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I. INTRODUCTION

When the 20th century opened, the fields of crystal-
lography, metallurgy, elasticity, magnetism, etc., dealing
with diverse aspects of solid matter, were largely au-
tonomous areas of science. Only in the 1940s were these
and other fields consolidated into the newly named dis-
cipline of ‘‘solid state physics’’ which, two decades later,
was enlarged to include the study of the physical prop-
erties of liquids and given the name ‘‘condensed matter
physics’’ (CMP). At Harvard, for example, J. H. Van
Vleck had several times taught a graduate course on
magnetism in the 1930s and 1940s. However, the first
time a course called ‘‘solid state physics’’ was taught
there was in 1949 (by the writer, at Van Vleck’s sugges-
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tion); it was based largely on the influential, comprehen-
sive monograph Modern Theory of Solids by F. Seitz,
which had appeared in 1940. In the early 1950s only a
handful of universities offered general courses on solids
and only a small number of industrial and government
laboratories, most notably Bell Telephone Laboratories,
conducted broad programs of research in CMP.

Today condensed matter physics is by far the largest
subfield of physics. The writer estimates that at least a
third of all American physicists identify themselves with
CMP and with the closely related field of materials sci-
ence. A look at the 1998 Bulletin of the March Meeting
of the American Physical Society shows about 4500 pa-
pers in these fields.

Over the course of this century condensed matter
physics has had a spectacular evolution, often by revo-
lutionary steps, in three intertwined respects: new ex-
perimental discoveries and techniques of measurement;
control of the compositions and atomic configurations of
materials; and new theoretical concepts and techniques.
To give a brief and readable account of this evolution is
immensely difficult due to CMP’s extraordinary diver-
sity and many interconnections. Nevertheless, in the fol-
lowing pages the reader will find one theorist’s broad-
brush—and necessarily very incomplete—attempt at this
task. The writer (not a historian of science) had to make
many difficult, often rather arbitrary, choices: how to
organize this very short essay on a very broad subject
and—most painful—what to include and what important
material to omit. He begs the reader’s indulgence.

II. THE LAST YEARS OF THE CLASSICAL ERA

The very first Nobel Prize was awarded in 1901 to W.
C. Roentgen for the discovery of penetrating, so-called x
rays. A few years later in 1912, M. von Laue and col-
laborators demonstrated that these rays were electro-
magnetic waves of very short wavelengths, which could
be diffracted by the atoms of crystals. This discovery
dramatically proved beyond a doubt the reality of
atomic lattices underlying crystalline solids and at the
same time yielded quantitative geometric information
about the relative positions of the atoms in solids. It
constituted the beginning of CMP on a microscopic scale
of 1028 cm.

Building on von Laue’s work, M. Born and co-
workers (in the 1910s) developed a simple, classical, par-
tially predictive theory of the cohesive energy of alkali
halide crystals. Their chemical composition was known
to be of the form A1B2 (where A5alkali and B
S599/71(2)/59(19)/$18.80 ©1999 The American Physical Society
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5halogen), and the geometric arrangements were
known from x-ray experiments. The theory postulated
the existence of pairwise interactions consisting of the
known long-range Coulomb interactions between the
charged ions and short-range repulsions between near-
est neighbors, phenomenologically characterized by two
parameters: strength and range.

When the two parameters were fitted to the known
lattice parameters and elastic bulk moduli, the calcu-
lated cohesive energies were in quantitative agreement
with experiment on the ;3% level.

Another success based on von Laue’s demonstration
of the existence of atomic crystal lattices was Born’s
theory of classical lattice vibrations (1910s). It was based
on a Hamiltonian of the form

H5(
l

Ml

2
u̇ l

21F~u1 ,u2 ,. . . ,uN!, (2.1)

where Ml and ul are the masses and displacements of
the atoms, labeled by l, the first sum is the kinetic en-
ergy, and F is the potential energy, which was expanded
up to second order in u, making use of periodicity and
other symmetries. Together with convenient periodic
boundary conditions, this led to propagating normal
modes of vibration with wave vectors q and frequencies
v j(q), where j is an additional label. (For monatomic
crystals j51,2,3, corresponding to the three so-called
acoustic modes; for polyatomic crystals there are also
so-called optical modes.) This theory successfully unified
the theory of the static elasticity and of long-wavelength
sound waves in crystals, and further yielded, in terms of
the expansion coefficients of F, the normal-mode fre-
quencies v j(q) for arbitrarily large wave vectors q ,
which were not directly observed until half a century
later by inelastic neutron scattering.

Attempts by P. Drude and H. A. Lorentz in the first
decade of the century to understand the salient proper-
ties of metals in classical terms could not avoid major
inconsistencies and had only very limited success. A cru-
cial feature was the (correct) postulate that in a metal
some atomic electrons are not attached to specific atoms
but roam throughout the entire system. Their scattering
by the atomic nuclei was regarded as the cause of elec-
trical resistance. However, this theory could not explain
why the resistance of metals generally dropped towards
zero linearly as a function of the temperature, or why
the expected substantial classical heat capacity, 3

2 k for
each free electron, was never observed.

On the question of ferromagnetism, the observed de-
pendence of the magnetization density M on the applied
field H and temperature T could be explained in terms
of classical statistical mechanics by assuming a phenom-
enological effective field acting on an atomic dipole,
given by Heff5H1aM, where a'0 (103 –104). The
form of the so-called Weiss field aM (1907), could be
roughly understood as due to classical dipole interac-
tions, but the required high magnitude of a was some
three orders of magnitude larger than the classical value,
of order unity.

The experimental achievement of lower and lower
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temperatures, culminating in the liquefaction of He at
4.2 K by K. Onnes in 1908, dramatically brought to light
the insufficiency of classical concepts. Thus while the
classical law of Dulong and Petit, which assigned a heat
capacity of 3 k to each atom in a solid, was generally in
rather good agreement with experiment at sufficiently
high temperatures (typically room temperature or
above), all measured heat capacities were found to ap-
proach zero as the temperature was reduced towards
zero. This was recognized as a critical failure of the con-
cepts of classical statistical mechanics.

The dramatic discovery by Onnes in 1911 of supercon-
ductivity, a strictly vanishing resistivity below a critical
temperature of a few degrees K, remained a major
puzzle for more than four decades.

Thermionic emission from hot metal surfaces or fila-
ments, an important subject during the infancy of elec-
tric light bulbs, was partially understood. The velocity
distribution of the emerging electrons was, as expected,
the classical Maxwell-Boltzmann distribution,
A exp(2mv2/2kT), where m is the electron mass and k
is Boltzmann’s constant, but the magnitude of A was not
understood.

The photoelectric-effect, the emission of electrons
from solid surfaces in response to incident light, was also
very puzzling. Light of low frequency v caused no emis-
sion of electrons, no matter how high the intensity; how-
ever, when v exceeded a threshold frequency v0 , elec-
trons were emitted in proportion to the intensity of the
incident light.

Thus we see that while the classical theory of CMP at
the beginning of this century had some impressive suc-
cesses, it also had two major, general deficiencies:

(1) When classical theory was successful in providing
a satisfactory phenomenological description, it usually
had no tools to calculate, even in principle, the system-
specific parameters from first principles.

(2) Some phenomena, such as the vanishing of heat
capacities at low temperatures and the behavior of the
photoemission current as a function of the frequency
and intensity of the incident light, could not be under-
stood at all.

Both deficiencies were to be addressed by quantum
theory with dramatic success.

III. EARLY IMPACTS OF THE QUANTUM OF ACTION
ON CONDENSED-MATTER PHYSICS

As is widely known, Max Planck (1900) ushered in the
new century with the introduction of the quantum of
action, h, into the theory of blackbody radiation. Much
less known is the fact that Einstein received the Nobel
Prize not specifically for his work on relativity theory
but for ‘‘his services to theoretical physics and especially
for his discovery of the law of the photoelectric effect.’’
In fact, it was in his considerations of the photoelectric
effect in 1905 that Einstein developed the concept of the
photon, the quantum of excitation of the radiation field
with energy \v, where \ is Planck’s constant divided by
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2p and v is the circular frequency. This concept was one
of the most important ideas in the early history of quan-
tum theory. It also led naturally to the resolution of the
photoelectric effect conundrum: for any particular emit-
ting metal surface the photon must have a surface-
specific minimum energy, the so-called work function W,
to lift an electron out of the metal into the vacuum. Thus
a minimum light frequency is required.

Shortly after this great insight Einstein (1907), not
surprisingly, also understood the reason why the lattice
heat capacity of a solid approached zero at low tempera-
tures. He modeled each atom as a three-dimensional
(3D) harmonic oscillator of frequency v̄ . Again he
quantized the excitation energies of each vibrational
mode in units of \v̄ , which directly yielded
3\v̄/(e\v̄/kT21) for the mean energy per mode at tem-
perature T. At high temperatures, kT@\v̄ , this yielded
the classical result 3 k for the heat capacity per atom, in
agreement with the empirical high-temperature law of
Dulong and Petit. But at low temperatures the Einstein
heat capacity correctly approached zero.

By choosing an appropriate mean frequency v̄ for a
given solid, one could fit experimental results very well,
except at the lowest temperatures, where the experi-
mental lattice heat capacity behaved as T3, while Ein-
stein’s theory gave an exponential behavior. This defi-
ciency was repaired by P. Debye (1912), who quantized
Born’s lattice modes and realized that at low tempera-
tures T only long-wavelength modes with frequencies
\v&kT would be appreciably excited. The number of
these modes behaves as T3 and their typical excitation
energy is of the order kT. This immediately gave the
empirical T3 law at low temperatures for the lattice heat
capacity. The excitation quanta of the normal modes,
characterized by a wave vector q, a frequency v, and an
energy \v, were called phonons and became an indis-
pensable component of CMP.

In these developments we observe (1) the decisive
role played by the quantum of action \; (2) the impor-
tance (in Debye’s work) of long-wavelength/low-energy
collective modes; and (3) the mutually fruitful interplay
between CMP and other fields of science. (For example,
in Einstein’s work on the photoelectric effect, with
quantum electrodynamics.) These features have marked
much of CMP for the rest of the century.

IV. THE QUANTUM-MECHANICAL REVOLUTION

The advent of quantum mechanics, particularly in the
form of the Schrödinger equation (1926), coupled with
the discovery of the electron spin and the Pauli exclu-
sion principle (1925), totally transformed CMP, as it did
all of chemistry. While the Bohr theory of the hydrogen
atom had brilliantly and accurately described this one-
electron system, it proved to be quantitatively powerless
even in the face of the two-electron systems He and H2

let alone condensed matter systems consisting of ;1023

interacting nuclei and electron. The Schrödinger equa-
tion changed all this. The ground-state energy of He was
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soon calculated by E. Hylleraas (1929) with a fractional
accuracy of 1024, the binding energy and internuclear
separation of H2 was calculated first by W. Heitler and
F. London (1927), and then by others, with accuracies of
about 1022 to 1023. This left no reasonable doubt that
the Schrödinger equation, applied to both electrons and
nuclei, in principle was the correct theory for CMP sys-
tems.

A very useful organizing principle, the Born-
Oppenheimer approximation (1927), was soon articu-
lated: because of the small mass ratio of electrons and
nuclei, usually m/M;1025, typical electronic time
scales in molecules and presumably also in solids were
much shorter than those of nuclei, in proportion to
(m/M)1/2. This led to the conclusion that the dynamics
of electrons and nuclei could, to a good approximation,
be decoupled. In the first stage the nuclei are considered
fixed in positions R1 ,R2 ,. . . and the ground-state elec-
tronic energy Eel(R1 ,R2 ,. . .) is determined. In the sec-
ond stage the electrons no longer appear explicitly and
the dynamics of the nuclei are determined by the sum of
their kinetic energy and an effective potential energy
given by Eel(R1 ,R2 ,. . .)1Enuc(R1 ,R2 ,. . .), where the
last term describes the internuclear Coulomb repulsion.

