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Abstract

The development of implantable ventricular assist devices–in particular, continuous-
flow axial and centrifugal pumps–offers hope to many heart attack victims waiting
for donor hearts. These autonomous devices are intended as a medium-term bridge
to transplant, or, if enough progress is made, even as a permanent clinical solution.
One challenge that needs to be addressed in the design phase of blood pumps is
the elevated level of shear stress, and the hemolysis response of the red blood
cells, which depends on both the dose and time of exposure. The distribution of
the shear stress levels in a complex flow field of a rotary blood pump chamber,
as well as the measure of the blood cells’ exposure to these pathological condi-
tions, are difficult to obtain experimentally. Device designers often have to make
decisions on the details of pump configuration guided only by the global, time-
and space-averaged, indicators of the shear stress inside the pump, such as the
hemoglobin release measurements made on the exiting blood stream. In the con-
text of fluid mechanical modeling of the implantable GYRO blood pump being
developed at the Baylor College of Medicine, we are devising tensor-based mea-
sures of accumulated strain experienced by individual blood cells, and correlating
them with available blood damage data. In the first approximation, red blood cells
under shear are modeled as deforming droplets, and their deformation is tracked
along pathlines of the computed flow field. We propose ways of deriving standard
blood damage indicator from the measure of cell deformation and report blood
damage results in an unsteady blood flow simulation in a model two-dimensional
pump.



1 Introduction

Design of ventricular assist devices (VADs) poses a tremendous challenge due to
the complex physical and chemical nature of blood. Most traditional blood han-
dling devices were designed by experimentation, and only recently computational
fluid dynamics (CFD) is evolving as an important design tool. Burgeen et al [1]
reviewed CFD-based holistic design process of rotary blood pumps and pointed
to the need of coupling between hematologic and hydraulic design. Unlike the
hydraulic design process, the hematologic design is not well formulated. Blood
damage (hemolysis) and blood aggregation (thrombosis) are two important fea-
tures of hematologic design. A clear understanding of both these processes in com-
plex flow situations is yet to be formed.
Blood is a suspension of formed elements (red blood cells, white blood cells and
platelets) in a Newtonian liquid (plasma) of viscosity 1 mPa·s. Red blood cells
(RBC) form the major and the largest constituent of blood. They behave as neu-
trally buoyant microcapsules with tremendous deformabilty but small areal stretch-
ability. A RBC at rest is a biconcave disc of a viscoelastic membrane filled with
Newtonian liquid (viscosity ≈ 6 mPa·s). The RBC membrane has a relaxation
time of approximately 200 ms which depends on the age of the cell [2] and
it can support an estimated areal strain of 6% before rupture [3]. Owing to its
biconcave shape, a RBC has 40% excess surface area compared to a sphere of
the same volume. The excess surface enables RBCs to undergo both volume and
surface area preserving deformations. Hemolysis starts when the RBC membrane
stretches, developing holes, and leaks hemoglobin–free hemoglobin in the blood
stream is toxic. Catastrophic hemolysis occurs when the RBC membrane ruptures.
CFD-based hematologic design of an efficient VAD needs a realistic model of
blood damage. A few scalar-parameter-based hemolysis models have appeared
in the literature over the past decade. Bludszuweit [4] proposed an instantaneous
scalar stress measure for hemolysis prediction. Yeleswarapu et al [5] developed
a scalar damage accumulation model which incorporates aging of RBCs. This lat-
ter model requires a damage function which remains unknown in complex flow
situations. Even though extensive experimental studies have been done to under-
stand steady-state hemolysis there have been been only few unsteady flow stud-
ies. Also there is a lack of consensus on a model for steady/unsteady hemolysis.
Models based on the accumulation of damage along the pathlines induced by high
shear stress and models based on the local instantaneous strain rate are currently
used for correlating flow calculations with hemolysis. Here we propose a tensorial
strain model for predicting hemolysis based on the RBC deformation. This model
is tuned with experimental data on flow-induced RBC deformation. Differences
between the tensorial strain model and the scalar stress measure are highlighted in
simple shear flow and in a prototypical two-dimensional blood pump.



