Biocompatibility and biofouling of MEMS drug delivery devices

Gabriela Voskericiana,b, Matthew S. Shivea, Rebecca S. Shawgoc, Horst von Recumd, James M. Andersona,b,e,*, Michael J. Cimac, Robert Langere

aDepartment of Biomedical Engineering, Institute of Pathology, Case Western Reserve University, 2085 Adelbert Road, 10900 Euclid Avenue, Cleveland, OH 44106, USA

bInstitute of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH 44106, USA

cDepartment of Material Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

dDepartment of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

eDepartment of Macromolecular Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA

Received 16 May 2002; accepted 26 November 2002

Abstract

The biocompatibility and biofouling of the microfabrication materials for a MEMS drug delivery device have been evaluated. The in vivo inflammatory and wound healing response of MEMS drug delivery component materials, metallic gold, silicon nitride, silicon dioxide, silicon, and SU-8TM photoresist, were evaluated using the cage implant system. Materials, placed into stainless-steel cages, were implanted subcutaneously in a rodent model. Exudates within the cage were sampled at 4, 7, 14, and 21 days, representative of the stages of the inflammatory response, and leukocyte concentrations (leukocytes/\textmu l) were measured. Overall, the inflammatory responses elicited by these materials were not significantly different than those for the empty cage controls over the duration of the study. The material surface cell density (macrophages or foreign body giant cells, FBGCs), an indicator of in vivo biofouling, was determined by scanning electron microscopy of materials explanted at 4, 7, 14, and 21 days. The adherent cellular density of gold, silicon nitride, silicon dioxide, and SU-8TM were comparable and statistically less ($p<0.05$) than silicon. These analyses identified the MEMS component materials, gold, silicon nitride, silicon dioxide, SU-8TM, and silicon as biocompatible, with gold, silicon nitride, silicon dioxide, and SU-8TM showing reduced biofouling.

\textcopyright 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Biocompatibility; Biofouling; MEMS component materials; Exudate analysis; Material surface analysis

1. Introduction

A wide variety of devices are being developed that take advantage of the materials and processing tools of microfabrication for applications in medicine and biology [1–4]. As a result of the advances made by the microelectronics industry, the advantage of such devices consist of their microsize potentials and the ability to be manufactured in high volume with low unit cost. However, devices such as biological microelectromechanical systems (BioMEMS), ion sensing field effect transistors (ISFET) or silicon-based microelectrodes had performed well in vitro, but experienced significant biofouling in vivo, over time [5–7].

Silicon-based MEMS technology is starting to impact the drug delivery field with the development of micro-needles [8] and immunosorbing bioencapsules [9]. Quantitative biocompatibility and biofouling data are needed to aid not only in device material selection for medical applications, but also to further understand the in vivo interactions between the emerging technology and the biological environment.

We have developed a silicon-based implantable drug delivery system that uses elemental gold membranes to seal individual drug-filled reservoirs (Fig. 1) [10]. This device allows individual packaging and sealing of compounds, coupled with the ability to individually access the membranes sealing the reservoirs through a targeted electrochemical reaction (anode/cathode). The goal of the MEMS delivery device is to release specific
therapeutic agents in complex dosing patterns. The device can be used for the release of hormones, chemotherapeutic agents, analgesics, anesthetics, and other bioactive agents.

Any device intended for long-term in vivo applications has to fulfill rigorous biocompatibility and biostability requirements [11]. First, it should not induce toxicity in the surrounding tissues, and should not damage the local tissue due to induced mechanical stresses. Second, the drug-eluting capabilities of the MEMS device should not be compromised by the surrounding tissue. Specifically, the implant must tolerate long-term exposure to the physiological environment, as well as resist the impact of the surrounding tissue on its function (biofouling) [12].

With this in mind, we have investigated the leukocyte behavior and cellular adhesion in a rat model as indicators of biocompatibility and biofouling for materials used in the manufacturing of MEMS delivery systems, specifically, metallic gold, silicon, silicon dioxide, silicon nitride, and SU-8™ photoresist (Fig. 2). The MEMS device used the gold film to manufacture the electrodes, silicon as a substrate and structural material, silicon dioxide and silicon nitride were used for their dielectric and structural properties, and SU-8™ was used for its near-UV photoresist as well as dielectric properties. SU-8™ composition is based on a multifunctional bisphenol A novolak epoxy resin and a photoacid generator as the curing agent, as disclosed by IBM [13]. Understanding the material–tissue interaction that results from in vivo implantation is an important step in the development of viable, long-term implantable MEMS delivery devices.

