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Forward roll coating flows of viscoelastic liquids
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Abstract

Roll coating is distinguished by the use of one or more gaps between rotating cylinders to meter and apply a liquid layer to a substrate. Except at
low speed, the two-dimensional film splitting flow that occurs in forward roll coating is unstable; a three-dimensional steady flow sets in, resulting
in more or less regular stripes in the machine direction. For Newtonian liquids, the stability of the two-dimensional flow is determined by the
competition of capillary and viscous forces: the onset of meniscus nonuniformity is marked by a critical value of the capillary number. Although
most of the liquids coated industrially are non-Newtonian polymeric solutions and dispersions, most of the theoretical analyses of film splitting
flows relied on the Newtonian model. Non-Newtonian behavior can drastically change the nature of the flow near the free surface; when minute
a nian case.
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mounts of flexible polymer are present, the onset of the three-dimensional instability occurs at much lower speeds than in the Newto
Forward roll coating flow is analyzed here with two differential constitutive models, the Oldroyd-B and the FENE-P equations. The res

hat the elastic stresses change the flow near the film splitting meniscus by reducing and eventually eliminating the recirculation pre
apillary number. When the recirculation disappears, the difference of the tangential and normal stresses (i.e., the hoop stress) at thee
ecomes positive and grows dramatically with fluid elasticity, which explains how viscoelasticity destabilizes the flow in terms of the a
raham [M.D. Graham, Interfacial hoop stress and instability of viscoelastic free surface flows, Phys. Fluids 15 (2003) 1702–1710].
2005 Elsevier B.V. All rights reserved.
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. Introduction

Roll coating is widely used to apply a thin liquid layer to a
ontinuous, flexible substrate. At low speeds the flow is two-
imensional and steady; as the roll speed is raised, the two-
imensional flow becomes unstable and is replaced by a steady

hree-dimensional flow which results in more or less regular
tripes in the machine direction (Fig. 1). This type of instability,
r rather the three-dimensional flow to which it may lead, is
ommonly calledribbing; it can limit the speed of the process
f a smooth film is required as a final product.

The film-splitting flow of a Newtonian liquid exiting from
wo rotating rolls and the associated instability have been stud-
ed extensively. Pearson[2] was the first to analyze why a flow
hat otherwise leads to a uniform meniscus can turn unstable.

∗ Corresponding author. Fax: +55 21 3114 1165.
∗∗ Corresponding author. Fax: +1 713 348 5478.

E-mail addresses: msc@mec.puc-rio.br (M.S. Carvalho), mp@rice.edu
M. Pasquali).

He showed that the adverse pressure gradient near the film
meniscus necessary to decelerate the flowing liquid destab
the free surface, whereas surface tension has a stabilizi
fect. A critical value of the ratio between these two forces,
the capillary numberCa ≡ µV/ς, marks the onset of the fr
surface nonuniformity. Here,µ is the liquid viscosity,ς its sur-
face tension, andV is the mean roll speed. Further experime
and theoretical models to describe the film-splitting instab
of Newtonian liquids between rigid rolls have been develo
in refs.[3–8].

In practice, coating liquids often contain polymers. N
Newtonian behavior can drastically change the nature of the
near the free surface and consequently alter the performa
a coater. The first analyses of non-Newtonian effects in roll c
ing flows were restricted to shear-thinning behavior and si
power-law models. By solving the two-dimensional conse
tion equations of a shear-sensitive liquid, Coyle et al.[9] showed
the effect of shear-thinning on the film thickness and pres
distribution along the coating bead. Bauman et al.[10] exper-
imentally tested the effect of certain polymer additives on
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Fig. 1. Three-dimensional periodic flow in forward roll coating film splitting
(from [17]).