Since all of condensed matter consists of nuclei and
electrons, the field henceforth could, for most purposes,
be divided into two parts: one dealing with electron dy-
namics for fixed nuclear positions (e.g., total energies,
magnetism, optical properties, etc.), the other dealing
with nuclear dynamics (e.g., lattice vibrations, atomic
diffusion, etc.). Important exceptions were phenomena
that critically involved the electron-phonon interaction,
such as the temperature-dependent part of electrical re-
sistance (F. Bloch, 1930) and, as discovered much later,
the phonon-dependent so-called Bardeen-Cooper-
Schrieffer (BCS) superconductivity (1957).

Another consequence of the small value of m/M was
that, whereas typical electronic energies in solids were of
the order of 1–10 eV,1 those related to the nuclear dy-
namics were of the order of 1022 –1021 eV. Thus room
temperature with kT'0.025 eV was generally very cold
for electrons but quite warm for nuclear dynamics.

Several of the major failures of classical theory when
applied to metals, as described in Sec. II, were soon rem-
edied by the combination of the new quantum mechan-
ics with the Pauli exclusion principle. Of course, a
straightforward solution of the Schrödinger equation for
;1023 strongly interacting electrons was out of the ques-
tion. But by boldly proposing that, at least roughly, the
forces on a given electron due to the other electrons
canceled those due to the nuclei, W. Pauli (1927) and,
very extensively, A. Sommerfeld (1928) were led to the
quantum-mechanical free-electron model of metals:
Each electron was described by a plane wave wq(r)
[exp(iqr) and an up- or down-spin function
xs(s561). Coupled with the Pauli exclusion principle

1However, for metals, electronic excitation energies begin at
zero.
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and the resulting Fermi-Dirac statistics, this model natu-
rally explained the following experimental facts: that in
many simple metals, e.g., the alkalis, the magnetic sus-
ceptibility due to electronic spins was weak and nearly
temperature independent (instead of, classically, large
and proportional to T21); and that the electronic specific
heat at low temperatures was small and proportional to
T (instead of, classically, 3/2 k per electron and indepen-
dent of T).

The Pauli-Sommerfeld theory represented major, fun-
damental progress for metals, but at the same time it left
a host of observed phenomena still unexplained: For ex-
ample, the fact that metallic resistance decreases linearly
with temperature and that in some materials the Hall
coefficient has the counterintuitive, ‘‘wrong’’ sign. Many
of these puzzles were soon greatly clarified by replacing
the uniform effective potential of the Sommerfeld model
by a periodic potential reflecting the periodic arrange-
ments of the ions, as will be discussed in the next sec-
tion. A deeper understanding of the effects of the
electron-electron interaction evolved much more slowly.

Another early, spectacular success of the new quan-
tum mechanics was the unexpected explanation by W.
Heisenberg (1928) of the ‘‘enormous’’ magnitude of the
Weiss effective magnetic field mentioned in the Intro-
duction. Heisenberg realized that the Pauli principle,
which prevents two electrons of the same spin from oc-
cupying the same state, generates an effective interac-
tion between the spin magnetic moments, quite unre-
lated to the classical magnetic dipole interaction and
typically several orders of magnitude larger.

V. THE BAND-STRUCTURE PARADIGM

Two very significant physical effects were omitted
from the Sommerfeld model of metals: the effects of the
periodicity and other symmetries of the lattice, and the
effects of the electron-electron interaction beyond the
Hartree approximation. This section deals with the re-
markable consequences of lattice periodicity.

In 1928 F. Bloch posited that electrons could be
treated as independent particles moving in some effec-
tive potential v(r), which of course had to reflect the
periodicity and other symmetries of the lattice. This led
to the important concepts of Bloch waves and energy
bands, the eigenfunctions and eigenvalues of the single-
particle Schrödinger equation,

S 2
\2

2m
¹21vper~r ! Dcn ,k~r !5en ,kcn ,k~r !, (5.1)

where vper(r) satisfies vper(r)5vper(r1t)(t
5lattice translation vector); cn ,k is a quasiperiodic
Bloch wave of the form cn ,k(r)5un ,k(r)eik•r, with un ,k
periodic; k is the wave vector, a continuous quantum
number describing the phase change from one unit cell
to another, and n is an additional discrete quantum
number, the so-called band index; the eigenvalues en ,k
as a function of k reflect the periodicity and other sym-
metries of the lattice. They are periodic functions of k.
In terms of these so-called energy bands the essence of
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most metallic and, as a bonus, insulating and semicon-
ducting behavior (A. H. Wilson, 1930s) could be under-
stood. This is illustrated for a one-dimensional crystal of
periodicity a in Fig. 1. One observes that metallic elec-
trons have excitation energies starting from zero; those
of insulators and semiconductors have finite gaps. This
simple categorization provided a powerful orientation
for most simple solids.

The Bloch theory also gave a beautiful explanation of
why metallic resistance approached zero at low tempera-
tures, in spite of the presence of individually strongly
scattering ion cores: it was quantum-mechanical coher-
ence that caused the eigenfunctions in a periodic array
of scatterers to remain unscattered. At higher tempera-
tures, ionic positions deviated more and more from per-
fect periodicity, giving rise to increasing resistance.

This picture also allowed an elegant explanation by
Peierls (1929) of the paradoxical Hall effects with the
‘‘wrong’’ sign. For example, if some traps capture elec-
trons from the valence band of a semiconductor [Fig.
1(c)] into localized bound states, this introduces holes
into the top of the previously filled valence band, which
behave precisely like particles with positive charge 1e .

Even in the absence of quantitative knowledge of
vper(r) a whole host of phenomena could now be stud-
ied and, with the help of some experimental input, un-
derstood qualitatively or better. A major tool was the
quantum-mechanical transport equation (modeled after
the classical Boltzmann equation):

]f~r ,v ,t !
]t

5
]f~r ,v ,t !

]t U
drift

1b2a . (5.2)

Here f(r ,v)dt is the number of electrons in the phase-
space element dt5drdv , (]f/]t)driftdt is their net drift
into a fixed dt due to their velocity v and to their accel-
eration v̇ , produced by external fields; b2a describes
changes in f due to collisions with lattice vibrations or
defects which take electrons into and out of dt .

This equation gave considerable microscopic insight
into electrical and thermal conductivities, s and K. For
the venerable universal Wiedemann-Franz constant, first
experimentally discovered in 1853, it led to the result

FIG. 1. Schematic energy bands: (a) metal; (b) insulator; (c)
semiconductor. Heavy lines denote occupation and light lines
nonoccupation by electrons at T50 K. G is the insulating en-
ergy gap @;O(5 eV)# ; g is the semiconducting gap (&1 eV).
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K

sT
5

p2

3 S k

e D 2

, (5.3)

in good agreement with classical theory and experiment.
While s and K individually depend strongly on specifics,
including the collision processes, which are roughly de-
scribable by a mean free path l between collisions, the
ratio depends only on classical fundamental constants.
Electrothermal effects, named after Thomson and See-
beck, could also be successfully described.

Finally, optical properties of solids, including the ori-
gin of color, could be understood as due to transitions of
electrons between occupied and unoccupied states of the
same k but different band quantum number n (see Fig.
1).

A. Total energies

While, as we have seen, the Bloch picture was ex-
tremely useful for many purposes, it did not seriously
address the extremely important issue of total electronic
energies E(R1 ,R2 ,. . .) as a function of the nuclear con-
figuration. For insulators and semiconductors there ex-
isted some alternative strategies, e.g., the approach by
Born for ionic crystals like Na1C2 (see Sec. II) and,
since the 1930s, L. Pauling’s concept of the chemical
bond for covalent crystals like Si. This left as a major
challenge the work of understanding the total energies
of metals.

Here a great advance was achieved by E. Wigner and
F. Seitz in their work on the alkali metals beginning in
1933. By a bold, physical argument they proposed that
the periodic potential for the valence electrons in any
crystal cell l be taken as v(r2Rl), equal to the effective
potential for the valence electron in an isolated atom
located at Rl . The latter had been accurately deter-
mined by comparison with the observed energy spectra
of isolated atoms. This was a major step beyond the for-
mal theory of Bloch electrons: The abstract vper(r) was
replaced by a specific, independently determined poten-
tial.

In order to obtain the total energy as a function of the
lattice parameter, they first calculated the sum of the
noninteracting Bloch energies in the periodic potential
S lv(r2Rl) and argued that a Hartree-like intracell
Coulomb interaction energy EH was approximately can-
celed by the so-called exchange and correlation energy
Exc . (By definition Exc is the difference between the
exact physical energy and the energy calculated in the
Hartree approximation.) Their results were generally in
semiquantitative agreement with experiment for cohe-
sive energies, lattice parameters, and compressibility.

Subsequently they actually estimated the neglected
energies EH and Exc for a uniform electron gas of the
appropriate density, confirmed the near-cancellation,
and obtained similar results. This involved the first seri-
ous many-body study of an infinite system, a uniform
interacting electron gas, by E. Wigner in 1938. He ar-
rived at the estimate of ec520.288/(rs15.1a0) atomic
units for the correlation energy per particle, which needs
Rev. Mod. Phys., Vol. 71, No. 2, Centenary 1999
to be added to the Hartree-Fock energy. [rs is the so-
called Wigner-Seitz radius given by (4p/3)rs

3

5(density)21, and a0 is the Bohr radius.] This result has
withstood the test of time extremely well. At this time
the best available results have been obtained by numeri-
cal, so-called Monte Carlo methods (D. Ceperley and
others, 1980s) with an accuracy of ;131022.

The Wigner-Seitz approach was, of course, very soon
tried out on other metals, e.g., the noble metals and Be,
which were not so similar to uniform electron gases, but
generally with much less success. Not until the advent of
density-functional theory 30 years later, in the form of
the Kohn-Sham theory were the Bloch and Wigner-Seitz
approaches unified in great generality (see Sec. VII).

From the time of Bloch’s original paper in 1928 up
until the 1950s the band-structure paradigm provided an
invaluable conceptual framework for understanding the
electronic structure of solids, but very little was known
quantitatively about the band structures of specific ma-
terials, except the very simplest, like the alkali metals.
This now changed dramatically.

B. Fermi surfaces of metals

In a beautiful short note L. Onsager (1952) considered
the dynamics of a crystal electron in a (sufficiently weak)
magnetic field B5(0,0,Bz). In momentum space it is
governed by the semiclassical equations

\k̇5
e

c
@v~k !3B# , (5.4)

where v(k) is the velocity,

v~k !5\21¹kek . (5.5)

Combining this with purely geometric considerations,
Onsager showed that an electron starting at a point k0
with energy e(k0) will return to k0 cyclically with a so-
called cyclotron period

Tc5S c

eB2
D\2

dS

de
, (5.6)

where S is the area in k space enclosed by the curve C,
which is generated by the intersection of the plane kz
5k0z and the surface e(k)5e . (See Fig. 2.) Using this
result he showed further that for any band structure, no
matter how complex, the magnetization is an oscillatory

FIG. 2. The Onsager orbit C on the plane kx5k0z and on the
constant-energy surface e(k)5e0 .
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function of Bz
21 (the so-called de Haas-van Alphen-

Shubnikoff oscillation) with a period (and this was new)
given by

DS 1
Bz

D5
2pe

c

1
S

; (5.7)

here S is a maximum, minimum, or other stationary
cross-sectional area, perpendicular to B, of the so-called
Fermi surface, in k space, which, by definition, encloses
all occupied k vectors. Thus, by tilting the direction of
the magnetic field, one could measure geometrically
cross-sectional areas with different normals! This was
impressively accomplished by D. Schoenberg and his
group in Cambridge in the 1950s.

