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Abstract

Open flow boundaries are often present in viscoelastic flow calculations; their presence is not dictated by the physics of the problem, but
rather by the need of truncating the computational domain. Viscoelastic liquids flowing in complex two- and three-dimensional domains are
normally modeled by hyperbolic transport equations for the viscoelastic stress or conformation tensor,v · ∇S= F(∇v,S) − G(S), whereS
is the stress or conformation tensor,v is the velocity, and∇ denotes gradient in space. In steady flows, the streamlines are the characteristics
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f these hyperbolic equations and boundary conditions onSare necessary where the liquid enters the flow domain.
Open flow boundaries are almost always located in regions of fully-developed, rectilinear flow. Traditionally, several methods

sed to prescribe inflow conditions; each of them has one or more drawbacks in terms of applicability to general models, com
xpense and complexity, and inability to deal with unknown flowrates, inflow-outflow boundaries, or unstructured meshes.
Here, we propose a new, general way of imposing inflow boundary conditions based on solving the coupled algebraic equatio

eveloped flow at the inflow, i.e., solving the equationF(∇v,S) − G(S) = 0 at the inflow coupled with the flow inside the domain. T
quation holds becausev · ∇S≡ 0 in fully developed rectilinear flow. Imposing the inflow boundary condition in this fashion is fully ge
nd does not require additional programming in solvers based on finite elements, spectral methods, and finite differences, wh
ewton’s method is used for solving the nonlinear algebraic equations arising from the discretized partial differential equation.
We test this method and find excellent agreement with analytical results in combined Poiseuille and Couette flow of Oldro
iesekus liquids in 2-D and 3-D channels and annuli, for which analytical expressions of the velocity and conformation (elastic str
re available. We demonstrate that the new method yields shorter or equal upstream lengths than traditional ones.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Viscoelastic flows arise in disparate processes in engineer-
ng, science, and biology—for example, in polymer process-
ng, coating, ink-jet printing, microfluidics, geological flows
n the earth mantle, hemodynamics, flow of synovial fluid
n joints, and many others. Modeling viscoelastic flows is
mportant for understanding and predicting the behavior of
rocesses and thus for designing optimal flow configurations
nd for selecting operating conditions.

Open flow boundaries are often present in viscoelastic flow
alculations; their presence is not dictated by the physics of
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the problem, but rather by the need of truncating the c
putational domain. For example, in polymer processing
modeling is frequently restricted to the extrusion sectio
the process, and the feeding section where the polymer p
are melted is omitted from the model. Similarly, in coat
processes the flow in the coating bead is the focus o
modeling, and the pumping and distribution system are o
excluded from the model or they are studied separately

Viscoelastic liquids flowing in complex two- and thre
dimensional domains are generally modeled by intro
ing the viscoelastic stressσ and adding to the momentum
continuity pair an extra equation, usually of rate-type[1–
7], e.g., Oldroyd-B[8,9], Giesekus[10], Leonov [11,12],
PTT [13,14], FENE-P[8], FENE-CR[15], etc. More re
cently, viscoleastic liquids have been modeled also b
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troducing microstructural variables that represents the local
state of the liquid—e.g., the conformation tensorM for poly-
mer solutions[16–18]—and writing transport equations for
the microstructural variables and a constitutive relationship
between such microstructural variables and the viscoelastic
stress[19–22]. In the absence of mass diffusion, rate-type
equations for the stress and transport equations for the con-
formation tensor can be written as

v · ∇S= F (∇v,S) − G (S) (1)

whereS is the elastic stress or conformation tensor,v is the
velocity, ∇ denotes the gradient in space, andF,G are two
tensor-valued functions (possibly nonlinear) which specify
the model completely.

Eq. (1)is hyperbolic; thus, boundary conditions should be
imposed at inflow boundaries to specify the state of the en-
tering liquid. More precisely, all the components ofSshould
be prescribed if a viscous stress is present in addition to the
elastic stress, whereas all components but one should be pre-
scribed when the stress is purely elastic[23]. Because open
flow boundaries are introduced for computational and not
physical reasons, there the distribution of elastic stress or
conformation is not known in general. Thus, strategies for
locating open flow boundaries and for imposing reasonable
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mentations has desirable features but none of them is free of
drawbacks in terms of applicability to generic conformation-
based models, computational methods (particularly in the
case of finite-element methods with unstructured meshes,
which is now becoming important as three-dimensional cal-
culations are being tackled), and minimal size of the com-
putational domain.Section 2.1below reviews the available
ways of imposing fully-developed boundary conditions on
stress and conformation at inflows and highlights their pros
and cons.Section 2.2introduces a new, fully-general way of
imposing the boundary condition andSection 3details how to
impose such boundary condition in the context of the finite
element method.Section 4describes the solution method.
Section 5shows that the condition works well in a number
of two- and three-dimensional test cases.

