
Forward Roll Coating Flows of Viscoelastic
Liquids

G. A. Zevallos1,2, M. S. Carvalho1, M. Pasquali2
1Department of Mechanical Engineering, Pontificia Universidade
Catolica do Rio de Janeiro, Rua Marques de Sao Vicente 225, Gavea, Rio
de Janeiro, RJ, 22453-900, Brazil
2Department of Chemical Engineering – MS 362, Rice University, 6100
Main St, Houston, TX, 77005, USA

Abstract

Except at low speed, the film splitting flow that occurs in forward roll coating
is three-dimensional and results in more or less regular stripes in the machine
direction. For Newtonian liquids, the stability of the film-split flow is determined
by the competition of capillary forces and viscous forces: the onset of meniscus
nonuniformity is marked by a critical value of the capillary number. Although most
of the liquids coated industrially are polymeric solutions and dispersions that are
not Newtonian, most of previous theoretical analyses of film splitting flows dealt
only with Newtonian liquids. Non-Newtonian behavior can drastically change the
nature of the flow near the free surface; when minute amounts of flexible polymer
are present, the onset of the three-dimensional instability occurs at much lower
speeds than in the Newtonian case.

This free surface coating flow is analyzed here with differential constitutive
models, the Oldroyld-B and the FENE-P equations. The continuity and momen-
tum equations coupled with the constitutive models, and the non-linear mapping
equations that transform the free boundary problem into a fixed boundary prob-
lem are solved with the DEVSS-G/SUPG method with finite element basis func-
tions. The resulting set of non linear equations is solved by Newton’s method with
pseudo-arc-length continuation. The results show how the flow field changes with
Weissenberg number, leading to changes in the forces at a free surface that may
explain why the the ribbing instability sets in at smaller Capillary number when
the liquid is viscoelastic.



1 Introduction

Roll coating is widely used to apply a thin liquid layer to a continuous, flexible
substrate. Except at low speeds, the flow is three-dimensional and results in more
or less regular stripes in the machine direction. This type of instability, or rather
the three-dimensional flow to which it may lead, is commonly called ribbing. It
limits the speed of the process if a smooth film is required as a final product.

The flow and the instability of the splitting of a Newtonian liquid as it exits
from between two rotating rolls has been extensively studied. Pearson [1] first
explained why a flow that otherwise leads to a uniform meniscus can turn unstable.
He showed that the adverse pressure gradient near the film-split meniscus neces-
sary to decelerate the flowing liquid destabilizes the free surface, whereas surface
tension stabilizes it. A critical value of the ratio between these two forces, i.e. the
capillary number Ca ≡ µV/σ, marks the onset of the free surface nonuniformity.
Here, µ is the liquid viscosity, σ its surface tension and V is the mean roll speed.

Several experimental and theoretical studies of the film-splitting instability of
Newtonian liquids between rigid rolls have been published [2, 3, 4, 5, 6, 7].

In practice, coating solutions often contain polymers. Non-Newtonian behav-
ior can drastically change the nature of the flow near the free surface and conse-
quently alter the performance of a coater. Most of the analyses of viscoelasticity in
roll coating consisted of experimentaly testing the effect of certain polymer addi-
tives on the ribbing stability [8, 9, 10, 11, 12, 13, 14]. Limited theoretical anal-
yses of stability of viscoelastic film splitting flows have appeared [15]; recently,
a mechanism has been proposed that shows that the hoop stresses at a stretching
free surface caused by a locally extensional flow would destabilize the surface with
respect to spanwise perturbations [16]. Coupled with the computational analysis of
Refs. [17, 18], which show that the maximum polymer extension is always attained
downstream of a stagnation point on a free surface, the analysis of Ref. [16] has
an interesting implication for film-splitting flows: if a recirculation is present at
the film split, then the instability should start downstream of the second stagnation
point on the free surface after the film split location; conversely, if a recirculation
is absent, the instability should start near the film split location .

Accurate theoretical predictions of the onset of ribbing when viscoelastic liquids
are used is still not available. The mechanisms by which the liquid elasticity makes
the flow unstable at Capillary numbers much lower than in the Newtonian case is
poorly understood. In order to model any flow instability, it is crucial to develop
accurate theoretical analysis of both the base flow, in this case steady and two-
dimensional, and the response of that flow to all physically admissible infinitesimal
disturbances.