2. Materials and methods

2.1. Fabrication of MEMS drug-delivery device

Material samples of macroscopic size were obtained using processes in the fabrication of drug delivery MEMS [10,14]. Polished silicon wafers (Wafernet Inc., San Jose, CA) were used as the substrate for the other materials. Wafers were coated with 3000 Å of silicon nitride (VTR—SVG/Thermco 7000 Series vertical tube reactor) using a 10:1 ratio of the gas flows of dichlorosilane and ammonia. Other wafers were coated with 100 Å of a chromium adhesion layer and 3000 Å of gold in an electron beam evaporator (Temescal Semiconductor Products Model VES 2550). Each wafer was cut into sections 9 mm × 15 mm.

The fabrication of drug delivery MEMS devices has been previously described and is schematically illustrated in Fig. 3. Silicon nitride was deposited onto 300 μm thick silicon wafers (Wafernet Inc., San Jose, CA). Positive photoresist (Arch Chemicals OCG825-20)
was used to define the large openings of the reservoirs, and the silicon nitride was removed from those openings using reactive ion etch (Plasmaquest Series II Reactor Model 145). The nitride acted as a mask and etch stop when the square pyramidal reservoirs were etched in KOH solution. Next, the gold electrode pattern was defined using negative photoresist (Crariant AZ5214 E). The chromium and gold were evaporated onto the wafers and then the pattern defined by removal of the resist. Two types of dielectric were used for different wafers. Plasma enhanced chemical vapor deposition (Astex Series III, Wilmington, MA) was used to deposit silicon dioxide. The oxide was patterned with the positive photoresist and reactive ion etched, while SU-8™ (SU-8 5, MicroChem Corp, Newton MA) was directly patterned.

2.2. Cage fabrication

Test specimens of all component materials, gold, silicon, silicon dioxide, silicon nitride, and SU-8 dielectric were placed singly into cylindrical stainless steel wire mesh cages measuring approximately 3.5 cm long and 1.0 cm in diameter. The mesh from which the cages were made was type 310 stainless steel with a mesh size of 24, a wire diameter of 0.254 mm (0.01 in), and interstices measuring $0.8 \times 0.8 \text{mm}^2$ (Cleveland Wire Cloth and Manufacturing Co., Cleveland, OH). Prior to cage fabrication, the mesh was sonicated in ethanol (Pharmaco Products Inc., Brookfield, CT) for 15 min, followed by a 10 min rinse with distilled water. Cages containing the respective materials were ethylene oxide sterilized (Amsco model 2057 sterilizer, University Hospitals of Cleveland, OH) using an exposure time of 1 h and 45 minutes at 130°F and an outgassing time of 12 h at 120°F.

2.3. Implantation

Sterilized cages were implanted subcutaneously and bilaterally in the posterior areas of the back of female Sprague–Dawley rats 12 weeks old (Charles River Laboratories, North Wilmington, MA) two cages per animal observing IACUC and NIH animal-care guidelines. Aerrane (Baxter, Deerfield, IL) was used in a continuous analgesic stream to keep the animals unconscious during implantation. The rats were shaved and their skin scrubbed with surgical grade Betadine (The Purdue Frederick Co., Stamford, CT). An incision 1.0–1.5 cm long was made in the skin about 2 cm above the tail and along the midline. Then, 0.5% Marcaine solution (Abbott Laboratories, North Chicago, IL), a local anesthetic, was applied onto the incision to minimize post-operative discomfort. Blunt dissection was used to prepare an implant pocket in the facial plane beneath the paniculous carnosus muscle from the underlying tissue from the incision to just above the hip. The sterile cage containing the material was then introduced through the incision and positioned within the pocket and away from the incision site. The incision was then closed with 9 mm stainless steel surgical wound clips (Becton Dickinson, Sparks, MD) and washed with Betadine. Sterile surgical techniques were observed. In addition, empty cages were gas sterilized and implanted into a separate group of animals as controls. The rats
were maintained on Purina Rat Chow and water ad
libitum at the Animal Research Facilities of Case
Western Reserve University on 12 h light/dark cycles.

