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Abstract. The thermal properties of carbon nanotubes display a wide range of
behaviors which are related both to their graphitic nature and their unique struc-
ture and size. The specific heat of individual nanotubes should be similar to that of
two-dimensional graphene at high temperatures, with the effects of phonon quan-
tization becoming apparent at lower temperatures. Inter-tube coupling in SWNT
ropes, and interlayer coupling in MWNTs, should cause their low-temperature spe-
cific heat to resemble that of three-dimensional graphite. Experimental data on
SWNTs show relatively weak inter-tube coupling, and are in good agreement with
theoretical models. The specific heat of MWNTs has not been examined theoret-
ically in detail. Experimental results on MWNTs show a temperature dependent
specific heat which is consistent with weak inter-layer coupling, although different
measurements show slightly different temperature dependences. The thermal con-
ductivity of both SWNTs and MWNTs should reflect the on-tube phonon structure,
regardless of tube-tube coupling. Measurements of the thermal conductivity of bulk
samples show graphite-like behavior for MWNTs but quite different behavior for
SWNTs, specifically a linear temperature dependence at low T which is consis-
tent with one-dimensional phonons. The room-temperature thermal conductivity
of highly aligned SWNT samples is over 200W/mK, and the thermal conductivity
of individual nanotubes is likely to be higher still.

1 Specific Heat

Because nanotubes are derived from graphene sheets, we first examine the
specific heat C of a single such sheet, and how C changes when many such
sheets are combined to form solid graphite. We then in Sect. 1.2 consider the
specific heat of an isolated nanotube [1], and the effects of bundling tubes
into crystalline ropes and multi-walled tubes (Sect. 1.3). Theoretical models
are then compared to experimental results (Sect. 1.4).

1.1 Specific Heat of 2-D Graphene and 3-D Graphite

In general, the specific heat C consists of phonon Cph and electron Ce contri-
butions, but for 3-D graphite, graphene and carbon nanotubes, the dominant
contribution to the specific heat comes from the phonons. The phonon con-
tribution is obtained by integrating over the phonon density of states with
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a convolution factor that reflects the energy and occupation of each phonon
state:

Cph =
∫ ωmax

0

kB

(
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)2 e
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)
ρ (ω) dω(

e
h̄ω

kBT − 1
)2 , (1)

where ρ(ω) is the phonon density of states and ωmax is the highest phonon
energy of the material. For nonzero temperatures, the convolution factor is 1
at ω = 0, and decreases smoothly to a value of ∼ 0.1 at h̄ω = kBT/6, so that
the specific heat rises with T as more phonon states are occupied. Because
ρ(ω) is in general a complicated function of ω, the specific heat, at least at
moderate temperatures, cannot be calculated analytically.

At low temperature (T � ΘD), however, the temperature dependence of
the specific heat is in general much simpler. In this regime, the upper bound
in (1) can be taken as infinity, and ρ(ω) is dominated by acoustic phonon
modes, i.e., those with ω → 0 as k → 0. If we consider a single acoustic mode
in d dimensions that obeys a dispersion relation ω ∝ kα, then from (1) it
follows that:

Cph ∝ T (d/α) (T � ΘD). (2)

Thus the low-temperature specific heat contains information about both the
dimensionality of the system and the phonon dispersion.

A single graphene sheet is a 2-D system with three acoustic modes,
two having a very high sound velocity and linear dispersion [a longitudi-
nal (LA) mode, with v=24km/s, and an in-plane transverse (TA) mode,
with v=18km/s] and a third out-of-plane transverse (ZA) mode that is de-
scribed by a parabolic dispersion relation, ω = δk2, with δ ∼ 6 × 10−7 m2/s
[2,3]. From (2), we see that the specific heat from the in-plane modes should
display a T 2 temperature dependence, while that of the out-of plane mode
should be linear in T . Equation (1) can be evaluated separately for each
mode; the contribution from the ZA mode dominates that of the in-plane
modes below room temperature.

