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Abstract

Free boundary problems arise in various applications like coating, polymer pro-
cessing, and biomedical engineering. In a problem with free boundaries, the phys-
ical domain is unknown a priori. Mesh generation equations must be added to the
conservation equations to locate the free boundaries and map the unknown phys-
ical domain into a convenient reference one. Several mesh generation methods
for free boundary problems have been developed, chiefly elliptic mesh generation
and domain deformation. Whereas these methods are well-established for 2-D free
boundary problems, 3-D free boundary problems still present challenges because
of the sheer size of the computational problems, the complexity of 3-D free surface
manipulation, and the need of using iterative solvers like GMRES [1].

This work applies domain deformation to three dimensional free boundary flows
of viscoelastic liquids. The domain deformation method treats the mesh as a com-
pressible solid. The momentum conservation equation for the elastic solid is cou-
pled with the problem equations through appropriate boundary conditions to locate
the free boundaries of the flow domain. The general conformation tensor model is
used to represent the viscoelastic liquid [2]. The DEVSS-G/SUPG Finite Element
method is applied to translate the differential equations of the problem into nonlin-
ear algebraic equations. Fully coupled Newton’s method with analytical Jacobian
is employed to solve simultaneously the nonlinear equations for position, pressure,
velocity, velocity gradient, and conformation. The restarted GMRES method with
ILU preconditioner is parallelized by OpenMP to solve the large scale linear alge-
braic equations. The method is applied to study a model viscoelastic flow in a 3-D
channel with a free surface section.



1 Introduction

Flows with free surfaces and deformable walls involve unknown boundaries, which
are defined by the flow and in turn affect the flow by capillary and elastic forces.
Free boundary problems arise in variety of applications like coating of polymer
solutions, polymer processing, ink-jet printing, multiphase flows, blood flow in
arteries, deformation of blood cells, etc. To locate the moving boundaries while
computing velocity, pressure, and stress, an equation to describe the mesh must
be added to the problem equations. Several methods for handling free boundary
problems have been developed, chiefly elliptic mesh generation [3] and domain
deformation [4]. These methods have been successful in describing 2-D free sur-
face problems [5, 6, 7, 8, 2]. 3-D free boundary problems still present challenges
because of the large scale of the computational problem and difficulty to manip-
ulate the 3-D surface such as tangent vectors and their differentiations, especially
on unstructured meshes [1, 9].

This study couples the domain deformation method to the DEVSS-G/SUPG
Finite Element method to study 3-D viscoelastic flows with free boundaries. The
domain deformation method treats the mesh as a compressible elastic pseudo-
solid. The momentum conservation equation for the elastic pseudo-solid is cou-
pled with all the equations of the flow to compute the shape of the domain. The
general conformation tensor model is used to represent the viscoelastic liquid [2].

The mathematical formulation and the free surface boundary condition are
described in Sections 2 and 3; the solution method is explained in Section 4; com-
putational results in 2-D and 3-D free surface flows are reported in Section 5.

2 Problem formulation

This section presents the governing equations of the flow and elastic pseudo-solid
(mesh), and constitutive equations. The problem equations for steady flows are

0 = ∇ ·Te (1)

0 = ∇ ·v (2)

0 = ρv ·∇v−∇ ·T−∇Θ (3)

0 = L−∇v+
1

trI
(∇ ·v)I (4)

0 = v ·∇M−2ξ
D : M
I : M

M−ζ(M ·D+D ·M−2
D : M
I : M

M)

−M ·W−WT ·M− 1
λ

(g0I+g1M+g2M2) (5)

Equation 1 is the momentum equation of elastic pseudo-solid for the mesh, eqn.2
is the continuity equation, eqn.3 is the momentum equation, eqn.4 is the velocity
gradient interpolation equation used to improve the stability and convergence of
the computational method [2, 7], and eqn.5 is the conformation transport equation.