These cross-sectional areas, combined with known
symmetries, some rough guidance from approximate
band calculations, and the general Luttinger theorem
(see Sec. VII), which fixed the volume enclosed by the
Fermi surface, generally permitted unique and accurate
determination of the entire shape of the Fermi surfaces
(see Fig. 3) and ushered in a geometric/topological era
of CMP. Since, because of the Pauli exclusion principle,
low-energy/low-temperature2 electronic excitations of
metals involve electrons and holes near the Fermi sur-
face, its empirical determination represented a major
advance in metal physics.

C. Angle-resolved photoemission and inverse
photoemission

Another experimental technique that has shed great
light on band structures, both of metals and of nonmet-
als, is angle-resolved photoemission, which began with
the work of W. E. Spicer (1958). This was followed, in
1983, by inverse photoemission. The former explores oc-
cupied states, the latter unoccupied states. Photoemis-
sion and inverse photoemission have been used to study
bulk bands and surface bands. (See also Sec. VI.)

2As explained in Sec. IV, ‘‘low’’ means typically ! 1 eV or
104 K, in fact rather ‘‘high.’’

FIG. 3. ‘‘Weird’’ topologies of Fermi surfaces: a portion of the
Fermi surface of aluminum.
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In bulk photoemission a photon of energy \v is ab-
sorbed by an electron in an occupied state (n,k), which
makes a transition to an unoccupied state (n8,k8). Here
k85k because the photon momentum can be neglected.
Energy conservation requires that

en8,k5enk1\v . (5.8)

\v is chosen large enough so that en8/k can be taken as
free-electron-like and (apart from an additive constant)
as known. The external momenta of those final electrons
that reach the surface and surmount the dipole barrier
give direct information about the initial momenta k and
energies en ,k . In this way occupied energy bands of
many materials have been directly determined by pho-
toemission.

In inverse photoemission external electrons of known
ke and ee5\2ke

2/2m may penetrate the surface, occupy
unoccupied Bloch states (n8,k), and then emit a photon
whose frequency v is again given by Eq. (5.8). From
such measurements direct information about the unoc-
cupied en8,k can be obtained.

A most helpful theoretical tool, at least for so-called
simple metals whose valence electrons have at least
some resemblance to free electrons, was the concept of
the weak, effective pseudopotential vps(r), due to H.
Hellmann (1936) and especially to J. C. Phillips (1958),
and widely used by the group of V. Heine (1960s). For
the valence electrons, the weak vps had an effect equiva-
lent to the actual Bloch potential, which is very strong
near the nuclei. vps could be characterized by two or
three independent Fourier coefficients and, as in the
case of aluminum (see Fig. 3), even a very complicated
Fermi surface could be accurately fitted everywhere.

The band-structure paradigm has remained the most
important basis for understanding the electronic struc-
ture of solids. Even when there are significant, but not
radical, effects of interaction and/or nonperiodicity it is
usually an indispensable starting point. Theoretical ma-
terials science since the 1930s, and especially since about
1970, has increasingly made quantitative use of it. The
great silicon revolution of the second half of this century
might not have been possible without it.

VI. SURFACES AND INTERFACES

The 20th century has seen a transformation of surface
science and, more generally, of two-dimensional (2D)
science, made possible by major advances in vacuum
technology combined with various techniques like
atomic and molecular deposition, beam writing, and
etching.

In parallel with the dramatic advances in surface sci-
ence, the physics of interfaces between two bulk phases
has also made major progress. Perhaps its most impor-
tant practical applications are to highly controlled artifi-
cial layer structures in semiconductors and magnetic ma-
terials.

At the beginning of the century surfaces were already
of great practical interest for the mitigation of corrosion,
heterogeneous catalysis, thermionic emission in light
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bulbs and vacuum tubes, electrochemistry at solid-liquid
interfaces, friction, etc. However, the best available
vacua were only ;1024 torr, and most surfaces at room
temperature and below were covered by unknown layers
of adsorbed atoms and/or molecules. Atomically clean
surfaces were generally achievable only at the highest
temperatures when, in favorable circumstances, adsor-
bates would evaporate.

In 1927 C. J. Davisson, and L. H. Germer demon-
strated diffraction patterns in the scattering of electrons
by crystal surfaces, an experiment of double significance:
it was a direct demonstration of the reality of the wave
nature of electrons and the beginning of surface diag-
nostics on an Angstrom scale—analogous to von Laue
scattering of x rays by bulk crystals.

Today, at the end of the century, vacua of 10210 torr
can be routinely generated. This has made possible the
preparation of atomically clean surfaces or of surfaces
covered in a controlled way with an accuracy of ;0.01
monolayers. Since the 1980s we have acquired the ability
to check the structural and chemical condition of sur-
faces point by point with an accuracy of order
1021 Å(!), using electron tunneling and force mi-
croscopies (G. Binnig and H. Rohrer, 1980s). A host of
other, less local, but powerful diagnostic techniques such
as Auger electron spectroscopy, x-ray and neutron re-
flectometry, low- and high-energy electron diffraction,
x-ray and ultraviolet photoelectron spectroscopy (XPS,
UPS), have also been highly developed; so have a wide
variety of surface treatments.

A major factor driving surface science since the
middle of this century has been the dramatic rush to
greater and greater miniaturization. While in a struc-
tural steel beam surface atoms constitute a fraction
;1029 of all the atoms, in a miniaturized semiconduct-
ing structure used in contemporary devices the ratio of
interface atoms to bulk atoms is on the order of ;1022,
and surface properties often dominate device perfor-
mance. For example, in the late 1940s, surface and inter-
face physics was a major aspect of the invention of the
first point-contact transistors as well as of later versions,
and it has remained a critical element of the subsequent
quantum electro-optical revolution, which continues in
full swing.

The band-structure paradigm for bulk solids, when
appropriately modified, also became a valuable guide
for understanding the physics of surfaces and interfaces.
A crystal terminated in a plane parallel to z50 remains
periodic in the x-y plane so that the electronic states
have the 2D Bloch property

cn ,k~r1t j!5eik•t jcn ,k~r !, j51,2, (6.1)

where the t j are 2D lattice vectors in the x-y plane.
Two important qualitatively new features were ob-

served. First, the atoms near the surface may reconstruct
so that the symmetry is lowered not only in the z direc-
tion (no surprise) but also in the x-y plane. Dimeriza-
tion is the simplest example, but important cases with
much larger supercells have been observed, for example,
on the surfaces of silicon. Such reconstruction can radi-
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cally affect surface electronic structure and interactions
with adsorbed atoms or molecules.

Secondly, some electronic wave functions near a sur-
face penetrate into the bulk and some are localized near
the surface. The localized surface states, first theoreti-
cally proposed by I. Tamm in 1932, are occupied or
empty depending on whether they are below or above
the electronic chemical potential m. They have three
quantum numbers, kx , ky , and m, which describe
Bloch-type propagation in the x-y plane and localization
along the z direction. If, for example, only states with
m50 have energies below m, we can have a 2D metal.
(The motion in the z direction is ‘‘frozen out.’’)

There are two important, microscopically averaged
surface properties, the surface energy per unit area (1

2 of
the cleavage energy) and the electric dipole barrier.
They play important roles for thermodynamic and elec-
tronic considerations. An early, rather rough, theory for
these quantities constitutes the thesis of John Bardeen
(1936). Much later, beginning with work by N. Lang and
W. Kohn (1970), good quantitative results were ob-
tained by the use of density-functional theory (see Sec.
VII).

Another major area of surface science is the joint do-
main of chemistry and physics: the study of atoms and
molecules in various interactive relationships with
surfaces—collisions, adsorption, desorption, and, for ad-
sorbed atoms and molecules, diffusion, physical and
chemical interactions, and chemical reactions. Again,
controlled ultrahigh vacua and deposition methods,
combined with the battery of mostly post-1950 diagnos-
tic techniques, have led to spectacular advances. Im-
proved catalytic conversion of noxious automobile emis-
sions and cracking of crude oil are examples of
important applications.

Systems involving both surfaces and molecules
present a difficult challenge to theory because of the
absence of symmetry simplifications and the significant
involvement of many (10–103) atoms. The first detailed
quantitative results using density-functional theory for
H2 on solid surfaces have just begun to appear (A.
Gross, M. Scheffler, and others, 1995). These computa-
tions would not be possible without the use of the high-
est state-of-the-art computing power.

The foregoing paragraphs have treated surfaces essen-
tially as two-dimensional versions of bulk crystals. How-
ever, we shall see shortly (Sec. X) that, in the presence
of disorder and/or electron-electron interaction, entirely
new phenomena, such as the quantum Hall effect, exist
in two dimensions. In fact, the recognition of the highly
nontrivial role of dimensionality is one of the hallmarks
of CMP in this century. Probably the first example of
this recognition is the surprising observation by R.
Peierls (1935) that while a harmonic 3D crystal has po-
sitional correlation over an infinite range at any finite
temperature, this is true of a (free-floating) 2D crystal
only at T50.

A final remark about surface science and surface tech-
nology. The former, both in the laboratory and in the
theorist’s thinking, deals mostly with as perfect systems
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as possible. On the other hand, in technological applica-
tions surfaces are generally very imperfect, both struc-
turally and chemically. Nevertheless, concepts devel-
oped by idealized surface science have been very
important guides for practical applications.

VII. MODERATE AND RADICAL EFFECTS OF THE
ELECTRON-ELECTRON INTERACTION

The many great successes of the band-structure para-
digm in accounting, at least qualitatively, for electronic
properties and phenomena in solids strongly implied
that interactions often only alter the Bloch picture quan-
titatively without changing its qualitative features. This
turned out to be partly true and partly false. We begin
with an account of some moderate interaction effects.

A. Landau Fermi-liquid theory

In 1956, a few years after the first reliable experiments
on He3, the rare fermionic isotope of helium, L. Landau
published his famous, largely heuristic, theory on the
low-energy properties of a uniform gas of mutually re-
pelling neutral fermions. He concluded that there are
low-lying excited states that can be described as arising
from the ground state by the addition of quasiparticles
and quasiholes with momenta k(2k) and energies ek
5(\2/2m* )uk22k0

2u, where k0 is the Fermi momentum
of the noninteracting gas, uk:k0 for electrons and holes,
respectively, and uk2k0u!k0 ; m* is an effective mass,
which for He3 turned out to be 3.0 times the mass of the
bare He3 atom. Although the quantitative renormaliza-
tion of the mass was large, these excitations were in
1-to-1 correspondence with those of noninteracting fer-
mions.

Much more interestingly, Landau also introduced an
effective spin-dependent interaction f(u) between low-
energy quasiparticles with momenta k and k8, where u is
the angle between k and k8. f(u) is usually param-
etrized in terms of a few spin-dependent angular expan-
sion coefficients F0 ,F1 ,. . . . While these coefficients are
not needed for the low-temperature specific heat, they
do enter significantly into the spin susceptibility and
compressibility, which, for He3, are also strongly renor-
malized by factors of 9.1 and 3.7, respectively. But the
most interesting result of Landau’s theory was that these
interactions lead to a new dynamical collective mode of
coherent, interacting quasiparticle-quasihole pairs, the
so-called zeroth sound mode, with a linear dispersion
relation, v5sq . The velocity s was also expressible in
terms of the Fl. The experimental confirmation of this
mode by J. Wheatley and co-workers (1966), and the
consistency of the experimentally overdetermined pa-
rameters F0 and F1 (F2 , etc. are very small) was a great
triumph for this theory.