2.4. Exudate analysis

At 4, 7, 14, and 21 days post-implantation the
inflammatory exudate, which collects within the cage
in response to the presence of the cage and the test
material, was aspirated using a 27 1/2-gauge needle and
a 1 cc tuberculin syringe (Becton Dickinson, Franklin
Lakes, NJ) and placed in a microsample tube (Fisher
Scientific, Pittsburgh, PA). Not more than 0.5 cc of
exudate was removed at once, and exudates were not
withdrawn from the same animal twice in any 7 day
period. Immediately after withdrawal, an aliquot of each
exudate was cultured on brain–heart infusion agar
plates (Department of Microbiology, Case Western
Reserve University, Cleveland, OH), incubated for
48 h at 37°C to check for bacterial infection. Infected
exudates as well as those with an appreciable amount of
erthrocyte contamination were removed from further
analysis.

Exudate white blood cell concentrations, cells per µl,
were determined on each sample mixture using a
hemacytometer (Baxter, McGaw Park, IL). Following
cell re-suspension within the exudates, 10 µl sample of
each exudate was mixed with 40 µl of dilute Wright’s
stain solution (Sigma Diagnostics, St. Louis, MO). Both
sides of the hemacytometer were loaded with the cell
suspension covering the counting grids. Cells were
counted in the four edge squares and the center square
(total of 10 squares) using the 20 × microscope lens. The
total number of cells counted was divided by ten to
obtain the average number of cells per square. Using the
manufacturer’s information that each square holds a
1 µl volume, the following formula was suggested by the
manufacturer in determining any cell concentration, in
the present case, the leukocyte concentration (Total
Leukocyte Concentration, TLC) of each exudate
sample:

\[\text{TLC} = \frac{\text{average number of cells/square} \times \text{square/µl}}{\text{average number of cells/µl}} \]

Based on these cell counts, a volume of exudate
containing 70,000 cells was mixed with RPMI Medium
(Gibco Laboratories, Grand Island, NY) to make 700 µl
of cell suspension. Aliquots (200 µl) of this suspension
were spun down onto pre-cleaned glass microslides
using a Shandon Cytospin 2 Centrifuge (Shandon
Southern Instruments Inc., Sewicley, PA), generating
slides of approximately 20,000 cells for each exudate.
The slides were stained with Wright's stain for
differential leukocyte counts. A total of 200 cells per
slide were counted at 40 × under a light microscope and
differentiated as polymorphonuclear leukocytes
(PMN), monocytes/macrophages or lymphocytes.

2.5. SEM analysis

In addition to the exudate analysis, cages were
explanted and the specimens retrieved at days 4, 7, 14,
and 21 for SEM evaluation of adherent cells (biofoul-
ing). Upon retrieval, specimens were rinsed in sterile
isotonic phosphate buffered saline (PBS) solution
(Gibco, Grand Island, NY). The materials were then
placed in a fixative solution containing 0.1 m cacodylate
buffer, 4% sucrose, and 2.5% glutaraldehyde (Sigma,
St. Louis, MO), stored at 4°C. Following fixation,
materials were rinsed thoroughly in distilled water then
gradually dehydrated using a series of ethanol solutions
of increased concentrations (30%–50%–70%–95%–
100% ethanol). The materials were treated twice
(50 min/treatment) with hexamethyl-disilizane (Sigma,
St. Louis, MO), a drying agent. Following drying, they
were sputter coated with gold–palladium (Polaron
ES100 II Sputter Coater, Polaron Equipment Ltd.,
Watford, UK) and examined by scanning electron
microscopy, (SEM) (JEOL Model JSM-840A, JEOL
USA Inc., Peabody, MA). Using SEM, the cellular
density present at all time point on each explanted
material was determined (cells/mm²). In addition,
adherent cellular morphologies of materials at each
time point were investigated.

2.6. Statistical analysis

The data from all material groups were compared to
that of the empty cage controls. Statistical analysis was
carried out using the unpaired Student t-test on
StatView™ software. A p-value of less than 0.05 was
considered statistically significant.

3. Results

3.1. Exudate analysis

Analysis of the inflammatory exudate within the cage
(Table 1) demonstrated that all materials, with the
exception of silicon surfaces explanted at days 7 and 14,
elicited similar acute and chronic inflammatory re-
sponses as the empty cage controls at all time points.
Silicon at days 7 and 14 had a significantly higher
\((p<0.05)\) leukocyte concentration (TLC). However, by
day 21 the silicon TLC approached comparable empty
cage control levels.