ribbing instability. They observed that the critical speed at which
ribbing first appeared was lower than in the case of a Newtonian
liquid. They advanced simple arguments about the effect of liq-
uid elasticity on the stability of the flow. They concluded that
the elastic stresses that appears in the extensional flow near the
free surface destabilize the flow. The formation of small liquid
drops at the film split meniscus, a phenomenon known as spat-
ter and misting, was studied by Glass[11–14]. He observed roll
spatter in coating of aqueous dispersions of colloidal polymer
plus other ingredients in ‘latex’ paints by evaluating several trade
paints and comparing their propensity to spatter. Their main con-
clusion was that paints with high apparent extensional viscosity
produced large and stable filaments. Fernando and co-workers
[15,16]addressed spattering in commercial paints. They found
that the instability occurred at lower capillary number in liq-
uids with higher apparent extensional viscosity (measured by
fiber-suction technique). Moreover, the length of filaments and
the intensity of misting increased with the apparent extensional
viscosity. Carvalho et al.[17], and later Dontula[18], analyzed
experimentally the film splitting flow of aqueous solutions of
PEG and PEO. They concluded that minute amounts of flexi-
ble polymer lowered drastically the critical speed at which the
three-dimensional instability occurs. Grillet et al.[19] and re-
cently Lopez et al.[20] studied experimentally the instability of
non-Newtonian flow between two non-concentric cylinders. The
latter used two aqueous polymer solutions with similar shear
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Fig. 2. Sketch of instability mechanisms proposed by Pitts and Greiller, and
Graham.

capillary numbers much lower than in the Newtonian case is not
completely understood.

The stability problem can be approached in two ways: (1)
by analyzing the two-dimensional flow kinematics at the free
surface and extracting simple criteria to estimate the critical
capillary number and (2) by computing the two-dimensional
flow by solving the mass and momentum balance equations to-
gether with a suitable constitutive equation for the stress, and
then assessing the stability of this flow to infinitesimal three-
dimensional perturbations.

Simple criteria to estimate the stability of film splitting flows
have been proposed for Newtonian liquids by Pitts and Greiller
[3] and for viscoelastic liquids by Graham[1].

The stability criterion proposed by Pitts and Greiller[3] is
based on a spanwise momentum balance along the perturbed free
surface. In this analysis, the viscous (and viscoelastic) stresses
are neglected and only the pressure is considered as the driving
force for the instability. The flow is considered unstable if the
transverse normal tensile stress under the perturbed free surface
at the midpoint between the crest and the throat of the devel-
oping wave (location 1 inFig. 2) is smaller than the transverse
normal stress at the same streamwise location beneath the crest
of the wave (location 2 inFig. 2)—or, conversely, if the pressure
beneath the crest of the wave (location 3 inFig. 2) is higher than
that at the midpoint between the crest and the throat (location
1 in Fig. 2). In this case, the gradient of spanwise stress will
d the
i

−

w g
m g
t -
b s not
p en-
t d on
t p-
i of
t
b

C

hinning behavior but different elastic characteristics, i.e.,
han (inelastic) and polyacrylamide (elastic). With the ela
polyacrylamide) solution, the critical capillary number for
nstability dropped with growing polymer concentration by u
ne order of magnitude compared to the Newtonian case.

he xanthan solution, the critical capillary number decre
nly slightly. The resulting three-dimensional pattern of the
urface is also a strong function of the liquid properties, w
uggests that the instability mechanism may be different i
ase of viscoelastic liquids.

Accurate theoretical predictions of the onset of ribbing w
iscoelastic liquids are used is still not available. The me
isms by which the liquid elasticity makes the flow unstab
-

rive flow from the throat into the crest of the wave and thus
nstability will grow. The flow is stable if

dp

dr
< ς

(
dH

dr
+N2

)
, (1)

hereH ≡ 1/R is the in-plane curvature of the film splittin
eniscus,ς is the liquid surface tension,r is a coordinate alon

he normal to the free surface (seeFig. 2), andN is the wavenum
er of the perturbation. Of course, this simple criterion doe
redict correctly the wavenumber of the instability, but it id

ifies correctly the competition of the relevant forces. Base
his analysis, Pitts and Greiller[3] estimated that the critical ca
llary number at the onset of ribbing is a function of the ratio
he gap between the rolls 2H0 to the roll radiusR, and ought to
e

a∗ = 28
H0

R
. (2)
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Recently, Graham[1] proposed a different simplified crite-
rion to asses the stability of a flow under a curved free surface.
The key, novel component of Graham’s analysis is the introduc-
tion of a local cylindrical coordinate system at the free surface
which allows the incorporation of the normal stress difference
at the free surface on the radial component of the momentum
balance equation. The combination of a large normal stress dif-
ference, i.e., “hoop stress”, and curvature along a concave free
surface destabilizes the flow. A perturbation theory was pre-
sented to show that a disturbance that locally thickens the liq-
uid layer enhances the normal stress difference at that location,
which drives further thickening of the liquid layer. Capillary
forces counteract this tendency and stabilize the flow. Accord-
ing to Graham’s criterion, the flow is stable when

dTrr
dr

− ρgr = H(σθθ − σrr) − ρgr < ςN2. (3)