Implications for an interacting electron gas were im-
mediately recognized, the important differences being
the presence of the periodic potential due to the nuclei
and the long range of the Coulomb interactions. The
effect of the latter on a degenerate uniform electron gas
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had, in fact, been previously shown by D. Pines and D.
Bohm (1952) to lead to the collective plasma mode, with
dispersion approximately given by v25vp

21 3
5 vF

2 q2; here
vp is the classical plasma frequency and vF is the Fermi
velocity. Landau’s theory provided a unification of the
theories of neutral and charged uniform Fermi systems.

Electrons under the influence of both a periodic po-
tential and the Coulomb interaction were soon studied
perturbatively using the newly developed machinery of
many-body theory. A key result was obtained by J. M.
Luttinger (1960), who showed formally that, to all or-
ders in perturbation theory, a sharply defined Fermi sur-
face k(u ,w) persisted in k space and, though its shape
was altered by the interactions, the k-space volume en-
closed by it remained unchanged, determined entirely
by the mean density n̄ of the electrons. This so-called
‘‘Luttinger theorem’’ has been very helpful in studies of
metals with complex Fermi surfaces.

B. Strong magnetism

We have already mentioned Heisenberg’s qualitative
realization that the Pauli exclusion principle combined
with the electron-electron interaction can bring about a
strong effective interaction between spins. By a dimen-
sional argument it is of the form ge2/a , where a is an
effective interelectronic distance and g is a dimension-
less constant. Heisenberg’s approach was well suited for
insulators describable by localized orbitals, but the tra-
ditional ferromagnetic materials, Fe, Ni, and Co are
metals.

For these F. Bloch contributed an early insight (1929).
He compared the energies of two possible Sommerfeld
ground states: (1) A paramagnetic state with each plane
wave k<k0 (k05Fermi wave number), occupied by
both a spin-up and a spin-down electron. (2) A ferro-
magnetic state, in which all spins are pointing in the
same direction, say z, and hence each plane wave is oc-
cupied by at most one electron. Thus the maximum oc-
cupied k is now increased by a factor of 21/3, and the
kinetic energy by a factor of 22/3. However, the ex-
change energy due to the Coulomb repulsion of the elec-
trons favors the ferromagnetic state, since the Pauli ex-
clusion principle keeps all electrons apart from each
other, whereas in the paramagnetic state electrons with
opposite spin are not kept apart. At sufficiently low den-
sity this effect prevails and the ferromagnetic state has
the lower energy. (Bloch ignored correlation effects,
which, in fact, change the conclusion for the uniform
electron gas.) This was the beginning of the concept of
itinerant magnetism in metals, soon considerably devel-
oped by E. C. Stoner, J. C. Slater, and others.

Bloch soon returned to another aspect of magnetism
(1934), this time Heisenberg’s localized type. Starting
from N atoms, in a perfectly spin-aligned ground state
C0 with a total z spin equal to 1

2 N , he observed that
there were gapless, propagating excited states, spin
waves of the form Fk5S l exp(ikRl)Sl

2F0 , where Sl
2 is

the spin operator, which turns over the spin at the site
Rl . Their energy spectrum had the form ek}k2 and
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their contribution to the low-temperature heat capacity
was }T3/2. The most compelling confirmation of Bloch’s
spin waves came in the 1960s by means of inelastic neu-
tron scattering, which directly measured the dispersion
relation ek and found remnants of spin waves even
above the critical temperature where the average mag-
netization vanishes.

Since its quantum-mechanical beginning in the late
1920s, the field of strong magnetism has had an explo-
sive growth. One of the most interesting events was the
prediction by L. Néel, and the subsequent experimental
confirmation (1930s), of a new kind of magnetism, later
called antiferromagnetism: the lattice consists of two
equivalent sublattices A and B, with all A atoms carry-
ing a magnetic moment mA and all B atoms carrying the
moment mB52mA . Thus the total magnetization, in
contrast to ferromagnetism, vanishes. However, both the
magnetic susceptibility and low-temperature specific
heat reveal the ‘‘hidden’’ strong sublattice magnetiza-
tions. Again, the incontrovertible proof was provided by
direct observation of two magnetic sublattices in elastic
neutron scattering (C. G. Shull and J. S. Smart, 1949).
Following Néel’s work many complex magnetic struc-
tures were discovered, especially among heavy metals
and metal compounds.

In the first half of the century the most important
practical applications of magnetism were electromag-
nets: generators, motors, electromagnetic relays, etc. To-
day these are joined by magnetic memory devices,
read-in and read-out devices, magnetic layer structures
with ‘‘giant’’ magnetoresistance, etc. The field has en-
tered a new, very active phase.

C. Density-functional theory

By the 1960s quantum-chemical methods had been
very successful in calculating properties of N-electron
systems, with N up to O(10). However, in condensed
matter physics N5O(1023), and even in the smallest
representative clusters N5O(102 –103). Density-
functional theory (DFT), introduced by P. Hohenberg,
W. Kohn, and L. J. Sham in 1964–1965, provided a prac-
tical, new approach to electronic structure, applicable
also to large-N systems. Density functional theory is
couched in terms of the electron density n(r) [or, for
magnetized systems, spin densities ns(r), s561] in-
stead of the many-electron wave function C. It leads to
the Kohn-Sham self-consistent equations, similar to the
Hartree equations, in which, however, exchange and
correlation effects are included (in principle, exactly) by
the addition of the exchange-correlation potential of
vxc(r).

The theory allows parameter-free calculations of den-
sities and spin densities, ground-state energies, as well as
related quantities such as lattice structures and con-
stants; elastic coefficients; work functions, surface ener-
gies, and atom-surface interaction energies; phonon dis-
persion relations; magnetic moments, etc. Accuracies
typically range from 1–20 % depending on the context;
geometries emerge very accurately, typically 61%. Den-
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sity functional theory is, in principle, exact, but in prac-
tice requires an approximation for the exchange-
correlation energy Exc . The simplest, the ‘‘local-density
approximation’’ (LDA), rests on accurate Monte Carlo
calculations of a uniform, interacting electron gas. The
scaling of the computation time with N is a relatively
very favorable Na, where 1<a<3, so that calculations
for finite systems with N'100–1000 have been quite
feasible.

Density functional theory has become the method of
choice for calculating electron densities and energies of
most condensed-matter systems. It also leads to nominal
energy bands, which are usually a very useful approxi-
mation to the physical bands. In the 1980s and 1990s the
LDA was greatly improved by density-gradient correc-
tions (A. Becke, J. P. Perdew, and others). Since about
1990, density-functional theory has also been widely
used by theoretical chemists, particularly for large, com-
plex molecules and clusters.

D. Collective excitations

Collective excitations are an important hallmark of
many-body systems. They depend for their very exis-
tence on particle-particle interactions and are delocal-
ized excitations of the entire system. Familiar examples
are the vibrations of molecules or of crystal lattices,
whose nature has been well understood since about
1910.

We have already mentioned a few other condensed-
matter examples: zeroth sound in He3 and plasmons in a
uniform electron gas, as well as spin waves in magnetic
systems. The latter represent a separation of electronic
spin and charge, already well understood by F. Bloch,
who about 1930 is said to have remarked: ‘‘If electrons
can hop from one atom to another why not spins?’’ (the
condensed matter version of Lewis Carroll’s Cheshire
cat and his grin).

A collective excitation in insulators was proposed in
1931 by J. Frenkel, now called the Frenkel exciton. It is
most easily visualized for a lattice of distinct neutral at-
oms, say Ar, and is formally analogous to spin waves.
Let C0 be the ground state of the system, with all atoms
in their ground state, and let C l be the state in which the
atom at site Rl is in the first excited state. The states
C1 ,C2 ,. . . are degenerate and, because of the proximity
of the atoms, they interact. The correct linear combina-
tions reflecting the lattice periodicity are the excitation
waves, or excitons, Ck[Aeik•RlC l with wave vector k,
whose energies ek are k dependent. Excitons are the
lowest excited states of insulators. Being neutral, they
carry no electric current. They were first clearly identi-
fied in optical spectra in the 1940s.

A different view of excitons is due to G. Wannier
(1937). If one ignores interactions between electrons,
the lowest-lying excited states, Ckc ,kv

, have an electron
(kc) near the bottom of the conduction band and a hole
(kv), with a positive charge, near the top of the valence
band. Because of their Coulomb attraction the electron
and hole can form lower-lying, traveling bound states
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with total wave number k, a kind of condensed matter
positronium. These are again the excitons. The Frenkel
picture is appropriate for small excitons, where the elec-
tron and hole are tightly bound to each other (e.g., in
Na1Cl2); the Wannier exciton is more appropriate in
the opposite limit (e.g., in Si).

Excitons, consisting of two fermions, are bosons and
in principle should exhibit Bose condensation (L. V.
Keldysh, 1960s); however, so far this has escaped clear
identification.

E. Radical effects

The foregoing paragraphs dealt with what I call mod-
erate effects of the electron-electron (e-e) interaction,
when a model of noninteracting effective electrons
and/or holes is a good starting point. There are, how-
ever, many condensed-matter systems in which this is
not the case, whose history will now be briefly ad-
dressed. E. Wigner (1938), considering the ground state
of a dilute gas of electrons moving in a neutralizing posi-
tive charge background, observed that the free-electron
kinetic energy per electron behaved as rs

22 while the e-e
repulsive energy behaved as rs

21, and thus in the dilute
limit the latter would prevail [rs , previously defined, is
proportional to (density)21/3]. He concluded that the
electrons would form an ordered lattice and perform
small zero-point vibrations around their equilibrium po-
sitions. This so-called Wigner lattice was an early indica-
tion that there may be condensed matter systems or re-
gimes for which the band paradigm is overwhelmed by
the effects of the e-e interaction. (Much later a 2D
Wigner crystal was observed for electrons trapped on
the surface of liquid He4.)

In 1949 N. Mott noted that the compound NiO2 was
an insulator, although, based on the number of electrons
per unit cell and the Bloch band paradigm, it should be
a metal with a half-filled band. This led him to consider
a model consisting of H atoms forming a simple cubic
lattice with adjustible lattice parameter a. He adopted a
tight-binding point of view, in which the many-body
wave function is entirely described in terms of atomic 1s
orbitals v l , centered on the nuclei Rl . He then esti-
mated the effects on the total energy due to electrons’
hopping onto neighboring sites. By giving electrons
more room, one would cause their kinetic energy to be
reduced, while the Coulomb repulsion energy of the
electrons would increase by an energy U for each double
occupancy. He concluded that, when a exceeded a criti-
cal value ac , this system, which in band language has a
half-full band, would nevertheless become an insulator,
now called a Mott insulator. The internal structure of
this insulator is quite different from that of the filled-
band Bloch insulator. (There is an obvious relationship
between Wigner’s and Mott’s considerations.)