Te is the Cauchy stress tensor of the elastic pseudo-solid, v is the velocity, ρ is
the density, Θ is the potential of body force per unit volume, T is the stress tensor,
L is the velocity gradient, M is the conformation tensor, ξ and ζ are the polymer
resistance to stretching and orientation, λ is the relaxation time, g0, g1, and g2

define the rate of relaxation of the polymer segments [2, 7, for details].
The stress in an elastic solid is [10],

Te = 2ρB · ∂w
∂B

(6)

where ρ ∼ 1√
IIIB

, B = Fd ·FdT
is the left Cauchy-Green tensor or Finger tensor, Fd

is the deformation gradient with Fd
i j = ∂xi

∂x0 j
, x0 is the referential physical position,

x is the current physical position; w is stored energy, and its derivative with respect
to B is ∂w
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∂I
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A compressible neo-Hookean free energy is used to control the mesh [8]

w = aI + cIII−d log10

√
III (8)

where a = 1, c = 1/3 and d = 8ln10/3.
The conformation tensor describes the flow-induced distortion of polymer coils.

The eigenvectors of M represent the principal directions along which the polymer
chains are stretched, contracted, or oriented. The eigenvalues of M represent the
square of the principal stretch ratios. The details of the conformation tensor and its
evolution equation are described in Refs. [2, 7, 11].

The stress T can be split into 3 parts,

T = −pI+τ+σ (9)

where p is the pressure, τ is the viscous stress,

τ = 2µD = µ(∇v+∇vT) (10)

σ is the elastic stress which follows the constitutive relation [7]

σ
︸︷︷︸

elastic

stress

= 2ρξ
M
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∂M

︸ ︷︷ ︸

stress by
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+2ρζ
(

− M
I : M

M :
∂a
∂M
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∂M

)

︸ ︷︷ ︸

stress by molecular orientation

(11)

where a(M) is the Helmholtz free energy per unit volume of the polymer liquid.



3 Boundary conditions at free interfaces

Boundary conditions at free interfaces present computational challenges. The
velocity is continuous across the interface, whereas other quantities like pressure,
stress, velocity gradient, and conformation can be discontinuous. The kinematic
boundary condition n ·v = 0 enforces the immiscibility of the materials on the two
sides.

3.1 Boundary conditions on the mesh equations

In the normal direction to the boundary, the kinematic condition determines the
position of an interface

n ·v = 0 (12)

This condition is imposed essentially, i.e., it replaces the normal mesh equation on
the boundary nodes.

In the domain deformation method, the tractions in the tangent directions deter-
mine the node distribution on the surface. For simplicity, zero traction can be
imposed to achieve uniform nodal distribution,

tn : Te = 0 (13)

In a 2-D problem, this boundary condition is enforced by replacing the tangential
mesh equation with it. In a 3-D problem, calculating the derivative of tangent vec-
tors on unstructured meshes is difficult; thus, the mesh equations are rotated into
two tangent directions and the boundary condition is easily imposed through the
boundary integral of the traction, which is zero. For simplicity, the residual and
Jacobian matrix are rotated after the integration [1]. In 3-D, there are countless
tangent directions; at every node on the boundary, the unit tangent vectors are usu-
ally different when they calculated from different elements. However, the normal
direction coincides within numerical error. In order to obtain two orthogonal unit
tangent vectors consistent for one node in all elements, the tangent vectors at every
node are computed globally. At every node, the unit normal vector n is averaged
from all the neighboring elements. The first unit tangent vector is calculated by

t1 =
(I−nn) · s

‖ (I−nn) · s ‖ (14)

where s is the seed vector [1]. s is chosen from a tangent vector calculated at the
node in a neighboring element. The second unit tangent is calculated by

t2 = n× t1 (15)



3.2 Momentum boundary conditions

The dynamic equilibrium of the interface sets the boundary conditions on the
momentum equation,

n1 · (T1 −T2) = ∇II ·Π (16)

where 1 and 2 denote the two sides of the interface, n1 is the unit normal vector
on the interface directed from 1 to 2—hereafter n = n1. The surface gradient is
∇II ≡ (I−nn) ·∇, and Π is the surface stress which depends on the property of the
interface or membrane. For a liquid-liquid or liquid-gas interface, Π = γ(I−nn),
where γ is the surface tension; for a general membrane [12],

