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Abstract

Roll coating is distinguished by the use of one or more gaps between rotating cylinders to meter and apply a liquid layer to a substrate. Except :
low speed, the two-dimensional film splitting flow that occurs in forward roll coating is unstable; a three-dimensional steady flow sets in, resulting
in more or less regular stripes in the machine direction. For Newtonian liquids, the stability of the two-dimensional flow is determined by the
competition of capillary and viscous forces: the onset of meniscus nonuniformity is marked by a critical value of the capillary number. Although
most of the liquids coated industrially are non-Newtonian polymeric solutions and dispersions, most of the theoretical analyses of film splitting
flows relied on the Newtonian model. Non-Newtonian behavior can drastically change the nature of the flow near the free surface; when minute
amounts of flexible polymer are present, the onset of the three-dimensional instability occurs at much lower speeds than in the Newtonian case.

Forward roll coating flow is analyzed here with two differential constitutive models, the Oldroyd-B and the FENE-P equations. The results show
that the elastic stresses change the flow near the film splitting meniscus by reducing and eventually eliminating the recirculation present at loy
capillary number. When the recirculation disappears, the difference of the tangential and normal stresses (i.e., the hoop stress) at thee free surfe
becomes positive and grows dramatically with fluid elasticity, which explains how viscoelasticity destabilizes the flow in terms of the analysis of
Graham [M.D. Graham, Interfacial hoop stress and instability of viscoelastic free surface flows, Phys. Fluids 15 (2003) 1702-1710].
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction He showed that the adverse pressure gradient near the film-split
meniscus necessary to decelerate the flowing liquid destabilizes
Roll coating is widely used to apply a thin liquid layer to a the free surface, whereas surface tension has a stabilizing ef-
continuous, flexible substrate. At low speeds the flow is twofect. A critical value of the ratio between these two forces, i.e.,
dimensional and steady; as the roll speed is raised, the twdhe capillary numbeCa = uV/¢, marks the onset of the free
dimensional flow becomes unstable and is replaced by a steadurface nonuniformity. Herey is the liquid viscosityg its sur-
three-dimensional flow which results in more or less regulaface tension, andt is the mean roll speed. Further experiments
stripes in the machine directioRi@. 1). This type of instability, and theoretical models to describe the film-splitting instability
or rather the three-dimensional flow to which it may lead, isof Newtonian liquids between rigid rolls have been developed
commonly called-ibbing; it can limit the speed of the process in refs.[3-8].
if a smooth film is required as a final product. In practice, coating liquids often contain polymers. Non-
The film-splitting flow of a Newtonian liquid exiting from Newtonian behavior can drastically change the nature of the flow
two rotating rolls and the associated instability have been studiear the free surface and consequently alter the performance of
ied extensively. Pearsdf] was the first to analyze why a flow a coater. The first analyses of non-Newtonian effects in roll coat-
that otherwise leads to a uniform meniscus can turn unstabléng flows were restricted to shear-thinning behavior and simple
power-law models. By solving the two-dimensional conserva-

—_— tion equations of a shear-sensitive liquid, Coyle Ishowed
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completely understood.
Fig. 1. Three-dimensional periodic flow in forward roll coating film splitting The stability problem can be approached in two ways: (1)
(from [17]). by analyzing the two-dimensional flow kinematics at the free
L . . . surface and extracting simple criteria to estimate the critical
ribbing instability. They observed that the critical speed atWh'd}:apillary number and (2) by computing the two-dimensional
r.ibb_ing firstappeared was lower than in the case of a Newton?aﬂow by solving the mass and momentum balance equations to-
liquid. They advanced simple arguments about the effect of liqgether with a suitable constitutive equation for the stress, and
uid elasticity on the stability of the flow. They concluded that o assessing the stability of this flow to infinitesimal three-
the elastic stresses that appears in the extensional flow near t4gnensional perturbations.
free surface destabilize the flow. The formation of small liquid Simple criteria to estimate the stability of film splitting flows

drops at the film split meniscus, a phenomenon known as Spafaye heen proposed for Newtonian liquids by Pitts and Greiller
ter and misting, was studied by Gld44—-14] He observed roll [3] and for viscoelastic liquids by Grahaji.