However, this analysis neglects an important term present
in the earlier work of Pitts and Greiller[3], namely the sta-
bilizing effect of meniscus curvature variation at the separat-
ing stagnation point due to free surface position variation, i.e.,
ς(dH/dr)—this term was present in an earlier analysis by Gra-
ham[21]. Whereas this term is irrelevant in flows where the free
surface develops between nearly parallel plates (such as planar
Hele–Shaw flow, for example), it is important in flows between
diverging surfaces, such as roll coating flows, because it accounts
f sta-
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Fig. 3. Sketch of a forward roll coating bead. Domain at which the conservation
equations are solved.

In this work, the two-dimensional, viscoelastic, free surface
roll coating flow is analyzed with two differential constitutive
models: the Oldroyd-B and the FENE-P equations. The free
boundary problem is transformed into a fixed boundary prob-
lem by mapping the unknown domain into a reference one
[25,30–33], and the continuity, momentum, conformation, and
mesh mapping equations are solved with the DEVSS-TG/SUPG
method with finite element basis functions[25].

The computed flow and stress fields are analyzed in light of
Graham’s[1] work to understand the role of the elastic stress
on the force balance at the interface and how liquid elasticity
destabilizes the two-dimensional flow.

2. Mathematical model

The flow domain where the governing equations are inte-
grated is sketched inFig. 3. The two rolls are moving from left
to right in the figure at equal speedV . The minimum clearance
between the rolls is 2H0. The position of the meniscus is un-
known a priori and it is a function of the liquid properties and
operating conditions.

2.1. Governing equations

For incompressible and isothermal flow, the momentum and
continuity equations are:

ρ

w l
s
e
r

for-
m n of
or the effect of an outward motion of the free surface which
ilizes the flow because it reduces the capillary pressure
cross the free surface and thus diminishes the pressure g
eneath the free surface. The complete (simplified) criterio

dTrr
dr

− ρgr = H(σθθ − σrr) − ρgr <

(
dH

dr
+N2

)
; (4)

t reduces to Pitts and Greiller’s criterion (Eq.(1)) if viscous
orces are neglected (Trr = −p).

Scriven and co-workers[8,22,23]analyzed the stability prob
em more rigorously in the case of various Newtonian coa
ows by evaluating the response of the two-dimensional, ste
tate flow to infinitesimal periodic disturbances. Such linear
ility analysis was used successfully to determine critical c

ary numbers at different gap to roll ratio at the onset of ribb
or both rigid and deformable forward roll coating flows of Ne
onian liquids.

Modeling of viscoelastic coating flows must rely on theo
hat can capture sufficiently well the interplay of flow and
id microstructure. Moreover, coating flows always involve
urfaces; the domain where the differential equations are p
s unknown a priori and it is part of the solution, and the shap
he free surfaces must be captured well because capillarity
f the key forces that control the flow. These two characteri
ake the problem extremely complex, and prototypical st

iscoelastic free surface coating flows have been studied
ecently[24–27]. Likewise, the stability analysis of viscoelas
ows is fraught with difficulties. Simple non-viscometric flo
ave been tacked successfully recently[28,29], and methods fo

inear stability analysis of viscoelastic free surface flows are
nder investigation.
y

v · ∇v − ∇ · T = 0 and ∇ · v = 0 (5)

hereρ is the liquid density andT ≡ −pI + τ + σ is the tota
tress tensor, the sum of pressurep, viscous stressτ ≡ 2ηsD and
lastic stressσ, whereηs is the solvent viscosity andD is the
ate of strain tensor.

The viscoelastic liquid is modeled by introducing the con
ation dyadicM, which represents the stretch and orientatio
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Table 1
Constitutive parameters of the Oldroyd-B and FENE-P models

Constitutive model ξ ζ g0 g1 g2 a(M)

Oldroyd-B 1 1 −1 1 0 G/(2trM)
FENE-P 1 1 −1 (b− 1)/(b− trM/3) 0 (3/2)G(b− 1) ln[(b− 1)/(b− trM/3)]

Note that in the FENE-P model, the functiong1 = 1 at equilibrium (M = I); thus, the definitions of relaxation time andb differ slightly from those in ref.[38].

the flowing polymer molecules[34–36]. The equation of change
of conformation can be written as[25,36]