Π = 2(I2 +1)
1
2

∂W
∂I2

(I−nn)+2(I2 +1)−
1
2

∂W
∂I1

A (17)

where W is the surface strain energy function, A ≡ (I− nn) ·B · (I− nn) is the
symmetric surface Cauchy-Green strain tensor, with invariants I1 = trA− 2 and
I2 = 1

2(tr (A)2− tr(A2))−1. When W = γ(I2 +1)
1
2 , Π = γ(I−nn). If γ is constant,

∇II ·Π =−γn∇II ·n. If on side two there is a gas with negligible viscous stress, then
n ·T = −pn+∇II ·Π. If the free boundary is a membrane, the tangential compo-
nents of the liquid velocity vanish; in this case, the two tangential components of
the momentum equation are replaced by the no-slip condition, whereas the normal
component of the momentum equation obeys the dynamical condition 16.

4 Solution method

The DEVSS-G/SUPG Finite Element Method is applied to reduce the partial
differential equations of the flow to algebraic equations. In 2-D problems, 9-
node quadrilateral elements are used. Velocity and position basis functions are
biquadratic and continuous, velocity gradient, conformation basis functions are
bilinear and continuous, and pressure basis functions are linear and discontinuous.
In 3-D problems, 10-node tetrahedral elements are used. The basic functions for
velocity and position are quadratic and continuous, those for pressure, velocity
gradient and conformation are linear and continuous. The set of nonlinear alge-
braic equations is solved by the fully coupled Newton’s method with analytical
Jacobian, which yields a large scale linear algebraic system J∆x = R, where J
is the Jacobian matrix, ∆x is the Newton update, and R is the residual vector. A
frontal solver, parallelized by OpenMP is employed to solve the linear system in
2-D flows. Restarted GMRES with ILU preconditioner parallelized by OpenMP is
used in 3-D flows. The code runs on an IBM Regatta with 64 GB shared memory
and 16 1.33 GHz Power4 processors.

5 Results

The method is applied to compute two 2-D steady flows and one 3-D flow.
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Figure 1: Geometry of the 2-D collapsible channel; the segment DC is an elastic
membrane wall.
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Figure 2: Deformed wall shape with steady flow in the 2-D collapsible channel,
obtained at Re = 1, p∗d = 9.3×104, and γ∗ = γ∗0/β. The solid line denotes
the results of this study, the open symbols are the results of Ref. [13].

5.1 2-D membrane in collapsible channel

Fig. 1 shows a 2-D channel with a segment of the wall replaced by an elastic mem-
brane. This steady flow in the 2-D collapsible channel is chosen for checking the
boundary condition for membrane by comparing the numerical results with those
reported in Ref. [13]. This case describes a flow that occurs in some physiological
applications such as aneurysm in the body.

In the collapsible channel, no-slip is imposed at rigid walls; the membrane seg-
ment is assumed to be elastic. Following [13], the membrane is taken to have a
simple constitutive equation, Π = γ(I−nn). A fully developed velocity profile is
imposed on the inflow boundary, i.e., v = v(x). At the outflow, the flow is fully
developed and the pressure is fixed, i.e., n · ∇v = 0 and p = pd . The deforma-
tions of the elastic segment with different constant membrane rigidity are shown
in Fig.2 under the conditions: Re≡ ρQ/µ = 1, p∗

d ≡ (pe− pd)W 2ρ/µ2 = 9.3×104,
γ∗ = γ∗0/β (with β = 15,30,45 and γ∗0 ≡ γ0Wρ/µ2 = 1.610× 107). In units of W ,
the dimensions of the channel are L∗

u ≡ Lu/W = 2, L∗ ≡ L/W = 5, L∗
d ≡ Ld/W = 7.

Fig. 2 shows that the results are in excellent agreement with those of Ref. [13].