spatter in poating of aqueous dispersions of cplloidal polymer “The stability criterion proposed by Pitts and Greilla} is

plus otheringredientsin ‘latex’ paints by evaluating several tradgy,se on a spanwise momentum balance along the perturbed free
paints and comparing the_lr propensity to spatter. T_he|r main CoNsrface. In this analysis, the viscous (and viscoelastic) stresses
clusion was that paints with high apparent extensional ViSCOSity e neglected and only the pressure is considered as the driving
produced large and stable filaments. Fernando and co-workefgyce for the instability. The flow is considered unstable if the
[15,16] addressed spattering in commercial paints. They foung,nsyerse normal tensile stress under the perturbed free surface
that the instability occurred at lower capillary number in lig- 4t the midpoint between the crest and the throat of the devel-
uids with higher apparent extensional viscosity (measured bysing wave (location 1 iffig. 2) is smaller than the transverse
fiber-suction technique). Moreover, the length of filaments and,rma) stress at the same streamwise location beneath the crest
the mtgnsny of misting increased with the apparent extensiong|t e wave (location 2 iffig. 2—or, conversely, if the pressure
viscosity. Carvalho et a[17], and later Dontul§l8], analyzed  heneath the crest of the wave (location Fig. 2) is higher than
experimentally the film splitting flow of aqueous solutions of 14t ot the midpoint between the crest and the throat (location
PEG and PEO. They concluded that minute amounts of flexiy i Fig. 2). In this case, the gradient of spanwise stress will
ble polymer lowered drastically the critical speed at which theyyjye fiow from the throat into the crest of the wave and thus the
three-dimensional instability occurs. Grillet et HI9] and re- instability will grow. The flow is stable if

cently Lopez et al[20] studied experimentally the instability of

non-Newtonian flow between two non-concentric cylinders. The dp dH 4 N2 (1)

latter used two aqueous polymer solutions with similar shear- dr dr ’

thinning behavior but different elastic characteristics, i.e., xan- _ . . , "

than (inelastic) and polyacrylamide (elastic). With the elasticvn:r;irigz—és: |1s/ Zﬁelsn ”l‘f d'guﬁ:c‘;zg t‘;“nr;it;:f;iégf d?:;t:g;glnng
(polyacrylamide) solution, the critical capillary number for the & d ’ 9

instability dropped with growing polymer concentration by up tothe normal tothe free surface (deig. 2), andV is the wavenum-

one order of magnitude compared to the Newtonian case. Witheer;fcthceofrzrctglrbtitéovl?/é\c/);r?t?;r;:r’ g;'tshz'r::g';girllitte“gzﬂ?%seg?t
the xanthan solution, the critical capillary number decrease y Y,

only slightly. The resulting three-dimensional pattern of the freet:'iisaﬁglrriglyptizz ;g;ngfgitlllon Zgi?rﬁz;teelg\:ﬁg: Ir?;:erist.ici?izd on
surface is also a strong function of the liquid properties, which ysIS, B.] o . ap
llary number at the onset of ribbing is a function of the ratio of

suggests that the instability mechanism may be different in th .
case of viscoelastic liquids. ﬁ']ee gap between the rollg to the roll radiusk, and ought to
n

Accurate theoretical predictions of the onset of ribbing whe
viscoelastic liquids are used is still not available. The mecha.~ » _ ,oHo0

. . S - Ca* = 28—. (@)
nisms by which the liquid elasticity makes the flow unstable at R
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Recently, Grahanfil] proposed a different simplified crite-
rion to asses the stability of a flow under a curved free surface.
The key, novel component of Graham'’s analysis is the introduc-
tion of a local cylindrical coordinate system at the free surface
which allows the incorporation of the normal stress difference
at the free surface on the radial component of the momentum
balance equation. The combination of a large normal stress dif-
ference, i.e., “hoop stress”, and curvature along a concave free
surface destabilizes the flow. A perturbation theory was pre-
sented to show that a disturbance that locally thickens the lig-
uid layer enhances the normal stress difference at that location,
which drives further thickening of the liquid layer. Capillary
forces counteract this tendency and stabilize the flow. Accord-
ing to Graham’s criterion, the flow is stable when

dTrr
dr

However, this analysis neglects an important term present
in the earlier work of Pitts and GreillgB], namely the sta-
bilizing effect of meniscus curvature variation at the separat-
ing stagnation point due to free surface position variation, i.e.,
¢(dH /dr)—this term was present in an earlier analysis by Gl‘a-Fig' 3.. Sketch of a forward roll coating bead. Domain at which the conservation
ham[21]. Whereas this term is irrelevant in flows where the fregSauations are solved.
surface develops between nearly parallel plates (such as planarn this work, the two-dimensional, viscoelastic, free surface
Hele—Shaw flow, for example), it is important in flows betweenroll coating flow is analyzed with two differential constitutive
diverging surfaces, such asroll coating flows, because itaccountsodels: the Oldroyd-B and the FENE-P equations. The free
for the effect of an outward motion of the free surface which staboundary problem is transformed into a fixed boundary prob-
bilizes the flow because it reduces the capillary pressure droem by mapping the unknown domain into a reference one
across the free surface and thus diminishes the pressure gradi¢p$,30—-33] and the continuity, momentum, conformation, and
beneath the free surface. The complete (simplified) criterion isnesh mapping equations are solved with the DEVSS-TG/SUPG
dr., dH method with finite element basis functiof2s].