The phonon contributions to the specific heat can be compared to the
expected electronic specific heat of a graphene layer. The unusual linear k
dependence of the electronic structure E(k) of a single graphene sheet at EF

(see Fig. 2 of [4]) produces a low-temperature electronic specific heat that is
quadratic in temperature, rather than the linear dependence found for typical
metals [5]. Benedict et al. [1] show that, for the in-plane modes in a graphene
sheet,

Cph

Ce
≈ (

vF

v
)2 ≈ 104 . (3)

The specific heat of the out-of plane mode is even higher, and thus phonons
dominate the specific heat, even at low T , and all the way to T = 0.
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Combining weakly interacting graphene sheets in a correlated stacking
arrangement to form solid graphite introduces dispersion along the c-axis, as
the system becomes three-dimensional. Since the c-axis phonons have very
low frequencies, thermal energies of ∼50K are sufficient to occupy all ZA
phonon states, so that for T > 50K the specific heat of 3-D graphite is
essentially the same as that of 2-D graphene. The crossover between 2-D and
interplanar coupled behavior is identified as a maximum in a plot of Cph

vs. T 2 [6,7]. We will see below that this type of dimensional crossover also
exists in bundles of SWNTs. The electronic specific heat is also significantly
changed in going from 2-D graphene to 3-D graphite: bulk graphite has a
small but nonzero density of states at the Fermi energy N(EF) due to c-axis
dispersion of the electronic states. Therefore 3-D graphite displays a small
linear Ce(T ), while Cph has no such term. For 3-D graphite, the phonon
contribution remains dominant above ∼1K [8,9].

1.2 Specific Heat of Nanotubes

Figure 1 shows the low-energy phonon dispersion relations for an isolated
(10,10) nanotube. Rolling a graphene sheet into a nanotube has two major
effects on the phonon dispersion. First, the two-dimensional band-structure

Fig. 1. Low-energy phonon dispersion relations for a (10,10) nanotube. There are
four acoustic modes: two degenerate TA modes (v = 9km/s), a ‘twist’ mode (v =
15 km/s), and one TA mode (v = 24 km/s) [3]. The inset shows the low-energy
phonon density of states of the nanotube (solid line) and that of graphite (dashed
line) and graphene (dot-dashed line). The nanotube phonon DOS is constant below
2.5meV, then increases stepwise as higher subbands enter; there is a 1-D singularity
at each subband edge
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of the sheet is collapsed onto one dimension; because of the periodic boundary
conditions on the tube, the circumferential wavevector is quantized and dis-
crete ‘subbands’ develop. From a zone-folding picture, the splitting between
the subbands at the Γ point is of order [1]

∆E = kBΘsubband ≈ h̄v

R
, (4)

where R is the radius of the nanotube and v is the band velocity of the rele-
vant graphene mode. The second effect of rolling the graphene sheet is to re-
arrange the low-energy acoustic modes. For the nanotube there are now four,
rather than three, acoustic modes: an LA mode, corresponding to motion of
the atoms along the tube axis, two degenerate TA modes, corresponding to
atomic displacements perpendicular to the nanotube axis, and a ‘twist’ mode,
corresponding to a torsion of the tube around its axis. The LA mode is ex-
actly analogous to the LA mode in graphene. The TA modes in a SWNT, on
the other hand, are a combination of the in-plane and out-of-plane TA modes
in graphene, while the twist mode is directly analogous to the in-plane TA
mode. These modes all show linear dispersion (there is no nanotube analogue
to the ZA mode) and high phonon velocities: vLA = 24km/s, vTA = 9km/s,
and vtwist = 15km/s for a (10,10) tube [3]. Because all of the acoustic modes
have a high velocity, the splitting given in (4) corresponds to quite high tem-
peratures, on the order of 100K for a 1.4 nm-diameter tube. In the calculated
band structure for a (10,10) tube, the lowest subband enters at ∼2.5meV
(30K), somewhat lower in energy than the estimate given by (4).

The inset to Fig. 1 shows the low-energy phonon density of states ρ(ω) of
a (10,10) nanotube (solid line), with ρ(ω) of graphene (dot-dashed line) and
graphite (dashed line) shown for comparison. In contrast to 2-D graphene
and 3-D graphite, which show a smoothly-varying ρ(ω), the 1-D nanotube
has a step-like ρ(ω), which has 1-D singularities at the subband edges. The
markedly different phonon density of states in carbon nanotubes results in
measurably different thermal properties at low temperature.

