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1 Introduction

Since the fundamental theoretical work by Debreu (1951), Farrell (1957), Shephard (1953, 1970)
and Afriat (1972), researchers have established a method to measure the intrinsically unobserv-
able phenomena of efficiency. Aigner et al. (1977), Battese and Cora (1977), and Meeusen and
van den Broeck (1977) provided the econometric methods for the applications waiting to hap-
pen. The linear programming methodology, whose implementation was made transparent by
Charnes et al. (1978), became available at about the same time. The U. S. and international
emphasis on deregulation and the efficiencies accruing to increased international competition
from lower trade barriers has provided a fertile research experiment for efficiency modelers and
practitioners.
The efficiency score, as it is usually measured, is a residual. Parametric assumptions about

the distribution of efficiency and its correlation structure often are made to sharpen the interpre-
tation of the residual. Work by a number of scholars in the area has focused on such parametric
models. We consider a number of these models below. However, that efficiency measurement
should be highly leveraged by parametric assumptions is by no means a comforting resolution
to this measurement problem. Productivity defined by the Solow residual is a reduced form
concept, not one that can be given a structural interpretation without a more formal structural
model. It is what it is, a residual, and the various stochastic frontier efficiency estimators that
use a particular decomposition of cross-sectional and temporal variation in the Solow residual
are what they are, various reduced form estimators of the residual. Among the more important
distinguishing features of competing estimators of efficiency are their flexibility, robustness, and
precision. Given the ad hoc nature of most parametric specifications it may be instructive to
consider a number of alternative estimators that possess the generic properties of fliexibility,
robustness, and precision when conducting empirical efficiency analyses.
In this paper I have summarized the foundations and properties of estimators that have

appeared elsewhere and have described the model assumptions under which each of the esti-
mators has been developed. I analyze traditional and recently developed efficiency estimators.
The recently developed estimators include the class of semiparametric efficient estimators that
make minimal assumptions about the distribution of unobserved efficiencies. The estimators
we study are developed in a panel data setting. Cross-sectional data models are not explored.
The semiparametric efficient estimators share a number of generic properties with the estima-
tors proposed by Schmidt and Sickles (1984) and Cornwell et al. (1990) and can be viewed as
alternatives to the parametric models of Pitt and Lee (1982), Kumbhakar (1990), Battese and
Coelli (1992), Coelli et al. (1998). The semiparametric efficient class of efficiency estimators
provides an alternative to fully parametric stochastic frontiers and to nonparametric estimators
of efficiency based on linear programming characterizations of technology. We impose structure
on the class of semiparametric efficient estimators (SPE) by utilizing a linear in logs (or geo-
metric mean in inputs) parameterization of technology. For this relatively simple technology
structure we ask how well will the robust procedures identify and estimate the efficiency scores
of particular firms at a point in time and over time under various forms of misspecification? If
we have a difficult time providing convincing arguments that such possibilities are encouraging
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for a relatively simple characterization of the empirical production relationship, then extensions
to more complicated technologies are problematic.1 Results from the Monte Carlo simulations
indicate that it is indeed difficult to identify firm-specific and temporally varying efficiencies and
that a strong institutional understanding of the industry under study is crucial to understanding
which estimator should be utilized.
The plan of the paper is as follows. In Section 2 we discuss issues of specification and

estimation in SPE specification of the panel stochastic frontier model and outline the differ-
ing assumptions that distinguish the set of existing and newly derived semiparametric efficient
estimators for the panel frontier model and for the efficiency effect. Discussion of a set of al-
ternatives to the models in the SPE class is provided in Section 3. A number of these methods
have appeared in the literature and are widely used by practitioners. The competing estima-
tors are analyzed via Monte Carlo simulations of an underlying inefficient technology in Section
4. An empirical illustration of efficiency using a subsample of U. S. Banking firms during the
deregulatory period of the 1980s is presented in Section 5. Concluding remarks are provided in
Section 6.

2 The Semiparametric Model and Estimators of Technical Effi-
ciency

The basic model we analyze can be written as:

Yit = X 0
itβ + αi + εit i = 1, . . . , N ; t = 1, . . . , T (1)

where Xit ∈ IRd, β ∈ IRd . The εit are assumed to be random variables from an N(0, σ2). In
Section 3 we consider cases in which the εit are iid and in which they are serially dependent.
Let Yi = (Yi1, . . . , YiT )

0, Xi = (X 0
i1, . . . ,X

0
iT )

0. The (αi,Xi)’s are assumed to be iid random
variables having unknown density h(·, ·) on IR1+dT . The unknown density is specified in the
derivations of the semiparametric efficient estimators using kernel smoothers. The support of
the marginal density of α is assumed to be bounded above (or below), where, for example, the
bound B provides the upper level of the production frontier or the lower level of the cost frontier.
We consider cases in which ε’s and (α,X)’s are independent as well as cases in which certain
dependency structures exist. This generic panel model can be reinterpreted as a stochastic
panel production frontier model (Pitt and Lee, 1981; Schmidt and Sickles, 1984) if Yit is the t-th
observation on the logarithm of output of the i-th firm, Xit is a vector of the t-th observation
of the logarithm of the d inputs of the i-th firm and αi is an unobservable random effect that
captures firm-specific inefficiency. With panel data, realizations of αi for a particular firm

1This paper does not consider the class of models and estimators for such models that address the identification
of allocative and technical efficiency. These models are highly parametric and rely on strong distributional
assumptions for identification. Models of this sort have been considered by, among others, Lau and Yotopoulos
(1971), Toda (1976), Atkinson and Halvorsen (1980), Lovell and Sickles (1983), Sickles et al. (1986), Kumbhakar
(1987), Good et al. (1991), Atkinson and Cornwell (1994), and Good et al. (1997). For an excellent review
of this class of models as well as the methods we address herein see Greene (1997) and Lovell and Kumbhakar
(2000).
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can be identified, thus overcoming the limitation of a single cross-section (or time series) from
which one can only identify the expectation of αi conditional on stochastic noise (Jondrow et
al., 1982). Normality of the within disturbance term can be based on central limit arguments.
Motivation for a particular parametric distribution of the inefficiency terms is less easily justified.
Although the distribution of the inefficiency term is one-sided, the terms are intrinsically latent
and unobservable components. Flexible one-sided distributions such as the gamma have been
proposed by Greene (2003). There are continuing practical questions on the identifiability
of the parameters of such a model (Ritter and Simar, 1997), however, and they have not yet
been used widely in panel studies. The SPE estimators we discuss below are designed to
provide robust point estimates for the parameters that describe the technology while assuring
the smallest standard errors for slope parameter estimates. The efficiency measurements we
pursue are residual based and thus have properties that are leveraged on the properties of the
slope parameters which are used in their construction.
In order to understand how the semiparametric efficient estimator is derived we must digress

and review some relevant statistical theory.

2.1 Efficient estimation of slope parameters

In this subsection we review the statistical principles used to derive the semiparametric efficient
estimators we use in this paper for analyzing productive efficiency. Statistically efficient esti-
mation in semiparametric models is discussed at length in Begun et al. (1983), and Bickel et al.
(1993). Newey (1990) and Pagan and Ullah (1999) provide excellent and relatively accessible
surveys. The basic ideas are somewhat intuitive. Let (X,Y ) stand for a model’s generic ob-
servations on the exogenous and endogenous variables and let P be the set of all possible joint
distributions of (X,Y ). In the semiparametric model there are parameters of interest (e.g., the
slope parameters) and parameters that are of no direct interest and are referred to as nuisance
parameters (e.g., the distribution of the effects in a panel frontier model). Partition the parame-
ters of the model (θ) into those of interest (β) and those referred to as nuisance parameters (η)
so that θ = (β0, η0)0. Let P0 be a regular parametric submodel (see Ibragimov and Has’minskii,
1981, Section 1.7) and let P (= P(β0,η0)) belong to it. Let c(X,Y , β, η) denote the log likelihood
of an observation from P(β,η) and let the scores with respect to the parameters of interest and
the nuisance parameters be cβ(X,Y ) = ∂c/∂β|(β0,η0) and cηj (X,Y ) = ∂c/∂ηj |(β0,η0),respectively,
where η = (η1, . . . , ηk). Define the efficient score function as c

∗ = cβ − π(cβ|[cη]). The vector
[cη] simply denotes the linear span (S) generated by {cηj}kj=1, and π(c|S) denotes the vector of
projections of each component of c onto the space S using the L2 norm. The scores with respect
to the parameters of interest are projected onto the nuisance parameter tangent space and then
the scores are purged of these projections to get the efficient scores. They are thus designed in
such a way as to be orthogonal to information contained in set of nuisance parameters. Such
an estimator of the parameters of interest is adaptively estimable (Pagan and Ullah, 1999, p.
218) in that it does not require knowledge of the nuisance parameters but is still efficient. The
estimator of β is called semiparametric efficient if it is asymptotically normal with mean β and
variance N−1I−1(P ;β) where I(P ;β) = Ec∗c∗0 is the information matrix for the semiparametric
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estimator of β. The asymptotic distribution of the semiparametric efficient panel estimator bβN,T

is √
NT (bβN,T − β)→ N(0, I−1(P ;β)).