— pgr = H(ow — 01r) — pgr < ( + N2> ; (4) The computed flow and stress fields are analyzed in light of

dr dr Graham’s[1] work to understand the role of the elastic stress

it reduces to Pitts and Greiller’s criterion (E(.)) if viscous  on the force balance at the interface and how liquid elasticity
forces are neglectedy. = —p). destabilizes the two-dimensional flow.

Scriven and co-workeff8,22,23]analyzed the stability prob-
lem more rigorously in the case of various Newtonian coating2. Mathematical model
flows by evaluating the response of the two-dimensional, steady-
state flow to infinitesimal periodic disturbances. Such linear sta- The flow domain where the governing equations are inte-
bility analysis was used successfully to determine critical capilgrated is sketched iRig. 3. The two rolls are moving from left
lary numbers at different gap to roll ratio at the onset of ribbingto right in the figure at equal speéd The minimum clearance
for both rigid and deformable forward roll coating flows of New- between the rolls is Hy. The position of the meniscus is un-
tonian liquids. known a priori and it is a function of the liquid properties and

Modeling of viscoelastic coating flows must rely on theoriesoperating conditions.
that can capture sufficiently well the interplay of flow and lig-
uid microstructure. Moreover, coating flows always involve free2.1. Governing equations
surfaces; the domain where the differential equations are posed
is unknown a priori and it is part of the solution, and the shape of For incompressible and isothermal flow, the momentum and
the free surfaces must be captured well because capillarity is orm®ntinuity equations are:
of the key forces that control the flow. These two characterlstlcsV VV_V.T—0 and V.v=0 )
make the problem extremely complex, and prototypical stead(})
viscoelastic free surface coating flows have been studied onlyherep is the liquid density and’ = —pI + 1 + o is the total
recently[24—-27] Likewise, the stability analysis of viscoelastic stress tensor, the sum of presspireiscous stress = 2nsD and
flows is fraught with difficulties. Simple non-viscometric flows elastic stresg, wherens is the solvent viscosity anD is the
have been tacked successfully recef2,29], and methods for rate of strain tensor.
linear stability analysis of viscoelastic free surface flows are still The viscoelastic liquid is modeled by introducing the confor-
under investigation. mation dyadidV, which represents the stretch and orientation of

— pgr = H(ow — o) — pgr < SN2 @)
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Table 1

Constitutive parameters of the Oldroyd-B and FENE-P models

Constitutive model & e g0 g1 g2 a(M)

Oldroyd-B 1 1 -1 1 0 G/(2trM)

FENE-P 1 1 -1 ®-1)/(b—1trM/3) 0 (3/2)G(b — 1)In[(b — 1)/(b — trM/3)]

Note that in the FENE-P model, the functign = 1 at equilibrium M = I); thus, the definitions of relaxation time aadliffer slightly from those in ref[38].

the flowing polymer moleculg84—-36] The equation of change (1) Inflow: flooded condition and fully developed conformation

of conformation can be written §25,36] tensor.
5 DM The flow in a forward roll coating gap is self-metering,
o +v-VM — ZEWM i.e. the flow rate is not known a priori. A pressure datum
' p = Po = 0is imposed at the inflow boundary. The inflow
_¢ <M DD M2 MM> boundary is located far upstream of the nip, so that there
I'M the conformation of the polymer molecules does not change

T 1 ) along streamlines, i.ev,- VM = 0. Consequently, atthe in-
-M-W-W' -M+ X(gol +gM+g2M) =0  (6) flow boundary i - v < 0) the following algebraic equation

. . - ) is imposed39]:
whereW is the vorticity tensorj the characteristic relaxation

time of the polymerg(M) and (M) represent the resistance DM D:M
to stretching and relative rotation of polymer segments, and 26— M —¢ <M .D+D-M— 2'M>

go(M), g1(M) and g>(M) define the rate of relaxation of the I'M I'M
polymer segments. Different constitutive models can be ob- T 1 2
tained by specifying the appropriate form of the constitutive -M-W-W'-M+ X(gol + 1M+ g2M?) =0
functionsg, ¢, go, g1 andg» (see refs[34-37]for summary ta- ©)
bles).

The relationship between elastic stress and conformation i) Roll surfaces: no-slip, no-penetration. v = QRt = Vt,
[34,36} whereR is the roll radius 2 the angular speed of the rolls,

M % % andt is the unit tangent vector to the roll surface in the
0=2—0)——M: —+2tM- — @) direction of rotation.
I:M M oM (3) Free surface: force balance and kinematic condition.

wherea(T, M) is the Helmholtz free energy per unit volume. ot
Because the liquid is incompressible, the isotropic part ofthe n-T=c¢— —nPymp and n-v=20 (10)
elastic stress is constitutively indetermings$]; in order to ds

keep the same meaning of the pressure term in the momentum ¢ is the liquid surface tensiom,the coordinate along the
balance equation, the elastic stress is constructed so as to be free surface, an®amp is the ambient pressure. It is set to

traceless, ZEero.
tre (4) Outflow: fully developed flow. n - Vv = 0 (refs.[39,40]for
0=0— tTII (8) details).

so that in both Newtonian and viscoelastic liquids the pressure 2. Solurion method
coincides with the mechanical pressyre= —tr(T)/3.