These ideas were further developed by J. Hubbard
(1963) in the so-called Hubbard model of interacting
electrons with the Hamiltonian
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Here l and s denote sites and spins; the sum over l
and l8 is over nearest neighbors; e ls and t are the site-
diagonal and hopping energies; U describes the addi-
tional energy due to double occupation; and nl↑ ,nl↓ de-
note the numbers of spin-up (-down) electrons on site l.
This Hamiltonian interpolates between isolated atoms
(t50) and noninteracting, itinerant electrons (U50).
Approximate solutions for U/t finite do indeed yield the
Mott metal-insulator transition for a critical value of
U/t . But the model has allowed many extensions to
more complex systems (e.g., high-Tc superconductors),
excitations, defects, effective spin Hamiltonians, mag-
netic phenomena, longer-range interactions, etc. It has
been a valuable guide for understanding systems such as
oxides, sulfides, and many other compounds which, un-
der the band paradigm, would be described as narrow-
band materials.

In a similar spirit P. W. Anderson (1961) had earlier
proposed that an isolated impurity atom, immersed in
and hybridized with a sea of conduction electrons, could,
due to an intra-atomic e-e repulsion U, develop a finite
magnetization.

In 1964 T. Kondo considered the effect of such a lo-
calized impurity spin on the scattering of conduction
electrons and surprisingly found (in low-order perturba-
tion theory) very unusual behavior (paralleling earlier
experimental findings) below what is now called the
Kondo temperature TK . In fact, for T!TK the impurity
spin forms a singlet state with the conduction electrons,
and its magnetic susceptibility vanishes.

Since the 1980s so-called ‘‘heavy-fermion’’ materials
have attracted much attention. They are associated with
incompletely filled 4f and 5f shells such as in the Ce and
U compounds CeAl3 and UPt3. At very low tempera-
tures @T5O(1 K)# this class of materials displays a
linear specific heat, gT , with g values corresponding
to an enormously enhanced effective mass, m*
5(102 –103)m! They exhibit a great variety of electronic
behavior, including paramagnetism (with a huge mag-
netic susceptibility), various forms of cooperative mag-
netism with very small magnetic moments, insulating be-
havior, and superconductivity. It is generally believed
that their properties reflect the opposing tendencies of
the Kondo mechanism, which tends to suppress local-
ized f moments, and an indirect, so-called RKKY
(Ruderman-Kittel-Kasuya-Yosida), interaction between
f moments on different sites, via the conduction elec-
trons. Attempts to understand their behavior usually
employ a generalization of the Anderson/Hubbard
Hamiltonians, including a repulsive energy U for f elec-
trons on the same site and an f-electron/conduction-
band hybridization term. In addition to more standard
techniques, mSR (positive muon spin rotation and relax-
ation) has provided a wealth of information about local
magnetic fields in these compounds.
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At century’s end, heavy-fermion systems, together
with high-Tc superconductors, represent major chal-
lenges to condensed-matter theorists.

VIII. MODERATE AND RADICAL BREAKDOWNS
OF LATTICE PERIODICITY

Condensed matter consists, by its nature, of very
many significantly interacting atoms. The periodicity of
crystal lattices was the simplifying feature which, begin-
ning in the decades 1910–1930, gave physicists and
chemists the courage to undertake experiments and con-
struct theories that ultimately led to an impressive un-
derstanding of crystalline solids on an atomic scale. The
periodicity paradigm has remained invaluable ever
since. At the same time perfect periodicity for an exten-
sive system is a thermodynamic fiction. For, as is easily
shown, at any finite temperature T, the introduction of a
small concentration of nonperiodic defects, while raising
the internal energy U, also increases the entropy S in
such a way that the free energy, F[U2TS , is reduced.
Thus it is not surprising that, over the course of the cen-
tury, nonperiodic systems have also been intensively
studied, starting with dilute point defects in periodic lat-
tices (1920s) and later including systems for which the
periodicity paradigm has little if any relevance, for ex-
ample, liquids, amorphous solids, and fractals.

A crucial opposite development also took place.
Poorly controlled, high levels of structural and/or chemi-
cal disorder can prevent meaningful scientific studies or
dependable applications. The semiconductors Si and Ge
are a case in point. Their electrical and low-frequency
optical properties are largely due to very small concen-
trations of chemical impurities, which could not be ad-
equately controlled until the middle of the century. As a
result their applications, e.g., to crystal radios, were
highly unreliable. With the advent of zone refining
(1940s) structurally excellent crystals of Si and Ge were
grown in which the concentration of critical impurities,
like B and P, could be controlled at the unprecedented
fractional level of ;1028. This dramatic accomplish-
ment was indispensable for the semiconductor revolu-
tion of this century. Also, the writer recalls seeing (in
about 1955) a Si whisker with a single structural defect, a
so-called screw dislocation, around which it had grown,
whose resistance to fracture was many orders of magni-
tude higher than that of ‘‘normally’’ grown Si.

A. Point defects

Ionic crystals are among the easiest to grow with high
structural and chemical perfection and therefore were
early subjects of study. The most common point defects
are so-called vacancies (missing atoms or ions), followed
by interstitials (additional atoms or ions, located in in-
terstices of the periodic lattices). Local electronic neu-
trality is energetically very strongly favored. Thus in
Na1Cl2 a Cl2 vacancy is typically either paired with a
nearby neutralizing Na1 vacancy or it traps a neutraliz-
ing electron. The latter defect was identified as the pre-
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viously empirically discovered F-center (F5Farbe, i.e.,
color), which lent a distinctive color to Na1Cl2 crystals
containing them. This and other similar centers became
the subject of detailed optical studies and concomitant
theoretical work—perhaps the first quantitative applica-
tion of quantum mechanics to a complex condensed
matter system (experiments by R. W. Pohl and co-
workers, 1920s; theory by J. H. De Boer and others,
1930s). In roughest approximation the F-center may be
regarded as a condensed-matter version of a hydrogen
atom, with the net positive charge 1e , due to the re-
moval of Cl2, playing the role of the proton in hydro-
gen. Of course the positive charge is effectively spread
out over the volume of the vacancy, and beyond it the
electron moves not through a vacuum but through the
dynamical ions of the Na1Cl2 lattice. The primary ab-
sorption at 2.7 eV, in the visible spectrum is the greatly
modified analog of the 10.2 eV 1s→2p line in H. The
temperature dependence of the linewidth could be quite
well explained as due to the vibrations of the nearby
ions. Detailed optical studies of this and other so-called
color centers, associated with a single structural point
defect or with complexes of several structural defects,
were later very effectively complemented by the inven-
tion of nuclear and electron spin-resonance techniques
and remained an important, highly quantitative field of
CMP into the 1960s.

Beginning in the 1950s, analogous but even more pre-
cise studies were undertaken of the so-called donor and
acceptor defects in covalent semiconductors. These stud-
ies were greatly stimulated by the invention of the tran-
sistor and decisively aided by the independent measure-
ment of the effective masses of low-energy electrons and
holes using so-called cyclotron resonance in external
magnetic fields (B. Lax and others, 1950s). Donor and
acceptor defects in Si are created by replacement of a
four-valent Si atom by, say, a five-valent P atom or a
three-valent B atom. Four electrons from the P atom
become part of the bonding structure (or filled ‘‘band’’)
of the Si matrix. The extra charge 1e on the phosphor-
ous nucleus can weakly trap the extra electron of the P
atom in one of several hydrogenlike donor states, or
‘‘donate’’ it to the continuum of conduction-band states.
An analogous situation obtains for a B acceptor and
positive holes. At room temperature the donors and ac-
ceptors provide conducting electrons and holes, while in
their absence most semiconductors are effectively insu-
lating. The solid-state spectroscopy of trapped donor
electrons and acceptor holes has now an astonishing ac-
curacy of ;1023. Excited states can be calculated with
similarly high accuracy by parameter-free so-called ‘‘ef-
fective mass theory,’’ in good agreement with experi-
ment. The theory for the more tightly bound donor or
acceptor ground states is not so precise.

B. Substitutional alloys

Another class of moderately nonperiodic systems is
made up of the substitutional alloys AxB12x , where A
and B are elements with the same valency, similar
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atomic radii, and, in their pure forms, the same crystal
structure. Alloys of Cu and Au are an example. Except
for special values of x, such as x51/4, when ordered
superlattices can form, such alloys display some degree
of disorder. Early in this century the theory of such al-
loys was based on a simple but successful phenomeno-
logical mean-field model for the energy (W. L. Bragg
and E. J. Williams, 1934): E5NAAvAA1NBBvBB
1NABvAB , where NAA are the number of AA-‘‘bonds’’
and vAA is the corresponding bond energy, etc. Today
the energies of many alloy systems have been success-
fully calculated by parameter-free density-functional
theory (Sec. VII) with accuracies of a few percent.

The thermodynamics of the Bragg-Williams model,
which is mathematically isomorphic with that of the so-
called Ising model for magnetism (1925), has been the
subject of intensive theoretical study ever since the
1920s. A major theoretical breakthrough was the exact
analytical solution of this model in 2D by L. Onsager in
1944, showing a logarithmic singularity in the specific
heat at a critical temperature Tc where long-range mag-
netic order disappears. For the 3D Ising model, although
very precise numerical results are available today, the
intensive quest for exact analytical results has so far not
succeeded.

C. Dislocations and grain boundaries

In all the examples above, while there are local distor-
tions of the lattice structure, the topology of the under-
lying periodic lattice remains intact. The major new con-
cept of dislocation, a topological defect, was put forward
in 1934, independently by G. I. Taylor, E. Orowan, and
M. Polanyi, to explain the fact that permanent deforma-
tion occurs in metals (e.g., in a Cu wire) under stresses
about three orders of magnitude smaller than estimated
for a perfect crystal. Figure 4 shows a so-called edge
dislocation, which can be thought of as arising from the

FIG. 4. Edge dislocation line (perpendicular to paper). The
solid circles are part of the additional half plane.
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insertion of an extra half plane of atoms into an other-
wise perfect periodic lattice. The local properties of the
lattice are significantly disturbed only near the terminat-
ing edge of the half plane, the so-called dislocation line.
However, even far away from this line the topology of
the lattice is altered. Thus any circuit enclosing this line,
consisting of N steps to the right, N upwards, N to the
left, and N down, fails to close by 1 step, no matter how
large the number N.

Edge dislocations, just like vacancies and interstitials,
are naturally present at finite temperatures. They can be
made to slip sideways under much smaller stresses than
are needed for the simultaneous slippage of the entire
upper half-crystal z.0 over the lower half-crystal z
,0. Slippages of many dislocation lines under stress re-
sult in a so-called plastic deformation, which, unlike an
elastic deformation, remains when the stress is removed.
The concept of dislocations completely revolutionized
our understanding of the strength of materials. Single-
crystal materials of macroscopic dimensions result only
under conditions of extremely slow growth. Otherwise
even structurally ‘‘good’’ materials are usually polycrys-
talline, consisting of small microcrystals (or grains) with
different orientations. Grain boundaries can be concep-
tualized as accumulations of dislocation lines. Their
properties are of critical importance in metallurgy.

The year 1984 brought a big surprise in the field of
crystallography. Mathematical crystallography had been
regarded as a closed subject since the work of Schoen-
fliess in the 19th century. All possible point groups con-
sistent with periodicity had been listed. In particular the
icosahedral point group was not allowed. Yet D.
Schechtman and co-workers reported a beautiful x-ray
pattern with unequivocal icosahedral symmetry for rap-
idly quenched AlMn compounds. The appropriate
theory was independently developed by D. Levine and
P. Steinhardt, who coined the words quasicrystal and
quasiperiodic. Even more curious was the fact that R.
Penrose (1984) had anticipated these concepts in purely
geometric, so-called Penrose tilings (Fig. 5).

Quasiperiodicity has raised new questions about vi-
brational lattice modes and electronic structure and
growth mechanisms, which continue to attract interest.