2 CFD of blood flow

Blood flow is modeled by the momentum and mass conservation equations for an
incompressible fluid,

ρ
(

∂u
∂t

+u ·∇u− f
)

= ∇ ·σ, (1)

∇ ·u = 0, (2)

where ρ is blood density, u is velocity, σ is stress and f denotes body forces
per unit mass (e.g. gravity). The problem is closed by prescribing an appropri-
ate constitutive equation for the stress. Blood is a shear-thinning viscoelastic fluid;
Yeleswarapu et al [6] showed that a generalized Oldroyd-B constitutive equation
can describe well the shear flow behavior of blood. Here for simplicity we treat
blood as a Newtonian liquid,

σ = µ
(
∇u+∇uT ) , (3)

where µ is dynamic viscosity of blood. Thus, eqs(1) and (2) reduce to incompress-
ible Navier-Stokes equations. These equations are solved by the stabilized space-
time finite element method. Rotating parts are handled with the shear-slip mesh
update method. The velocity and pressure data is further post-processed to obtain
the high wall shear stress regions. Reference [7] reports the details of the method
and a complete three-dimensional analysis of the GYRO centrifugal blood pump.

3 Hemolysis

Hemolysis is the premature damage of RBCs which otherwise have a normal life
span of 120 days for a healthy person. Damage due to shearing (mechanical hemol-
ysis) is the main cause of hemolysis in VADs, and for over four decades steady-
shear hemolysis studies have been performed to develop an understanding of this
process [3].
Flow rate in a typical VAD matches that of a human heart (5 l/min); the charac-
teristic residence time of a RBC in a VAD is approximately 500 ms. Giersiepen et
al [8] developed a correlation for steady-shear hemolysis on this time scales based
on Wurzinger et al’s [9] experiments done in a Couette system. The correlation is:

∆Hb
Hb

= 3.62×10−7 τ2.416 ∆t0.785, (4)

where ∆Hb
Hb is ratio of plasma free hemoglobin to total hemoglobin in the sample, τ

is shear stress (Pa) and ∆t is exposure time (s). A plot of percentage hemolysis vs.
applied shear stress and exposure time is shown in Fig. 1. Hemolysis predictions
based on the above correlation in pulsatile blood pump have been reported recently
by Okamoto et al [10]. Hereafter, the instantaneous stress along a pathline denoted
by τ and such a method is termed “stress-based”.
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Figure 1: Hemolysis correlation for steady shear flow.

4 Red blood cells in shear flow

The RBCs aggregate into a coin stack shape structure (rouleaux) at rest, which
breaks as shear stress increases. As reported by Schimid-Schonbein and Wells [11],
the RBCs preserve their biconcave shape and tumble till shear stress of ≈ 0.1 Pa.
The tumbling gradually reduces and the cells begin to align with the flow at ≈
0.2 Pa. The RBCs deform into ellipsoidal shape, orient with the flow and show
tank-treading at 1 Pa. The tank-treading and deformation into ellipsoidal shape
has been confirmed in several later experimental studies. Leverett et al [12] found
that above 150 Pa, hemolysis occurs primarily in the bulk rather than near walls.
This shear stress corresponds to shear rate of 50000 s−1 for whole blood. The RBC
membrane is believed to reach its 6% areal strain limit at this shear-rate.

5 Tensor based model of red blood cell deformation

We consider a RBC in a general flow as a neutrally buoyant droplet. The velocity
gradient ∇u = E + W can be decomposed into the symmetric strain rate tensor E
and the antisymmetric vorticity tensor W. The shape of the droplet is described
by a symmetric, positive definite second rank morphology tensor S. Maffettone et
al [13] proposed a droplet deformation equation which is modified here to include
the tank-treading phenomenon. The frame invariant modified equation is:

S◦ =−
f1

τ
[S−g(S)I]+ f2 [E ·S+S ·E]+ f3

[
W̃ ·S−S ·W̃

]
, (5)
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Figure 2: Red Blood cell in shear flow and model

where:

S◦ =
dS
dt
− [Ω ·S−S ·Ω] , (6)

W̃ = W−Ω, (7)

g(S) =
3 III

II
, (8)

Ω = ei
dei

dt
= ei

(
∂ei

∂t
+u ·∇ei

)
. (9)