Two different constitutive models—Oldroyld-B and FENE-  Because of the free surfaces, the flow domain is unknown a
P [38]—are used in this work. Both models assume that thgyriori. Capillarity is comparable to viscous and elastic forces in
molecules follow imposed large-scale deformation affinely. Incoating flows; fully coupled solution methods (where the do-
thefirst, the rate of relaxation of the molecules is alinear functiorimain shape and the flow solution are computed simultaneously)
of the distance of the conformation tendéfromits equilibrium  are superior to loosely-coupled method (where the domain shape
valuel. In the second, the maximum extension of the moleculegind the flow are computed alternatively in a fixed-point itera-
is finite, and their rate of relaxation grows without bound as thQion Scheme)_ Fu||y Coup|ed methods re|y on mappmg the un-
average molecular extension approaches its maximum valuRnown physical domai2 into a known reference domai
Table Ireports the constitutive functions and the free energy folhy means of a bijective transformatian= x(£), wherex and
each model. & denote position in the physical and reference domain, respec-

Thus, the constitutive parameters are: the polymer elastigyvely [30-32,41-45] The mapping used here is governed by
modulusG, the relaxation time., and the ratio of the maxi- elliptic equationg25,32,46]

mum length square of the polymer molecules to their average

length square at equilibrium(only for FENE-P). In both mod- ¥ - (D-V§) =0 11
els, the polymer viscosity, can be defined as a function of the whereD is a symmetric positive definite tensor of diffusion-like
elastic modulus and relaxation time, i.gs,= GA. coefficients used to control element spacing. Boundary condi-

The boundary conditions are: tions are needed in order to solve the second-order partial differ-
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ential equationg11). Along solid walls and synthetic inlet and of refinement near the free surface. Mesh 1 has 20 element across
outlet planes, the boundary is located by imposing a relation behe film thickness and 60 elements along the film split free sur-
tween the coordinates from the equation that describes the shafaee. The total number of degrees of freedom is 49,260. Mesh 2
of the boundary, and stretching functions are used to distributbas 30 elements across the film thickness and 90 elements along
the points along the boundaries. The free boundary (gas—liquithe free surface, resulting in a total number of degrees of free-
interface) is located by imposing the kinematic condit(b@). dom equal to 109,525. The finest mesh, Mesh 3, has 40 elements

The set of differential equations that describe the conservaacross the film thickness, 120 elements along the free surface
tion of momentum and mags), the evolution of the polymer and a total number of degrees of freedom equal to 193f548.
conformation(6), and define the mapping between the physical shows the tesselation near the free surface for Meshs 1 and 3.
and reference doma(fi1), together with the algebraic equations
for the viscous and elastic stresses are all solved on the refe3: Results
ence domain2g by the finite element method. The formulation
used here is the DEVSS-TG/SUR®P4,25], a modification of The important dimensionless parameters for the flow studied
the DEVSS-G/SUPG finite element methi@dd,48] where the  here are:
continuous representation of the velocity gradient field is trace-
less by definitionL. — Vv + (V - v)I/(trI) = 0. (1) Reynolds numbemke = pVR/Hp = 0 hereafter;

The position and velocity fields are represented by La{2) Capillary numberCa = (ns+ np)V/s;
grangian biquadratic basis functions, the pressure field by linegB) Dimensionless gafo/R = 0.01 hereafter;
discontinuous basis functions and the interpolated velocity gra4) Weissenberg numbeWe = 1V/ Hp;
dient and the conformation tensor by Lagrangian bilinear basi¢) Solvent to total viscosity ratio8 = ns/(ns + 17p) = 0.59
functions. The mesh generation equations and the momentum hereatfter;
equation are weighted with Lagrangian biquadratic basis func{6) Polymer molecules extensibility (when using FENE-P
tions (Galerkin), the continuity equation with linear discontinu-  model):b.
ous (Galerkin), and the velocity gradient interpolation with La-
grangian bilinear (Galerkin). The conformation transport equa3.l. Newronian liquids
tion is weighted with the Streamline—-Upwind Petrov—Galerkin

methodym = om + h'v - V. The upwind parametét co- The variation of the predicted flow rate in units of roll speed
incides with the characteristic size of the smallest element in thémes gap, and consequently the film thickness, with capil-
finite element mesh. lary number is small. It varies from = Q/2VHy >~ 1.34 to