A method of finding I(P ;β) is discussed in Bickel et al. (1993). Suffice it to say that for the
models we discuss the derivations are often less than straightforward.

2.2 Estimation of individual effects and the level of the frontier function

Given the semiparametric efficient estimator bβN,T it is natural to predict the individual efficiency

effects αi by the within residuals Si(bβN,T )

α̂i = Si(bβN,T ).

With fixed T Park et al. (PSS, 1998) show that

α̂i − αi = Op(N
−1/2).

With T →∞ and N fixed or tending to infinity PSS also show that
√
T (α̂i − αi)→ N(0, σ2).

The relative technical inefficiency of the i-th firm with respect to the j-th firm is specified by
the difference (αi−αj). This can be estimated by α̂i− α̂j which has the asymptotic N(0, 2σ2)
distribution when normalized by

√
T under the same assumptions as those used in Theorems

3.4 and 4.1 of PSS (1998).
The support of the marginal distribution of the effects ai is the upper (lower) boundary B.

A natural estimator of this quantity is

B̂ = max
1≤i≤N

Si(bβN,T ).

This fact was pointed out by Greene (1980) and utilized by Schmidt and Sickles (1984) and
Cornwell et al. (1990) in developments of their panel stochastic frontier estimators. Theorems
4.2 and 4.3 of PSS (1998) are useful in specifying the asymptotic properties of the estimator
of the boundary of the support. Let α(N) = max

1≤i≤N
αi. Then under a set of mild regularity

conditions as T →∞ the following can be proven:
1.For fixed N , √

T (B̂ − α(N)) = Op(1).

2.For large N , √
T (B̂ − α(N)) = Op(logN).

3.For large N ,
α(N) −B = Op(N

− 1
δ+1 ).

Here the choice δ determines the extent to which the marginal density of the effects has
a certain nonnegligable mass near the boundary point B. When δ = 0, which would be the
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case where the density at the boundary stays away from zero (such as a shifted half-normal or
exponential), then

B̂ −B = Op(T
−1/2 logN +N−1)

if both N and T go to infinity.

2.3 The PSS SPE Estimators

The models for which the SPE estimators have been derived vary depending on how the basic
model assumptions are modified to accommodate a particular issue of misspecification of the
underlying efficiency model. In the Monte Carlo simulations detailed in section 4, we consider
a number of SPE estimators that differ on the basis of assumed orthogonality of effects and
regressors, temporal variation in the efficiency effects, and correlation structure of the population
disturbance. These estimators are based on the series of papers by Park and Simar (1994) and
Park et al. (1998, 2003a, b) and are all based on principles discussed in the previous subsection.
The interested reader can find the technical derivations of these estimators therein. These
dependency structures and the other forms of potential misspecification have been addressed in
the parametric estimation literature in a number of studies surveyed in Baltagi (1995).
The derivations of the different SPE estimators used in the Monte Carlo simulations are

based on different parametric submodels that are consistent with the underlying assumptions
being addressed in the various modeling scenarios. The parametric submodels are used to
derive estimators along the lines described in Section 2.1 For example, when one believes
the effects and all of the regressors are dependent and is unwilling to specify a parametric
distribution for the dependency structure then one can specify the joint distribution using kernel
smoothers. With the joint distribution specified as h(·, ·) PSS (1998) showed that the SPE
efficiency estimator is the familiar within efficiency estimator introduced by Schmidt and Sickles
(1984). Implementation of this estimator (and its variants below) utilize kernel functionsK with
bandwidth parameter(s) sN which tend to zero at certain rates. When there is no correlation
between the effects and the regressors then the within estimator is no longer semiparametric
efficient. In this case the joint distribution of the effects and regressors is h(·, ·) = h1(α)h2(X).

The semiparametric efficient estimator for this pure random effects model is derived in Park and
Simar (1994). When there is correlation between the effects and a subset of q regressors X(2)

it

where X = [X(1),X(2)] then we can assume that αi and X
(1)
it are conditionally independent in

which case the joint density of the effects and the regressors can be written as

h(α,X(1),X(2)) = h1(α,X
(2)) h2(X

(1)|X(2)). (2)

A variant of this model is one in which the dependence between α and X(2) is through long
run levels of X(2). In the stochastic frontier production function setting this sort of dependency
between α and long run levels in X(2), proxied by X(2), may be a natural result of misapplication
of technology accompanied by long run changes in factors which contribute to technology’s
misapplication. Although one can allow for general dependencies between the effects and the
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regressors with which they are correlated, the semiparametric estimator that results is based
on a (Tq + 1)−dimensional kernel estimator whose convergence rate (for fixed T ) is quite slow
unless both T and q are small. However, if the joint density of (α,X(2)) is restricted to be

h1(α,X
(2)) = h3(α,X(2))h4(X

(2)), (3)

then the dimensionality of the joint distribution is reduced to a (q + 1)−dimensional density.
For cases in which q is small this estimator will have relatively rapid convergence properties.
This is the Model 3 used in the PSS (1998) analysis of efficiency differences in European and U.
S. airline carriers in which differences in long run labor requirements (q = 1) were allowed to be
correlated with airline technical efficiencies.
Misspecification of production dynamics is a basic problem that is seldom addressed in sto-

chastic frontier models of inefficiency (Ahn, et al., 1998, 2000, Alam, and Sickles, 2000). A
semiparametric efficient estimator of the stochastic production function that allows for such
misspecified dynamics in the guise of an AR(1) population disturbance term is derived in PSS
(2003a). In this case the error term in Eq. (1) is written as

εit = ρεi,t−1 + uit; |ρ| < 1. (4)

Different dependency structures between X and α also can be considered for the AR(1)
model, as with the models of PSS (1998, 2003a). Construction of the semiparametric efficient
estimator under different dependency structures utilizes kernel smoothers for the nonparamet-
rically specified distribution of the effects and the regressors.

3 Alternatives to the Semiparametric Efficient Estimators

There are a number of other panel frontier estimators that have been used widely and/or largely
ignored in the empirical efficiency literature. They differ from the SPE estimators in terms of
the assumptions made about the distribution of the unobserved efficiency effects and about the
correlation between the efficiency effects and the regressors.
Cornwell et al. (CSS) (1990) introduced a set of generalized least squares and instrumental

variables (IV) estimators that allow for cross-sectional and temporal heterogeneity in efficiency,
correlation of efficiency effects with all or some of the regressors, and identification of coefficients
of time invariant regressors. Although their estimators were first used to measure time variant
firm efficiencies they have appeal in generic panel data problems as well. The model they
consider generalizes (1) by specifying the production function as

Yit = X 0
itβ + Z 0iγ +W 0

itδi + εit, (5)

where Zi is a vector of (J) time invariant regressors, Wit is vector of (L) regressors whose
coefficients vary with the cross-sectional unit and can display both cross-sectional and time
series variation. If W contains just a constant term then this model reduces to Eq. (1), albeit
with an expanded set of J regressors. Let δi = δ0 + ui. Then we can rewrite the model as
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yit = X 0
itβ + Z 0iγ +W 0

itδ0 + vit,

vit = W 0
itui + εit.

