Working Memory and Language Production

Randi Martin Monica Freedman Hoang Vu Rice University

Michelle Miller Northern Arizona University Bock and Levelt (1994) Model of Speech Production

Knowledge Representation

Semantic Features

Phonological segments

Martin, Lesch & Bartha (1999)

Short-term Memory Buffers

Lexical-Semantic Buffer

Patient Background

Patient	Age	Education	Lesion .	Aud.	Visual Span
EA	64	College	<u>Site</u> Temporo- Parietal	<u>Span</u> 1.5	<u>Span</u> 2.5
AB	74	College, Law	Frontal- Parietal	2.5	1.5
ML	60	2 Yrs. College	Frontal- Parietal	2.5	1.5
GR	54	College	Frontal- Parietal- Temporal	3.3	2.2

Patient Background (cont).

All show normal performance on:

- 1. picture naming (BNT)
- 2. single word comprehension (PPVT)

Composite STM Scores

(Freedman, 1998)

Phonological

- 1. Immediate vs. delayed phoneme discrimination
- 2. Nonword repetition 1 & 2 syllable vs. 3 & 4 syllable
- 3. Rhyme probe

Semantic

- 1. Category probe
- 2. Word-nonword
- 3. 2 choice vs. 3 choice relatedness judgments
- 4. Attribute judgments

- Sentence comprehension -Sensibility judgments
 - Adjectives before delayed integration
 - Examples of anomalous sentences

The rusty old red swimsuit was brought to the beach

Distance 3

The rusty swimsuit was brought to the beach

- n Sentence comprehension
 - Adjectives after immediate integration

– examples

The swimsuit that was old, red, and rusty was lying on the back seat.

Distance 3

The swimsuit that was rusty was lying on the back seat

- Sentence comprehension -Sensibility judgments
 - Nouns before delayed integration
 - Examples of anomalous sentences

The rug, the vase, and the mirror cracked during the move

Distance 3

The rug cracked during the move.

- n Sentence comprehension
 - Nouns after immediate integration
 - Examples of anomalous sentences

The movers cracked the mirror, the vase and the rug.

Distance 3

The movers cracked the rug.

Martin & Romani (1994); Martin & He (2000)

Relation between Working Memory Capacities in Comprehension and Production

Dissociations between input and output phonological capacity:

1) Martin, Lesch & Bartha (1999). Preserved input, disrupted output capacity

2) Shallice & Butterworth (1977), Martin, Shelton& Yaffee (1994) Disrupted input, preservedoutput capacity

Same semantic capacity for input and output?

Patients AB and ML:

1) slow speech rate

2) reduced NP & VP complexity

3) grammatically correct speech for AB, mild impairment on function words and grammatical markers for ML

Noun Phrase Production

Single Noun (e.g., "leaf")

Single Adjective (e.g, "green")

Adjective Noun Phrase (e.g., "green leaf")

Adjective-Adjective Noun Phrase (e.g., "small green leaf")

<u>Percent Correct on Preliminary Noun Phrase Production Task</u> (numbers in parentheses are percent correct after self-correction)

	<u>Adj.</u>	<u>N.</u>	<u>Adj N</u>	AAN
<u>Controls</u>	100	88	92	77
(n=6)		(93)	(97)	(82)
Phonological ST	М			
EA	100	90	90	70
		(90)	(100)	(80)
Semantic STM				
AB	100	100	30	0
			(30)	(0)
ML	100	100	20	10
			(80)	(40)

Examples

<u>A.B.</u>

(short hair) Well.. that's hair. It's short. That's short.... I can't get it.

(small green leaf) That's brown. No, br.. br.. green. I know it's a leaf. It's a green leaf and it's big.

<u>M.L.</u>

(closed curtain) black curtain....gathered and closedclosed curtain, closed curtain

(small, rough leaf) small...rough, rough leafsmall, rough leaf

(large, smooth leaf) big....big,big...small, large ... big leaf

Production via Phrasal Fragments (Dell & Lapointe, 1989; de Smedt,1990)

- 1) Phrase fragments activated differentially
- 2) Production begins before entire clause is planned

3) Phonological access waits on retrieval of lemma of lexical head of phrase and lemmas for all preceding content words (lexical head principle)

4) Minimal planning unit at lemma level is lexical head and lemmas for preceding words in the same phrase

Noun Phrase vs. Sentence Production

"The blonde hair" vs. "The hair is blonde"

"The curly blonde hair" vs. "The hair is blonde and curly"

Adj-N phrase:

the old pail det-adj-N

the old red pail det-adj-adj-N

N is adj:

the pail is old

the pail is old and red $(\det N) ((V) (adj)) (\det N) ((V) (adj \& adj))$

Compound Noun Phrase Production

Moving Picture Descriptions: Compound Noun Phrase Production (based on Smith and Wheeldon, 1999)

Simple-complex

The cup moves above the finger and the cross. The tie moves below the candle and the foot.

Complex-simple

The cup and the finger move above the cross. The tie and the candle move below the foot. Smith and Wheeldon (1999) (young normal subjects) Onset latencies in ms

Simple-complex	962		
Complex-simple	1039		
Difference	77		

Subjects

EA (phonological STM deficit)

ML (semantic STM deficit)

Age-matched controls: n=6

Experimental Design

128 experimental trials:64 simple-complex64 complex-simple

128 filler trials:

- 32 all move left
- 32 all move right
- 32 all move up
- 32 all move down

Procedure

Pre-testing: Subjects asked to name all pictures - provided with correct answer if incorrect

Practice: 32 practice trials sampling from all Experimental and control sentence types

Trial Sequence

Subject views 3 stationary objects and names each

Experimenter initiates object movement

Subject describes movement of objects from left to right

Picture removed 500 ms after movement onset

Scoring

Responses were digitized for patients and controls Latencies measured to onset of first noun

Responses scored as errors:

- a. incorrect noun used
- b. noun omitted
- c. initiation of incorrect noun (e.g., "ki....finger")

Summary of Moving Picture Experiment Results

A patient with a phonological retention deficit showed a normal latency effect for initial noun phrase complexity

A patient with a semantic retention deficit showed a greatly exaggerated latency effect for initial noun phrase complexity

Syntactic Complexity?

One clause sentences:

Simple active: The dog chased the cat. Simple passive: The dog was chased by the cat.

Cleft sentences:

Active: That's the dog that chased the cat. Passive: That's the dog that was chased by the cat.

Procedure: act out with animals, indicate which animal should be mentioned first

Conclusions

1) Production proceeds on a phrase-by-phrase basis

2) The same lexical-semantic retention buffer is used in comprehension and production.

3) Different phonological capacities are involved in perception and production.