At moderate temperatures, many of the phonon subbands of the nanotube
will be occupied, and the specific heat will be similar to that of 2-D graphene.
At low temperatures, however, both the quantized phonon structure and the
stiffening of the acoustic modes will cause the specific heat of a nanotube to
differ from that of graphene. In the low T regime, only the acoustic bands
will be populated, and thus the specific heat will be that of a 1-D system with
a linear ω(k). In this limit, T � h̄v/kBR, (1) can be evaluated analytically,
yielding a linear T dependence for the specific heat [1]:

Cph =
3k2

BT

πh̄vρm
× π2

3
, (5)

where ρm is the mass per unit length, v is the acoustic phonon velocity,
and R is the nanotube radius. Thus the circumferential quantization of the
nanotube phonons should be observable as a linear C(T ) dependence at the
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lowest temperatures, with a transition to a steeper temperature dependence
above the thermal energy for the first quantized state.

Turning to the electron contribution, a metallic SWNT is a one-dimen-
sional metal with a non-zero density of states at the Fermi level. The elec-
tronic specific heat will be linear in temperature [1]:

Ce =
4πk2

BT

3h̄vFρm
, (6)

for T � h̄vF/kBR, where vF is the Fermi velocity and ρm is again the mass
per unit length. The ratio between the phonon and the electron contributions
to the specific heat is [1]

Cph

Ce
≈ vF

v
≈ 102, (7)

so that even for a metallic SWNT, phonons should dominate the specific heat
all the way down to T = 0. The electronic specific heat of a semiconducting
tube should vanish roughly exponentially as T → 0 [10], and so Ce will be
even smaller than that of a metallic tube. However, if such a tube were doped
so that the Fermi level lies near a band edge, its electronic specific heat could
be significantly enhanced.

1.3 Specific Heat of SWNT Ropes and MWNTs

As was mentioned above, stacking graphene sheets into 3-D graphite causes
phonon dispersion in the c direction, which significantly reduces the low-T
specific heat. A similar effect should occur in both SWNT ropes and MWNTs.
In a SWNT rope, phonons will propagate both along individual tubes and
between parallel tubes in the hexagonal lattice, leading to dispersion in both
the longitudinal (on-tube) and transverse (inter-tube) directions. The solid
lines in Fig. 2 show the calculated dispersion of the acoustic phonon modes
in an infinite hexagonal lattice of carbon nanotubes with 1.4 nm diameter [6].
The phonon bands disperse steeply along the tube axis and more weakly in the
transverse direction. In addition, the ‘twist’ mode becomes an optical mode
because of the presence of a nonzero shear modulus between neighboring
tubes. The net effect of this dispersion is a significant reduction in the specific
heat at low temperatures compared to an isolated tube (Fig. 3). The dashed
lines show the dispersion relations for the higher-order subbands of the tube.
In this model, the characteristic energy kBΘ⊥

D of the inter-tube modes is
(∼ 5meV), which is larger than the subband splitting energy, so that 3-D
dispersion should obscure the effects of phonon quantization. We will address
the experimentally-measured inter-tube coupling below.

The phonon dispersion of MWNTs has not yet been addressed theoreti-
cally. Strong phonon coupling between the layers of a MWNT should cause
roughly graphite-like behavior. However, due to the lack of strict registry
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Fig. 2. Calculated dispersion of
the acoustic phonon modes in an
infinite rope of 1.4 nm diameter
SWNTs [6]. The phonon velocity
is high in the longitudinal direc-
tion and lower in the transverse di-
rection. The first two higher-order
subbands (dashed lines) are shown
for comparison

between the layers in a MWNT, the interlayer coupling could conceivably
be much weaker than in graphite, especially for the twist and LA modes,
which do not involve radial motion. The larger size of MWNTs, compared to
SWNTs, implies a significantly smaller subband splitting energy (4), so that
the thermal effects of phonon quantization should be measurable only well
below 1K.