The ui are assumed to be iid zero mean random variables with covariance matrix∆ . The distur-
bances εit are taken to be iid with a zero mean and constant variance σ2, and are uncorrelated
with the regressors and ui.
It is convenient to work with the matrix version of model. This is given by

y = Xβ + Zγ +Wδ0 + v,

v = Qu+ ε, (6)

where W is NT × L, Q = diag(Wi), i = 1, ..., N, is NT ×NL, and u is NL× 1.
We assume that L ≤ T , so that Q is of full column rank. Although this is not necessary

to identify β it is necessary to identify the individual δi. Taking Q to be of full column rank,
let PQ = Q(Q0Q)−1Q0 be the projection into the column space of Qand MQ = I − PQ be the
projection onto the null space of Q. Below we consider a number of estimators for this model.

3.0.1 The Parametric Within Estimator

The generalization of the standard within estimator for a model with heterogeneity in slopes as
well as in intercepts is based on the transformation of the model via MQ after which we simply
run least squares. Since MQZ = 0, γ cannot be estimated. The within estimator of β is given
by

bβw = (X 0MQX)
−1X 0MQy. (7)

The within estimator is an IV estimator with instruments MQ (or equivalently MQX). Its
consistency does not depend on assumptions of uncorrelatedness of (X,Z) and Qu.

3.0.2 The Parametric Generalized Least Squares Estimator

The GLS estimator is ordinary least squares applied to the transformed equation

Ω−1/2y = Ω−1/2Xβ +Ω−1/2Zγ +Ω−1/2Wδ0 +Ω
−1/2v, (8)

where it can be shown that

Ω−1/2 =
1

σ
MQ + F

and

F = Q(Q0Q)−1/2[σ2INL + (Q
0Q)1/2(IN ⊗∆)(Q0Q)1/2]−1/2(Q0Q)−1/2Q0.

The consistency of GLS hinges on the uncorrelatedness of (X,Z,W ) and Qu. However, GLS
allows the estimation of γ,and for fixed T , it is more efficient than the within estimator. The
feasible GLS estimator is based on consistent estimates of Ω−1/2 which are given in CSS.
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3.0.3 The Extended Parametric Hausman-Taylor (H-T) Estimator

Now consider the case in which some of the regressors are correlated with the effects. In
particular assume that B = (X1, Z1,W1) are uncorrelated with the effects in the sense that
plim(NT )−1X 0

1Qu = 0, and similarly for Z1 and W1,while (X2, Z2,W2) are correlated with the
effects. Let the dimensions of X1, Z1,W1,X2, Z2,W2 be k1, j1, l1, k2, j2, l2 (with k1 + k2 = K,

j1 + j2 = J , and l1 + l2 = L).

A generalization of the H-T simple, consistent estimator is obtained by first using the within
estimator and constructing the within residuals as

(y − xbβw) = Zγ +Wδ0 + [Qu+ ε+X(β − bβw)].
We transform this equation by premultiplying by Ω−1/2

Ω−1/2(y − xbβw) = Ω−1/2Zγ +Ω−1/2Wδ0 +Ω
−1/2[Qu+ ε+X(β − bβw)].

The simple consistent estimator is then defined as the instrumental variables estimator of
this equation using as instruments

B∗ = Ω−1/2B = Ω−1/2(X1, Z1,W1).

Note that B is transformed by Ω−1/2 . The use of untransformed instruments is clearly subop-
timal, if we assume "reduced form" equations for (X2, Z2,W2) which are linear in (X1, Z1,W1).

The simple consistent estimator using the transformed instruments is" bγwbδ0w
#
= [(Z,W )0Ω−1/2PB∗Ω−1/2(Z,W )]−1(Z,W )0Ω−1/2PB∗Ω−1/2(y − xbβw). (9)

The estimator will exist if we have enough instruments, i.e. if k1 + j1 + l1 ≥ J + L, or
equivalently if k1 ≥ j2 + l2.

The efficient IV estimator estimates the equation

Ω−1/2y = Ω−1/2Xβ +Ω−1/2Zγ +Ω−1/2Wδ0 +Ω
−1/2v

by IV, using as instruments A∗ = Ω−1/2A = Ω−1/2(MQ,X1, Z1,W1). Let G = (X,Z,W ). Then
the efficient IV estimator is eβ∗eγ∗eδ∗0

 = (G0Ω−1/2PA∗Ω−1/2G)−1G0Ω−1/2PA∗Ω−1/2y. (10)

Conditions for the existence of this estimator and the relationship between the efficient and
simple consistent estimators can be found in CSS.
A remaining issue is how to consistently (for large N) estimate Ω whose unknown parame-

ters are σ2 and ∆. If SSEw is the unexplained sum of squares in the within regression thenbσ2=SSEw/N(T − 1) is a consistent estimator of σ2. To estimate ∆, let ei be the IV residuals
for cross-section i (e.g., from the simple consistent IV estimator) and define
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b∆ = 1

N

NX
i=1

[(W 0
iWi)

−1W 0
ieie

0
iWi(W

0
iWi)

−1 − bσ2(W 0
iWi)

−1], (11)

it can be shown that this is a consistent estimator (for large N) of ∆.

3.1 A Generalization of Parametric Models of Efficiency: The Mixed Effect
Model

Cornwell et al. (1990) relaxed the assumption that the effects are time-invariant by replacing
the firm effect αi with a flexibly parameterized function of time, with parameters that vary over
firms. The parametrization chosen in CSS was a quadratic function of time αit = θi1+θi2t+θi3t

2.

Other than a quadratic function of time, a random effects specification of αit has been modeled
as αit = γ(t)αi = [1+exp(bt+ct2)]−1αi (Kumbhakar, 1990), and αit = ηitαi = exp[−η(t−T )]αi
(Battese and Coelli, 1992), and αit = θtαi (Lee and Schmidt, 1993), all of whom used mle to
estimate efficiency.
Kneip (1994) proposed an alternative to the fixed effect estimator that allowed for a very

general heterogeneity structure and relied on principal components. This approach is more
general than fitting polynomials and can be used to parsimoniously model virtually any temporal
pattern of firm efficiency. To measure time -variant heterogeneity (1) can be estimated using a
two-step procedure. In the first step, the model is estimated to obtain consistent estimates of
β. In the second step, principal components are applied to the residual εit = αit + vit with

αit = ci1g1t + ci2g2t + · · ·+ ciLgLt,

where cir are unknown parameters, and gir are smooth, real-valued functions. The gir’s are
referred to as basis functions. The smallest L such that the model holds for some appropriate
set of basis functions is the dimension of the model. In order to operationalize this approach to
efficiency measurement, it is necessary to estimate the parameters cir, the functions gir, and the
number (L) of gir functions. The firm efficiencies are obtained from the structures of the gir and
from the distribution of the effects αi. The fixed effect model is nested in the mixed efficiency
effects specification (L = 1, grt = 1, cir = γi for all r and t). Methods for estimating cir, gir,

and L are found in Kneip (1994) and Kneip et al. (2003).

3.2 Parametric Model of Efficiency and of Its Temporal Variation-The Bat-
tese and Coelli Estimator

We also analyze efficiencies using the fully parameterized maximum likelihood estimator intro-
duced by Battese and Coelli (1992). This estimator models technical efficiency as an expo-
nential function of time. The panel frontier is modified somewhat by specifying αit = ηitαi =

(exp [−η(t− T )])αi. The �it are assumed to be iid N(0, σ2V ) random errors while the αi are iid
nonnegative truncations of an N(0, σ2); η is an unknown scalar parameter.
Note that the variation of the firm effects depends on the parameter η. The effects decrease,

remain constant, or increase as t increases, if η > 0, η = 0, or η < 0. One obtains the standard
time invariant technical efficiency measure when η = 0.
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3.3 Nonparametric Methods to Estimate Technical Efficiency

Shephard’s (1953) input distance function establishes a formal linkage between the observed
technology and technical efficiency. Estimation of technology can be based on a parametric
functional form (e.g., the Cobb-Douglas or translog) or a nonparametric representation of tech-
nology. One such nonparametric representation of technology can be implemented through
linear programming methods which are powerful, easy, and impose minimal assumptions on
the boundary of the input requirements set. The assumptions include piece-wise linearity and
convexity. The technology can be represented by the input distance function, which involves
scaling the input vector x:

D(y, x) = max{θ :
·
1

θ

¸
x ∈ L(y)}, (12)

where L(y) is the input requirement set, which is a set of input vectors x that can produce the
output vector y, and θ ≥ 1. Clearly, D(y, x) ≥ 1 and is a measure of technical efficiency since the
isoquant is the set of observations on x that are on the boundary of the input requirement set
at which D(y, x) = 1. The Debreu (1951) and Farrell (1957) input-based measure of technical
efficiency is