All materials induced the early acute inflammatory
response characterized by high PMN levels comparable
to the empty cage controls. The acute inflammatory
responses resolved over the first 14 days of the study
and the concentration of PMNs decreased to virtually zero by the third time point for all materials. At day 14, the predominant cell types were monocytes and lymphocytes. At day 21 the number of cells decreased to a minimal concentration for all materials and the empty cage controls. No overall trends indicative of an adverse reaction were noted over the 21 days exudate analysis period.

3.2. SEM analysis

SEM image analysis was used to quantify the populations of adherent macrophages and foreign body giant cells (FBGCs), as well as to investigate temporal changes in cellular morphology. The SEM method, as a material surface investigative tool, lacks reliability in determining the actual size of the FBGCs, which is traditionally reported as number of nuclei per FBGC. As a result, the actual size of the FBGCs was not reported. However, representative images of cell adhesion onto surfaces were acquired, and qualitative comparisons of size based on identical magnification photomicrographs taken at different time points were inferred.

The number of macrophages and FBGCs decreased over the implantation period (Table 2). The SEM qualitative analysis illustrated a sequence of monocyte/macrophage and FBGC formation (Fig. 4) with an increase in the size of the FBGCs over time (Fig. 4B and C). The gold film showed greater macrophage adhesion than the other materials at day 4, while SU-8(TM) showed the lowest at the same time point (Table 2, Fig. 5). The acute inflammatory responses at day 7 were characterized by reduced number of cells (Table 2). Active macrophage fusion events were observed, as illustrated by initial cell aggregates due to macrophage migration (Fig. 6A), followed by an active fusion process where more macrophages were in the process of fusing with the initially generated FBGC (Fig. 6B). The number of macrophages and FBGCs declined at days 14 and 21 for all materials (Table 2). Morphologically, no differences in adherent macrophages or FBGCs adhesion on all surfaces at each time point were observed.

Based on leukocyte exudate analysis and cellular adhesion, the silicon wafer appears to be the least

Table 1

In vivo exudate leukocyte concentrations, cells/μl, of MEMS component materials

<table>
<thead>
<tr>
<th>Surface</th>
<th>TIME (days)</th>
<th>Total leukocytes</th>
<th>PMN</th>
<th>Monocytes</th>
<th>Lymphocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty cage</td>
<td>4</td>
<td>117 ± 17</td>
<td>23 ± 5</td>
<td>89 ± 14</td>
<td>6 ± 1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>50 ± 25</td>
<td>5 ± 4</td>
<td>41 ± 20</td>
<td>4 ± 2</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>25 ± 0</td>
<td>1 ± 0</td>
<td>16 ± 6</td>
<td>9 ± 6</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>25 ± 0</td>
<td>0</td>
<td>21 ± 2</td>
<td>4 ± 2</td>
</tr>
<tr>
<td>Silicon wafer</td>
<td>4</td>
<td>117 ± 22</td>
<td>17 ± 1</td>
<td>86 ± 18</td>
<td>13 ± 4</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>92 ± 17</td>
<td>13 ± 4</td>
<td>68 ± 9</td>
<td>12 ± 5</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>63 ± 14</td>
<td>2 ± 0</td>
<td>50 ± 10</td>
<td>11 ± 2</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>43 ± 8</td>
<td>0</td>
<td>29 ± 6</td>
<td>11 ± 6</td>
</tr>
<tr>
<td>Silicon nitride</td>
<td>4</td>
<td>117 ± 33</td>
<td>9 ± 1</td>
<td>93 ± 14</td>
<td>14 ± 2</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>25 ± 0</td>
<td>4 ± 1</td>
<td>20 ± 1</td>
<td>1 ± 0</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>25 ± 0</td>
<td>0</td>
<td>16 ± 2</td>
<td>9 ± 2</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>25 ± 0</td>
<td>0</td>
<td>22 ± 1</td>
<td>3 ± 1</td>
</tr>
<tr>
<td>Gold</td>
<td>4</td>
<td>125 ± 21</td>
<td>19 ± 12</td>
<td>96 ± 50</td>
<td>10 ± 2</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>33 ± 9</td>
<td>6 ± 2</td>
<td>26 ± 5</td>
<td>2 ± 1</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>25 ± 0</td>
<td>1 ± 1</td>
<td>19 ± 2</td>
<td>5 ± 3</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>25 ± 0</td>
<td>0</td>
<td>20 ± 2</td>
<td>5 ± 2</td>
</tr>
<tr>
<td>Silicon oxide</td>
<td>4</td>
<td>125 ± 3</td>
<td>28 ± 7</td>
<td>87 ± 2</td>
<td>10 ± 3</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>41 ± 1</td>
<td>1 ± 1</td>
<td>37 ± 5</td>
<td>3 ± 1</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>25 ± 2</td>
<td>0</td>
<td>21 ± 2</td>
<td>4 ± 1</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>25 ± 1</td>
<td>0</td>
<td>19 ± 9</td>
<td>6 ± 2</td>
</tr>
<tr>
<td>SU-8</td>
<td>4</td>
<td>127 ± 5</td>
<td>28 ± 2</td>
<td>88 ± 7</td>
<td>11 ± 4</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>49 ± 4</td>
<td>3 ± 1</td>
<td>38 ± 5</td>
<td>7 ± 3</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>25 ± 0</td>
<td>0</td>
<td>21 ± 5</td>
<td>4 ± 3</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>25 ± 0</td>
<td>0</td>
<td>20 ± 3</td>
<td>5 ± 1</td>
</tr>
</tbody>
</table>

