3
forecasting
1 Lufthansa 1997 | 1998 1999 2000 | 2001 | 2002 | 2003 2004
| average number with cost 238.8 243.1 2475 | 252.0 | 256.6 | 2614 | 266.2 271.2
#| minimization and profit
maximization
{ aumber using time series 2225 222.5 222.5 | 222.5 | 222.5 | 2225 | 2225 222.5

forecasting
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Northwest 1997 | 1998 1999 12000 ] 2001 |2002 | 2003 | 2004
average number with cost 484.8 534.1 589.4 | 651.6 | 721.6 | 800.7 | 890.1 991.6
minimization and profit

maximization

number using time series 338.8 3310 | 323.7 | 317.0 | 310.8 | 305.0 | 299.6 | 294.6
forecasting

Philippines Airlines 1997 | 1998 1999 |2000 | 2001 [ 2002 | 2003 | 2004
average number with cost 58.0 60.1 624 | 648 | 673 | 699 | 75.6 75.5
minimization and profit

maximization

number using time series 54.6 555 564 | 573 | 58.1 | 59.0 59.9 60.8
forecasting

uantas 1997 ] 1998 1999 | 2000 | 2001 | 2002 |2003 | 2004

average number with cost 56.8 58.7 60.8 629 | 652 | 615 70.0 725
minimization and profit

maximization

number using time series 63.1 67.3 71.2 70.1 | 724 | 74.6 77.2 84.2
forecasting

SAS 1997 | 1998 1999 | 2000 | 2001 |2002 |2003 | 2004
average number with cost 178.2 181.5 184.8 | 188.1 | 191.6 | 195.1 | 198.7 202.4
minimization and profit

maximization

number using time series 1925 2035 | 208.6 | 214.7 | 224.0 | 231.6 | 236.7 | 2429
forecasting

SIA 1997 | 1998 1999 12000 ;2001 | 2002 | 2003 | 2004
average number with cost 76.9 79.8 82.8 | 86.0 | 89.3 | 928 | 96.4 100.2
minimization and profit

maximization

number using time series 82.7 86.8 908 | 948 | 98.8 | 102.7 | 106.6 | 1105
forecasting
Sabena 1998 1999 12000 | 2001 {2002 |2003 |2004

1997

average number with cost 33.6 34.1 34.7 353 | 359 | 36.5 37.1 37.8
minimization and profit
maximization
number using time series 29.9 29.7 295 293 1 29.1 | 2838 28.6 284
forecasting

AIRPORT FACILITIES 57
[ Swissair 1997 | 1998 11999 2000 | 2001 [2002 [2003 | 2004
average number with cost 59.1 55.0 560 | 570 | 579 | 589 | 59.9 61.0
minimization and profit
maximization
number using time series 46.4 45.5 447 | 43.8 | 429 | 42.1 41.2 40.3
forecasting
TAP 1997 | 1998 1999 12000 ] 2001 | 2002 | 2003 2004
average number with cost 40.0 40.1 415 422 | 43.0 | 438 44.6 454
minimization and profit
maximization
number using time series 374 35.1 342 35.1 | 356 | 36.7 38.6 39.9
forecasting
Thai International 1997 11998 1996 [ 2000 ] 2001 | 2002 | 2003 2004
average number with cost 46.5 483 502 | 522 | 542 | 564 58.7 61.1
minimization and profit
maximization
number using time series 56.7 59.7 65.9 69.0 | 72.0 { 75.1 78.2 81.3
forecasting
TWA 1997 | 1998 1999 [ 2000 ] 2001 | 2002 | 2003 2004
average number with cost 236.3 2542 | 2739 | 2954 | 319.0 | 3449 | 373.3 | 404.6
minimization and profit
maximization
[ number using time series 217.6 2194 | 217.6 | 2134 | 208.6 [ 204.3 | 201.7 | 200.8
forecasting
USAir 1997 1998 1999 2000 | 2001 2002 2003 2004
average number with cost | 690.9 7679 855.2 1 954.5 | 1067.7 | 1197.1 | 13453 | 1516
minimization and profit
maximization
number using time series 605.4 637.5 669.6 | 701.7 | 733.8 765.9 798.0 830
forecasting
United 1997 | 1998 1999 | 2000 | 2001 | 2002 | 2003 2004
average number with cost 742.8 816.6 | 899.0 | 991 | 1095 | 1211 | 1343 1491
minimization and profit
maximization
number using time series 601.5 6078 | 6152 | 617 624 632 | 6395 649
forecasting
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