TE(y, x) = min{θ : θx ∈ L(y)}, (13)

where 0 ≤ θ ≤ 1. It is clear that TE(y, x) ≤ 1 and that TE(y, x) = 1/D(y, x). We can similarly
define output-oriented distance functions.
These distance functions can be calculated using linear programming methods that have

become known generically as data envelopment analysis (DEA). Charnes et al. (1978), Banker
et al. (1984) and Färe et al. (1985, 1994) develop and refine these linear programming approaches
to measure technical efficiency. For the input-oriented case, the DEA linear program for the
intertemporal production set is

Dit(yit, xit) = min
θ,λ

θ (14)

s.t.− yit + Y λ ≥ 0,

θxit −Xλ ≥ 0,

λ ≥ 0,

where θ is a scalar, λ is an (NT × 1) vector of constants and i = 1...N ; t = 1, ..., T . The
efficiency score of the ith firm at time t is given by 0 ≤ θ ≤ 1, where 1 indicates a point on the
frontier and hence a technically efficient firm. We solve NT linear programs to obtain a value
of θ. Essentially, this linear program radially contracts the input vector of the ith firm, xi, to a
projected point (Xλ, Y λ), on the surface of the piece-wise linear isoquant or technology.2

2The sampling variation of DEA-based efficiency estimators also can be constructed by recently developed
bootstrap procedures introduced by Simar and Wilson (1999, 2000) who outline a smooth bootstrap procedure
to examine the sensitivity of distance functions, and hence efficiency, to sampling variation of the frontier. We
do not pursue this in our experiments below.
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4 Monte Carlo Experimental Results

We have discussed a number of competing estimators of β and αi. In this section we examine the
finite sample performances of the estimators through the following Monte Carlo (MC) scenarios.
The basic model we simulate is Eq. (1). We simulate samples of size N = 10, 50 with

T = 10, 30, 50 in a model with d = 2 regressors. In each MC sample, the regressors were
generated independently according to a bivariate VAR model

Xit = RXi,t−1 + ηit, where ηit ∼ N2(0, σ
2
XI2), (15)

where σX = 1 and R =

Ã
4 0.05

0.05 .4

!
.

The simulation was initialized by choosing Xi1 ∼ N2(0, σ
2
X (I2 − R2)−1) and then starting

iteration (15) for t ≥ 2.
The resulting values ofXit then were shifted around three different means to obtain 3 balanced

groups of firms from smaller to larger. We fix µ1 = (5 5)0, µ2 = (7.5 7.5)0, µ3 = (10 10)0.
The idea is to generate a reasonable cloud of points for X. Other scenarios have been tried:
they influence the quality of the estimators jointly but they do not change the conclusions on
the comparison issue raised here.
For the experiments in which efficiency was not varying over time and cross-section, the

inefficiency parts (the individual effects) were generated as B − Expo(µα) where we chose for
the exponential distribution (denoted by Expo(·)) a mean µα = 1 and for the upper boundary
a value of B = 1. Since the Y 0s and X 0s are measured in logarithms this involves an average
inefficiency score of 50% (E (exp{−Expo(µα)}) = 0.50). For the experiments in which efficiency
was changing over time we modified the generation of the effects to mirror the assumed temporal
patterns of an ARMA(0.9, 0.9) process. For the experiments in which the regressors were
allowed to be correlated with the effects we generated the draws for ηit (the stochastic portion
of Xit) and the α0is from a bivariate process with correlation set at 0.5 to reflect a nominal
level of correlation. Other scenarios for generating the (Xit, αi) could be chosen but this does
not affect the conclusions below. The values of β were set equal to (0.5 0.5)0 to represent a
constant returns to scale technology. The disturbances are drawn from a normal distribution
with σ = 0.5. For the experiments in which the disturbances follow an AR(1) process the
autoregressive part was generated with ρ = 0.8 and σ = 0.5. Changing the value of σ affects
jointly the quality of the estimators but not the comparisons below. The number of Monte Carlo
simulations was (M) = 100.3

3Programs are written in Matlab 6.5. The simulations are very computationally challenging. For N=100,
T=50, and N=500 one experiment takes approximately 80 h on a Pentium III processor running at 1.8 GHz.
Presumably these could be speeded up by customizing the programs to run on parallel machines and/or by
utilizing faster processors than those available to us. Because of the severe computational burden of these
experiments we have had to cut back the number of Monte Carlo simulations from 500 to 100 and the largest
cross-sectional sample sizes from 100 to 50. We have examined results from several different experimental setups
based on these different numbers of simulations and cross-sectional sizes and have found no qualitative differences
and little quantitiative difference in our results.
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Since the VAR process generating the regressors Xi is symmetric in both components, the
MSE for the estimators of the two coefficients of technology are of the same order of magnitude.
In the first set of tables, we display the sum of the two MC mean squared errors:

MSE =
2X

j=1

1

M

MX
m=1

(β̂
m
j − βj)

2,

where β̂ is based on one of the competing estimators. Estimates of the fixed/random efficiency
effects and of relative efficiencies are analyzed by computing correlations and rank correlations
between the true effects and those based on the different estimators. Comparability of the
different efficiency estimators is gauged by examining the correlations of level effects and of
relative efficiencies among the estimators. For the bandwidth s we selected an optimal fixed
value s∗ by running the whole Monte Carlo experiment for a selected grid of 20 equally spaced
values for s between 0.1 to 2. We report in the tables the results corresponding to the optimal
bandwidth s∗ which minimizes the MSE. In all the tried scenarios, the results were not highly
sensitive to the choice of s in the above grid.
We begin with a rather benign data generating process in which there exist no problems:

the disturbance is iid, the effects are constant and generated from a lognormal distribution
(note that the BC estimator assumes that the effects are half-normal), there is no correlation
between the effects and the regressors, and there are no misspecified dynamics. We refer to
this experimental setup as the "no problems" setup. We then present experimental results for
cases in which the disturbance exhibits serial correlation (ρ = 0.8), regressors are correlated with
efficiency (correlation between regressor and efficiency is 0.5 for both regressors), the efficiencies
are temporally variant following the ARMA(0.9, 0.9) process descibed above, and when all of
these problems exist. The seminonparametric, parametric, and nonparametric estimators we
consider are within (Model 1 of PSS, 1998), random effects GLS, Hausman-Taylor (1981), PSS
Model 3 (long-run levels of the regressors are correlated with the efficiency effects), the Park et al.
(2003a) semiparametric within and GLS estimators when the disturbance is serially correlated
(PSSW and PSSG), the CSS within and GLS estimators with quadratic temporal change for
each firm’s efficiency (CSSW and CSSG), the Battese and Coelli estimator (B-C), the Kneip et
al. (2003) mixed effects estimator (KSS), and the nonparametric linear programming method
referred to as DEA. Results for the sum of the mean-squared-errors (mse) of the two parameter
estimates and of the mse of the efficiency estimates (averaged over the simulations) are found
in Tables 1-10. Results for the correlations between true efficiencies (like the other parameters
of the model they are fixed for a particular MC experiment) and the estimated efficiencies are
averaged over the simulations and are found in Tables 11-18 for selected experiments.
We first discuss results when efficiency is temporally invariant, the erros are not serially

correlated, and there is no correlation between the regressors and technical efficiency. The mse
of estimators and of technical efficiencies are Tables 1 and 2. For this dgp the methods have very
little to distinguish among themselves. That is a good thing for researchers who are uncertain
as to which of the many alternative estimators they should use with panel data. Technology is
measured very accurately by all estimators with relative mse’s favoring no particular estimator in
regard to estimates of the β0s. The N,T asymptotics of each estimator is revealed in the pattern
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of the mse’s as both N and T are increased. The design of the experiments did not address issues
of relative time invariance of the regressors. Thus, estimators that utilize some variant of the
within transformation (Within, H-T, PSS1, CSSW) may overstate their relative performance
when regressors do have such patterns. Estimators such as CSSW, CSSG, B-C, KSS that
parameterize time varying efficiencies when in these experiments they are constant, suffer in
both mse measures. DEA also suffers relative to the other estimators in regard to technical
efficiency measurement. However, these results are the most favorable to the estimators that
are designed for this dgp, in particular the GLS-based and the B-C estimators that model
efficiency as a random effect. Correlations between the true and estimated efficiencies are
quite high (>0.95) for all these estimators for all configurations of cross-section and time series
observations and, not surprisingly, quite high among themselves.
We next introduce misspecified dynamics in the form of a serially correlated error term.