2. Conformation and Stress boundary conditions for
fully-developed, rectilinear flow boundaries

2.1. Standard boundary conditions

Five methods have been used in the literature to impose
elastic stress or conformation boundary conditions at inflow
boundaries. These methods are: (M1) using an analytical ex-
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nflow boundary conditions have been an important issu
on-Newtonian fluid mechanics. The main criteria for
essing the usefulness of a boundary condition are that
hould yield the smallest possible computational domain
t should affect only minimally the solution inside the com
ational domain, and (3) it should be as general as possi
.e., it should be applicable to different models and to diffe
omputational methods.

Two chief strategies are used for locating inflow bou
ries: the inflow boundary is placed in a region of we
lowly varying flow, or the inflow boundary is placed
region of steady, fully-developed, rectilinear flow. T

rst strategy yields simple boundary conditions that ca
vinced from the no-flow (zeroth order inλγ̇), or slow-flow
first order inλγ̇) limiting form of Eq. (1): σ ≡ 0 orM ≡ I
or no-flow, andσ ≡ 2ηpD or M ≡ I + 2λD for slow-flow.
ere,λ is the relaxation time of the liquid,I is the identity

ensor,D ≡ (1/2)(∇v + ∇vT) is the rate of strain,̇γ is the
quare root of the opposite of the second invariant (chara
stic magnitude) ofD, andηp is the polymer (more general
lastic) contribution to the viscosity of the liquid. Both
o-flow and the slow-flow solutions apply to generic rate-
nd conformation models and can be used in various
utational techniques (e.g., finite element, finite differe
nd spectral methods); frequently, the slow-flow cond
ields slightly smaller computational domains, although
epends on the choice of momentum boundary conditio
ell.
The second strategy, i.e., placing the inflow in a ste

ully-developed, rectilinear flow region, has led to severa
east five) different implementations; each of these im
ression forS(x) [19,24–28], wherex denotes position in th
ow boundary; (M2) periodically retrieving internal values
ome point far enough from the entry in the inflow regio
he essential inflow boundary condition; (M3) imposing
ectly the conditionv · ∇S= 0at the inflow boundary; (M4
mposing arbitrary boundary conditions at the inflow and
ing the flow develop in a long enough rectilinear region; u
lly, the no-flow condition is chosen for convenience (M = I
r σ = 0) [29,30]; (M5) pre-computingS in a simple recti

inear flow geometry by imposing boundary condition (M
n the inflow boundary and retrieving the values ofS at the
utflow, then using such retrieved values as inflow boun
onditions. Methods (M1)–(M3) come from the special fo
f Eq. (1)in regions of fully-developed, rectilinear flow,

· ∇S= F (∇v,S) − G (S) ≡ 0 (2)

ethod (M1) is based on finding once and for all an
licit analytical expressionS(∇v) that satisfies the (usua
onlinear) equationF (∇v,S) − G (S) ≡ 0; method (M2) is
ased on realizing that, becausev · ∇S≡ 0, thenS(x) ≡
(x +�x). The other methods are self-explanatory.

A desirable method should be able to handle gen
quations of the formEq. (1), should require minimal up
tream length in the open flow domain for computatio
fficiency, should apply to structured as well as unst

ured meshes, should be applicable to two-dimensional p
nd axisymmetric as well as three-dimensional flows,
hould be able to handle problems with unknown flow
nd with boundaries which contain both inflow and outfl
ortions whose location is unknown. The latter two cha
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Table 1
Methods for imposing inflow boundary conditions in regions of fully developed flow

Boundary condition General equation Upstream length Unstructured mesh 3-D flows Unknown flowrate Backflow Notes