*a Statistically different when compared to the empty cage control (p < 0.05) at the same time period.

All values represent mean ± standard error of mean of n = 3.
biocompatible. The other materials, silicon dioxide, silicon nitride, gold, and SU-8TM are comparable in the induced inflammatory response, ranking their biocompatibility higher than that of the silicon wafer.

The SEM analysis of the material surfaces revealed a process of mechanical delamination specific to the SU-8TM material at late time points (Fig. 7). No mechanical delamination was observed with the other materials.

FBGCs were found to completely cover some of the MEMS wells, as illustrated by Fig. 8. The SEM analysis could not determine whether the FBGCs developed over an intact or ruptured gold membrane.

4. Discussion

The MEMS component materials were found to be biocompatible and exhibited reduced biofouling based on exudate and surface analyses. Overall, the inflammatory responses elicited by these materials were not statistically significantly different than those for the empty cage controls over the duration of the study. Also, the sequence of monocyte/macrophage and FBGC formation (Fig. 6) was similar to those previously observed with National Heart, Lung, and Blood Institute reference materials polyethylene [15] and polydimethylsiloxane [16] and numerous biocompatible polyurethane materials [17] considered as candidates for biomedical applications.

The macrophage concentration in the exudate at day 21 of the silicon surface explains the increased surface density of those cells compared to the other materials at the same time point. Nevertheless, the macrophage concentration in the exudate at day 21 is lower than that of medical grade polyethylene at the same time point [15].

The silicon nitride and silicon dioxide were comparable in their inflammatory response and biofouling behavior. Therefore, the choice of dielectric between silicon nitride and silicon dioxide will depend on mechanical and fabrication properties.

Table 2

<table>
<thead>
<tr>
<th>Material</th>
<th>Cell Type</th>
<th>Day 4</th>
<th>Day 7</th>
<th>Day 14</th>
<th>Day 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold</td>
<td>Macrophages</td>
<td>168 ± 17</td>
<td>42 ± 8</td>
<td>3 ± 1</td>
<td>3 ± 1</td>
</tr>
<tr>
<td></td>
<td>FBGCs</td>
<td>0 ± 1</td>
<td>35 ± 12</td>
<td>14 ± 5</td>
<td>5 ± 1</td>
</tr>
<tr>
<td>SiO\textsubscript{2}</td>
<td>Macrophages</td>
<td>98 ± 12</td>
<td>70 ± 14</td>
<td>4 ± 2</td>
<td>2 ± 1</td>
</tr>
<tr>
<td></td>
<td>FBGCs</td>
<td>0 ± 1</td>
<td>21 ± 4</td>
<td>14 ± 3</td>
<td>3 ± 1</td>
</tr>
<tr>
<td>Si\textsubscript{N}</td>
<td>Macrophages</td>
<td>123 ± 17</td>
<td>37 ± 6</td>
<td>4 ± 0</td>
<td>6 ± 0</td>
</tr>
<tr>
<td></td>
<td>FBGCs</td>
<td>0 ± 1</td>
<td>8 ± 3</td>
<td>12 ± 3</td>
<td>3 ± 1</td>
</tr>
<tr>
<td>Si Wafer</td>
<td>Macrophages</td>
<td>96 ± 19</td>
<td>68 ± 12</td>
<td>25 ± 6</td>
<td>21 ± 3</td>
</tr>
<tr>
<td></td>
<td>FBGCs</td>
<td>0 ± 1</td>
<td>5 ± 1</td>
<td>7 ± 1</td>
<td>3 ± 1</td>
</tr>
<tr>
<td>SU-8</td>
<td>Macrophages</td>
<td>72 ± 19</td>
<td>56 ± 17</td>
<td>2 ± 0</td>
<td>3 ± 1</td>
</tr>
<tr>
<td></td>
<td>FBGCs</td>
<td>0 ± 1</td>
<td>15 ± 4</td>
<td>7 ± 1</td>
<td>12 ± 2</td>
</tr>
</tbody>
</table>