5.2 Free surface and interfacial flow in slot coater

The flow in the downstream section of a slot coater is computed in two different
ways: as the flow of a liquid with a free surface and as the flow of a liquid and a
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Figure 3: Flow in the downstream of the slot coater: free surface model (top) and
interfacial model (bottom).
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Figure 4: Meshes and free surfaces computed as part of solutions. Q = 0.5, Re = 0,
Ca = 0.1. The open symbols and the solid line denote the results from
free surface model and interfacial model respectively.

low-viscosity gas coupled at an interface (Fig. 3).
Both flows are computed at Q ≡ 0.5hv, Re ≡ ρvL/µ = 0, Ca ≡ µv/γ = 0.1. Here

Q is the flow rate per unit width of the slot, h is the gap, v is the velocity of the
bottom wall, µ is the liquid viscosity, and γ is the surface tension. Fig. 4 shows
the meshes computed by solving the flow of a single liquid and that of two fluids;
in the latter case, the viscosity of the gas is set to µg = 10−8µ. The free surface
computed with the two methods is the same; thus, the method for computing the
interfacial flow is correct.
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Figure 5: 3-D collapsible cylindrical channel and boundary conditions. R = 1, L1 =
L3 = 1, L2 = 0.5.

5.3 Viscoelastic flow in a 3-D channel with a free surface section

The flow of an Oldroyd-B liquid in a 3-D channel with a free surface section is
chosen to test the method. The parameters in the conformation transport equation
are ξ = 1, ζ = 1, g0 = −1, g1 = 1, g2 = 0, and ∂a

∂M = G
2ρ I, where G =

ηp
λ is the

polymer modulus and ηp is the polymer viscosity.
The dimensions of the channel and the boundary conditions are shown in Fig. 5.

The computation is carried out on three meshes at Q = 0.5, ∆p = 31.42, Re ≡
ρQ/(πRµ) = 0, Ca ≡ µQ/(πR2γ) = 0.080 to 0.122, and Wi ≡ 4Qλ/(πR3) = 0.064
to 1.019. Here Q is the flow rate, ∆p ≡ (p1 − p2)πR3/(µQ), and µ is the total vis-
cosity of the solvent and polymer. The polymer viscosity is ηp = 0.41µ. Mesh 1
is a coarse mesh (2,493 elements, 33,342 unknowns); mesh 2 is finer at the free
surface and coarse at the inflow and outflow (2,895 elements, 39,470 unknowns);
mesh 3 is the finest (8,092 elements, 100,434 unknowns). Fig. 6 shows the com-
puted free surface mesh and the contours of axial component of the conformation
tensor M11 on mesh 3 at Ca = 0.122 and Wi = 0.637. The polymer chains are
stretched under the upstream section of the free surface, where the liquid acceler-
ates, then contract in the downstream section as the liquid decelerates. The com-
puted free surfaces at the y = 0 plane are shown in Fig. 7 on the three meshes at
different capillary and Weissenberg numbers. The plot shows that the shapes of
the free surfaces computed on the three meshes match very well under the same
conditions; the shapes change with capillary number and Weissenberg number. As
the value of capillary number grows, the free surface deforms further. The two
curvatures in 3-D partly cancel in this case because they have opposite signs. At
Ca = 0.106 and Wi = 0.064, the longitudinal curvature radius is ≈−0.33, whereas
the circumferential curvature radius is ≈ 0.87; thus, the longitudinal curvature
dominates and the free surface deforms more with increasing capillary number
as shown in Fig.7. As Weissenberg number increases, the free surface deforms
less because the stretched polymer develops compressive elastic stresses normal
to the free surface, which resist the deformation of the free surface.
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Figure 6: Computed free surface mesh and contours of the axial component of the
conformation tensor M11 in a 3-D cylindrical channel with a collapsible
section. Ca = 0.122 and Wi = 0.637.
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Figure 7: Computed free surface at the y = 0 plane of the 3-D channel at different
capillary and Weissenberg numbers.

6 Conclusion

The domain deformation method coupled with DEVSS-G/SUPG Finite Element
method is applied to compute free surface flows. This method is validated against
published literature [13] in a 2-D flow in a channel with a deformable membrane
on one wall, and by comparing a free surface flow from the literature with a flow at



a gas-liquid interface where the gas viscosity is vanishingly small. In both cases,
excellent agreement is found. Finally, computational results are presented on vis-
coelastic flow of an Oldroyd-B liquid in a 3-D channel with a free surface section.
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