Analytical (M1) F E E F E E
Periodic internal boundary (M2) E G D E E E 1
Zero streamwise flux (M3) E G F E E E 2
Arbitrary (M4) E P E E D F
Precomputed (M5) E E D E F F 3
New coupled algebraic (M6) E E E E E E

Letters denoteExcellent,Good,Poor,Fails,Difficult implementation.Notes: (1) Method yields larger bandwidth in linear system; (2) method yields degraded
accuracy near boundary; (3) enforcing the boundary condition is always cumbersome.

teristics are particularly important for the modeling of coat-
ing flows[22,31,32]. Table 1summarizes the advantages and
disadvantages of each method. Briefly, using an analytical
expression—method (M1)—is always the best choice, pro-
vided that such expression is available, which is not the case
for many newly-developed conformation models and also
for three-dimensional flows. The periodic internal bound-
ary method (M2) and the zero-streamwise-flux method (M3)
are the next best choices, because they can handle generic
conformation-tensor models; however, they do not work well
on unstructured meshes and require slightly longer computa-
tional domains. The arbitrary condition method (M4) is gen-
eral, but cannot handle backflow and requires long upstream
sections, which is particularly undesirable in large, three-
dimensional calculations. Finally, the precomputed condition
method (M5) is awkward to implement and cannot handle un-
known flowrate and backflow.

2.2. Newmethod for imposing inflow boundary condition

The new boundary condition introduced here (M6) is
based on imposing directly the fully developed flow equa-
tion

F (∇v,S) − G (S) ≡ 0 (3)
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3. Mathematical formulation

3.1. Field equations

In this work, the viscoelastic flow is computed by finite
element method with DEVSS-TG/SUPG (Discrete Elastic-
Viscous Split Stress, independent Traceless velocity Gradient
interpolation, Streamline Upwind Petrov-Galerkin) which is
based on successive variations on the EVSS (Elastic-Viscous
Split Stress) method[2]: the elastic and viscous stress are
separated explicitly (DEVSS,[33]), the entire velocity gradi-
ent is represented by continuous basis functions (DEVSS-G,
[34]) and is traceless by construction (DEVSS-TG,[22]).
Usually the elastic stress is represented by an independent
variable which is computed by solving a rate-type constitu-
tive equation coupled with mass and momentum conservation
equation; here the conformation tensor is introduced as inde-
pendent variable and the stress is related to the conformation
tensor through an algebraic constitutive equation which is in-
voked only at the Gauss points in the finite-element solution
[19,22,31].

The choice of conformation tensor is made to balance
computational efficiency, thermodynamic consistency of the
models, and microstructural insight. The conformation ten-
sor is an approximate measure of the micro-structural state of
a -
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u meth-
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t uch
s a boundary condition on the inflow section of an o
oundary, and solving this equation coupled with the m
omentum, and transport equations for stress or confo

ion inside the computational domain. It is a variation
ethod (M1) which retains all the advantageous featur

he parent method and also has the important advantag
t does not require an analytical expression for stress or
ormation; therefore, it is applicable to general models
o three dimensional flows (seeTable 1).

The equation can be easily implemented in a node
ode fashion in finite-difference codes, and it can be imp
eadily as an essential boundary condition in low-order fi
lement methods as well as high-order hierarchical spe
lement methods. Little effort is required for introducing
oundary condition in complex computational codes e
hen Newton’s method with analytical Jacobian is used
ause the equation and its derivatives can be obtained s
y omitting the convective terms from the full transport eq

ions, which are already present in such codes.
t

flowing viscoelastic liquid[16–18,35]. In the case of poly
eric liquids, it is defined asM (x, t) = ∫

r∈R3 dr	(r , x, t)rr ,
heret is time, r is the end-to-end connector of a polym
hain, and	(r , x, t) is the number of chains per unit mass
aterial whose end-to-end distance is betweenr andr + dr
nd whose center of mass is betweenx andx + dx at time
. The eigenvectors ofM represent the principal directio
long which the polymer chains are stretched, contracte
riented. The eigenvalues of the dimensionless conform

ensorM represent the square of the principal stretch ra
omputational models based on conformation tensor a
ore expensive than models based on rate-type equatio

he viscoelastic stress, yet much cheaper than models
n more detailed microstructural representations of the
id based on bead-spring-rod models—e.g., stochastic
ds such as CONFFESSIT[36], Adaptive Lagrangian Pa

icle [37], and Brownian Configuration Fields[38], as wel
s Fokker–Planck methods[39]. However, compared to rat

ype equations, conformation tensor models allow a m
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Table 2
Computational error on the components of velocity and conformation computed on a 16× 16 mesh atWe = 1 ∼ 9.28,β = 0.59 in the 2-D channel