∂M
∂t

+ v · ∇M − 2ξ
D : M
I : M

M

− ζ
(

M · D + D · M − 2
D : M
I : M

M
)

− M · W − WT · M + 1

λ
(g0I + g1M + g2M2) = 0 (6)

whereW is the vorticity tensor,λ the characteristic relaxation
time of the polymer,ξ(M) and ζ(M) represent the resistance
to stretching and relative rotation of polymer segments, and
g0(M), g1(M) and g2(M) define the rate of relaxation of the
polymer segments. Different constitutive models can be ob-
tained by specifying the appropriate form of the constitutive
functionsξ, ζ, g0, g1 andg2 (see refs.[34–37]for summary ta-
bles).

The relationship between elastic stress and conformation is
[34,36]:

σ̂ = 2(ξ − ζ)
M

I : M
M :

∂a

∂M
+ 2ζM · ∂a

∂M
(7)

wherea(T,M) is the Helmholtz free energy per unit volume.
Because the liquid is incompressible, the isotropic part of the
elastic stress is constitutively indeterminate[36]; in order to
k ntu
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(1) Inflow: flooded condition and fully developed conformation
tensor.

The flow in a forward roll coating gap is self-metering,
i.e. the flow rate is not known a priori. A pressure datum
p = P0 = 0 is imposed at the inflow boundary. The inflow
boundary is located far upstream of the nip, so that there
the conformation of the polymer molecules does not change
along streamlines, i.e.,v · ∇M ≈ 0. Consequently, at the in-
flow boundary (n · v < 0) the following algebraic equation
is imposed[39]:

−2ξ
D : M
I : M

M − ζ

(
M · D + D · M − 2

D : M
I : M

M
)

− M · W − WT · M + 1

λ
(g0I + g1M + g2M2) = 0

(9)

(2) Roll surfaces: no-slip, no-penetration. v = ΩRt = V t,
whereR is the roll radius,Ω the angular speed of the rolls,
and t is the unit tangent vector to the roll surface in the
direction of rotation.

(3) Free surface: force balance and kinematic condition.

n · T = ς
dt
ds

− nPamb and n · v = 0 (10)

e
to

(

2
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a hape
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t un-
k
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ξ spec-
t by
e

∇
w ike
c ondi-
t iffer-
eep the same meaning of the pressure term in the mome
alance equation, the elastic stress is constructed so as

raceless,

= σ̂ − trσ̂

trI
I (8)

o that in both Newtonian and viscoelastic liquids the pres
oincides with the mechanical pressurep ≡ −tr(T)/3.

Two different constitutive models—Oldroyld-B and FEN
[38]—are used in this work. Both models assume tha
olecules follow imposed large-scale deformation affinely

he first, the rate of relaxation of the molecules is a linear func
f the distance of the conformation tensorM from its equilibrium
alueI. In the second, the maximum extension of the molec
s finite, and their rate of relaxation grows without bound as
verage molecular extension approaches its maximum v
able 1reports the constitutive functions and the free energ
ach model.

Thus, the constitutive parameters are: the polymer e
odulusG, the relaxation timeλ, and the ratio of the max
um length square of the polymer molecules to their ave

ength square at equilibriumb (only for FENE-P). In both mod
ls, the polymer viscosityηp can be defined as a function of t
lastic modulus and relaxation time, i.e.,ηp = Gλ.

The boundary conditions are:
m
be

.

ς is the liquid surface tension,s the coordinate along th
free surface, andPamb is the ambient pressure. It is set
zero.

4) Outflow: fully developed flow. n · ∇v = 0 (refs.[39,40] for
details).

.2. Solution method

Because of the free surfaces, the flow domain is unkno
riori. Capillarity is comparable to viscous and elastic force
oating flows; fully coupled solution methods (where the
ain shape and the flow solution are computed simultaneo
re superior to loosely-coupled method (where the domain s
nd the flow are computed alternatively in a fixed-point it

ion scheme). Fully coupled methods rely on mapping the
nown physical domainΩ into a known reference domainΩ0
y means of a bijective transformationx = x(ξ), wherex and
denote position in the physical and reference domain, re

ively [30–32,41–45]. The mapping used here is governed
lliptic equations[25,32,46]

· (D̃ · ∇ξ) = 0 (11)

hereD̃ is a symmetric positive definite tensor of diffusion-l
oefficients used to control element spacing. Boundary c
ions are needed in order to solve the second-order partial d
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ential equations(11). Along solid walls and synthetic inlet and
outlet planes, the boundary is located by imposing a relation be-
tween the coordinates from the equation that describes the shape
of the boundary, and stretching functions are used to distribute
the points along the boundaries. The free boundary (gas–liquid
interface) is located by imposing the kinematic condition(10).