1.4 Measured Specific Heat of SWNTs and MWNTs

The various curves in Fig. 3 show the calculated phonon specific heat for iso-
lated (10,10) SWNTs, a SWNT rope crystal, graphene, and graphite. The
phonon contribution for a (10,10) SWNT was calculated by computing the
phonon density of states using the theoretically derived dispersion curves [3]
and then numerically evaluating (1); C(T ) of graphene and graphite was cal-
culated using the model of Al-Jishi and Dresselhaus [12]. Because of the high
phonon density of states of a 2-D graphene layer at low energy due to the
quadratic ZA mode, 2-D graphene has a high specific heat at low T . The low
temperature specific heat for an isolated SWNT is however significantly lower
than that for a graphene sheet, reflecting the stiffening of the acoustic modes
due to the cylindrical shape of the SWNTs. Below ∼ 5K, the predicted C(T )
is due only to the linear acoustic modes, and C(T ) is linear in T , a behavior
which is characteristic of a 1-D system. In these curves, we can see clearly the
effects of the interlayer (in graphite) and inter-tube (in SWNT ropes) disper-
sion on the specific heat. Below ∼50K, the phonon specific heat of graphite
and SWNT ropes is significantly below that of graphene or isolated (10,10)
SWNTs. The measured specific heat of graphite [8,9] matches the phonon
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Fig. 3. Measured specific heat of SWNTs, compared to predictions for the specific
heat of isolated (10,10) tubes, SWNT ropes, a graphene layer and graphite [11]

contribution above 5K, below which temperature the electronic contribution
is also important.

The filled points in Fig. 3 represent the measured specific heat of SWNTs
[11]. The measured C(T ) agrees well with the predicted curve for individual
(10,10) nanotubes. C(T ) for the nanotubes is significantly smaller than that
of graphene below ∼50K, confirming the relative stiffness of the nanotubes
to bending. On the other hand, the measured specific heat is larger than that
expected for SWNT ropes. This suggests that the tube-tube coupling in a
rope is significantly weaker than theoretical estimates [6,11].

Figure 4 highlights the low-temperature behavior of the specific heat. The
experimental data, represented by the filled points, show a linear slope be-
low 8K, but the slope does not extrapolate to zero at T = 0, as would be
expected for perfectly isolated SWNTs. This departure from ideal behavior
is most likely due to a weak transverse coupling between neighboring tubes.
The measured data can be fit using a two-band model, shown in the inset.
The dashed line in Fig. 4 represents the contribution from a single (four-fold
degenerate) acoustic mode, which has a high on-tube Debye temperature Θ

‖
D

and a much smaller inter-tube Debye temperature Θ⊥
D . The dot-dashed line

represents the contribution from the first (doubly-degenerate) subband, with
minimum energy kBΘsubband. Because Θsubband > Θ⊥

D , the subband is as-
sumed to be essentially one-dimensional. The solid line represents the sum
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Fig. 4. Measured specific heat of SWNTs compared to a two-band model with
transverse dispersion (inset). The fitting parameters used are Θ

‖
D = 960K; Θ⊥

D =
50K; and Θsubband = 13K [11]

of the two contributions, and fits the data quite well. The derived value for
the on-tube Debye temperature is Θ

‖
D = 960K (80meV), which is slightly

lower than the value of 1200K (100meV) which can be derived from the
calculated phonon band structure. The transverse Debye temperature Θ⊥

D is
13K (1.1meV), considerably smaller than the expected value for crystalline
ropes (5meV) or graphite (10meV). Finally, the derived value of Θsubband is
50K (4.3meV), which is larger than the value of 30K (2.5meV) given by the
calculated band structure [3].

Figure 5 shows the two reported measurements of the specific heat of
MWNTs, along with the theoretical curves for graphene, isolated nanotubes,
and graphite. Yi et al. [13] used a self-heating technique to measure the spe-
cific heat of MWNTs of 20–30nm diameter produced by a CVD technique,
and they find a linear behavior from 10K to 300K. This linear behavior agrees
well with the calculated specific heat of graphene below 100K, but is lower
than all of the theoretical curves in the 200–300K range. Agreement with the
graphene specific heat, rather than that for graphite, indicates a relatively
weak inter-layer coupling in these tubes. Because the specific heat of graphene
at low T is dominated by the quadratic ZA mode, the authors postulate that
this mode must also be present in their samples. As was discussed above
(Sect. 1.1,1.2), such a band should should not exist in nanotubes. However,
the phonon structure of large-diameter nanotubes, whose properties should
approach that of graphene, has not been carefully studied. Mizel et al. re-
port a direct measurement of the specific heat of arc-produced MWNTs [6].
The specific heat of their sample follows the theoretical curve for an isolated
nanotube, again indicating a weak inter-layer coupling, but shows no evi-
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dence of a graphene-like quadratic phonon mode. At present the origin of the
discrepancy between the two measurements is unknown, although the sample
morphologies may be different.