The results for mse’s of the β0s and for the technical efficiencies are in Tables 3 and 4. This
experimental setting is one in which the PSS2 estimators should be at an advantage and they
clearly are, with mse’s about 50% smaller than for the other estimators that either ignore serial
correlation, mistake it for a portion of the serial correlation structure inherited from their random
effects assumptions, or mistake it as temporally varying efficiency when no temporal variation
in technical efficiency exists. The mse of the estimators of β have increased five-fold over those
in Tables 1 and 2 for most of the N,T and estimator combinations. As information increases in
the form of a larger cross-section to identify the parameters and a larger time series to identify
the correlations in the disturbances, most estimators again converge to similar mse’s, with GLS-
based estimators holding a slight edge over those that do not deal formally with any nonstandard
correlation pattern such as that found in the composed error term. The mse’s for estimators of
technical efficiency increase by almost an order of magnitude for the largest samples (N,T = 50),

although we now see a pattern emerging in which estimators that allow for temporal variation in
efficiency (CSSW-CSSG,B-C,KSS) appear to do relatively better than when no dynamics were
specified. The DEA estimator’s mse deteriorates somewhat with this form of misspecification
and is comparable with the KSS estimator in terms of the mse of technical efficiency relative
to the other estimators for the largest N,T samples. Tables 11 and 12 provide both standard
and Spearman rank correlations between the true and estimated technical efficiencies. Here
the correlations are relatively high over most of the estimators and N,T combinations, although
the KSS estimator, in particular, performs poorly when efficiency is not temporally varying
and when there is simply serial correlation in the disturbance. The other estimators, however,
provide technical efficiency estimates that are highly correlated with the true efficiency. The
correlations increase for larger T (fixed N) and for larger N (fixed T ).
Correlation between technical efficiency and regressors is a natural extension of the efficiency

model. Technical efficiency may be due in part to changes in a particular regressor that
determines output, e.g., the sluggish adjustment of a quasi-fixed factor such as labor in European
national airlines before liberalization efforts in the late 1990s (Park et al., 1998). Tables 5 and
6 report Monte Carlo results when such correlations (0.5) exist between the efficiency terms
and the two regressors in our experiments. This form of misspecification does not appear to
compromise the ability of estimators to track either the coefficients or the technical efficiencies
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relative to the case in which no correlation existed. Nor does there appear to be any clear
distinction between estimators when correlations between the true and estimated efficiencies are
examined - the correlations are uniformly high and we do not report them here. Whether these
findings are due to the relatively poor instruments used by consistent IV estimators such as
within, H-T, PSS1, CSSW, or due to the relatively small sample sizes used in our analysis is
unclear and requires further study.
We now move to an experimental setting in which efficiencies are changing over time for

the firms. That different firms have heterogeneous patterns of efficiency is a quite reasonable
possibility to consider in modeling efficiency with panel data. A simple time trend common
to all firms may oversmooth the substantial heterogeneity in firm-specific temporal adjustments
to the best-practice technology. The model for temporal variation was picked to favor no es-
timator - no estimator we consider is designed to identify and estimate an ARMA(1, 1) model
with parameters (0.9, 0.9). Tables 7 and 8 provide the mse’s of estimators of the β0s and of
the technical efficiencies. What begins to emerge from these experiments is that none of the
estimators we have considered differs very much in either table with the exception of the KSS
estimator. The KSS estimator clearly dominates in regard to the mse measures of Tables 7 and
8. The other estimators do not distinguish themselves in any particular regard. Tables 13 and
14 provide correlations between the true and estimated technical efficiencies. As the number of
cross-sections and time series increase it is clear that the KSS and the DEA estimators provided
a better correlation between true and estimated technical efficiencies, relative to the other esti-
mators considered. There is no apparent pattern to the comparability of the other estimators,
although the CSSW and CSSG appear to do best in terms of Spearman rank correlations for
large samples (N = 50, T = 50). The differences may not be statistically significant.4

The last set of experiments uses a dgp based on all of the problems we have examined so far:
the disturbance is serially correlated (ρ = 0.8), regressors are correlated with technical efficiency
(ρ = 0.5), and technical efficiency follows an ARMA(1, 1). Tables 9 and 10 report the mse of
the β0s and of the estimators of technical efficiency under this experimental setup. Again, the
different estimators have relatively little to distinguish themselves other than the KSS estimator
that over parameterizes time variation in efficiency (see Tables 1 and 2 when no temporal
variation in efficiency exists). Interestingly, when we examine the level and rank correlations
between true and estimated efficiencies in Tables 15 and 16, not only does the KSS estimator
perform relatively well but so does the DEA estimator. Tables 17 and 18 provide correlations
between the different estimators for a particular experiment in this class of experiments (N =

20, T = 50).

5 Empirical Illustration of Alternative Efficiency Estimators

Here we illustrate the various estimators and their temporal patterns using a subset of 50 unit
banks from the U. S. banking data analyzed elsewhere by Adams et al. (1999), Park et al.
(2003a), and Fernández et al. (2004).

4We do not calculate the standard error for these correlations for the experiments.
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Since the early 1980s U. S. federal and state regulatory agencies have resorted to less stringent
interpretation of banking regulations and adopted less restrictive legislature. The passing of the
Reigle-Neal Act in the early 1990s enabled nationwide banking, while the relaxing of unit bank,
branch bank and state bank-type legislature has resulted in numerous mergers and failures
which have significantly altered the U.S. banking environment. The introduction of interest
bearing consumer checking accounts and the phasing out of Regulation Q interest rate ceilings
on savings and small denomination time deposits in the early 1980s were among the initial
wave of deregulation policies. Money market deposit accounts (structured similar to mutual
funds) led not only to a new product line but also to competition from non-bank institutions.
For comprehensive discussions of these deregulatory issues and the industry’s reactions and
adjustments to them, see Berger et al. (1995).
Previous studies of banking productivity and efficiency have relied on three basic methods

for productivity and efficiency measurement: linear programming, maximum likelihood, and
ordinary least squares or instrumental variable estimation. Berger and Humphrey (1997) provide
a general description of these methods. Our focus here is on efficient and robust measurement
of productivity and efficiency in a setting in which the regulatory climate has been steadily
altered, forcing firms to adjust to a best practice technology using resource allocations that are
increasingly unconstrained by financial regulation.
The full data set consists of 2,051 U. S. banks from the first quarter of 1980 through the

fourth quarter of 1989. We divide the data set into two subsamples based on differing regulatory
environments: limited branching (Limit) and no branching (Unit). These samples contain 1,220
and 831 banks each. The production and cost data were obtained on-line from the Federal
Reserve Bank of Chicago. The Report of Condition and Income (Call Report) and the FDIC
Summary of Deposits are the primary sources for the U.S. banking data. The panel data set is
a comprehensive source of information on operating costs, inputs (including labor, capital and
purchased funds), outputs (loans and deposit services), and the regulatory environment of any
institution in the U. S. banking industry. Data on over 100 variables were collected from the
Call Reports and the FDIC Summary of Deposits.
Labor (LAB) is measured using the number of full time-equivalent employees on the payroll

at the end of each quarter. The total value of premises, fixed assets, and capitalized leases are
used as a proxy for capital (CAP). Purchased funds (PURF) are measured using the sum of
deposits greater than U. S. $100,000, foreign debt, federal funds purchased, and liabilities on
borrowed money.
The measurement of loan and deposit services is a more complex issue, and two approaches are

currently utilized in the U. S. banking literature: the intermediation approach and production
approach. The intermediation approach uses the dollar amounts of deposits and outstanding
loans as a proxy for deposit and loan services provided by a bank, while the production approach
uses the number of outstanding loans and deposits as a measure of banking services produced.
The former approach is followed in the data collection and in the modeling method.
The following loan and deposit types are used in this study: real estate loans (RELN),

commercial and industrial loans (CILN), installment loans (INLN), and retail time and savings
deposits (Deposits). CILN accounts for loans given to businesses, while INLN accounts for
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loans given to individuals to meet medical expenses, vacation expenses, purchase furniture,
automobiles, household appliances, and other miscellaneous expenses. RELN accounts for loans
secured by real estate.
The price (interest rate) for each of the loan types is obtained by dividing the interest rate

and fee income earned by the outstanding loan amount. A composite wage rate is obtained by
dividing the total labor expenses by the total number of workers. Price indices for capital and
purchased funds are calculated by dividing the expenses incurred for each input by the value of
total deposits.
Outputs, inputs and price definitions used in this paper are consistent with those used in

previous studies. Bank size (total assets) is highly correlated with the size of a given output,
and thus dollar values are used in place of the number of loans or deposits.
The definitions of quantities and prices are less than ideal, but are necessitated due to the

absence of explicit price indices. The Call Report and FDIC data are reported in nominal terms,
and are converted into real terms using a state-level consumer price index (1983-1984=$100).