FIG. 5. Quasiperiodic two-dimensional Penrose tiling.
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D. Totally nonperiodic systems

In all of the preceding examples, the perfect periodic
lattice has been the appropriate background against
which to understand the nature of the defects. There are
other condensed-matter systems in which periodicity is
totally or largely absent.

Classical liquids, of course, are nonperiodic. Their
macroscopic properties have been and are the subject of
mature, specialized fields such as hydrodynamics. On a
microscopic scale they are described by classical me-
chanics and thermodynamics, using a potential-energy
function V(R1 ,R2 ,. . . ,RN), where the Rl are the posi-
tions of the nuclei. For some simple liquids, e.g., Ar, V is
simply the sum of molecular pair potentials, accurately
known from chemistry. But for metallic liquids pair po-
tentials are generally inadequate. In the 1960s quantum
theory began to provide good potential functions also
for metals. We mention here further that molecular dy-
namics, i.e., computer simulation of the classical motions
of the constituent atoms, has played an important clari-
fying role for finite-temperature properties and phenom-
ena since the 1960s (B. Alder, A. Rahman, and others).

Quantum liquids consist of light elements, especially
the isotopes of H and He. For these liquids the nuclear
dynamics at low temperatures must be described by
quantum mechanics and exhibit measurable, striking
quantum effects: Rotational phase transitions for liquid
H2, Fermi and Bose statistics for He3 and He4; diffusion
by quantum tunneling even as T→0; superfluidity of ul-
tracold He3.

Critical phenomena refer to the behavior of a thermo-
dynamic system near its critical point. They constitute
one of the most important parts of the discipline of sta-
tistical mechanics, with major applications to CMP.
Since this essay cannot attempt to deal adequately with
the general principles of statistical mechanics we must
limit ourselves to very cursory remarks.

The 1910 Nobel Prize in physics was awarded to J. D.
van der Waals ‘‘for his work on the equation of state for
liquids,’’ P5F(r ,T), where P, r, and T denote pressure,
density, and temperature. The form of the function F,
when expressed in system-dependent, dimensionless
variables, was universal for all liquid-gas systems. In par-
ticular the theory accounted for the universal existence
of the so-called critical point (Pc ,rc ,Tc), where the line
in the (T,P) plane, which separates the liquid and gas
phases, terminates.

A magisterial generalization of van der Waals’ con-
cepts to a general theory of phase transitions was put
forward by L. Landau in the 1930s, couched in terms of
the key concept of the order parameter S (spatially uni-
form or slowly varying), such as the difference between
liquid and gas densities at given pressure, or the magne-
tization per unit volume M of a ferromagnet for a given
external magnetic field B. Near a critical point—where
the order parameter vanishes—Landau expanded the
free energy in powers of S and (T2Tc). The theory
predicted a simple analytic behavior [e.g., (Tc2T)}(r
2rc)1/2] for the coexistence of liquid and gas. However,
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beginning in the 1940s, and especially in the 1960s, the
exponent was found to be not the rational number 1

2 but,
universally, 0.34—very near the critical point. Similarly,
other so-called nonclassical universal exponents were
found for other classes of thermodynamic systems.
These developments eventually led to the major, radi-
cally new concept of the renormalization group (K. Wil-
son, 1971) in which spatial correlation functions of the
order parameter at or near the critical point G(r ,r8)
5^S(r)S(r8)& play a central role. Renormalization-
group theory, with its new concepts of scaling, universal-
ity, stable and unstable fixed points, and basins of attrac-
tion, has led to entirely new thinking about the physics
of phase transitions, especially near the critical point,
and has had far-reaching impacts not only elsewhere in
physics, but beyond.

Glasses, known since antiquity and of enormous prac-
tical importance, are still not fully understood. A key
advance was made by W. H. Zachariason (1932), who
proposed that glassy silica, SiO2, has the same local
bonding structure as crystalline quartz (each Si atom be-
ing bonded to four oxygen atoms and each oxygen being
bonded to two Si atoms), but that the overall topology
of the 3D bonding network has random elements and no
periodicity. The nature of the so-called glass transition,
in which the viscosity changes by many orders of magni-
tude over a narrow temperature interval, remains sub-
ject to study and controversy.

Spin glasses have received a great deal of attention
since the 1960s. They are dilute alloys in which spin-
carrying ions, e.g., Mn11, are randomly distributed in a
nonmagnetic metallic matrix and interact with each
other by long-range oscillatory forces. Spin glasses ex-
hibit novel kinds of dynamic magnetic susceptibilities.
They have been explored as possible models of neural
networks.

The physics of radically nonperiodic systems is infi-
nitely diversified and the foregoing remarks of necessity
could touch on only a very small fraction of the impor-
tant developments during this century. In particular, the
interesting electronic transport process in such systems
have not been addressed.

IX. BOSE-EINSTEIN CONDENSATION: SUPERFLUIDITY
AND SUPERCONDUCTIVITY

The history of superfluidity and superconductivity in
this century is, in the view of many, the most remarkable
chapter in the 20th-century history of condensed matter
physics. These systems not only behave in radically non-
classical, counterintuitive ways, but also for a long time
could not be understood in terms of those quantum-
mechanical concepts that had been highly successful in
explaining the properties of atoms, molecules, and ‘‘nor-
mal,’’ i.e., nonsuperconducting/fluid matter. This history
had its beginning in 1908, when Kammerlingh Onnes
had reached a sufficiently low temperature to liquify He4

at 4.2 K, thereby creating the important new field of
‘‘low-temperature physics’’ including superconductivity/
fluidity. Today, 90 years later, we believe that we under-
stand most of the essential characteristics of these sys-
tems, except that the mechanism underlying so-called
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high-temperature (or high-Tc) superconductivity, which
was discovered in 1986, still remains a mystery.

The story of superconductivity/fluidity is a wonderful
example of the complexity of scientific progress, involv-
ing a mixture of serendipity and planned research, of
phenomenology and a priori microscopic calculations, of
well-designed experiments (in line with Onnes’ motto
‘‘through measurement to knowledge’’) and of simple
models. This in spite of the fact that in the Schrödinger
equation we have, but only in principle, the ‘‘theory of
everything’’ in CMP. The history of superfluidity is a
good example of the need to be alert to the significance
of only rough agreement between theory and experi-
ment, as in the case of the experimental transition tem-
perature of superfluid He4 (2.2 K) and the theoretical
condensation temperature (3.3 K) of a model of nonin-
teracting bosons with the mass of He4 atoms, as well as
the need to be alert to the possible significance of tiny
unexpected ‘‘blips,’’ as in the experimental discovery of
the superfluidity of He3.

The close relationship between superconductivity of
metals, first discovered in 1911, and the superfluidity of
He4, fully established in 1938, was first clearly grasped
by F. London (partly in collaboration with his brother
Heinz), who saw in both phenomena an underlying long-
range order in momentum space. His two books Super-
fluids I—Macroscopic Theory of Superconductivity
(1950) and Superfluids II—Macroscopic Theory of Su-
perfluid Helium (1954) are marvels of what can be
achieved in physics by the application of general funda-
mental physical principles—in this case, thermodynam-
ics, classical electrodynamics, and general quantum
concepts—in a thoughtful analysis of often quite ‘‘bi-
zarre’’ experimental results. I have just re-read Lon-
don’s introduction to the first of these volumes (which
actually deals in a coherent way with both superconduc-
tivity and He4 superfluidity), written just a few years be-
fore the microscopic theories of Bardeen, Cooper, and
Schrieffer (1957) of phonon-mediated superconductivity
and the Bogoliubov theory of an interacting Bose gas for
He4. I found it exhilarating to see how very much of the
most essential physics London had grasped without any
microscopic knowledge of the underlying mechanism for
superconductivity or of the effects of interactions on
Bose-Einstein condensation.

Both phenomena are now understood to reflect the
occurrence of a quasi-Bose-Einstein (BE) condensation,
of the bosonic atoms in superfluid He4, and of the
bosonic electron pairs in superconducting metals. (He3

superfluidity, though much more complex, is fundamen-
tally analogous to superconductivity.) I write ‘‘quasi’’
because, although in superconductors/superfluids the
original BE condensation for noninteracting bosons is
very strongly modified, the most essential aspects of the
BE condensation survive.

The interwoven histories of these systems, both ex-
perimental and theoretical, extending over almost a cen-
tury and still evolving, is extraordinarily complex. Dis-
rupted by two World Wars, it captivated the minds and
hands of many of the world’s best physicists. The 1957
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Bardeen-Cooper-Schrieffer (BCS) microscopic theory
of superconductivity, taking advantage of a half century
of often inspired experimental and theoretical advances,
in one blow provided a coherent quantitative explana-
tion of the key properties and phenomena of simple su-
perconductors. It may be regarded as the dramatic high
point of this history, which was, however, followed by
many additional major and unanticipated advances.

In this essay I must be content to give a very cursory
account of the most crucial milestones before about
1950 and then only to list the subsequent high points. I
refer the reader to the article in this volume by J. R.
Schrieffer and M. Tinkham and that of A. Leggett for
more extended accounts.

The beginning of it all was the totally unexpected dis-
covery in 1911 by K. Onnes and G. Hulst of the sudden
vanishing of the electrical resistance, or so-called super-
conductivity, of Hg when the temperature was reduced
to below 4.2 K. Soon some other metals were found to
be superconducting at a few degrees K, while others re-
mained normal.

Liquid He4, the cooling liquid in these experiments,
was itself found to have the most unusual properties. In
1930 W. Keesom and J. N. van der Emde discovered
accidentally that at very low temperatures liquid He
passed through extremely small cracks which, at higher
temperatures, were quite impervious to liquid or gas-
eous He. This suggested a vanishing or extremely small
viscosity. At 2.2 K, He4 exhibited a mysterious liquid/
liquid phase transition, with no latent heat but a singu-
larity in the specific heat, most clearly established by W.
Keesom and A. P. Keesom in 1932. In 1936 they ob-
served an extraordinarily high apparent heat conductiv-
ity. In 1938 P. Kapitza, who conducted closely related
experiments, coined the term ‘‘superfluid.’’

On the superconducting front W. Meissner showed in
1933 that superconductors, in addition to the remark-
able transport property of vanishing resistance, also had
the remarkable thermodynamic property of perfect dia-
magnetism, i.e., the complete expulsion of a weak mag-
netic field from the interior.

Beginning in 1935 Fritz London, partly with his
brother Heinz, using Meissner’s discovery of perfect dia-
magnetism and general physical principles, proposed the
new ‘‘London equation’’

lL
2 curl j1H50,

as the appropriate constitutive equation for the current
density j in superconductors. Here lL is the so-called
London penetration depth. He also brilliantly put for-
ward the notion (later fully confirmed) that the electrons
in a superconductor display a long-range order in mo-
mentum space.

Returning to superfluid He4, F. London’s insight
(1938) that its extraordinary properties are the reflection
of a BE condensation proved to be most fruitful. It be-
came the basis of a highly successful two-fluid phenom-
enological model put forward by L. Tisza (1938) to de-
scribe the available experiments: One fluid was the
superfluid, the other a normal fluid, each fluid having its
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own thermodynamic and dynamical variables like den-
sity rs ,rn , velocity vs ,vn , and specific entropy ss
50,sn . (The vanishing of ss is a consequence of the oc-
cupation of a single quantum state by the macroscopic
condensate.) The two fluids were viewed as completely
interpenetrating each other. Landau, who at first ap-
pears not to have accepted the concept of BE conden-
sation, developed his own two-fluid model (1941 and
later) in which the normal fluid consisted of the gas of
elementary excitations, phonons, and—a new concept—
rotons with vorticity. The two-fluid model led to a new
collective mode, called second sound, which eventually
was experimentally confirmed.