The set of nonlinear algebraic equations that arises from apy ~ 1.30, in the range of capillary number explored here, e.g.
plying the method of weighted residuals and the variables rem.1 < Ca < 2. Unlike in slot coating and Hele—Shaw flow be-
resentation in terms of basis functions is solved by Newton’sween parallel walls, the film thickness is nearly independent of
method with analytical Jacobian and first order arclength coneapillary number because at higher capillary number the loca-
tinuation[49,50]and a bordering algorithp1]. Three different  tion of the meniscus moves towards the minimum gap changing
meshes were used. The main difference between them is the lextee curvature of the free surface. These results reproduce those

e,
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Fig. 4. Detail of Meshs 1 and 3 near the film splitting free surface.
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Fig. 5. Evolution of the streamlines and second invariant of the rate of deformation tensor as a function of capillary number for Newtonian flow.

presented by Coyle et dB]. The meniscus position is a strong At low capillary number, e.gCa < 0.6, the deformation rate
function of the capillary number. If surface tension is strongalong the symmetry line close to the meniscus is small and de-
compared to the viscous forces, i.e. at low capillary number, thpends weakly on capillary number, even on flows that do not have
meniscus is pulled away from the gap, the curvature of the frearecirculation attached to the free surfa€e & 0.4 and 0.6), as
surface at the symmetry plane is small and a recirculation at-

tached to the meniscus is presdfity 5). As the capillary num- 04—
ber rises, the meniscus recedes and the free surface become:  ;4F
more curved. Because the rolls are rotating at equal speed, the ;

LN
flow is symmetric and only half of the flow domain is shown. ;o 03}
Above Ca = 0.4, no recirculation is present and there is only o025
one stagnation point at the free surface, located at the mid-plane Z :
between the rolls. The evolution of the positive eigenvalue of the % B
rate of strain tensor, in units of roll speed over half the distance  § 15 % iypid
between the rolls, is also shown in the plot. There is a region of :
large deformation rate near the roll surface. The deformationin 2 %'}
this part of the flow is dominated by shear. Downstream of the ; 0,055
stagnation point at the free surface, the liquid is accelerated to & ; _ S ]
the roll speed, and a local maximum of the deformation rate at ¢ 5 e '5‘ e 20 = 25 : """30
the free surface can be observed. The deformation in this part Position along symmetry line ( x / H, )

of the flow is dominated by extension. As the capillary number
grows, the maximum deformation rat_e along the free surfacgig. 6. Rate of deformation along the symmetry line at different capillary num-
rises and the position of the local maximum moves upstream. bers. Each curve ends at the correspondent meniscus position.
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Fig. 7. Normal stress component along the streamlinedi(apd normal to the streamlines and {fa), as a function of capillary number for Newtonian flow.
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02 —————T 7 ! o — Table 2
[ : : : : ] Meshes used in the study
@ ga:o_z Mesh Elements Degree of Max. We Max. We
0.15 il S
8 ., Ca=06 ] freedom Old.-B FENE-P
3o i Mesh 1 1760 47301 3 3
2 01 . RSP "SI | R b - Mesh 2 3960 105401 6 6
P Mesh 3 7040 186291 8 11
> £
o 1
g‘_.-=0<05 = 03~ T
o~ [ : : : :
R
E5 g 3 ] 0.25F
(=] 0 B B e
45 ‘ | :
E 3 [ ! 7 $ : 0727
] o0l i 0 [

0 2 4 6 8 10 ;
Arc-length coordinate along the free surface, s / H, 0157

Fig. 8. Product of normal stress difference and local curvature along the free

01}
surface as a function of the capillary number. [

0.05f

1 —————————————————————————

Tangential Stress Component, T, H /(

[ s plonmelon catypedys
0 5 10 15 20 25 30

0.9

Arc-length coordinate along the free surface, s / H,

0.8F

0.7:
b Fig. 11. Comparison of normal stredg along the free surface using three
different discretizations a/e = 3, Ca = 0.2 andb = 50 (FENE-P model). The

0.6f
b solutions are mesh independent.

Normal Stress

0.5f . . . .
L the free surface as a function of capillary number is shown in

Fig. 7. These normal stresses are a combination of pressure and

normal viscous stress. At low capillary number, e(@:,= 0.2,

. 3 3 ] the normal stress near the film split meniscus is weak. As the

AT T T T TR PR R capillary number grows and the recirculation attached to the free