The set of differential equations that describe the conserva-
tion of momentum and mass(5), the evolution of the polymer
conformation(6), and define the mapping between the physical
and reference domain(11), together with the algebraic equations
for the viscous and elastic stresses are all solved on the refer-
ence domainΩ0 by the finite element method. The formulation
used here is the DEVSS-TG/SUPG[24,25], a modification of
the DEVSS-G/SUPG finite element method[47,48] where the
continuous representation of the velocity gradient field is trace-
less by definition,L − ∇v + (∇ · v)I/(trI) = 0.

The position and velocity fields are represented by La-
grangian biquadratic basis functions, the pressure field by linear
discontinuous basis functions and the interpolated velocity gra-
dient and the conformation tensor by Lagrangian bilinear basis
functions. The mesh generation equations and the momentum
equation are weighted with Lagrangian biquadratic basis func-
tions (Galerkin), the continuity equation with linear discontinu-
ous (Galerkin), and the velocity gradient interpolation with La-
grangian bilinear (Galerkin). The conformation transport equa-
tion is weighted with the Streamline–Upwind Petrov–Galerkin
m
i n the
fi

ap
p rep
r on’s
m con
t t
m e lev

of refinement near the free surface. Mesh 1 has 20 element across
the film thickness and 60 elements along the film split free sur-
face. The total number of degrees of freedom is 49,260. Mesh 2
has 30 elements across the film thickness and 90 elements along
the free surface, resulting in a total number of degrees of free-
dom equal to 109,525. The finest mesh, Mesh 3, has 40 elements
across the film thickness, 120 elements along the free surface
and a total number of degrees of freedom equal to 193,548.Fig.
4 shows the tesselation near the free surface for Meshs 1 and 3.

3. Results

The important dimensionless parameters for the flow studied
here are:

(1) Reynolds number:Re = ρVR/H0 ≡ 0 hereafter;
(2) Capillary number:Ca = (ηs + ηp)V/ς;
(3) Dimensionless gap:H0/R ≡ 0.01 hereafter;
(4) Weissenberg number:We = λV/H0;
(5) Solvent to total viscosity ratio:β = ηs/(ηs + ηp) ≡ 0.59

hereafter;
(6) Polymer molecules extensibility (when using FENE-P

model):b.

3.1. Newtonian liquids

eed
t apil-
l
q e.g.
0 e-
t nt of
c loca-
t ging
t those

3 ne
ethod,ψM ≡ ϕM + huv · ∇ϕM. The upwind parameterhu co-
ncides with the characteristic size of the smallest element i
nite element mesh.

The set of nonlinear algebraic equations that arises from
lying the method of weighted residuals and the variables
esentation in terms of basis functions is solved by Newt
ethod with analytical Jacobian and first order arclength

inuation[49,50]and a bordering algorithm[51]. Three differen
eshes were used. The main difference between them is th

Fig. 4. Detail of Meshs 1 and
-
-

-

el

The variation of the predicted flow rate in units of roll sp
imes gap, and consequently the film thickness, with c
ary number is small. It varies fromq ≡ Q/2VH0 � 1.34 to
� 1.30, in the range of capillary number explored here,
.1 ≤ Ca ≤ 2. Unlike in slot coating and Hele–Shaw flow b
ween parallel walls, the film thickness is nearly independe
apillary number because at higher capillary number the
ion of the meniscus moves towards the minimum gap chan
he curvature of the free surface. These results reproduce

ar the film splitting free surface.
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Fig. 5. Evolution of the streamlines and second invariant of the rate of deformation tensor as a function of capillary number for Newtonian flow.