In 1946 Andronikashvili conducted an experiment
which beautifully supported the two-fluid model. The
moment of inertia of a slowly rotating stack of discs im-
mersed in superfluid He4 agreed with the picture that
only the normal fluid is dragged along.

The first low-temperature experiments (1949) on the
then exceedingly rare isotope He3, which obeys Fermi
statistics, showed no sign of superfluidity down to 0.5 K.
This strongly supported F. London’s contention that the
superfluidity of He4 depended critically on its Bose sta-
tistics.

Following is a mere listing of some of the most impor-
tant developments since about 1950.

Around 1950, A. B. Pippard, in his microwave experi-
ments on the London penetration depth lL , was led to
the notion of a second length parameter, the coherence
length j entering a nonlocal generalized London equa-
tion in which the current j(r) is proportional to an av-
erage of A(r8) over a range ur82ru&j . j was found to
have a strong dependence on the mean free path l. At
about the same time L. D. Landau and V. L. Ginzburg
put forward a phenomenological theory of superconduc-
tivity, which also included the coherence length, in term
of a complex wave function c(r), playing the role of a
space-dependent order parameter. This theory grew out
of Landau’s general theory of phase transitions, coupled
to general principles of electrodynamics. A crucial pa-
rameter was the ratio k[lL /j ; values of k,(2)21/2 re-
sulted in the ‘‘usual’’ kind of superconductivity with a
complete Meissner effect. In 1957 A. A. Abrikosov
showed that when k.(2)21/2, in so-called type-II super-
conductors, magnetic-field tubes can penetrate the su-
perconductor, forming a vortex lattice.

In 1950, H. Fröhlich put forward a (nonpairing)
theory of superconductivity, depending on electron-
phonon interactions, and several experimental groups
discovered independently an isotopic mass dependence
of Tc}M21/2, consistent with Fröhlich’s electron/
phonon coupling concept. Independent of the specifics
of Fröhlich’s theory, the empirical isotope effect showed
persuasively that lattice vibrations played an essential
role in superconductivity.

The discovery of the isotope effect greatly fired up
John Bardeen’s old interest in superconductors and in
the middle 1950s, he embarked on an intensive research
program with two young collaborators, L. Cooper and J.
R. Schrieffer. In 1956, Cooper showed that a normal
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electron gas with attractive electron-electron interaction
is unstable with respect to the formation of electronic
bound pairs (bosonic, so-called Cooper pairs). In 1957
this led to the microscopic BCS theory of phonon-
mediated superconductivity, which gave a coherent and
wonderfully successful description of a wide variety of
properties and phenomena and has become the main
paradigm for superconductivity.

The year 1961 saw the prediction and confirma-
tion of what is now called the Josephson effect: A
dc voltage V across a superconducting tunnel junction
(superconductor/normal metal/superconductor) gives
rise to an ac (!) current of frequency 2 eV/\. (The charge
2e reflects the electron pairing; the frequency is inde-
pendent of material properties.)

During more than three decades of painstaking mate-
rials research by B. Matthias and many others the high-
est known superconducting transition temperature rose
by about 8 K to ;25 K. Suddenly in 1986 A. Mueller
and G. Bednorz, studying a new class of materials con-
taining stacks of hole-doped CuO2 planes, discovered
superconductivity at 30–40 K. Further studies of related
compounds, now called high-Tc materials, have taken Tc
up to about 160 K! While there is no doubt that the
carriers are again electron pairs, there is a wide consen-
sus, consistent with generally small isotope effects, that
one or more mechanisms beyond electron-phonon cou-
pling are at work; but there is no consensus about their
nature. At century’s end, this is a major challenge, as is
the experimentalists’ dream of reaching room-
temperature Tc’s .

Returning to the He isotopes: the Bose-Einstein con-
densation of He4 was confirmed by painstaking analyses
of neutron-scattering experiments, with a small macro-
scopic occupation of ;6% in the zero-momentum state
at T50, according to the best recent estimates. How-
ever, in 1995 BE condensates of over 90% of bosonic
atoms of certain dilute gases with very weak interactions
were produced by laser cooling and selective evapora-
tion down to below microdegrees Kelvin and exquisitely
studied.

The long-searched-for superfluidity of He3, analogous
to the superconductivity of electrons, but much more
complex, was found below 3 millidegrees K by D. M.
Lee, D. Osheroff, and R. C. Richardson in 1971.

Finally we mention that the concepts of pairing and of
superfluidity/conductivity have had important applica-
tions in the theory of nuclear structure and of neutron
stars.

All in all a heroic chapter, still unfinished, in the his-
tory of science.

X. MESOSCOPICS AND NANOSCIENCE

Sometime in the 1960s Richard Feynman is said to
have given a talk entitled ‘‘There is always room at the
bottom,’’ in which he articulated a then new frontier of
science, miniaturization of man-made structures down to
dimensions of a few atoms, i.e., 1 nanometer510 Å. To-
day, we have in some respects reached this frontier, in
others we are close; even single atoms have been suc-
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cessfully observed and manipulated. Far from being sim-
ply a matter of setting new records, this journey has led
to some of the most exciting physics and most important
technological advances of the last several decades.
There can be no question that the journey will continue
well into the next century.

The conception, successful fabrication (1948), and
dramatic applications of the transistor (see the article by
Riordan et al. in this issue) highlighted the possibility of
controlling the dynamics of electrons in very thin surface
and interface layers. This no doubt was a major impulse
for what today is called mesoscopics and nanoscience.

A few words about the terminology: mesoscopic sys-
tems are ‘‘in the middle’’ between microscopic and mac-
roscopic systems, i.e., they contain between about 103

and 106 atoms. These limits are very rough and depend
on the context. Nanoscience, often overlapping with me-
soscopics, emphasizes small dimensions, typically 1–100
nanometers, in one, two, or three dimensions.

Strict control of the chemical, structural, and geomet-
ric perfection of the samples has been of the essence.
Among the numerous techniques used we mention, in
particular, molecular-beam epitaxy (MBE) going back
to the 1970s, which has allowed the fabrication of layer
structures that are atomically flat and compositionally
controllable to an accuracy of about 1%. Combined with
lithographic techniques it has permitted fabrication of
complex semiconductor/metal structures on a nanoscale.

Mesoscopic and nanosystems highlight the qualitative
difference between 1D, 2D, and 3D systems. Of course,
literally speaking, all physical systems are three dimen-
sional. However, if, for example, electrons are trapped
in a layer of sufficiently small thickness, the motion nor-
mal to the layer is quantum-mechanically ‘‘frozen out’’
and the system behaves like a 2D gas. Similarly in a
‘‘quantum wire’’ the electrons are confined to a small
cross-sectional area in the x-y plane and constitute a 1D
electron gas.

We list here some of the interesting results associated
with lower dimensions.

(1) Long-range order: In 1935 Peierls had noticed, by
direct exact calculations for harmonic lattices, that while
in 3D there is long-range (really infinite) order, even at
finite T, in 2D it exists only at T50, and in 1D not even
then. Later this observation was generalized by N. D.
Mermin and H. Wagner (1966) to include other order
parameters like magnetization and the superconducting
gap function.

(2) Localization: Calling l the nominal elastic mean
free path, an arbitrarily weak static disorder localizes
electrons over a distance l in 1D (N. F. Mott and W. T.
Twose, 1960) and over generally longer distances in 2D
(D. Thouless, 1980s). In 3D, for strong disorder all states
are localized, for weak disorder only those near the
band edges, so-called Anderson localization (P. W.
Anderson, 1958).

(3) Luttinger liquid: As Landau first realized, the ef-
fect of electron-electron interaction in 3D is rather mild.
In particular the Fermi surface in k space remains sharp
at T50. However, in 1D, as shown by J. M. Luttinger
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(1966), interaction effects smooth out the momentum
distribution at the Fermi energy. They also have dra-
matic effects on low-temperature transport processes. (It
has been suggested that a 2D electron gas may also be a
Luttinger liquid.)

(4) The 2D quantum Hall effect: The ordinary 3D
Hall effect, discovered at the end of the last century,
occurs when a dc electronic current, flowing in the x
direction, is subjected to a magnetic field Bz in the z
direction. The resulting Lorentz force in the y direction
is balanced by an electric field Ey (due to induced sur-
face charges). It is given by Ey5ryxJx , where Jx is the
x-current density and ryx , the so-called Hall resistivity,
is given by ryx52Bz /nec , where n is the electron den-
sity. This result is robust under the action of moderate
periodic potentials, electron-electron interactions, and
electron scattering by impurities or phonons. The 3D
Hall effect is very useful for determining the electron
density n which, when combined with the conductivity,
also yields the electron mobility—a critical figure of
merit.

The Hall effect has also been observed for 2D elec-
tron gases moving freely in a confining surface layer of a
semiconductor but being ‘‘frozen out’’ in the perpen-
dicular, z direction. The expected result was VH5
2BzIx /n2ec , where n2 is the electron number/unit area
and Ix the electron current in the x direction. By means
of a perpendicular gate voltage VG the chemical poten-
tial m and hence n2 could be changed. In 1986, Von
Klitzing and co-workers, working with a 2D electron gas
of very high perfection, made the startling discovery that
the Hall voltage Vh , as a function of VG , had a series of
steps for discrete values of n2 given by n25n(eBz /h)
where n was an integer. This is called the integral quan-
tum Hall effect. Furthermore, associated with the Hall
steps, the voltage Vx across the sample parallel to the
current drops to 0, i.e., the diagonal conductivity in the x
direction becomes infinite! Shortly afterwards Hall steps
were also found for n51/3 and other fractional values
n5p/q : the fractional quantum Hall effect. What is the
physical meaning of these numbers? It was first shown
by L. Landau in 1933 that a magnetic field Bz bunches
the eigenvalues of 2D free electrons into discrete, highly
degenerate levels given by en5(n1 1

2 )\v , where v
5(eBz /mc). A value of n52 indicates that the elec-
trons exactly fill the two lowest Landau levels, and n
51/3 corresponds to 1/3 filling of the lowest level.

A beautiful explanation of these experiments was pro-
vided by R. B. Laughlin (1981,1983) in which gauge in-
variance, localization of electrons by disorder, and so-
called fractional statistics (a generalization of the
‘‘integral’’ Fermi and Bose statistics) play critical roles.

(5) Universal conductance fluctuations: The conduc-
tance of a macroscopic disordered metal will, of course,
vary very slightly from sample to sample because of dif-
ferences in the precise configuration of the atoms. Pro-
vided that the inelastic scattering length is much greater
than the length of the sample, these conductance
fluctuations are of the order of (e2/p\) irrespective of
the sample resistance, which can be easily measured (R.
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A. Webb and others, 1985). Diffusion of a single impu-
rity, from one equilibrium position to another, produces
such a fluctuation. Underlying this and many other me-
soscopic phenomena is the fact that, while inelastic elec-
tron scattering destroys phase coherence, elastic scatter-
ing does not.