Ω is rate of rotation of the eigenvectors ei of S. II and III are second and third
invariants of S, respectively. It is assumed that the shape of the droplet remains
ellipsoidal at all times, and the volume of the droplet is preserved. The first term on
the right hand side of eq (5) models the shape recovery of the droplet in absence of
shear stress. The second term represents the nonaffine deformation of the droplet.
The third term captures the tank treading motion which reduces the vorticity seen
by the droplet. The reduction in vorticity was shown by Roscoe [14] for the case of
tank-treading stationary ellipsoids and applied to RBCs by Keller and Skalak [15].
The eigenvalues of S are the squared lengths of the three axes of ellipsoid. Fig. 2
shows the red blood cells in shear flow as compared to the proposed model.

6 Parameters

The parameters in eq (5) are chosen to match the steady shear experimental obser-
vations reported in the literature. Because the relaxation time of RBCs is approxi-



mately 200 ms we set:

f1

τ
= 5.0 s−1. (10)

In various experiments it is observed that RBC membrane does not oscillate in the
shear flow. But the droplet model shows damped oscillations at changing shear
rates when f2 6= f3; thus, we restrict f2 = f3. In a shear flow with

∇u =




0 G 0

0 0 0

0 0 0


=




0 G/2 0

G/2 0 0

0 0 0


+




0 G/2 0

−G/2 0 0

0 0 0


 , (11)

the steady state droplet deformation equation becomes:

f1

τ
(S−g(S)I) = f2

(
∇u ·S+S ·∇uT ) . (12)

The eigenvalues of S in eq(12) are:

W 2 = λ1 =

(
f 2
1

f 2
1 + τ2 f 2

2 G2

)1/3

, (13)

L2 = λ2 =

(
f 2
1

f 2
1 + τ2 f 2

2 G2

)1/3



( f 2
1 + τ2 f 2

2 G2)+ τG f2

√
f 2
1 + τ2 f 2

2 G2

f 2
1


 ,(14)

B2 = λ3 =

(
f 2
1

f 2
1 + τ2 f 2

2 G2

)1/3



( f 2
1 + τ2 f 2

2 G2)− τG f2

√
f 2
1 + τ2 f 2

2 G2

f 2
1


 ,(15)

where λ1,λ2 and λ3 are eigenvalues, and L, B and W are three axial lengths of the
droplet. As shown in Fig. 2 the droplet configuration is matched with the hemolyz-
ing RBC (6% areal strain at 50000 s−1). The area of general-ellipsoidal droplet is
computed by a series used by Keller and Skalak [15] for RBC. A RBC has 40%
excess surface area than a droplet of same volume and undergoes 6% areal strain
before hemolyzing; therefore, a droplet with same volume as RBC stretches to
1.4×1.06 times its original surface area. Matching the droplet configuration with
a hemolyzing RBC gives:

f2 = f3 = 1.05 × 10−3. (16)

Thus, the 3 parameters f1/τ, f2 and f3 together incorporate relaxation time, lack
of membrane oscillations, tank-treading and areal strain limit into the model.
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Figure 3: Sinusoidal shear flow (G0 = 5000 s−1; ω = 20 s−1): (A) maximum eigen-
value ( f1 = 5 s−1, f2 = f3 = 1.05 × 10−3); (B) hemolysis.

7 Hemolysis prediction

An instantaneous droplet shape distortion D = (L−B)/(L + B) is computed with
axial lengths of the droplet. This instantaneous distortion can be caused by a steady
shear rate Geff and corresponding steady shear stress τeff given as:

Geff =

√
f 2
1 D2

(1−D2) τ2 f 2
2

, (17)

τeff = νblood Geff. (18)

We use this steady shear stress in eq (4) to estimate instantaneous hemolysis. This
gives a hemolysis correlation based on the instantaneous distortion D while using
the steady-shearing predictions. The hemolysis predictions with this relation are
hereafter called “strain-based”. In the next section the strain-based hemolysis pre-
dictions are compared with the instantaneous stress based (stress-based) hemolysis
predictions.