5.0.1 Estimation Results for US Banks

We utilize a subsample of 50 unit banks to estimate the various models. We focus on the
relatively smaller subsample so that we might illustrate the heterogeneity that exists in both
levels and temporal patterns of firm efficiencies pictorially. Our analysis focuses simply on the
temporal patterns of technical efficiencies for the various estimators, for their simple average,
and for variations that exist across firms for selected estimators. They are summarized in
Figures 1-5. Figures 1-4 display the temporal patterns and the substantial heterogeneity that
exists among firms over time for the BC, CSSW, CSSG, and the KSS estimators. As one can
see, the levels of firm efficiencies are quite heterogenous as are their temporal patterns as we
allow for greater flexibility in the parameterization of efficiency change. The BC estimator
clearly is quite stable owing to its relatively simple parametric structure, while the CSSW
and CSSG are clearly less comparable. The KSS estimator would appear to combine the
stability of the BC estimator with the temporal flexibility of the CSSW and CSSG estimators.
We also show in Figure 5 the comparative temporal patterns of efficiency for the competing
estimators discussed in the previous sections. Although the PSS1 and PSS2 estimators can easily
accommodate the generalization utilized in the CSS estimator to allow for flexibility in temporal
patterns of firm-specific efficiency we estimate a time invariant specification as we also do for
the Schmidt and Sickles random effect and fixed effect estimators and H-T estimators. Finally,
we combine the estimators into a composite one by simple averaging in Figure 6. Although
the weighting scheme here is clearly naive it does characterize the efficiency findings from the
various estimators in a clear and informative summary figure that indicates a ramping up of
efficiency in the early 1980s and a flatting of the efficiency changes in the late 1980s. These
results are not surprising considering the fact that the banking industry underwent substantial
changes during the 1980s. This is particularly true for the early part of the decade, when some
deposit types were deregulated, capital requirements were redefined, and banks began to move
into nontraditional banking markets. Also, bank failures increased during 1985—1989. As
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banks became accustomed to the new regulations the pace of efficiency growth slowed as the
effects of financial deregulation were captured in the business practices utilized by the successful
unit banks.

6 Concluding Remarks

In this paper the foundations and properties of an array of estimators of technical efficiency
available to the applied researcher have been summarized. The model assumptions under which
each of the estimators have been developed also have been presented. Some relatively new but
possibly inaccessible semiparametric robust estimators have been discussed. The estimators
have been examined in a set of Monte Carlo simulations and an illustration of the estimators
has been provided. Simulation results point to the relative merit of different estimators under
different circumstances. Which estimator is used depends on the reseacher’s understanding of
the institutional factors in the market under study. Are constraints borne more or less equally
by all firms, are they not? Do they change over time? The analysis herein suggests that answers
to these questions at the outset of a productivity study of productivity are no less important
than the questions.
Based on the results of this paper I have several recommendations for the applied efficiency

modeler. The first is to use the most robust procedure available that also allows for flexibil-
ity in the temporal patterns of efficiency but which does not force on these patterns too much
parametric smoothness. A clear advantage of the class of semiparametric efficient estimators
(generalized using the CSS or the mixed effects general specification of temporal firm-specific
efficiency - a generalization not pursued in this paper) is that it is often possible to relax some
of the strong parametric assumptions about the distribution and dependency structure of the
"reduced form" Solow residual while still preserving statistical efficiency for this class. How-
ever, relaxing parametric assumptions comes at the price of instability of the temporal patterns
of firm-specific efficiency measures. One way out of this dilemma is to combine the various
stochastic frontier and DEA models of efficiency in a portmonteau estimator that would weight
the various efficiency measures based on a formal Bayes prior on the amount of allowed vari-
ability in efficiency measures and parameter estimates. The Bayesian framework for estimating
stochastic frontiers introduced by van den Broeck et al. (1994) and extended in this Annals
Issue by Fernández et al. (2004) could be adopted to formalize what applied researchers often
informally adopt in their research—downweight estimates of inefficiency that are unduly rough
and instable. Currently I am pursuing this strategy and have freeware available that utilizes ex
post a uniform prior for weighting the estimators (http://www.ruf.rice.edu/~rsickles/).
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7 Tables and Figures

N T Within GLS H−T PSS1 PSS2W PSS2G CSSW CSSG B−C KSS

20 10 0.01076 0.05963 0.00607 0.00606 0.00632 0.00631 0.01816 0.00611 0.00629 0.01376

20 30 0.00328 0.00239 0.00241 0.00248 0.00268 0.00267 0.00380 0.00208 0.00247 0.00401

20 50 0.00181 0.00155 0.00156 0.00159 0.00169 0.00169 0.00186 0.00102 0.00156 0.00203

50 10 0.00395 0.00210 0.00212 0.00231 0.00225 0.00226 0.00635 0.00196 0.00215 0.00474

50 30 0.00135 0.00106 0.00106 0.00111 0.00111 0.00112 0.00146 0.00088 0.00105 0.00150

50 50 0.00075 0.00064 0.00064 0.00065 0.00069 0.00069 0.00078 0.00041 0.00064 0.00083

Table 1: Monte Carlo MSE of the estimators of β with no problems

N T Within GLS H−T PSS1 PSS2W PSS2G CSSW CSSG B−C KSS DE

20 10 0.1381 0.1113 0.1123 0.1118 0.1154 0.1152 0.2794 0.2390 0.4609 0.5872 0.6

20 30 0.0627 0.0466 0.0474 0.0494 0.0517 0.0517 0.1275 0.1105 0.1359 0.2788 0.4

20 50 0.0321 0.0303 0.0303 0.0306 0.0312 0.0312 0.0654 0.0602 0.0832 0.2759 0.6

50 10 0.1346 0.1200 0.1202 0.1202 0.1227 0.1230 0.2720 0.2548 0.4313 0.6088 0.5

50 30 0.0525 0.0500 0.0501 0.0501 0.0513 0.0513 0.1161 0.1098 0.3367 0.4157 0.5

50 50 0.0416 0.0363 0.0365 0.0373 0.0396 0.0396 0.0978 0.0953 0.2646 0.3739 0.7

Table 2: Monte Carlo MSE of the estimators of technical efficiencies with no prob-
lems
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N T Within GLS H−T PSS1 PSS2W PSS2G CSSW CSSG B−C KSS

20 10 0.02599 0.01717 0.01767 0.01963 0.00805 0.00789 0.01426 0.00819 0.01669 0.02259

20 30 0.01258 0.00973 0.00993 0.01060 0.00256 0.00262 0.00790 0.00426 0.01034 0.01314

20 50 0.00814 0.00650 0.00660 0.00685 0.00161 0.00160 0.00667 0.00409 0.00409 0.00748

50 10 0.00899 0.00695 0.00699 0.00717 0.00242 0.00237 0.00494 0.00258 0.00736 0.00840

50 30 0.00521 0.00382 0.00386 0.00411 0.00104 0.00103 0.00350 0.00167 0.00382 0.00495

50 50 0.00334 0.00253 0.00257 0.00270 0.00062 0.00062 0.00240 0.00123 0.00253 0.00320

Table 3: Monte Carlo MSE of the estimators of β with serially correlated distur-
bances ( ρ = 0.8).