Coating flow modeling must rely on theories that can account for the different
behavior of microstructured liquids in shear and extensional flow. Moreover, coat-
ing flows always involve free surfaces and contact lines. The domain where the
differential equations are posed is unknown a priori and it is part of the solution.
These two characteristics make the problem extremely complex and they are the
main reason why complete two dimensional solutions of viscoelastic free surface



flows are rare [17, 18, 19].
In this work, the two-dimensional, viscoelastic free surface flow near the film

split meniscus of a forward roll coating gap is analyzed by solving with the Finite
Element method the momentum and continuity equations coupled with the Oldroyd-
B and FENE-P differential constitutive models. The results show how the liquid
properties affect the stress field near the film split free surface and reveal an elastic
mechanism that may explain the early onset of the three-dimensional instability
when viscoelastic liquids are used.

2 Mathematical Model

2.1 Governing Equations

For incompressible, isothermal flow, the momentum and continuity equations are:

ρv ·∇v−∇ ·T = 0 and ∇ ·v = 0. (1)

where ρ is the liquid density and T≡−pI+τ+σ is the total stress tensor, the sum
of pressure p, viscous τ and elastic stress σ. The viscous stress obeys Newton’s
law of viscosity,

τ = 2µD. (2)

µ is the solvent viscosity and D is the rate of strain tensor.
The salient microstructural features of a flowing polymer solution are the stretch

and orientation of the polymer chains (conformation), and their degree of entan-
glement. The model used here is restricted to non-entangled liquids. The confor-
mation of the flowing liquid is represented by the conformation dyadic M, and its
behavior is specified through constitutive assumptions on the functions that appear
in its transport equation [20, 17]. Regarding molecular stretch, orientation, and
relaxation as independent, taking the vorticity as the average rate of rotation of the
polymer molecules, and using isotropy and representation theorems, the equation
of change of conformation can be written as [17]

∂M
∂t

+v ·∇M−2ξ
D : M
I : M

M−ζ(M ·D+D ·M−2
D : M
I : M

M)

−M ·W−WT
·M+

1
λ
(g0I+g1M+g2M2) = 0 (3)

where W is the vorticity tensor, λ is the characteristic relaxation time of the poly-
mer, ξ(M) and ζ(M) represent the resistance to stretching and relative rotation
of polymer segments, and g0(M), g1(M) and g2(M) define the rate of relaxation
of the polymer segments. The different constitutive models can be obtained by
specifying the appropriate form of the constitutive functions ξ, ζ, g0, g1 and g2.
Summary tables of these forms are in Refs. [20, 21, 17].



The relationship between elastic stress and conformation can be obtained from
the local rate of entropy production and the Clausius-Duhem inequality:

σ = 2ρ(ξ−ζ)
M

I : M
M :

∂a
∂M

+2ρζM ·

∂a
∂M

(4)

where a(T,M) is the specific free energy of the viscoelastic liquid.
Two different constitutive models—Oldroyld-B and FENE-P—were used in

this work. In both models, the molecules follow imposed large-scale deformation
affinely. In the Oldroyd-B model, the rate of relaxation of the molecules is a lin-
ear function of how far the conformation tensor M is away from its equilibrium
value I. In the FENE-P model, the maximum extension of the molecules is finite,
and their rate of relaxation grows infinitely fast as the average molecular extension
approaches its maximum value. The form of the constitutive functions and the free
energy for each model are:

Constitutive Model ξ ζ g0 g1 g2 a(M)

Oldroyd-B 1 1 -1 1 0 G/(2ρtrM)

FENE-P 1 1 -1 b−1
b−trM/3 0 3

2 G(b−1) ln
[

b−1
b−trM/3

]

The relationship between the elastic stress and the conformation tensor, eq.(4),
is rewritten in order to enforce p =−(1/3)tr(T). The rheological parameters are
the polymer elastic modulus G, the relaxation time λ, and the ratio of the max-
imum length square of the polymer molecules to their average length square at
equilibrium b (only for FENE-P). In all the models, the polymer viscosity ηp can
be defined as a function of the elastic modulus and relaxation time, ηp = Gλ.