presented by Coyle et al.[8]. The meniscus position is a strong
function of the capillary number. If surface tension is strong
compared to the viscous forces, i.e. at low capillary number, the
meniscus is pulled away from the gap, the curvature of the free
surface at the symmetry plane is small and a recirculation at-
tached to the meniscus is present (Fig. 5). As the capillary num-
ber rises, the meniscus recedes and the free surface becomes
more curved. Because the rolls are rotating at equal speed, the
flow is symmetric and only half of the flow domain is shown.
AboveCa = 0.4, no recirculation is present and there is only
one stagnation point at the free surface, located at the mid-plane
between the rolls. The evolution of the positive eigenvalue of the
rate of strain tensor, in units of roll speed over half the distance
between the rolls, is also shown in the plot. There is a region of
large deformation rate near the roll surface. The deformation in
this part of the flow is dominated by shear. Downstream of the
stagnation point at the free surface, the liquid is accelerated to
the roll speed, and a local maximum of the deformation rate at
the free surface can be observed. The deformation in this part
of the flow is dominated by extension. As the capillary number
grows, the maximum deformation rate along the free surface
rises and the position of the local maximum moves upstream.

At low capillary number, e.g.Ca ≤ 0.6, the deformation rate
along the symmetry line close to the meniscus is small and de-
pends weakly on capillary number, even on flows that do not have
a recirculation attached to the free surface (Ca = 0.4 and 0.6), as

Fig. 6. Rate of deformation along the symmetry line at different capillary num-
bers. Each curve ends at the correspondent meniscus position.
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Fig. 7. Normal stress component along the streamlines. (a)Ttt and normal to the streamlines and (b)Tnn as a function of capillary number for Newtonian flow.
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Fig. 8. Product of normal stress difference and local curvature along the free
surface as a function of the capillary number.

Fig. 9. Normal stresses along and perpendicular to the free surface at the film
splitting stagnation point as a function of capillary number. The normal stress
differenceTtt − Tnn is the driving force for the flow instability that leads to
ribbing.

shown inFig. 6. BetweenCa = 0.6 and 0.8, a strong transition
takes place and the deformation rate at the free surface stagnation
point rises considerably with capillary number. The critical cap-
illary number at the onset of ribbing for Newtonian liquids pre-
dicted by linear stability analysis of the two-dimensional steady
state flow atH0/R = 0.01 isCa = 0.7 [8,46].

The evolution of the normal stress components in the stream-
line directionTtt and perpendicular to the streamlinesTnn near

Fig. 10. Velocity gradient at different flow regimes, with and without recirculation

Table 2
Meshes used in the study

Mesh Elements Degree of
freedom

Max.We
Old.-B

Max.We
FENE-P

Mesh 1 1760 47391 3 3
Mesh 2 3960 105401 6 6
Mesh 3 7040 186291 8 11

Fig. 11. Comparison of normal stressTtt along the free surface using three
different discretizations atWe = 3, Ca = 0.2 andb = 50 (FENE-P model). The
solutions are mesh independent.

the free surface as a function of capillary number is shown in
Fig. 7. These normal stresses are a combination of pressure and
normal viscous stress. At low capillary number, e.g.,Ca = 0.2,
the normal stress near the film split meniscus is weak. As the
capillary number grows and the recirculation attached to the free
surface disappears, the flow becomes stronger and the stresses
at the meniscus rises considerably. The evolution of the product
of the normal stress differenceTtt − Tnn and the local curvature
along the free surface as a function of the capillary number is
shown inFig. 8. s = 0 corresponds to the point at the symmetry
line. According to Graham’s analysis, this is the driving force
for the meniscus instability. As the capillary number rises, the
normal stress difference along the free surface becomes stronger.
The high tangential stress at the film splitting stagnation point
is related to the flow instability that leads to the formation of
ribbing in forward roll coating at high capillary number.

Fig. 9summarizes the evolution of the normal stress compo-
nentsTtt (in the streamline direction) andTnn (direction perpen-
dicular to the streamlines) at intersection between the free sur-
face and the symmetry line as the capillary number rises. At low
attached to the free surface. The recirculation disappears when∂u/∂x = ∂v/∂y = 0.
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Fig. 12. Streamlines and maximum eigenvalue of the conformation tensor as a function of Weissenberg number atCa = 0.2 (Oldroyd-B model).

capillary number, e.g.Ca = 0.2, there is a recirculation attached
to the free surface at the separation point andTnn > Ttt. As the
capillary number increases, the normal stress on the streamline
directionTtt grows faster than the normal stress perpendicular
to the free surfaceTnn, and becomes larger than the latter at ap-
proximatelyCa ≈ 0.3. This flow state is the one at which the re-
circulation attached to the free surface disappears. As sketched
in Fig. 10, when the recirculation is present,∂u/∂x > 0 and
∂v/∂y < 0 at the intersection of the free surface and the symme-
try line. When the flow has only one stagnation point at the sym-
metry line and no recirculation,∂u/∂x < 0 and∂v/∂y > 0. The
transition occurs when∂u/∂x = ∂v/∂y = 0 and consequently
Tnn = Ttt = −p. The stress difference (Ttt − Tnn) at the sym-
metry line becomes stronger as the capillary number rises; this
destabilizing force[1] leads to ribbing once it overcomes the
stabilizing action of surface tension (in these operating condi-
tions, linear stability analysis of the Newtonian flow predicts
that ribbing occurs atCa ≈ 0.7).