Fig. 5. Measured specific heat
of MWNTs [6,13], compared to
the calculated phonon specific
heat of graphene, graphite, and
isolated nanotubes

2 Thermal Conductivity

Carbon-based materials (diamond and in-plane graphite) display the highest
measured thermal conductivity of any known material at moderate temper-
atures [14]. In graphite, the thermal conductivity is generally dominated by
phonons, and limited by the small crystallite size within a sample. Thus the
apparent long-range crystallinity of nanotubes has led to speculation [15] that
the longitudinal thermal conductivity of nanotubes could possibly exceed the
in-plane thermal conductivity of graphite. Thermal conductivity also provides
another tool (besides the specific heat) for probing the interesting low-energy
phonon structure of nanotubes. Furthermore, nanotubes, as low-dimensional
materials, could have interesting high-temperature properties as well [16].
In this section, we will first discuss the phonon and electronic contributions
to the thermal conductivity in graphite. Then we will examine the thermal
conductivity of multi-walled and single-walled nanotubes.

The diagonal term of the phonon thermal conductivity tensor can be
written as:

κzz =
∑

Cvz
2τ, (8)

where C, v, and τ are the specific heat, group velocity, and relaxation time
of a given phonon state, and the sum is over all phonon states. While the
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phonon thermal conductivity cannot be measured directly, the electronic con-
tribution κe can generally be determined from the electrical conductivity by
the Wiedemann–Franz law:

κe

σT
≈ L0, (9)

where the Lorenz number L0 = 2.45 × 10−8 (V/K)2. Thus it is in principle
straightforward to separate the electronic and lattice contributions to κ(T ).
In graphite, phonons dominate the specific heat above ∼20K [17], while in
MWNTs and SWNTs, the phonon contribution dominates at all tempera-
tures.

In highly crystalline materials and at high temperatures (T > ΘD/10), the
dominant contribution to the inelastic phonon relaxation time τ is phonon-
phonon Umklapp scattering. At low temperatures, however, Umklapp scat-
tering disappears and inelastic phonon scattering is generally due to fixed
sample boundaries or defects, yielding a constant τ . Thus at low temperature
(T < ΘD/10), the temperature dependence of the phonon thermal conductiv-
ity is similar to that of the specific heat. However, in an anisotropic material,
the weighting of each state by the factor v2τ becomes important. The thermal
conductivity is most sensitive to the states with the highest band velocity and
scattering time. In graphite, for instance, the ab-plane thermal conductivity
can be closely approximated by ignoring the inter-planar coupling [17]. From
this argument, we would expect that the temperature-dependence of the ther-
mal conductivity of SWNT ropes and MWNTs should be close to that of their
constituent tubes. However, bundling individual tubes into ropes or MWNTs
may introduce inter-tube scattering, which could perturb somewhat both the
magnitude and the temperature dependence of the thermal conductivity.

2.1 Thermal Conductivity of MWNTs

In highly graphitic fibers, κ(T ) follows a T 2.3 temperature dependence until
∼ 100K, then begins to decrease with increasing T above ∼150K [18]. This
decrease in κ(T ) above 100K is due to the onset of phonon-phonon Umklapp
scattering, which grows more effective with increasing temperature as higher-
energy phonons are populated. In less graphitic fibers, the magnitude of κ
is significantly lower, and the Umklapp peak in κ(T ) is not seen, because
grain-boundary scattering dominates κ(T ) to higher temperatures.