N T Within GLS H−T PSS1 PSS2W PSS2G CSSW CSSG B−C KSS DE

20 10 0.6315 0.6116 0.6134 0.6180 0.6035 0.6042 0.7166 0.7117 0.6247 0.9204 0.8

20 30 0.4772 0.4636 0.4653 0.4696 0.4621 0.4609 0.6112 0.6055 0.5833 0.6121 0.6

20 50 0.3146 0.3080 0.3085 0.3085 0.3036 0.3037 0.4879 0.4895 0.5020 0.7499 0.8

50 10 0.6467 0.6351 0.6353 0.6353 0.6144 0.6134 0.7421 0.7399 0.6806 0.9653 0.8

50 30 0.4833 0.4700 0.4703 0.4730 0.4353 0.4356 0.6563 0.6513 0.6082 0.8839 0.8

50 50 0.3653 0.3551 0.3554 0.3567 0.3449 0.3456 0.5760 0.5744 0.5174 0.9146 1.0

Table 4: Monte Carlo MSE of the estimators of technical efficiencies with serially
correlated disturbances (ρ = 0.8).

26



N T Within GLS H−T PSS1 PSS2W PSS2G CSSW CSSG B−C KSS

20 10 0.01076 0.00624 0.01076 0.01116 0.00652 0.00651 0.01816 0.00610 0.00670 0.01378

20 30 0.00328 0.00224 0.00329 0.00328 0.00253 0.00253 0.00380 0.00208 0.00230 0.00402

20 50 0.00181 0.00155 0.00181 0.00181 0.00169 0.00169 0.00186 0.00102 0.00156 0.00203

50 10 0.00395 0.00207 0.00395 0.00405 0.00218 0.00219 0.00640 0.00193 0.00214 0.00477

50 30 0.00135 0.00127 0.00135 0.00137 0.00125 0.00125 0.00146 0.00088 0.00126 0.00150

50 50 0.00075 0.00057 0.00075 0.00075 0.00061 0.00061 0.00078 0.00041 0.00057 0.00083

Table 5: Monte Carlo MSE of the estimators of β when regressors are correlated
with technical efficiency.

N T Within GLS H−T PSS1 PSS2W PSS2G CSSW CSSG B−C KSS DE

20 10 0.1447 0.1204 0.1447 0.1458 0.1241 0.1237 0.2835 0.2399 0.4431 0.5973 0.6

20 30 0.0618 0.0464 0.0618 0.0619 0.0500 0.0499 0.1267 0.1105 0.1388 0.2768 0.4

20 50 0.0321 0.0303 0.0321 0.0321 0.0312 0.0312 0.0654 0.0602 0.0832 0.2759 0.9

50 10 0.1360 0.1153 0.1360 0.1364 0.1184 0.1184 0.2733 0.2545 0.3684 0.6083 0.6

50 30 0.0517 0.0550 0.0517 0.0516 0.0543 0.0544 0.1154 0.1100 0.3843 0.4150 0.5

50 50 0.0434 0.0385 0.0434 0.0433 0.0398 0.0398 0.0987 0.0958 0.2259 0.3754 0.7

Table 6: Monte Carlo MSE of the estimators of technical efficiencies when regressors
are correlated with technical efficiency.
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N T Within GLS H−T PSS1 PSS2W PSS2G CSSW CSSG B−C KSS

20 10 0.02060 0.01363 0.01380 0.01636 0.01490 0.01485 0.02905 0.00852 0.01453 0.01383

20 30 0.00735 0.00451 0.00471 0.00489 0.00445 0.00446 0.00656 0.00349 0.00420 0.00379

20 50 0.00353 0.00188 0.00196 0.00205 0.00198 0.00201 0.00364 0.00165 0.00187 0.00209

50 10 0.01115 0.00792 0.00794 0.00661 0.00730 0.00730 0.01349 0.00436 0.00741 0.00489

50 30 0.00515 0.00390 0.00404 0.00391 0.00280 0.00279 0.00393 0.00167 0.00359 0.00151

50 50 0.00414 0.00362 0.00362 0.00290 0.00176 0.00177 0.00320 0.00150 0.00744 0.00080

Table 7: Monte Carlo MSE of the estimators of β when technical efficiencies are
ARMA(1,1)

N T Within GLS H−T PSS1 PSS2W PSS2G CSSW CSSG B−C KSS DE

20 10 0.2971 0.2721 0.2726 0.2768 0.2717 0.2744 0.3418 0.3088 0.4211 0.2321 0.8

20 30 0.4541 0.4355 0.4369 0.4397 0.4395 0.4390 0.4006 0.3939 0.4504 0.1148 0.4

20 50 0.3036 0.2961 0.2967 0.2973 0.2992 0.2992 0.3183 0.3106 0.3893 0.0842 0.5

50 10 0.4481 0.3941 0.3952 0.4033 0.4095 0.4087 0.3997 0.3572 0.4540 0.1776 0.5

50 30 0.5474 0.5571 0.5566 0.5496 0.5539 0.5537 0.5698 0.5926 0.6081 0.0556 0.5

50 50 0.5719 0.5690 0.5690 0.5687 0.5653 0.5654 0.6515 0.6614 0.7701 0.0455 0.6

Table 8: Monte Carlo MSE of ARMA(1,1) time varying technical efficiencies.
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N T Within GLS H−T PSS1 PSS2W PSS2G CSSW CSSG B−C KSS

20 10 0.13564 0.08330 0.13564 0.13236 0.04767 0.03993 0.10573 0.03301 0.09251 0.02817

20 30 0.11338 0.05286 0.11338 0.11336 0.03237 0.03258 0.09071 0.04596 0.06328 0.02533

20 50 0.08880 0.04145 0.08880 0.08838 0.04055 0.03881 0.08928 0.05210 0.05285 0.01356

50 10 0.38343 0.22324 0.38343 0.37380 0.30595 0.30831 0.20771 0.11259 0.26283 0.01451

50 30 0.42682 0.28755 0.42682 0.42674 0.18692 0.16911 0.32382 0.26400 0.36399 0.00531

50 50 0.59370 0.59370 0.59370 0.59157 0.17622 0.13259 0.40662 0.37150 0.55332 0.00268

Table 9: Monte Carlo MSE of β when the disturbance is serially correlated ( ρ = 0.8),
regressors are correlated with technical efficiency, and technical efficiency follows an
ARMA(1 , 1 ) process.

N T Within GLS H−T PSS1 PSS2W PSS2G CSSW CSSG B−C KSS DE

20 10 1.0675 0.9277 1.0675 1.0619 1.0923 1.1118 0.9910 0.7810 0.7388 0.4165 1.0

20 30 0.7960 0.7393 0.7960 0.7964 0.7924 0.7911 0.8099 0.7737 0.7506 0.4424 0.7

20 50 0.6295 0.5606 0.6295 0.6288 0.5679 0.5640 0.7041 0.6734 0.6776 0.3238 0.6

50 10 1.1174 1.0430 1.1174 1.1140 1.1109 1.1118 1.0073 0.9338 0.9508 0.7536 0.9

50 30 0.8550 0.8287 0.8550 0.8551 0.7942 0.7890 0.8744 0.8649 0.8216 0.2693 1.1

50 50 0.8584 0.8440 0.8584 0.8580 0.7679 0.7588 0.8694 0.8625 0.8002 0.2085 1.0

Table 10: Monte Carlo MSE of the estimators of technical efficiencies when the
disturbance is serially correlated (ρ = 0.8), regressors are correlated with technical
efficiency, and technical efficiency follows an ARMA(1 , 1 ) process.
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N T Within GLS H−T PSS1 PSS2W PSS2G CSSW CSSG B−C KSS DE

20 10 0.9404 0.9390 0.9388 0.9400 0.9529 0.9540 0.8975 0.8878 0.9328 0.1647 0.8

20 30 0.9539 0.9478 0.9481 0.9493 0.9481 0.9480 0.8924 0.8933 0.9352 0.4274 0.8

20 50 0.9960 0.9959 0.9960 0.9962 0.9972 0.9972 0.9657 0.9652 0.9871 0.9216 0.9

50 10 0.9601 0.9616 0.9616 0.9616 0.9659 0.9660 0.9160 0.9164 0.9439 0.3040 0.9

50 30 0.9875 0.9892 0.9891 0.9888 0.9919 0.9916 0.9347 0.9338 0.9792 0.3065 0.9

50 50 0.9850 0.9865 0.9865 0.9866 0.9872 0.9872 0.9207 0.9191 0.9624 0.5028 0.8

Table 11: Monte Carlo correlations between true and estimated technical efficiencies
with serially correlated disturbances ( ρ = 0.8)