02 03 04 05 06 07 08 08 1 surface disappears, the flow becomes stronger and the stresses
Capillary number, Ca at the meniscus rises considerably. The evolution of the product

of the normal stress differend@ — Thn and the local curvature

Fig. 9. Normal stresses along and perpendicular to the free surface at the fiImI ng the fr f function of th illary number i
splitting stagnation point as a function of capillary number. The normal stresgo g the ree suriface as a cton o € capillary nu eris

difference Ty — Tnn is the driving force for the flow instability that leads to ShOWnN inFig. 8 s = 0 corresponds to the point at the symmetry
ribbing. line. According to Graham’s analysis, this is the driving force

for the meniscus instability. As the capillary number rises, the

shown inFig. 6. BetweenCa = 0.6 and 0.8, a strong transition normal stress difference along the free surface becomes stronger.
takes place and the deformation rate at the free surface stagnatiBhe high tangential stress at the film splitting stagnation point
point rises considerably with capillary number. The critical cap-is related to the flow instability that leads to the formation of
illary number at the onset of ribbing for Newtonian liquids pre- ribbing in forward roll coating at high capillary number.
dicted by linear stability analysis of the two-dimensional steady Fig. 9summarizes the evolution of the normal stress compo-
state flow atHo/R = 0.01 isCa = 0.7 [8,46]. nentsTy (in the streamline direction) ari, (direction perpen-

The evolution of the normal stress components in the streantticular to the streamlines) at intersection between the free sur-
line directionTy and perpendicular to the streamliriBs near  face and the symmetry line as the capillary number rises. At low

0.4f

With recirculation Without recirculation
y av Transition ¥ ov >0
oy~ du_dvg o
X au ox oy X ou <0
—>0 OX
ax

Fig. 10. Velocity gradient at different flow regimes, with and without recirculation attached to the free surface. The recirculation disappéafgwhen /dy = 0.
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Fig. 12. Streamlines and maximum eigenvalue of the conformation tensor as a function of Weissenberg ndmbe0.2t(Oldroyd-B model).

capillary number, e.g"a = 0.2, there is a recirculation attached [24—26] The stress boundary layer thins as Weissenberg number
to the free surface at the separation point @jg> Ti. As the  rises; therefore, for any given discretization there is a maximum
capillary number increases, the normal stress on the streamlimalue of the Weissenberg number above which the stress gradient
direction Ty grows faster than the normal stress perpendiculacannot be resolved and the computation fails to converge. The
to the free surfac&y,, and becomes larger than the latter at ap-maximum values of the Weissenberg number for all the three
proximatelyCa ~ 0.3. This flow state is the one at which the re- meshes tested and the two constitutive models used are reported
circulation attached to the free surface disappears. As sketchéu Table 2

in Fig. 10 when the recirculation is preserdy/dx > 0 and Fig. 11shows the normal stress compon&gelong the film
dv/dy < 0 atthe intersection of the free surface and the symmesplitting meniscus aWe = 3, Ca = 0.2 andb = 50 (FENE-P

try line. When the flow has only one stagnation point at the symmodel) for the three different meshes tested.

metry line and no recirculationy /dx < 0 anddv/dy > 0. The The results show that the solutions obtained are mesh-
transition occurs whedu/dx = dv/dy = 0 and consequently converged. Most of the predictions presented hereafter were
Ton = Tyt = —p. The stress differencel — T,n) at the sym-  obtained with Mesh 3 in order to be able to achieve higher Weis-
metry line becomes stronger as the capillary number rises; thisenberg number.

destabilizing forcg1] leads to ribbing once it overcomes the  The orthonormal eigenvectaus of the conformation dyadic
stabilizing action of surface tension (in these operating condiM represent the three orthogonal directions along which
tions, linear stability analysis of the Newtonian flow predictsmolecules are stretched or contracted. The corresponding eigen-

that ribbing occurs afa ~ 0.7). values represent the square of the principal stretch ratios of
flowing polymer segments, i.e., the average length square of
3.2. Viscoelastic liquids polymer segments along the principal directions of stretch di-

vided by the length square of the segments at equilibrium. The
Viscoelastic free surface flows such as the one studied hegigenvalues oM are always real and positive because the con-
present steep stress boundary layers attached to the free surfdgemation tensor is symmetric and positive definite. Hereafter,
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Fig. 13. Molecular extension rate near the free surface as a function of Weissenberg nu@iber @P.