The boundary conditions are flooded condition and fully developed elastic stress
at the inlet; no slip and no penetration at the roll surfaces; force balance and kine-
matic contdition at the free surface; and fully developed flow at the outlet.

2.2 Solution Method

Because of the free surfaces, the flow domain at each parameter is unknown a pri-
ori. In order to solve this free boundary problem by means of standard techniques
for boundary value problems, the set of differential equations and boundary con-
ditions posed in the unknown domain Ω has to be transformed to an equivalent set
defined in a known reference domain Ω0. Detailed description of methods to solve
free boundary problems are presented in Refs. [22, 23, 24].

The set of differential equations that describe the conservation of momentum
and mass (1), the evolution of the polymer conformation (3), and define the map-
ping between the physical and reference domain, together with the algebraic equa-
tions for the viscous and elastic stresses are all solved on the reference domain Ω0

by the Finite Element Method [17, 18, for details].
Computational methods to solve viscoelastic flows are still an active area of

research, and several methods of solving the partial differential equations of such
flows have been proposed in recent years [25, for a recent review]. The method



used here is the modification of the DEVSS-G/SUPG finite element method [26,
27] developed by Pasquali [17, 18]. As in DEVSS-G, an additional variable L
(called the interpolated velocity gradient) is introduced to have a continuous rep-
resentation of the velocity gradient field; unlike in DEVSS-G, it is defined to be
traceless by construction [17, 18]

L−∇v+
1

trI
(∇ ·v)I = 0 (5)

Each variable is approximated with a finite combination of basis functions:
Lagrangian biquadratic for position and velocity, linear discontinuous for pres-
sure, and Lagrangian bilinear for interpolated velocity gradient and conforma-
tion. Galerkin weighting is used for mesh generation, momentum, continuity, and
velocity gradient interpolation. The conformation transport equation is weighted
with the Streamline-Upwind Petrov-Galerkin method, ψM ≡ ϕM +huv ·∇ϕM. The
upwind parameter hu coincides with the characteristic size of the smallest element
in the finite element mesh.

The set of nonlinear algebraic equations that arises from applying the method
of weighted residuals and the variables representation in terms of basis functions
is solved by Newton’s method with analytical Jacobian and first order arclength
continuation. Three different meshes are used. The main difference between them
is the level of refinement near the free surface. Mesh 1 has 20 element across
the film thickness, 60 elements along the film split free surface and 49,260 total
degrees of freedom. Mesh 2 has 30 elements across the film thickness and 90
elements along the free surface, and 109,525 degrees of freedom. The finest mesh,
Mesh 3, has 40 elements across the film thickness, 120 elements along the free
surface and 193,548 degrees of freedom.

3 Results

The important dimensionless parameters for the flow studied here are: Reynolds
number Re = ρVR/H0, Capillary number Ca = µV/σ, dimensionless gap H0/R,
Weissenberg number We = λV/H0, solvent to total viscosity ratio β = µ/(µ+ηp),
polymer extensibility (when using FENE-P model) b. The predictions presented
here are for vanishing Reynolds number and fixed dimensionless gap H0/R = 0.01.

3.1 Newtonian Liquids

The film splitting flow is strongly affected by capillary number. When surface
tension is strong compared to viscous forces (low capillary number), the meniscus
is pulled away from the gap and a large recirculation attached to the free surface is
formed. As the capillary number rises, the meniscus recedes and the recirculation
disappears, as shown in Fig. 1. Because the rolls are rotating at equal speed, the
flow is symmetric and only half of the domain is shown. At Ca = 2 there is only
one stagnation point at the free surface, located at the mid-plane between the rolls.
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Figure 1: Streamlines and pressure vs. capillary number, Newtonian flow.

The predicted flow rate in units of roll speed times gap, and consequently the
film thickness, is virtually constant with capillary number, and approximately
equal to q ≡ Q/(2VH0) = 1.34. The results obtained here reproduce those of
Ref. [7].

3.2 Viscoelastic Liquids: Oldroyd-B and FENE-P

The flow of a viscoelastic liquid near the film split meniscus of a forward roll
coater was modeled with the Oldroyld-B and FENE-P equations. All the predic-
tions shown here were computed at β = 0.59.