(6) The Aharonov-Bohm effect and related effects:
The so-called Aharonov-Bohm effect (1959) has found
interesting applications in nanoscience. The basic geom-
etry is shown in Fig. 6. Even when the magnetic flux F is
entirely inside the ring and there is thus no magnetic
field acting on the electrons, the conductance dI/dV de-
pends periodically on F/F0 , where F0([hc/e) is the
flux quantum. This is due to the fact that the flux intro-
duces differential phase shifts, between the parts of an
electron wave function propagating in the upper and
lower halves of the ring, which affect their interference
at the exit point. When F/F0 is an integer, the differen-
tial phase shift is a multiple of 2p, equivalent to 0. For
the observation of this effect, inelastic scattering, which
destroys phase coherence, must be negligible. Thus ul-
tralow temperatures and highly miniaturized systems are
required (T'1 K, dimensions'1 m). There is another
novel periodicity of F0/2 associated with electron paths
and their time-reversed partners. For these path pairs
the condition for interference is strictly independent of
the particular positions of the impurities [B. Altshuler
and others (theory), D. and Yu. Sharvin (experiment),
1981.]

(7) Quantum dots: By a variety of experimental tech-
niques it has become possible (1980s) to fabricate so-
called quantum dots, singly or in arrays, of lateral di-
mensions of ;10–1000 nanometers. The number of
mobile electrons in such a dot is typically O(1 –104).
They are sometimes called ‘‘artificial atoms’’ because,
due to the small dimensions of the dot, level spacings are
correspondingly large. The conductance of such a dot
shows enormous fluctuations as a function of gate volt-
age. These reflect successive resonances of electronic en-
ergy levels with the Fermi energy of the attached leads.
The positions of these levels are strongly affected by the
Coulomb repulsions between electrons, which is the ori-
gin of the so-called Coulomb blockade. As miniaturiza-
tion progresses, it leads to greater spacings D between

FIG. 6. The Aharonov-Bohm geometry (schematic). F is a
magnetic flux threading a metallic ring with impurities.
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the electronic energy levels. Thus the necessary tem-
peratures, kT'D , for strong mesoscopic effects is rising.
It seems not unreasonable to expect that nanoscience, in
the next few decades, will have practical applications at
liquid-nitrogen or even room temperature.

XI. SOFT MATTER

The traditional conceptual paradigm of condensed-
matter physics, going back to the early part of this cen-
tury, has been the picture of a dense periodic lattice of
ions with valence electrons described by a band struc-
ture. This paradigm, with its elaborations and modifica-
tions, has been spectacularly successful and continues to
underlie much of the ongoing work in CMP, especially
for systems with conducting electrons. Let us call it the
Bloch paradigm. For insulators a paradigm viewing con-
densed matter as a collection of interacting atoms or
ions (which has been shown to be equivalent to the
Bloch paradigm) is often more natural. Both standard
metals and insulators have in common periodicity and
dense packing. They are very stable and resistant to
small perturbations. Let us call them ‘‘hard.’’

Simple liquids of course do not have an underlying
periodic lattice. Yet local atomic configurations, densi-
ties, cohesive energies, and static compressibilities are
very similar above and below the melting temperature.
But, unlike crystalline solids, liquids offer no resistance
to a static shear stress. In the present context we call
them hard/supersoft.

There is, however, another major class of materials, in
recent years called ‘‘soft matter,’’ whose properties and
behavior are covered by different paradigms. Their
study has been shared between chemists and physicists.
They are characterized by the fact that, unlike gases and
ordinary liquids, they do have some shape (or other)
stability, but unlike ‘‘hard’’ materials, they respond very
strongly to small external disturbances—mechanical,
electrical, etc. For example, most edibles, like Jell-O, or
fibers, like wood or wool, fall into this category. The
bonds between the relevant constituents are usually
weak (van der Waals, hydrogen) or easily swiveled or
both.

A. Polymers

Polymers are the best known and most extensively
studied subclass of soft matter. The simplest ones consist
of a chain or ‘‘necklace’’ of identical units, called mono-
mers, strongly and rigidly bonded internally, but flexibly
bonded to each other. Monomers on different chains in-
teract by strong short-range repulsions and weak long-
range attractions.

Polyethylene,

CH22CH22CH22¯ or [CH2]N ~N'10361!,
(11.1)

is one of the simplest and most thoroughly analyzed.
While examples of polymers, e.g., rubber, were known
in the 19th century, their nature was clarified only in this
century. In 1920 H. Staudinger proved chemically the
linear character of polymers. Their flexibility was first
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demonstrated in 1934 by W. Kuhn for independent poly-
mer chains in dilute solution. He recognized that at fi-
nite temperatures a correspondence could be made be-
tween the instantaneous shape of a polymer and the
trace of a random walk, with the constituent monomers
corresponding to the successive steps. This pointed to
the very important role of entropy, much higher for a
configuration with random orientations of the constitu-
ent monomers than for a completely aligned configura-
tion (Fig. 7). From this emerged the picture of a long
polymer chain like a tangled ball of yarn after a long
period of being ‘‘cat-tangled.’’ The elementary theory of
random walks led Kuhn to the famous scaling law that
the end-to-end distance of a long polymer in solution,
and also the effective radius of the tangled 3D ball, obey
the scaling law, R5aN1/2. Here a is of the order of the
length of a monomer, whose precise value depends on
the flexibility of the bonds between monomers, etc., but
the exponent 1/2 is universal. (A far cry from the para-
digms of crystalline solids!)

Kuhn’s random-walk analysis was substantially deep-
ened by P. J. Flory (1949), who included the effect of the
strong intermonomer repulsions, leading to the analogy
with a self-avoiding random walk. A simplified analysis
led him to the modified result R}N3/5, refined by subse-
quent numerical work to N0.588. (On account of these
fractional exponents, polymers are examples of so-called
fractals, which attracted much attention in the 1980s.)

Because of their enormous and growing scientific and
practical importance (as fibers, structural and biological
materials, packaging, adhesives, etc.), research and de-
velopment of polymers has become a rapidly progress-
ing subfield of CMP. The theories of single linear poly-
mer chains have been extended in many directions:
polymers consisting of more than one monomer (co-
polymers); nonlinear, branched chains; mutually en-
tangled chains; polymeric crystals, melts, and glasses;
gels; diffusion of polymer chains through the tangle of
other chains in a melt (reptation, which means snaking);
polymers at interfaces and adhesion.

Polymer physics has enormously benefited from the
development of elastic and especially inelastic neutron-
scattering techniques led by the work of C. Shull and B.
Brockhouse in the middle decades of this century, and
these techniques have been applied to polymers since
the 1970s by G. Jannink and others. This is because

FIG. 7. A polymer or a random walk (in 2D).
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polymers consist largely of light elements (H,C,O, . . . ),
which interact weakly with x rays but strongly with neu-
trons. Furthermore, typical frequencies of collective
modes of polymers are of the order of 10–102 K, com-
parable to the energies of cold or thermal neutrons. Fi-
nally isotopic replacement of H by D, with very different
masses and neutron-scattering properties, has provided
a useful research ‘‘handle.’’ Thus we owe much of our
knowledge of both the structure and the dynamics of
polymers to neutron experiments.

B. Membranes

Since the 1970s membranes, another important cat-
egory of soft matter, have received increasing attention
from physicists. Their building blocks are molecules with
a hydrophilic (water-loving) head and a hydrophobic
(water-fearing) tail.

When dissolved in water these molecules tend to ag-
gregate in flexible two-dimensional membrane struc-
tures that ‘‘protect’’ the hydrophobic tails from water.
(Fig. 8).

For a given flexed shape the elastic free energy of a
single free membrane is given by

F5
K

2 E dSS 1
R1

1
1

R2
D 2

, (11.2)

where K is the bending stiffness and the Rj are the radii
of curvature. Because of thermal fluctuations, memory
of the direction of the normal is lost at a characteristic
decorrelation distance Lp proportional to exp(2pK/kT),
beyond which the membrane will be crumpled.

Membranes are, of course, very important in biology.
In fact, the entire broad field of soft matter has become
an important bridge between physics and biology.

C. Liquid crystals

The term ‘‘liquid crystals’’ seems to be self-
contradictory, but in fact these fascinating materials in
some ways strongly resemble conventional, ordered
crystals and in other ways conventional liquids. Liquid
crystals consist of highly anisotropic weakly coupled
molecules. They were first discovered and their essence
understood by the French chemist G. Friedel at the end
of the 19th century. After a long period of relative ne-
glect their study was actively resumed in the 1960s.
There are two main classes, nematics, and smectics. Fig-
ure 9 shows a liquid crystal of the ‘‘smectic A’’ type. It

FIG. 8. A free-floating flexible membrane.
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clearly exhibits substantial orientational order, in the
orientation both of the molecules (along the z direction)
and of the layers (in the x-y plane). Furthermore, the
spacing of the layers in the z direction exhibits transla-
tional order in the z direction extending over many
planes. All these characteristics are reminiscent of con-
ventional crystals. However, the positions and motions
of the molecules within any one layer in the x-y plane
are highly disordered and resemble those of a two-
dimensional liquid.

In some liquid crystals the constituent anisotropic
molecules can be realigned by very weak electric fields,
which in turn strongly affects optical properties. Such
liquid crystals have found extensive use in the displays
of electronic watches and other devices (see the article
by T. Witten in this volume).

XII. GENERAL COMMENTS

It is perhaps interesting to look at the history of con-
densed matter physics from the viewpoint of T. S. Kuhn,
as expressed in The Structure of Scientific Revolutions
(Chicago, 1962). He sees scientific history as a succes-
sion of (1) periods of ‘‘normal’’ science, governed by
serviceable scientific paradigms, followed by (2) transi-
tional, troubled periods in which existing paradigms are
found to be seriously wanting, which in turn lead to (3)
‘‘scientific revolutions,’’ i.e., the establishment of new
paradigms, which may or may not be accompanied by
the rejection of the old ones.

Such a linear view seems applicable to the whole field
of CMP for some of the broadest revolutions, which di-
rectly or indirectly affected a large fraction of the field:
x-ray diagnostics yielding crystal structures (1910s);
achievement of low temperatures allowing the observa-
tion of calmed condensed matter (1900s); quantum me-
chanics, (1920s); the band-structure paradigm (1920s,
1930s); nuclear and electron spin magnetic-resonance di-
agnostics (1940s and 50s); neutron elastic and inelastic
diagnostics (1950s); many-body electron theories (begin-
ning in the 1930s, with major revolutionary steps in the

FIG. 9. A ‘‘smectic A’’ liquid crystal.
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1950s and 60s); electronic computer-assisted theory and
experiments (1960s-); soft matter (1960s-); and nano-
science (1980s-).

The indicated decades are for rough orientation only.
I have included not only conceptual revolutions in the
sense of Kuhn but also experimental and technical ones
that transformed existing areas of inquiry or opened up
important new ones.

Within subfields of CMP there are many additional
revolutions. For example: Heisenberg’s theory of strong
magnetic interactions for magnetism (1920s); scaling and
renormalization group for critical phenomena (1960s-);
Bose-Einstein condensation and the BCS pairing theory
for He4 and superconductors (1930s and 1950s); masers/
lasers for high-intensity, coherent radiation studies
(1960s); dislocations for the strength of materials
(1930s); high vacua for studies of clean surfaces (1950s).

Others would no doubt choose differently, but few
would disagree that the 20th century has been revolu-
tionary for CMP. The fertilizing influence of CMP, con-
ceptual and technical, for other subfields of physics and
other sciences has been repeatedly mentioned. Further,
condensed matter physics has been a major factor in
reshaping technology so that the human experience to-
day is, for most of mankind, very different from what it
was 100 years ago.

Looking back over the last century, we see major
shifts to the use of more and more sophisticated, man-
designed and -fabricated materials, more and more min-
iaturization, and radically more sensitive diagnostic
techniques. Prognostications are, fortunately, beyond
the scope of this essay. But it is obvious that the future
holds many promises.
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