3.2. Viscoelastic liquids

Viscoelastic free surface flows such as the one studied here
present steep stress boundary layers attached to the free surface

[24–26]. The stress boundary layer thins as Weissenberg number
rises; therefore, for any given discretization there is a maximum
value of the Weissenberg number above which the stress gradient
cannot be resolved and the computation fails to converge. The
maximum values of the Weissenberg number for all the three
meshes tested and the two constitutive models used are reported
in Table 2.

Fig. 11shows the normal stress componentTtt along the film
splitting meniscus atWe = 3, Ca = 0.2 andb = 50 (FENE-P
model) for the three different meshes tested.

The results show that the solutions obtained are mesh-
converged. Most of the predictions presented hereafter were
obtained with Mesh 3 in order to be able to achieve higher Weis-
senberg number.

The orthonormal eigenvectorsmi of the conformation dyadic
M represent the three orthogonal directions along which
molecules are stretched or contracted. The corresponding eigen-
values represent the square of the principal stretch ratios of
flowing polymer segments, i.e., the average length square of
polymer segments along the principal directions of stretch di-
vided by the length square of the segments at equilibrium. The
eigenvalues ofM are always real and positive because the con-
formation tensor is symmetric and positive definite. Hereafter,
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Fig. 13. Molecular extension rate near the free surface as a function of Weissenberg number atCa = 0.2.

the convention is usedm1 ≤ m2 ≤ m3 to order the eigenval-
ues of conformation. The evolution of the streamlines and the
maximum eigenvaluem3 of the conformation dyadic as a func-
tion of the Weissenberg number atCa = 0.2 obtained with the
Oldroyd-B model is shown inFig. 12. At We = 1, the flow is
very close to that of a Newtonian liquid. There is a large recircu-
lation attached to the free surface and the molecular extension
is small (m3 < 2). The highest molecular stretch occurs in the
shear dominated flow near the roll surface. As the Weissenberg
number rises, the polymer molecules become more and more
stretched and a thin layer of high molecular extension grows at
the free surface, downstream of the stagnation point. This region
of high extension pulls liquid away from the recirculation and its
size decreases as the Weissenberg number of the flow rises. At
We = 6 the recirculation is much smaller than the one observed
in Newtonian flow, and atWe = 8 it has vanished. The elastic
forces that come from the extended polymer molecules change
completely the nature of the flow near the free surface. The flow
at the film splitting stagnation point becomes much stronger as
the elastic forces rise at a fixed capillary number.

The main difference between extensional and shear flows is
that in extension polymer molecules are being extended along

the preferred direction of stretch and orientation, and are being
contracted along the direction where they are already contracted
and least likely to be oriented, whereas in a shear flow the prin-
cipal directions of stretching do not coincide with the principal
directions of molecular orientation. Taking into account this im-
portant physical difference, Pasquali and Scriven[25] defined a
mean ensemble molecular extension and shear rates

ε̇M ≡ m3m3 : D; γ̇M ≡ |m1m3 : D| (12)

Fig. 13shows the evolution of the molecular extension rate
as a function of Weissenberg number atCa = 0.2 (Oldroyd-B
model). As expected, the deformation near the free surface is
dominated by extension, and as the Weissenberg number rises, a
region of high molecular extension is formed attached to the film
splitting free surface just downstream of the stagnation point.

The strong extensional character of the flow near the free
surface at high Weissenberg number leads to important changes
in the stress field in that region. The evolution of the normal
stress component of the stress tensorTtt along the streamlines
as a function of the Weissenberg number is shown inFig. 14.
At low capillary number, the stress field is similar to that of the
Newtonian flow (seeFig. 7(a)). As the liquid elasticity grows,
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Fig. 14. Evolution of the normal stress component along the streamlinesTtt and streamlines as Weissenberg number grows.Ca = 0.2.

the constant stress bands are distorted in the direction of the main
flow and the stress at the free surface rises. At high Weissenberg
number, there is a high stress boundary layer attached to the free
surface and the maximum value of the stress inside the boundary
layer is a strong function of the Weissenberg number.

