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In this paper we consider the efficient instrumental variables estimation of a panel data model 
with heterogeneity in slopes as well as intercepts. Using a panel of U.S. airlines, we apply our 
methodology to a frontier production function with cross-sectional and temporal variation in 
levels of technical efficiency. Our approach allows us to estimate time-varying efficiency levels for 
individual firms without invoking strong distributional assumptions for technical inefficiency or 
random noise. We do so by including in the production function a flexible function of time whose 
parameterization depends on the firm. We also generalize the results of Hausman and Taylor 
(1981) to exploit assumptions about the uncorrelatedness of certain exogenous variables with the 
temporal pattern of the firm’s technical inefficiency. Our empirical analysis of the airline 
industry over two periods of regulation yields believable evidence on the pattern of changes in 
efficiency across regulatory environments. 

1. Introduction 

In this paper we consider the efficient instrumental variables estimation of 
a panel data model in which coefficients in addition to the intercept vary over 
individuals, and we apply the methodology we develop to a model in which 
there is cross-sectional and temporal variation in productivity levels (or, 
equivalently, in 1eveIs of technical efficiency), using data on U.S. airlines. We 

*Earlier versions of this paper were given at the 1986 Winter Meetings of the Econometric 
Society, the 1987 TIMS/ORSA Meetings, the 1987 American Statistical Association Meetings, 
and the National Bureau of Economic Research Conference on Productivity in the Service 
Sector, July 1987. Comments by Robert Gordon, Zvi Griliches, V. Kerry Smith, and M. Ishaq 
Nadiri strengthened the paper considerably. Schmidt and Sickles are grateful to the National 
Science Foundation for its support. 
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therefore extend the current literatures on panel data, productivity measure- 
ment, and frontier production functions. 

The early literature on stochastic frontier production functions [e.g., Aigner, 
LoveIl, and Schmidt (197711 assumed the existence of data on a single 
cross-section of firms, and the separation of technical inefficiency from 
random noise required strong assumptions about their distributions. More 
recently, Schmidt and SicMes (1984) considered the case in which panel data 
are available. In their model only the intercept varied over firms; differences 
in the intercept were interpreted as differing efhciency levels, with the level 
of efficiency for each firm assumed to be time-invariant. The Schmidt and 
Sickles model does not require strong distributional assumptions about 
technical inefficiency or random noise, nor is the assumption of indepen- 
dence between technical inefficiency and the explanatory variables (inputs) 
needed. However, the assumption that technical inefficiency is time-invariant 
is very strong, and depending on the data, may prove unrealistic. 

In this paper we seek to relax the assumption that technical inefficiency is 
time-invariant, but in such a way as to not lose the advantages of panel data. 
We do so by introducing into the production function a flexible (e.g., 
quadratic) function of time, with coefficients varying over firms. This function 
can be thought of as representing productivity growth, at a rate that varies 
over firms, and it implies that levels of inefficiency for each firm vary over 
time. This model is similar to the model of Sickles, Good, and Johnson 
(19861, who considered the measurement of efficiency growth using a profit 
function which included a flexible function of time, but assumed that effi- 
ciency growth was the same for all firms. Our model generalizes their 
treatment by allowing for cross-sectional variation in productivity growth 
rates. However, the model still imposes enough structure on the way in which 
productivity levels change over time that strong distributional assumptions 
are avoided. 

Previous treatments of the linear model with panel data, such as Hausman 
and Taylor (1981) and Amemiya and MaCurdy (19861, have dealt with the 
case in which only the intercept varies across individuals (firms). We extend 
the analysis of Hausman and Taylor to the above model in which there is 
cross-sectional heterogeneity in slopes as well as (or instead of> intercepts. 
This case has previously been treated in the random coefficients literature 
[for example, see Swamy (1971, 197411, but under the assumption that the 
variation in coefficients is independent of the regressors; like Hausman and 
Taylor, we allow some or all of the regressors to be correlated with the 
cross-sectional variation in coefficients. 