Fig. 2 shows the streamlines and the evolution of the normal stress Txx of the
total stress field as a function of the Weissenberg number at Ca = 0.2 obtained with
the FENE-P model (b = 50). At low We, the behavior is similar to the Newtonian
case, as expected. As the elasticity of the liquid becomes stronger, the region of
high normal stress Txx close to the roll surfaces is shifted downstream, the stress
at the intersection between the free surface and the symmetry line falls, and the
positive normal stress gradient at the free surface falls, as illustrated in Fig.3(a).
The change in the normal stress gradient at the free surface has an important effect
on the stability of the flow with respect to three-dimensional perturbations. At
even higher Weissenberg number, the normal stress gradient could change sign
and become negative, leading to flow instability.

Another important effect of the liquid elasticity is that downstream of the stag-
nation line at the free surface, where the molecule extension is strong (Fig. 4, the
stress rises with Weissenberg number. The normal component Txx of the stress field
along the free surface is shown in Fig. 3(b) at different Weissenberg numbers. As
the liquid becomes more viscoelastic, a stress peak is formed downstream of the
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Figure 2: Evolution of the stress component Txx as a function of Weissenberg num-
ber predicted by the FENE-P model. b = 50 and Ca = 0.2.

stagnation point. The change of the stress gradient along the free surface alters
the flow configuration. The positive gradient of the normal stress along the free
surface pulls the liquid downstream and reduces the size of the recirculation zone.
At We = 6, the recirculation attached to the film split meniscus has shrunk con-
siderably. As the size of the recirculation diminishes, the velocity gradient at the
film split meniscus grows, which induces steeper stress gradients there. At even
higher Weissenberg number, the recirculation may disappear completely leading
to very high stress gradient at the film split meniscus in the main flow direction
which would destabilize the flow with respect to three-dimensional disturbances.
This hypothesis could not be confirmed yet, because the flow simulations, with the
mesh refinement presented here, were limited to We≈ 6.

The appearance of elastic stress boundary layers near the liquid/gas interface
has been reported in other free surface flows [17, 18, 19]. The liquid elasticity also
creates compressive elastic forces in the spanwise direction. At low Weissenberg
number, the spanwise stress component is negligible, as expected. As the Weis-
senberg number rises, the spanwise transverse elastic stress grows negative (com-
pressive stress) because the polymer molecules are extended along the free surface
in the streamwise direction and contracted in the two perpendicular directions.
Near the film-split free surface, a boundary layer is formed of high compressive
stress. Such stress, which is not present in Newtonian liquids, may destabilize the
flow with respect to transverse disturbance causing the free surface to buckle.



Figure 3: Normal stress component Txx along the symmetry line (a) and along the
free surface (b), at different Weissenberg number. Ca = 0.2.
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Figure 4: Maximum eigenvalue of conformation tensor as a function of Weis-
senberg number.

4 Final Remarks

In forward roll coating, above a critical capillary number, the two-dimensional film
splitting meniscus becomes three-dimensional, resulting in more or less regular
stripes in the coated liquid film. For Newtonian liquids, the stability of the two-
dimensional flow is determined by a competition of surface tension and viscous
forces. Experiments have shown that liquid viscoelasticity destabilizes the flow;
when minute amounts of flexible polymer are present, the three-dimensional insta-
bility sets in at much lower speeds than in the Newtonian case. The mechanisms



responsible for this early onset of the instability are still under investigation.
The two-dimensional flow of viscoelastic liquids in a forward roll coating gap

was analyzed by solving the continuity and momentum equations coupled with
two differential constitutive equations, the Oldroyd-B and FENE-P models. The
resulting set of differential equations was solved by Galerkin’s method and finite
element basis functions. The results show that the elastic forces change the flow
characteristics near the free surface. At a fixed capillary number, the stresses at
the free surface rise because of the strong extensional character of the flow in that
region; the normal stress gradient in the main flow direction falls and compressive
normal stresses on the transverse direction appear. All these effects destabilize the
flow with respect to three-dimensional perturbation and contribute to explaining
the early onset of ribbing when viscoelastic liquids are used.
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