8 Numerical results

Eq (5) is integrated along the pathlines in a flow to obtain RBC deformation which
is then used in eq (4) to estimate hemolysis. For a steady shear experiment, the
modeled RBC membrane stress τeff is same as instantaneous shear stress τ and thus
both strain-based and stress-based models predict the same levels of hemolysis.

8.1 Sinusoidal shear

The predictions of the strain-based and stress-based models are compared on a
homogeneous flow that superimposes steady and sinusoidal shearing, described



' $

2-D Blood Pump Model: Geometry

Chamber Diameter 2.2 in

Inflow Tube Diameter 0.314 in

Outflow Tube Diameter 0.314 in

Shear Layer Diameter 1.96 in

Shear Layer Thickness 0.039 in

Speed 1800-3000 rpm

Flow Volume ∼ 4.5 l/min

• Simplified model of PI710

& %

' $

2-D Blood Pump Model: Mesh

Elements 9,498

Nodes 10,506

Shear Layer Elements 200

Time Step Size 1.25×10−4 s

Time Steps 1000

Non-Linear Iterations 20

GMRES Iterations 200

Solved On 8 CPUs

• Hybrid structured/unstructured mesh

& %

' $

2-D Blood Pump Model: Geometry

Chamber Diameter 2.2 in

Inflow Tube Diameter 0.314 in

Outflow Tube Diameter 0.314 in

Speed 1800-3000 rpm

Flow Volume ∼ 4.5 l/min

Elements 9,498

Nodes 10,506

Shear Layer Elements 200

Time Step Size 1.25×10−4 s

• Simplified model of PI710

& %
Figure 4: 2-dimensional pump: geometry and mesh.
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Figure 5: 2-dimensional pump : (A) velocity after 7 revolutions; (B) pathlines.
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by:

G(t)≡
dux

dy
= G0 (1+ sin(ωt)) . (19)

Similar flow is observed in VADs where a baseline shearing is superimposed with
a periodic impulse caused by rotating impeller. Fig.3 shows the maximum eigen-
value of S in comparison with the sinusoidal impulse. The eigenvalue lags the
impulse due to viscoelastic nature of the membrane. It also shows the accumu-
lated hemolysis as predicted by strain-based and stress-based model after starting
of sinusoidal shearing.

8.2 Hemolysis in 2-dimensional pump

A simplified version of a three-dimensional centrifugal blood pump (PI7101) is
constructed to test the hemolysis model. Fig. 4 shows the geometry of the blood
pump and a hybrid structured/unstructured mesh. Incompressible flow in the pump
is computed with stabilized space-time finite element method and velocity after 7
revolutions is shown in Fig. 52. Two pathlines are traced in the flow and the droplet
deformation is computed along the pathlines using Euler integration scheme. Fig. 6
shows the changes in eigenvalues of morphology tensor and the hemolysis pre-
diction along these pathlines. The strain-based model predicts significantly lower
hemolysis than the stress-based estimate.

9 Conclusions

In this work, a tensor-based blood damage model is proposed and implemented
for CFD simulations of blood flow in two-dimensional blood pump. The model is
developed using an analogy between RBC and droplets. It incorporates experimentally-
measured quantities–relaxation time, excess surface area and hemolysis threshold
strain rate, and experimentally-observed phenomena–tank-treading and ellipsoidal
deformation. The model accounts for estimated areal strain limit of the RBC mem-
brane. The model relates the RBC deformation due to instantaneous shearing with
the steady shearing hemolysis experiments. The model’s strain-based hemolysis
predictions are compared with the stress-based predictions in three different flow
simulations. While both models predict the same level for hemolysis in steady
shearing, a large difference is observed in unsteady shearing flows. Albeit in a
simplistic way, the strain-based model accounts for the physical phenomena of
RBC membrane stretching and is thus a suitable candidate for realistic hemolysis
predictions.
A further calibration and validation of model can be accomplished if a sinusoidal
shearing flow experiments are available. The proposed model can be used to opti-
mize the VAD design by minimizing the deviation of the morphology tensor from
identity over a family of pathlines.

1A centrifugal blood pump under development at Baylor College of Medicine, Houston, TX
2An article in color available at www.ruf.rice.edu/∼mp/articles/wit2003a.pdf
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