The plan of the paper is as follows. Section 2 extends the current panel 
data literature to a model with heterogeneity in slopes as well as intercept. 
Section 3 applies our panel data results to the problem of productivity 
measurement in U.S. airlines, and section 4 gives our empirical results. 
Section 5 concludes. 
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2. A panel data model with heterogeneity in slopes and intercept 

Our model may be written as 

y,, =x$3 + .z;y + Hp, + Elf, i=l )..., N, t=l,..., T, (2.1) 

where X,, is K x 1, Zi is f x 1, and I& is L X 1, and the parameter vectors 
p, y, and ~5~ are dimensioned conformably. For the purpose of discussion we 
can think of the data set being comprised of N individuals (firms) and T time 
periods per individual. Note that the variables in X and W vary over time, 
while the variables in 2 do not. 

The distinguishing feature of our model is that W has coefficients that 
depend on i. If W just contains a constant, then (2.1) reduces to the standard 
panel data model in which only the intercept varies across individuals (firms). 
Let 6, = 6, + u,. Then we can write the model as 

Y,, = x,;p + Z/Y + fqp,, + Ujr , 

L’,t = f’f’+, + E;, . (2.2) 

The ui are assumed to be iid zero mean random variables with covariance 
matrix d. The disturbances sir are taken to be iid with a zero mean and 
constant variance CT’, and uncorrelated with regressors and ui. 

It is convenient to work with the matrix form of (2.2). This is given by 

y=xp+zy+ W6,+u, 

r:=Qu+~, (2.3) 

where W is NT X L, Q = diag(W,), i = 1,. . . . N, is N7” X NL, and u is 
NLx 1. 

We assume L s T, so that Q is of full column rank. This is not necessary 
for the identifiability of /3. However, it is necessary for estimation of the 
individual 6;. Also, if L > T, some of the matrices which we must invert 
would be singular. This is not really a substantive matter, since the projec- 
tions involved are still well defined, but the algebra wouid become more 
complicated. Taking Q to be of full column rank, we denote these projec- 
tions as follows. Let PL, = Q(Q’Q>-IQ’ be the projection onto the column 
space of Q and ML, = I - Pp be the projection onto the null space of Q. 

We derive three different estimators for (2.3), each of which is a straight- 
forward extension of an established procedure for the standard panel data 
model. The choice between them primarily depends on whether the effects 
(u,) are correlated with the explanatory variables CX,,, Zj, and &I. 

The first estimator we consider is a generalization of the within estimator 
from the analysis of covariance. In the standard model, this amounts to 
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transforming the data into deviations from individual means and performing 
least squares on the transformed data. Similarly, we can transform (2.3) by 
Me and apply least squares. Note that since MeZ = 0, y cannot be esti- 
mated. The within estimator of /3 is given by 

plw= (X’MQX)-‘X%f@. (2.4) 

The within estimator is an instrumental variables estimator, with instru- 
ments M, (or, equivalently, M,X). Its consistency does not depend on 
assumptions of uncorrelatedness of (X, 2) and (Qu1.i 

Second, we can estimate (2.3) by generalized least squares (GLS). The 
GLS estimator of C/3, y, 6,) is 

[(x,z,w)fn-‘(x,z,w)]-‘(x,z,w)~n-’y, (2.5) 

where fi = cov(u> = c2ZNT + Q(IN @ A)Q’. While fi is a large matrix, it is 
block-diagonal, with blocks of the form a21N + KAWi’; thus its inversion is 
practical. 

Alternatively, GLS is ordinary least squares (OLS) applied to the trans- 
formed equation 

.-1/5=,-i/‘Xp +n-l/“Zy+R-‘/2W6,+n-‘/“U. (2.4) 

This transformation was first suggested, for the model with cross-sectional 
variation only in the intercept, by Fuller and Battese (1973). This expression 
is not of much actual computational use, however, since f2-‘/* is harder to 
calculate than 0-i; we have 

.-l/2 = & +F, 

where 

x(Q’Q)-“*Qt. 