the convention is usedi; < ma < m3 to order the eigenval- the preferred direction of stretch and orientation, and are being
ues of conformation. The evolution of the streamlines and theontracted along the direction where they are already contracted
maximum eigenvalue:3 of the conformation dyadic as a func- and least likely to be oriented, whereas in a shear flow the prin-
tion of the Weissenberg number@t = 0.2 obtained with the cipal directions of stretching do not coincide with the principal
Oldroyd-B model is shown iifrig. 12 At We = 1, the flow is  directions of molecular orientation. Taking into account this im-
very close to that of a Newtonian liquid. There is a large recircuportant physical difference, Pasquali and Scrij25] defined a
lation attached to the free surface and the molecular extensianean ensemble molecular extension and shear rates
is small n3 < 2). The highest molecular stretch occurs in the. )
shear dominated flow near the roll surface. As the Weissenbefg! = ™33 -
number rises, the polymer molecules become more and more Fig. 13shows the evolution of the molecular extension rate
stretched and a thin Iayel’ of h|gh molecular extension grows %s a function of Weissenberg numberCat = 0.2 (O|dr0yd_B
the free surface, downstream of the stagnation point. This regiomodel). As expected, the deformation near the free surface is
of high extension pulls liquid away from the recirculation and itsgominated by extension, and as the Weissenberg number rises, a
size decreases as the Weissenberg number of the flow rises. fdgion of high molecular extension is formed attached to the film
We = 6 the recirculation is much smaller than the one observedp|itting free surface just downstream of the stagnation point.
in Newtonian flow, and ate = 8 it has vanished. The elastic  The strong extensional character of the flow near the free
forces that come from the extended polymer molecules changgrface at high Weissenberg number leads to important changes
completely the nature of the flow near the free surface. The flowh, the stress field in that region. The evolution of the normal
at the film splitting stagnation point becomes much stronger astress component of the stress tengpmlong the streamlines
the elastic forces rise at a fixed capillary number. as a function of the Weissenberg number is showRiign 14

The main difference between extensional and shear flows iat jow capillary number, the stress field is similar to that of the
that in extension polymer molecules are being extended alongewtonian flow (sedig. 7(a)). As the liquid elasticity grows,

D; M = /mim3 : D| (12)
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Fig. 14. Evolution of the normal stress component along the streanflin@sd streamlines as Weissenberg number gréws= 0.2.

the constant stress bands are distorted in the direction of the mastronger beyond the capillary number at which the recirculation
flow and the stress at the free surface rises. At high Weissenbegedtached to the free surface disappears. Clearly, the destabiliz-
number, there is a high stress boundary layer attached to the fréeg stress differenc&; — T,,n grows as the liquid becomes more
surface and the maximum value of the stress inside the boundaejastic. Therefore, at each capillary number, there is a critical
layer is a strong function of the Weissenberg number.

The evolution of the product of the normal stress difference

Tt — Thn and the local curvature along the free surfac€at= 5 L
0.4 as a function of the Weissenberg number is presenteid)in s
15. This is the driving force for the flow instability. Interestingly, 3 0.08
the highest value of the destabilizing force is not reached at the & o
film-split location, but about one gap downstream of it. '§ o 008
Fig. 16shows the evolution of the normal stresses along and o i
perpendicular to the free surfack; and Ty, at the stagnation E —~ 004
point located at the intersection of the symmetry line and the >; "c
free surface as the Weissenberg number rises. The predictionsg & 0.02
shown were obtained with the Oldroyd-B modelct = 0.2. s
The Newtonian flow e = 0) at this capillary number is sta- :E 0
ble with respect to three-dimensional perturbation, i.e. the stress , : 7 ]
differenceTy — Thn is Not strong enough to overcome the stabi- % 0.02 j——— 2 T 4 s B |

lizing action of surface tension. The normal stress perpendicular Arc-length coordinate along the free surface, s / H,
to the free surfacyy, is virtually independent of Weissenberg

number. HOWG_VE".: the normal stress a|0_ng th? streaml_mes Fig. 15. Product of normal stress difference and local curvature along the free
grows as the liquid becomes more elastic. This effect is eveBurface as a function of the Weissenberg numbeiat: 0.4.
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value of the Weissenberg number above which the normal stress
difference along and perpendicular to the free surface becomes
stronger than the stabilizing surface tension force and the flow
becomes unstable with respect to cross-web disturbances.

All the predictions presented up to this point were obtained
using the Oldroyd-B constitutive model, that assumes that the
polymer molecules can be extended without bounds. This leads
to unbounded extensional viscosity at finite extension rates. In
the finitely extensible, non-linear elastic (FENE) constitutive
equation, the maximum extensional of the molecules is finite
and their rate of relaxation grows infinitely fast as the average
molecular extension approaches its maximum value. The param-
eterb, defined as the ratio of the maximum length square of the
polymer molecules to their average length square at equilibrium,
controls the molecular extensibility. The effect of the polymer
extensibility is analyzed next. As the molecules becomes stiffer,
i.e., b falls, the maximum elastic stress decreases, as expected.

Fig. 16. Normal stresses along and perpendicular to the free surface at the fillsig. 17shows the tangential and normal components of the poly-

splitting stagnation point as a function of Weissenberg numbefaat 0.2
(Oldroyd-B model). The normal stress differerige— T, is the driving force
for the flow instability that leads to ribbing.

meric stress; andonp at Ca = 2, We = 2 and different values
of b. The predictions obtained at= 100 (not shown) virtually
coincide with those obtained with the Oldroyd-B model.

30 10

Fig. 17. Normal components of the elastic stress normg) @nd tangentiald) to the streamlines as a function of molecular extensibilfiyr Ca = 2 andWe = 2

(FENE-P model).
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4. Conclusion [6] M. Savage, Mathematical model for the onset of ribbing, AIChE J. 30
(1984) 999-1002.