\(a\) Five 1 mm grids per sample for 3 samples, \(n = 15\).

Fig. 4. Silicon dioxide SEM photomicrographs at explant days 4, 7, and 14. The macrophages at day 4 (A—150 ×) undergo a process of migration and fusion at day 7 and 14 generating larger FBGCs, over time (B, C—150 ×).
While the SU-8 appeared to be a biocompatible material, it did undergo delamination at later time points. It appears that the delamination was initiated at the corners of the material resulting in its acquired folding. Even though SU-8 may be biocompatible, the in vivo delamination process excludes it as a potential silicon wafer photoresist due to its reduced bonding capacity. However, the investigation of alternative bonding methods that may alleviate such problems are in progress.

One of the desired characteristics in an MEMS drug delivery device is the ability to generate a complex and fully controlled release profile of multiple therapeutic agents. It has been suggested that increased cellular adhesion, observed here by large numbers of surface macrophages and FBGCs, may impede the long–term functionality of such a device [10,14]. The results of this study suggest using silicon dioxide or nitride as dielectrics to minimize possible interference on the working device due to increased cellular adhesion (Table 2). Additionally, it would be advantageous for the silicon to undergo a surface modification process such as passivation or silanation [18]. Desai et al. reported the biocompatibility of microfabricated immunoisolating silicon capsules in vitro for up to 1 month [19]. Based on insulin release studies of encapsulated islets, it was concluded that the devices were biocompatible. The in vivo studies confirm the in vitro findings, however, caution on the level of silicon wafer biocompatibility and suggest surface treatments to enhance its in vivo performance. Weisenberg and Mooradian reported the reduced hemocompatibility of silicon, silicon nitride, and SU-8, as well as the increased hemocompatibility of silicon dioxide compared to polyurethane controls, in vitro [20]. It is difficult to interpret our results vis-à-vis the in vitro findings because our devices were not assessed in terms of hemocompatibility. However, it is interesting to summarize the in vitro findings as an emphasis to the importance of considering clinical application a vital parameter in the design of MEMS.

Others have reported on the potential corrosion in vivo of a silicon oxide passivating layer occurring as early as 1 month in a sensor array, reducing the overall biocompatibility of the device over time [18,21,22]. Kristensen et al. have recently reported on the biocompatibility and biofouling of an implantable silicon-based stimulator to treat paralysis of the larynx for periods ranging from 6 to 12 months [22]. Based solely on histological analysis, it was concluded that the devices...
were well tolerated and resulted in a minimal foreign body response in the host. The studies described above relied only on qualitative histological and/or surface analyses to investigate biocompatibility and biofouling. The in vivo analyses presented in this paper consisting of exudate and cell surface quantification constitute a more complete approach to assessing biocompatibility and biofouling of a device, and provide the expanding field of microprocessed implant devices with an important material selection tool. The unique characteristics of the cage system provide a standard inflammatory environment in which the biocompatibility of a material can be studied temporally in terms of humoral and cellular responses, cell–material interactions, FBGC formation kinetics, and biostability of materials without the mechanical interference of the surrounding tissue.

5. Conclusions

The present study has identified the MEMS drug delivery device component materials, gold, silicon nitride, silicon dioxide, SU-8™, and silicon as biocompatible, with gold, silicon nitride, silicon dioxide, and SU-8™ showing reduced biofouling.

Acknowledgements

This study was kindly supported by US National Institutes of Health Grant No. 1 R24 AI47739-01. R.S.S. was supported by a National Science Foundation Fellowship. All microfabrication work was carried out at the Microsystems Technology Laboratory at MIT. The technical assistance of Elizabeth Christenson is gratefully acknowledged.

References