(2.7) 

(2.8) 

[This formula follows from a straightforward application of Wansbeek and 
Kapteyn (19821.1 

The consistency of GLS hinges on the uncorreiatedness of (X, Z, IV) and 
Qu. However, GLS allows the estimation of y, and for fixed T, it is more 

‘More details on the fixed effects treatment of (2.4) can be found in Cornwell (1985). 



C. Cornwell et al., Production frontiers 189 

efficient than the within estimator (2.4). This is exactly the same relationship 
that exists between GLS and within in the standard model; an explicit proof 
can be found in Cornwell (1985, sect. 3.3). 

Our third estimator is an extension of Hausman and Taylor (1981). Taking 
an instrumental variables approach, they exploit assumptions about explana- 
tory variables that are uncorrelated with the effects to derive a simple 
consistent estimator and an asymptotically efficient estimator for the stan- 
dard panel data model.2 The extent to which their estimators represent an 
improvement over the within estimator depends on the number of exogeneity 
restrictions one is willing to impose. Noting that the within estimator of p 
always exists and is consistent, Hausman and Taylor use it as a basis of 
comparison, presenting clear conditions under which their instrumental vari- 
ables estimators are different. 

Following Hausman and Taylor, consider the case in which some 
of the regressors are correlated with the effects. In particular assume 
that (X,, Z,, IV,) are uncorrelated with the effects, in the sense that 
plim(NT)-‘X,‘Qu = 0, and similarly for 2, and IV,, while (X,, Z,, IV*) are 
correlated with the effects. Let the dimensions of X,, Z,, W,, X,, Z,, and W2 
be k,, j,, i,, k,, jz, and I, (with k, + k, = I<, j, + jz = J, and I, -t 1, = L). 

A generalization of the Hausman and Taylor simple, consistent estimator 
is obtained as follows. As in the standard model, we begin with the within 
estimator, in this case (2.4). The within residuals are 

(Y-~P”,)=Zy+ W6,,+[Q~+~+X@-&)t- (2.9) 

We transform (2.9) by premuItiplying by 12-‘/2: 

p/y y -x&,) =I fp/2Zy + w”2w6, 

+W’2[Qu+~+X(/?-&,,)]. (2.10) 

The simple consistent estimator is then defined as instrumental variables of 
(2.101, using as instruments 

B*=fl-‘/2B=O-“‘(X,,Z,,W,). (2.11) 

Note that B is transformed by a- ‘12. Following White (1984, pp. 95-99) the 
use of untransformed instruments is clearly suboptimal, if we assume ‘re- 
duced form’ equations for (Z,, W2) which are linear in (Xi, Z,, W,). This 

‘Amemiya and MaCurdy (1986) introduce an alternative instrumental variables estimator that, 
under stronger assumptions, is more efficient than the Hausman and Taylor estimator. For a 
clear exposition of the relationship between the two estimators, see Breusch, Mizon, and 
Schmidt (1989). 

JEcon H 
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yields the estimator 

%v 
i 1 &NV = [(Z, W)‘W’4,*n-““(2 W)] --I 7 

x (2, W)Yw2P,.n-""( y 

The estimator will exist if we have enough 
condition k, +j, + I, zJ+ L, or equivalently 

-m%v>. (2.12) 

instruments, i.e., if the order 
k, zj2 + 1, , is satisfied. The 

corresponding rank condition is that the matrix to be inverted in (2.12) be 
(asymptotically) of full rank. If it holds, the estimator will be consistent. 

To define our efficient instrumental variables estimator, we estimate (2.6) 
by instrumental variables, using as instruments 

A” = n-1’2A = .-‘/2(MQ, x,, z,, WJ. (2.13) 

Letting G = (X, 2, W), this yields 

= (G’fj-‘/2pA,~-‘/2 Gf-'G'f2-'f*P,,fL-';'y. (2.14) 

Conditions for the existence of (2.14), as well as the relationship between 
the efficient estimates (2.14) and the simple cpnsistent estimates (2.12) can be 
summarized as follows. If k, <i2 + E,, p^* = pw and (q*, &)poes not exist. If 
k, = j, + l,, @+ = & and (q*, S$> = (qw, I$,,), where (fW, 6,,) is defined in 
(2.12). And, if k, >j, +I,, <@,7*,@> f (&,,~w,&ow) with the former 
being more efficient than the latter. These results are directly analogous to 
the results for the standard model given by Hausman and Taylor. See 
Cornwell (1985, ch. 4, app. A) for proofs of these results. 