In forward roll coating above a critical capillary number [7] H. Benkreira, M.F. Edwards, W. Wilkinson, Ribbing instability in the roll
’ ’ coating of Newtonian fluids, Plastic Rubber Proc. Appl. 2 (1982) 137-

the two-dimensional film splitting meniscus becomes three- | ,

dimenSi(?na:', rfasulting in more or .Ies-s regular str_ipes in the (g p.J. Coyle, C.W. Macosko, L.E. Scriven, Stability of symmetrical film-

coated liquid film. For Newtonian liquids, the stability of the splitting between counter- rotating cylinders, J. Fluid Mech. 216 (1990)

two-dimensional flow is determined by a competition of surface  437-458. _ . -

tension and viscous forces. Several experimental studies have! D-J- Coyle, C.W. Macosko, L.E. Scriven, Film-splitting flows of shear-
Lo . .. i thinning liquids in forward roll coating, AIChE J. 33 (1987) 741-746.

shown that liquid viscoelasticity destabilizes the flow. When[fl

. . 0] T.Bauman, T. Sullivan, S. Middleman, Ribbing instability in coating flows-
minute amounts of flexible polymer are present, the onset of  effect of polymer additives, Chem. Eng. Comm. 14 (1982) 35-46.

the three-dimensional instability occurs at much lower speedg.1] J.E. Glass, Dynamics of roll spatter and tracking. 1. Commercial latex trade
than in the Newtonian case. The mechanisms responsible for paints, J. Coat. Technol. 50 (1978) 53-60.

this ear|y onset of the instability are not completely understoocﬁlz] J.E. Qlass, Dyna_mlcs of roll spatter and tracking. 2. Formulation effects in
yet experimental paints, J. Coat. Technol. 50 (1978) 61-68.

. . . o . [13] J.E. Glass, Dynamics of roll spatter and tracking. 3. Importance of exten-
The two-dimensional flow of viscoelastic liquids in a for- sional viscosities, J. Coat. Technol. 50 (1978) 56-71.

ward roll coating gap was analyzed by solving the continuity and14] J.E. Glass, Dynamics of roll spatter and tracking. 4. Importance of G-star

momentum equations coupled with two differential constitutive ~ recovery and N1 in tacking, J. Coat. Technol. 50 (1978) 72-78.

equations, the Oldroyd-B and FENE-P models. The resulting!®! D-A- Soules, R.H. Fernando, J.E. Glass, Dynamic uniaxial extensional
. . . . . viscosity (DUEV) effects in roll application. 1. Rib and web growth in

set of dlﬁerentlgl equations was solvgd by Welghteo_l r_eS|duaI commercial coatings, J. Rheol. 32 (1988) 181-198.

method and finite element basis functions. The predictions rg16] R.H. Femando, J.E. Glass, Dynamic uniaxial extensional viscosity

ported here describe the mechanisms by which liquid elasticity  (DUEV) effects in roll application. 2. Polymer blend studies, J. Rheol.

destabilizes the flow: the extensional flow downstream of the 32 (1988) 199-213.

film splitting stagnation point leads to a high elastic stress at thgj] M.S. Carvalho, T.J. Anderson, L.E. Scriven, Ribbing instability in forward

. . . . . . deformable roll coating, Proceedings of the 1994 TAPPI Coating Confer-
free surface. This high stress in the streamline direction pulls ence, 1994, pp. 99-104.

liquid away from the recirculation that is present in Newtonian|ig; p. pontula, Polymer solutions in coating flows, Ph.D. thesis, University of
flows at low capillary number. As the recirculation diminishes Minnesota, Minneapolis, MN, available from UMI, Ann Arbor, MI, order
and ultimately disappears, the flow near the stagnation point number 9937847, 1999.

becomes stronger and the elastic stresses at the meniscus ev@ﬁ A.M. Grillet, A.G. Lee, E.S.G. Shagfeh, Observations of ribbing instabil-
ities in elastic fluid flows with gravity stabilization, J. Fluid Mech. 399

higher. Consequently, the normal stress difference acting on the (1999) 49-83

free surface grows with Weissenberg number; this is the drIVIn920] F. Varela Lopez, L. Pauchard, M. Rosen, M. Rabaud, Non-Newtonian ef-
force of the instability that leads to the formation of ribbjig. fects on ribbing instability threshold, J. Non-Newton. Fluid Mech. 103
At any given capillary number, there is a critical Weissenberg  (2002) 123-139.

number above which the flow becomes unstable [21] M.D. Graham, Theory of viscoelastic free surface flow instability, Proceed-
’ ings of the 74th Annual Meeting of the Society of Rheology, Minneapolis,

MN, USA, October 2002.
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