N T Within GLS H−T PSS1 PSS2W PSS2G CSSW CSSG B−C KSS DE

20 10 0.9085 0.9505 0.9430 0.9280 0.9070 0.9145 0.8341 0.8491 0.9059 0.3195 0.7

20 30 0.9550 0.9430 0.9430 0.9430 0.9730 0.9745 0.8629 0.8589 0.9302 0.4248 0.8

20 50 0.9880 0.9835 0.9835 0.9835 0.9865 0.9865 0.9440 0.9417 0.9823 0.8806 0.9

50 10 0.9169 0.9241 0.9239 0.9241 0.9434 0.9434 0.8609 0.8595 0.9299 0.3513 0.8

50 30 0.9749 0.9689 0.9689 0.9720 0.9703 0.9702 0.8961 0.8945 0.9594 0.3294 0.8

50 50 0.9855 0.9851 0.9856 0.9862 0.9867 0.9868 0.9134 0.9103 0.9832 0.4940 0.8

Table 12: Monte Carlo Spearman rank correlations between true and estimated tech-
nical efficiencies with serially correlated disturbances ( ρ = 0.8).
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N T Within GLS H−T PSS1 PSS2W PSS2G CSSW CSSG B−C KSS DE

20 10 0.8227 0.8230 0.8230 0.8228 0.8234 0.8234 0.8820 0.8810 0.8219 0.9937 0.9

20 30 0.3083 0.3156 0.3151 0.3139 0.3135 0.3138 0.5060 0.5047 0.3540 0.9864 0.6

20 50 0.3721 0.3771 0.3769 0.3764 0.3751 0.3754 0.3908 0.3885 0.3584 0.9868 0.8

50 10 0.7204 0.7336 0.7335 0.7325 0.7285 0.7286 0.8784 0.8872 0.6726 0.9899 0.9

50 30 0.5102 0.5016 0.5020 0.5066 0.5049 0.5049 0.5679 0.5579 0.4648 0.9976 0.8

50 50 0.5422 0.5423 0.5423 0.5423 0.5419 0.5419 0.5276 0.5208 0.4427 0.9989 0.8

Table 13: Monte Carlo correlations between true and estimated technical efficiencies
when technical efficiencies are ARMA(1,1)

N T Within GLS H−T PSS1 PSS2W PSS2G CSSW CSSG B−C KSS DE

20 10 0.5308 0.5308 0.5308 0.5309 0.5336 0.5336 0.7936 0.7938 0.5539 0.9971 0.9

20 30 0.2488 0.2481 0.2488 0.2488 0.2488 0.2488 0.4721 0.4696 0.3761 0.9958 0.7

20 50 0.3605 0.3606 0.3606 0.3606 0.3606 0.3606 0.3832 0.3801 0.3695 0.9906 0.9

50 10 0.6517 0.6512 0.6512 0.6520 0.6517 0.6517 0.8001 0.7916 0.6587 0.9972 0.9

50 30 0.4370 0.4358 0.4359 0.4367 0.4365 0.4365 0.5745 0.5709 0.4471 0.9993 0.9

50 50 0.5055 0.5055 0.5055 0.5055 0.5055 0.5055 0.6641 0.6629 0.5862 0.9998 0.9

Table 14: Monte Carlo Spearman rank correlations between true and estimated tech-
nical efficiencies when technical efficiencies are ARMA(1,1)
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N T Within GLS H−T PSS1 PSS2W PSS2G CSSW CSSG B−C KSS DE

20 10 0.3254 0.4552 0.3254 0.3260 0.3085 0.2988 0.4347 0.6957 0.4277 0.9262 0.7

20 30 0.0619 0.1083 0.0619 0.0618 0.1271 0.1280 0.1570 0.2412 0.1437 0.8697 0.6

20 50 0.1837 0.2403 0.1837 0.1842 0.2111 0.2145 0.2016 0.2443 0.2254 0.8436 0.7

50 10 0.0499 0.1446 0.0499 0.0540 0.0475 0.0465 0.2895 0.4664 0.1250 0.6069 0.6

50 30 0.3178 0.3426 0.3178 0.3178 0.3678 0.3732 0.3660 0.3806 0.3126 0.9373 0.6

50 50 0.3907 0.4010 0.3907 0.3909 0.4597 0.4698 0.4304 0.4368 0.3900 0.9891 0.5

Table 15: Monte Carlo correlations between true and estimated technical efficien-
cies when disturbance is serially correlated ( ρ = 0.8), regressors are correlated with
technical efficiency, and technical efficiencies are ARMA(1 , 1 )

N T Within GLS H−T PSS1 PSS2W PSS2G CSSW CSSG B−C KSS DE

20 10 0.2909 0.3546 0.2909 0.2955 0.3384 0.3439 0.4367 0.5855 0.3576 0.9140 0.7

20 30 0.1124 0.1433 0.1124 0.1124 0.1528 0.1531 0.2465 0.3240 0.2044 0.8865 0.7

20 50 0.1710 0.2197 0.1710 0.1710 0.1857 0.1860 0.1871 0.2336 0.2046 0.8458 0.7

50 10 0.3058 0.3834 0.3058 0.3130 0.3048 0.3050 0.5325 0.6389 0.3649 0.8370 0.8

50 30 0.2363 0.2508 0.2363 0.2363 0.2753 0.2841 0.3567 0.3830 0.2398 0.9715 0.8

50 50 0.2299 0.2348 0.2299 0.2299 0.3784 0.4001 0.4229 0.4433 0.2469 0.9957 0.7

Table 16: Monte Carlo Spearman rank correlations between true and estimated tech-
nical efficiencies when disturbance is serially correlated ( ρ = 0.8), regressors are
correlated with technical efficiency, and technical efficiencies are ARMA(1 , 1 )
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True Within GLS H−T PSS1 PSS2W PSS2G CSSW CSSG B−C KSS DEA

· 0.1837 0.2403 0.1837 0.1842 0.2111 0.2145 0.2016 0.2443 0.2254 0.8436 0.78

· 0.9790 1.0000 1.0000 0.9932 0.9911 0.9568 0.9292 0.9808 0.2237 0.14

· 0.9790 0.9794 0.9942 0.9952 0.9347 0.9350 0.9934 0.2987 0.21

· 1.000 0.9932 0.9911 0.9568 0.9292 0.9808 0.2257 0.14

· 0.9935 0.9914 0.95568 0.9295 0.9811 0.2264 0.14

· 0.9996 0.9510 0.9378 0.9929 0.2607 0.18

· 0.9495 0.9384 0.9937 0.2657 0.18

· 0.9874 0.9452 0.2362 0.17

· 0.9413 0.2920 0.22

· 0.2815 0.20

· 0.72

·

Table 17: Monte Carlo correlations of technical efficiencies when the disturbance is
serially correlated ( ρ = 0.8), regressors are correlated with technical efficiency, and
technical efficiencies are ARMA(1 , 1 ) (N = 20, T = 50).
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True Within GLS H−T PSS1 PSS2W PSS2G CSSW CSSG B−C KSS DEA

· 0.1710 0.2197 0.1710 0.1710 0.1857 0.1860 0.1871 0.2336 0.2046 0.8458 0.81

· 0.9805 1.0000 1.0000 0.9880 0.9910 0.9598 0.9271 0.9810 0.2182 0.12

· 0.9805 0.9805 0.9835 0.9850 0.9390 0.9300 0.9909 0.2793 0.18

· 1.0000 0.9880 0.9910 0.9598 0.9271 0.9810 0.2182 0.12

· 9.9880 0.9910 0.9598 0.9271 0.9810 0.2182 0.12

· 0.9955 0.9544 0.9313 0.9823 0.2372 0.14

· 0.9560 0.9336 0.9847 0.2380 0.14

· 0.9847 0.9524 0.2279 0.15

· 0.9421 0.2815 0.21

· 0.2685 0.16

· 0.73

·

Table 18: Monte Carlo Spearman rank correlations of technical efficiencies when the
disturbance is serially correlated (ρ = 0.8), regressors are correlated with technical
efficiency, and technical efficiencies are ARMA(1 , 1 ) (N = 20, T = 50).
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