A remaining detail is the consistent (as N -+ ~1 estimation of cr2 and A, 
the unknown parameters in 0. If SSE, is the unexplained sum of squares in 
the within regression, G2 = SSE,/N(T - L) is a consistent estimate of u2. To 
estimate A, let e, be the IV residuals for individual i (e.g., from the simple 
consistent IV estimator) and define 

d^= ; ,; [(~‘~)-lwl’e,e,w,(~f~)-l -S”(u:‘w)-‘1. (2.15) 
1=1 

A direct calculation reveals that this estimator is consistent [Cornwell (198.5, 
ch. 4, app. B)]. 
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3. A frontiers model with time-va~i~g inefficiency 

Schmidt and Sickles (1984) consider the estimation of a stochastic frontier 
production function with panel data, using the model 

yit = a +xi;p + Uir - ui, (3.1) 

where y = output, X = inputs, u = statistical noise, and u > 0 is a firm effect’ 
representing technical inefficiency. This model can obviousiy be put in the 
form 

(3.2) 

where LY~ = (Y - ui. The model (3.2) is of the standard form found in the panel 
data literature, and /3 can be estimated by standard methods such as ‘within’, 
GLS, or the Hausman and Taylor instrumental variables estimator. It can 
also be estimated by MLE, assuming a particular distribution for the one-sided 
error ui in (3.1). Schmidt and Sickles apply (3.2) to a panel of airlines for the 
period 1970.1-1977.IV (the period prior to deregulation), assuming a 
Cobb-Douglas technology. Results from the use of ‘within’, GLS, and MLE 
(assuming a half-normal distribution for the firm effects) are compared, and a 
Hausman-Wu specification error test is carried out to test the null hypothe- 
sis that firm-specific effects are uncorrelated with the regressors. 

The great benefit of panel data is that one can choose whether to assume 
particular distributions of u and U, or whether to assume that technical 
inefficiency is uncorrelated with the inputs, and that therefore these assump- 
tions are testable. However, these benefits come at the cost of the assump- 
tion that the firm effects are constant over time. This is a very strong 
assumption, and probably would be unrealistic in many potential applica- 
tions. In terms of the Schmidt and Sickles application, as the airline industry 
moved into the deregulatory transition and beyond, the potential for unstable 
productivity patterns (reflected in the firm effects) should be clear. Firms 
within the industry would be expected to respond differently to the new 
regulatory environment. Although this issue has been dealt with in part by 
Sickles, Good, and Johnson (1986), the model introduced therein was highly 
parameterized and required maximum likelihood on a highiy nonlinear 
model. The model we propose here is more parsimoniously parameterized 
and can be estimated in straightforward ways. 

In order to relax the assumption that the firm effects are time-invariant, 
but in such a way that the advantages of panel data are preserved, we will 
replace the firm effect (ai> in (3.2) by a flexibly parameterized function of 
time, with parameters that vary over firms. The functional form chosen in this 
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paper is a quadratic: 

ait = e,, + e,,t + ei3t2. (3.3) 

Since (3.3) is linear in the elements of Bij (j = 1,2,3), we have exactly the 
type of model considered in section 2. 

In terms of the notation of section 2, we have H$ = El, t, t2], 8; = 
[Oil, ffi2, lii3], and with this notation the model (3.2) can be written 

yi* = Xi:p + u/;:Si + Vit. (3.4) 

Clearly the specification (3.31 implies that output levels vary both over firms 
and over time. Efhciency measurement focuses on the cross-sectional varia- 
tion, and the model allows efficiency levels to vary over time. Conversely, the 
measurement of productivi~ growth focuses on the temporal variation, and 
the model allows the rate of productivity growth to vary over firms. 