The evolution of the product of the normal stress difference
Ttt − Tnn and the local curvature along the free surface atCa =
0.4 as a function of the Weissenberg number is presented inFig.
15. This is the driving force for the flow instability. Interestingly,
the highest value of the destabilizing force is not reached at the
film-split location, but about one gap downstream of it.

Fig. 16shows the evolution of the normal stresses along and
perpendicular to the free surface,Ttt andTnn, at the stagnation
point located at the intersection of the symmetry line and the
free surface as the Weissenberg number rises. The predictions
shown were obtained with the Oldroyd-B model atCa = 0.2.
The Newtonian flow (We = 0) at this capillary number is sta-
ble with respect to three-dimensional perturbation, i.e. the stress
differenceTtt − Tnn is not strong enough to overcome the stabi-
lizing action of surface tension. The normal stress perpendicular
to the free surfaceTnn is virtually independent of Weissenberg
number. However, the normal stress along the streamlinesTtt
grows as the liquid becomes more elastic. This effect is even

stronger beyond the capillary number at which the recirculation
attached to the free surface disappears. Clearly, the destabiliz-
ing stress differenceTtt − Tnn grows as the liquid becomes more
elastic. Therefore, at each capillary number, there is a critical

Fig. 15. Product of normal stress difference and local curvature along the free
surface as a function of the Weissenberg number atCa = 0.4.
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Fig. 16. Normal stresses along and perpendicular to the free surface at the film
splitting stagnation point as a function of Weissenberg number atCa = 0.2
(Oldroyd-B model). The normal stress differenceTtt − Tnn is the driving force
for the flow instability that leads to ribbing.

value of the Weissenberg number above which the normal stress
difference along and perpendicular to the free surface becomes
stronger than the stabilizing surface tension force and the flow
becomes unstable with respect to cross-web disturbances.

All the predictions presented up to this point were obtained
using the Oldroyd-B constitutive model, that assumes that the
polymer molecules can be extended without bounds. This leads
to unbounded extensional viscosity at finite extension rates. In
the finitely extensible, non-linear elastic (FENE) constitutive
equation, the maximum extensional of the molecules is finite
and their rate of relaxation grows infinitely fast as the average
molecular extension approaches its maximum value. The param-
eterb, defined as the ratio of the maximum length square of the
polymer molecules to their average length square at equilibrium,
controls the molecular extensibility. The effect of the polymer
extensibility is analyzed next. As the molecules becomes stiffer,
i.e., b falls, the maximum elastic stress decreases, as expected.
Fig. 17shows the tangential and normal components of the poly-
meric stressσtt andσnn atCa = 2,We = 2 and different values
of b. The predictions obtained atb = 100 (not shown) virtually
coincide with those obtained with the Oldroyd-B model.

Fig. 17. Normal components of the elastic stress normal (σnn) and tangential (σtt) to th
(FENE-P model).
e streamlines as a function of molecular extensibilityb forCa = 2 andWe = 2
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4. Conclusion

In forward roll coating, above a critical capillary number,
the two-dimensional film splitting meniscus becomes three-
dimensional, resulting in more or less regular stripes in the
coated liquid film. For Newtonian liquids, the stability of the
two-dimensional flow is determined by a competition of surface
tension and viscous forces. Several experimental studies have
shown that liquid viscoelasticity destabilizes the flow. When
minute amounts of flexible polymer are present, the onset of
the three-dimensional instability occurs at much lower speeds
than in the Newtonian case. The mechanisms responsible for
this early onset of the instability are not completely understood
yet.

The two-dimensional flow of viscoelastic liquids in a for-
ward roll coating gap was analyzed by solving the continuity and
momentum equations coupled with two differential constitutive
equations, the Oldroyd-B and FENE-P models. The resulting
set of differential equations was solved by weighted residual
method and finite element basis functions. The predictions re-
ported here describe the mechanisms by which liquid elasticity
destabilizes the flow: the extensional flow downstream of the
film splitting stagnation point leads to a high elastic stress at the
free surface. This high stress in the streamline direction pulls
liquid away from the recirculation that is present in Newtonian
flows at low capillary number. As the recirculation diminishes
a poin
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