Weissenberg number Velocity and conformation Maximum numerical value Maximum absolute error Relative error (%)

We = 1 vx 1.10× 10−1 7.79× 10−5 0.07
vy 9.27× 10−6 9.27× 10−6 N/A
Myy 1.00 2.00× 10−4 0.02
Mxy 1.00 5.45× 10−4 0.05
Mxx 3.00 5.85× 10−3 0.20

We = 3.77 vx 1.10× 10−1 1.76× 10−4 0.16
vy 4.84× 10−5 4.84× 10−5 N/A
Myy 1.00 5.70× 10−3 0.57
Mxy 3.78 2.63× 10−2 0.70
Mxx 29.51 1.50× 10−1 0.51

We = 5 vx 1.10× 10−1 3.73× 10−4 0.34
vy 1.22× 10−4 1.22× 10−4 N/A
Myy 1.02 2.23× 10−2 2.23
Mxy 5.05 1.61× 10−1 3.21
Mxx 51.65 1.28 2.50

We = 9.28 vx 1.11× 10−1 3.06× 10−3 2.78
vy 1.17× 10−4 1.17× 10−4 N/A
Myy 1.13 1.30× 10−1 13.0
Mxy 9.31 7.94× 10−1 8.55
Mxx 171.27 1.12× 10+1 6.48

The new conformation boundary condition (M6) is imposed at the inflow regions. The relative error is calculated by dividing the maximum absolute errorby
the corresponding maximum value obtained with the analytical solution.

Table 3
Computational error on the components of velocity and conformation computed on a 16× 16 mesh atWe = 3 and 3.77,β = 0.59 in the 2-D channel

Weissenberg number Velocity and conformation Maximum numerical value Maximum absolute error Relative error (%)

We = 3 vx 1.10× 10−1 7.34× 10−5 0.09
vy 9.53× 10−9 9.53× 10−9 N/A
Myy 1.00 0 0
Mxy 3.00 1.08× 10−3 0.04
Mxx 18.95 4.12× 10−2 0.22

We = 3.77 vx 1.11× 10−1 1.83× 10−3 1.66
vy 3.18× 10−4 3.18× 10−4 N/A
Myy 1.16 1.60× 10−1 16.0
Mxy 4.92 1.35 35.89
Mxx 43.60 1.42× 10+1 48.16

No boundary condition is imposed on the conformation tensor. The relative error is calculated by dividing the maximum absolute error by the corresponding
maximum value obtained with the analytical solution.

Table 4
Computational error on the components of conformation computed on a sequence of increasingly refined meshes with the Oldroyd-B model atWe = 3.0,
β = 0.59 in the 2-D channel

Mesh size Conformation Maximum numerical value Maximum absolute error Relative error (%)

8 × 8 Myy 1.00 2.00× 10−3 0.20
Mxy 3.00 1.07× 10−2 0.36
Mxx 18.86 2.38× 10−1 1.25

12× 12 Myy 1.00 1.53× 10−3 0.15
Mxy 3.00 5.60× 10−3 0.19
Mxx 18.92 1.08× 10−1 0.57

16× 16 Myy 1.00 9.60× 10−4 0.10
Mxy 3.00 4.45× 10−3 0.15
Mxx 18.94 6.40× 10−2 0.34

20× 20 Myy 1.00 9.10× 10−4 0.09
Mxy 3.00 3.90× 10−3 0.13
Mxx 19.01 4.20× 10−2 0.22

The relative error is calculated by dividing the maximum absolute error by the corresponding maximum value obtained with the analytical solution.
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Table 5
Computational error on the components of the conformation tensor in axisymmetric pipe flow of an Oldroyd-B liquid atWe = 1 to 4,β = 0.59; computed as
three-dimensional flow on an unstructured tetrahedral mesh with average size 0.25R

We Conformation Maximum numerical value Maximum absolute error Relative error (%)