Time-varying firm productivity and efficiency levels and rates of productiv- 
ity growth can be derived from the residuals based on the within, GLS, and 
efficient instrumental variables estimators presented in section 2.j In Schmidt 
and Sickles (19841, using the model (3.1), the residuals (Yi, - X,:p> are an 
estimate of (uit - ui), and the firm effect (for a given firm) is estimated by 
averaging its residuals over time. Specifically, the estimate of Cyi is 

ki =gi -,$. (3.5) 

This estimate is consistent as T + M. The analogous procedure fof the 
present model is to estimate 6, by regressing the residuals (Yit - X,;p> for 
firm i on 4,; that is, on a constant, time and time-squared. The fitted values 
from this regression provide an estimate of ait in (3.3) that is consistent (for 
all i and t) as T + M. Finally, in Schmidt and Sickles the frontier intercept LY 
and the firm-specific level of inefficiency for firm i are estimated, respec- 
tively, as 

&= m,ax(sj) and L?~=&--(;~. (3.6) 

The analogous procedure here is to estimate the frontier intercept at time t 
and the firm-specific level of technical inefficiency of firm i at time t as 

3For a discussion of m~imum-likelih~d estimators for stochastic panel frontiers which treat 
time-varying inefficiency see Kumbhaker (1990). 
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foIlows: 

hr = max(sjr) and 
i 

aj, = (Y~ - hit. (3.7) 

4. Empirical results 

Our data are on U.S airlines over the time period 1970.1-1981.IV, so that 
T = 48. The data follow certificated carriers that existed throughout the study 
period and that accounted for over 80% of domestic air traffic. Information 
on output and input prices and quantities was obtained from over 250 
accounts from the CAB Form-41. These accounts were aggregated into the 
four broad input measures of capital, labor, energy, and materials; one 
output measure, available ton miles; and two output attributes, average stage 
length (thousands of miles) and service quality. Service quality is based on 
the number of complaints received by the CAB’s Office of Consumer Affairs 
and is normalized by the number of passenger enplanements for that quarter. 
The output and input quantities and prices are constructed as Tornqvist 
indices. We examined the following airlines: American, Allegheny, Delta, 
Eastern, North Central, Ozark, Piedmont, and United so that N = 8. We 
control for seasonal factors with three dummy variables (with fall the omitted 
category), and condition on two service attributes, average stage length and 
quality. For a further discussion of data construction see Sickles (1985) and 
Sickles, Good, and Johnson (1986). The functional form that we use for (3.1) 
is a special case of the transcendental logarithmic function [Christensen, 
Jorgenson, and Lau (1973)l. We assume that the average technology is given 
by a first-order approximation in the logarithms of input quantities and a 
second-order approximation in the logarithms of output attributes.4 In addi- 
tion, we make the assumptions that input quantities and output characteris- 
tics are separable in production, that productivity levels and growths are 
disembodied, and that seasonal factors are neutral. This reduces the possible 
number of unrestricted parameters from 66 to 15, a manageable number 
given the time-series nature of our data, the typical collinearity problems 
associated with data of this sort, and the use of no additional restrictions 
embodied in the first-order conditions for output m~imization, cost mini- 

4 We attempted to include second-order terms for the inputs, but the almost perfect collinear- 
ity in the moment matrix prevented us from obtaining unique parameter estimates. Within 
results using the generalized inverse gave us an F-statistic of 8.75 for the test of the joint 
insignificance of the second-order effects of the logarithms of input quantities. The joint 
insignificance of these parameters is thus not rejected at reasonable significance levels. Instead 
of dealing with the problem by imposing more structure, e.g., adding optimizing assumptions in 
the form of first-order conditions to increase the degrees of freedom, we decided let the data 
and its limitations speak. We simply cannot identify second-order input effects using our data set 
and fargely for comp~etely~ the within variation in variables. 
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Table I 

Summa~ statistics (48 quarters, 8 airlines). 