Figure 6 shows the thermal conductivity of CVD-grown MWNTs, on a
linear scale, from 4K to 300K [13]. Because of the large diameter of these
tubes, we expect them to act essentially as 2-D phonon materials. Indeed, at
low temperature (T < 100K), κ(T ) increases as ∼ T 2, similar to the T 2.3

behavior in graphite. The room-temperature thermal conductivity is small,
comparable to the less-graphitic carbon fibers, and the MWNTs do not show
a maximum in κ(T ) due to Umklapp scattering; both properties are consistent
with a small crystallite size.
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Fig. 6. Measured thermal conductivity of MWNTs [13] from 4K to 300K

2.2 Thermal Conductivity of SWNTs

Figure 7 represents the measured κ(T ) of a bulk sample of laser-vaporization
produced SWNTs, with ∼1.4-nm diameter [20]. The different temperature-
dependence of κ(T ) reflects the much smaller size of SWNTs compared to
MWNTs. κ(T ) increases with increasing T from 8K to 300K, although a
gradual decrease in the slope above 250K may indicate the onset of Umk-
lapp scattering. Most striking is a change in slope near 35K: below this
temperature, κ(T ) is linear in T and extrapolates to zero at T=0. We will
discuss the low-temperature behavior in detail below.

Although the temperature dependence of the thermal conductivity is
the same for all 1.4 nm diameter SWNT samples, the magnitude of κ(T )
is sensitive to sample geometry. In disordered ‘mat’ samples, the the room-
temperature thermal conductivity is ∼35W/mK. However, in samples con-
sisting of aligned SWNTs, the room-temperature thermal conductivity is

Fig. 7. Thermal conductivity of a
bulk sample of SWNTs [19]
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above 200W/mK [21], within an order of magnitude of the room-temperature
thermal conductivity of highly crystalline graphite. Because even such an
aligned sample contains many rope-rope junctions, it is likely that a single
tube, or a rope of continuous tubes, will have significantly higher thermal
conductivity than the bulk samples.

Simultaneous measurement of the electrical and thermal conductance of
bulk SWNT samples yields a Lorenz ratio κ/σT which is more than two
orders of magnitude greater than the value for electrons at all temperatures.
Thus the thermal conductivity is dominated by phonons, as expected.

Figure 8 highlights the low-T behavior of the thermal conductivity of
SWNTs [19]. As discussed above, the linear T dependence of κ(T ) likely re-
flects the one-dimensional band-structure of individual SWNTs, with linear
acoustic bands contributing to thermal transport at the lowest temperatures
and optical subbands entering at higher temperatures. κ(T ) can be modeled
using a simplified two-band model (shown in the inset to Fig. 8), considering
a single acoustic band and one subband. In a simple zone-folding picture, the
acoustic band has a dispersion ω = vk and the first subband has dispersion
ω2 = v2k2 + ω2

0 , where ω0 = v/R. The thermal conductivity from each band
can then be estimated using (8) and assuming a constant scattering time τ .
Thus τ provides an overall scaling factor, and v sets the energy scale h̄ω0 of
the splitting between the two bands.

Figure 8 shows the measured κ(T ) of SWNTs, compared to the results
of the two-band model discussed above, with v chosen to be 20 km/s, which
is between that of the ‘twist’ (v = 15km/s) and LA (v = 24km/s) modes.
The top dashed line represents κ(T ) of the acoustic band: it is linear in T ,
as expected for a 1-D phonon band with linear dispersion and constant τ .
The lower dashed line represents the contribution from the optical subband;

Fig. 8. Measured low-temper-
ature thermal conductivity of
SWNTs, compared to a two-
band model [19]
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it is frozen out at low temperatures, and begins to contribute near 35K. The
solid line is the sum of the two contributions, and is quite successful in fitting
the experimental data below ∼100K. The phonon energies, and temperature
scale of the observed linear behavior, are higher in the thermal conductivity
measurements than in the heat capacity measurements (Sect. 1.4). This may
be due to the preferential weighting of higher-velocity modes in the thermal
conductivity, although more detailed modeling is needed to resolve this issue.
The measured linear slope can be used to calculate the scattering time, or,
equivalently, a scattering length. A room-temperature thermal conductivity
of 200W/mK (as is seen in the bulk aligned samples) implies a phonon scat-
tering length of 30 nm, although this value is likely to be higher for single
tubes.

We have seen above that the small size of nanotubes causes phonon quan-
tization which can be observed both in the heat capacity and in the ther-
mal conductivity at low temperatures. The restricted geometry of the tubes
may also affect the thermal conductivity at high temperature since Umklapp
scattering should be suppressed in one dimensional system because of the
unavailability of states into which to scatter [16,22]. Extension of these mea-
surements to higher temperatures, as well as additional theoretical modeling,
should prove interesting.
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