Variable 
_.___ 
In Q 
In I( 
In L 
In E 
In M 
In stage length 
In quality 
(In length)* stage 
(In quality)’ 
(In stage length)* 
In quality 

Mean 

19.04 
16.84 
17.54 
16.10 
16.91 

- 1.08 
-3.36 

1.59 
11.57 
3.60 

Standard deviation 

1.38 
1.11 
1.15 
1.21 
1.14 
0.65 
0.55 
1.45 
3.79 
2.18 

_-.~- 

mization, or profit maximization. The average production technology under 
consideration is therefore: 

In Q = In (Ye + a,ln K + a,ln L + a,ln E + cu,ln M + cSj Season, 

+ c ~~1nAttribute; i- cc yiiln AttributeilnAttributej, 
i ilj 

(4.1) 
where Q is available ton miles, K, L, E, M are capital, labor, energy, and 
material input quantities, the seasons are indexed from winter through 
summer, and where the attributes are average stage length and our service 
quality index. Summary statistics for the variables in (4.1) are given in table 1. 

Estimation results are given in tables 2 and 3. Table 2 displays benchmark 
GLS and within estimates that are comparable to those given in Schmidt and 
Sickles (1984) in that only the intercept is allowed to vary across firms. 
Productivity, however, is allowed to vary over the period. The results of GLS 
and within are comparable, with energy having the largest output elasticity, 
followed by labor, materials, and capital. Returns to scale are not signifi- 
cantly different from unity for both estimates at the 95% level, and annual 
productivity growth is about 1.5% in the median period, 1975.1. The i?* for 
both sets of results is above 0.999. Table 3 presents the within, GLS, and 
efficient instrumental variables estimates given in (2.4), (2.5), and (2.14). 
Consider first the GLS and within estimates. The output elasticities do 
change somewhat across estimation procedures (GLS versus within) as well 
as across specifications (table 2 versus table 3). The within estimated capital 
elasticity in table 3 is considerably higher than either estimate in table 2, 
while the within estimated materials elasticity is considerably lower. Returns 
to scale are still insignificantly different from unity at the 95% level. 
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Table 2 

Heterogeneity in intercept only. 
___-. ~.__. 

GLS Within 
~.. 

Variable Estimate S.E. Estimate SE. 
-,.. 

-- In K 0.183 0.027 0.169 0.027 
In L 0.242 0.030 0.243 0.030 
In E 0.502 0.025 0.500 0.025 
In M 0.203 0.028 0.203 0.028 
Winter 0.00198 0.0064 0.00151 0.0060 
Spring 0.0223 0.0066 0.0229 0.0062 
Summer 0.0284 0.0066 0.0303 0.0062 
In length stage 0.221 0.054 0.101 0.076 
In quality 0.0073 0.041 0.0122 0.040 
(In lengthI stage 0.0434 0.016 0.0103 0.0213 

(In qualityj2 - 0.00370 0.0058 - 0.00355 0.0058 
In stage length* 

In quality 0.0251 0.0081 0.0261 0.0081 
Intercept 0.0205 0.290 - 

Time 0.000591 0.00084 0.0000743 0.00083 
Time2 0.000065 0.000017 0.0000875 0.00000191 

3 0.00~80 0.00166 0.00169 
~._~._.__ ~~..__.._._... 

The consistency of the GLS estimates depends on the effects being 
uncorrelated with all of the explanatory variables. As explained in Schmidt 
and Sickles (19841, this assumption can be tested using a Hausman-Wu test 
based on the significance of the differences between the GLS and within 
estimates. This test statistic equals 17.2. Its asymptotic distribution is chi- 
squared with 12 degrees of freedom, and a value of 17.2 is significant only at 
about the 0.15 level. Thus there is some evidence against the exogeneity 
assumptions underlying the GLS estimator, but it is not significant at usual 
confidence levels such as 0.05, although this may reflect the low power of the 
test against nonlocal alternatives. 

Despite the insignificance of the evidence against the GLS estimator’s 
exogeneity assumptions, it is reasonable to ask if there is a subset of the 
explanatory variables for which uncorrelatedness with the effects is more 
strongly supported by the data. If so, we can impose these uncorrelatedness 
assumptions using the efficient instrumental variables estimator of section 2. 
For this purpose we will assume that the seasonal dummy variables and the 
intercept and time trend variables are uncorrelated with the effects, while the 
output attribute variables will be treated as correlated with the effects. 
Correlation patterns between the effects and the input variables were harder 
to assign a priori, but we decided to treat capital and energy as correlated 
with the effects, and labor and materials as uncorrelated with the effects. We 
did this for several reasons. The Iabor input index is based on headcount 
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data. Since adjustment costs for numbers of employees are typically much 
higher than for hours (which are not measured in the CAB Form-411, any 
short-run (quarterly) firm shock will likely result in reduced hours or over- 
time, not in numbers of employees [Schultze (198.5) and Shapiro (198611. 
Furthermore, since union contracts cover approximately 70% of the employ- 
ees in our sample airlines, rational expectations would suggest that any 
information available to the contracting parties when the contract was made 
would have been conditioned on, and therefore any unforeseen firm-specific 
supply shifts would be orthogonal to employment variation while the contract 
was in force [Sargent (197811. The other input which is assumed to be 
uncorrelated with firm effects is the materials index. This is a residua1 
category, roughly 70% of which is for professional services contracted outside 
the firm. These include advertising, charter travel bookings, unplanned 
maintenance of firm’s flight equipment by another carrier, and catering 
services. These data came to us in expenditure form and a Tornqvist index 
was constructed using a variety of price deflators such as the McCann 
Erickson Advertising index, the producer price index for miscellaneous 
business services, and the producer price index for processed foods. The 
aggregate price indices would have no correlation with airline-specific pro- 
ductivity changes unless firms had a substantial degree of monopsony power 
in those markets. There is no evidence that this is the case. Whatever weak 
correlation might have existed between the materials expenditure data and 
firm productivity effects would be mitigated by the index construction. 

The efficient instrumental variables estimates based on these exogeneity 
assumptions are given in table 3. The coefbcient estimates are fairly similar 
to the within estimates, and there is a slight improvement in the precision of 
the estimates. Furthermore, the eight uncorreiatedness assumptions that 
underly the efficient instrumental variables estimator are testable, and the 
Hausman-Wu statistic (based on differences between the within and efficient 
instrumental variables estimates) is only 1.08. Thus there is no evidence in 
the data to make us doubt these exogeneity assumptions. 

Table 4 presents the relative efficiency levels derived from our estimates 
for the carriers at three points in time: 1970.1, 1975.1, 1981.IV. The efficien- 
cies are calculated using the GLS, within, and efficient instrumental variables 
estimates. As expected, the within and efficient instrumenta variables results 
are quite similar, while GLS efficiency levels and rankings are quite different 
from within and efficient instrumental variables, In either case there is 
evidence of considerabIe change in the efficiency rankings over time; for 
example, American and United show large improvements in their efficiency 
rankings from 1970 to 1980.5 

‘Productivity levels (%o) derived from the within results of table 2 for American, Alleghany, 
Delta, Eastern, North Central, Ozark, Piedmont, and United are: 96, 80, 100, 89, 78, 82, 81, and 
97. Since parameter heterogeneity is allowed for only the constant term, productivity levels are 
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Carrier 

Table 4 

Efficiency levels (%) for selected time periods (1970.1, 1975.1, 198OJV). 

GLS Within EtfIV - 

American 81, 95, 93 65, 90, 93 72, 93, 94 
Alleghany 92, 88, 83 85, 86, 83 86, 86, 80 
Delta 92, 99, 99 78, 91, 94 81, 93, 92 
Eastern 74, 92, 92 60, 81, 88 64, 84, 87 
North Central 86, 100, 88 85, 100, 84 86, 100, 82 
Ozark 100, 96, 65 100, 97, 99 100, 96, 93 
Piedmont 88, 93, 97 89, 98, 100 90, 97, 94 
United 87, 92, 100 66, 84, 100 72, 88, 100 

Table 5 

Annual productivity growth rates (%) from 1970.1-1981.IV. 

Carrier GLS Within EfRV 

American 
Alleghany 
Delta 
Eastern 
North Central 
Ozark 
Piedmont 
United 

Output share 
weighted average 

_______ 

0.45 
- 0.05 
- 0.62 

0.86 
- 0.38 
- 3.55 

0.12 
1.08 

0.44 

2.08 1.13 
- 0.42 - 1.27 

1.08 2.21 
2.08 1.24 

- 0.33 - 1.07 
- 0.33 - 1.30 

0.64 - 0.30 
2.55 1.60 

1.85 1.22 

Growth rates in productivity can be calculated by examining the time 
derivative of the estimate of (3.2). Although these estimates were quite 
unstable when evaluated period-by-period, we can compare the average 
values between the first and last period and calculate simple annualized 
percent rates of growth in total factor productivity (TFP). These calculations 
are summarized in table 5. Below the rates of total factor productivity growth 
are the output share weighted averages, which are comparable to the esti- 

constant over the sample period, an assumption which is clearly rejected at any reasonable level 
of significance (F-statistic = 17.06; 0.05, 14,348 = 1.65). Although the constancy of the ineffi- 
ciencies is rejected, there is still the possibility that productivity rankings may not be affected a 
great deal. This is not the case, although there does appear to be more concordance between 
rankings in the later periods. Spearman rank correlations between the productivities based on 
the standard model and (2.14) are - 0.539, - 0.476, and 0.428. 
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mates from the naive model with heterogenei~ in the intercept only. We can 
see that, although magnitudes are not equal, the estimates based on within 
and efficient instrumental variables are of the same sign (except for Piedmont 
which is quite small) and roughly the same magnitude. TFP growth rates 
calculated from the (probably misspecified) GLS estimates are quite different 
from the within and efficient instrumental variables TFP growth rates and 
suggest an industry average growth rate of 0.44, versus the 1.22-1.85 implied 
by the consistent within and efficient instrumental variables estimates. 

It is obvious in table 4 that, on average, the firms in our sample became 
more efficient over time. The average level of efficiency for our eight firms is 
roughly 82% in 1970.1 and grows to almost 95% in 1980 before dropping 
slightly in 1981. It is important to stress that this increase in efficiency levels 
is not just a reflection of the fact that there was productivi~ growth over the 
sample period. A firm’s efficiency level for a given time period is calculated 
by comparing the firm’s output to the frontier level calculated using the 
production function of the most efficient firm [the one with the highest 
intercept z+ in eq. (3.2)]; see eq. (3.5). Thus the empirical fact that drives an 
increase in efficiency levels over time is that the firms’ productivity levels are 
becoming more similar over time. It is easy to conjecture that this is due to 
increasing competitive pressures in the airline industry over the sample 
period, although in fact most of the increase in average efficiency levels 
occurred before the formal passage of the air deregulation act in late 1978. 

The temporal pattern of changes in efficiency Ievels displayed in table 4 is 
of obvious interest. It indicates exactly the kind of detail available in the 
present model and not available in the simpler model of Schmidt and Sickles 
(1984). 

6. ConcIusions 

In this paper we have specified a simple model which, in the presence of 
panel data, allows us to estimate time-varying efficiency levels for individual 
firms, without making strong distributional assumptions for technical ineffi- 
ciency or random noise. We do so by including in the production function a 
flexible function of time, with parameters that differ across firms, We also 
generalize the earlier econometric results of Hausman and Taylor (1981) to 
develop an econometric technique that allows us to choose how many 
explanatory variables we wish to assume to be uncorrelated with the firm’s 
temporal pattern of productivity growth. We have used this model and these 
estimators to analyze the U.S. airline industry during two periods of regula- 
tion and obtained results that are quite intuitive and reasonable, including 
believable evidence on the pattern of changes in efhciency across regulatory 
environments. 
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