We = 1 M11 3.01 7.66× 10−2 2.55
M12 1.00 7.58× 10−3 0.76
M13 1.00 5.95× 10−3 0.60
M22 1.00 3.17× 10−3 0.32
M23 1.70× 10−3 1.70× 10−3 N/A
M33 1.00 2.60× 10−3 0.26

We = 2 M11 9.01 4.31× 10−1 4.79
M12 1.99 3.64× 10−2 1.82
M13 2.01 3.64× 10−2 1.82
M22 1.01 1.36× 10−2 1.36
M23 7.18× 10−3 7.18× 10−3 N/A
M33 1.01 1.24× 10−2 1.24

We = 4 M11 35.11 3.98 12.06
M12 4.40 4.90× 10−1 12.3
M13 4.11 7.12× 10−1 17.8
M22 1.11 1.08× 10−1 10.8
M23 7.73× 10−2 7.73× 10−2 N/A
M33 1.08 1.15× 10−1 11.5

The relative error is calculated by dividing the maximum absolute error in each component by the corresponding maximum analytical value of that component.

richer description of the liquid microstructure and also ensure
that the the thermodynamic-based relationship between mi-
crostructure and viscoelastic stress is always respected[16–
18,31,35].

The coupled transport equations of mass, momentum and
conformation, together with the velocity gradient interpola-
tion equation in steady, incompressible viscoelastic flow are

0 = ∇ · v (4)

0= ρv · ∇v − ∇ · T − ρg (5)

0= L − ∇v + 1

tr I
(∇ · v)I (6)

0 = −v · ∇M + 2ξ
D : M
I : M

M

+ ζ

(
M · D+ D ·M − 2

D : M
I : M

M
)

+M ·W

+WT ·M − 1

λ
(g0I + g1M + g2M2) (7)

where ρ is the material density,g is the body force per
unit mass,T is the stress tensor,L is the interpolated ve-
locity gradient,ξ(M ) and ζ(M ) are the polymer resistance
t f
s ic
r
f o 3
p

T

wherep is the pressure,τ is the viscous stress which in DE-
VSS is related to the raw and interpolated velocity gradients
as[22,31]

τ = ηs(L + LT) + ηa(∇v + ∇vT − L − LT) (9)

whereηs is solvent viscosity,ηa is a numerical parameter
that stabilizes the computational method[33] and should
be comparable to the total viscosityµ ≡ ηs + ηp of the
liquid.

The elastic stressσ is related to the conformation tensor
through an equation of state[16,31,35,40]

σ︸︷︷︸
elastic stress

= 2ξ
M
I : M

M :
∂a

∂M︸ ︷︷ ︸
stress by molecular stretching

+ 2ζ

(
− M
I : M

M :
∂a

∂M
+M · ∂a

∂M

)
︸ ︷︷ ︸

stress by molecular orientation

(10)

wherea(M ) is the Helmholtz free energy per unit volume
of the polymeric liquid; the specific form of this function
depends on the choice of conformation tensor model.

3.2. Momentum boundary conditions

st be
s qua-
t ired
o -
a been
d are
l

o stretching and orientation,D ≡ 1
2(L + LT) is the rate o

train,W ≡ 1
2(L − LT) is the vorticity,λ is the characterist

elaxation time, andg0(M ), g1(M ) andg2(M ) are relaxation
unctions.T is the total (Cauchy) stress; it can be split int
arts,

= −pI + τ + σ (8)
Boundary conditions on the momentum equation mu
pecified on all boundaries. The conformation tensor e
ion is hyperbolic; thus, boundary conditions are requ
nly at inflow boundaries, i.e., wheren · v < 0. The bound
ry conditions for conformation tensor equations have
etailed inSection 2; those on the momentum equation

isted here.
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Table 6
Computational error on the components of the conformation tensor in axisymmetric pipe flow of an Oldroyd-B liquid atWe = 1, β = 0.59; computed as
three-dimensional flow on seven increasingly refined unstructured tetrahedral meshes

Mesh Conformation Maximum numerical value Maximum absolute error Relative error (%)

h = 0.12R, elements = 27293, nodes = 39482 M11 3.00 1.98× 10−2 0.66
M12 1.00 2.16× 10−3 0.22
M13 1.00 2.13× 10−3 0.21
M22 1.00 8.30× 10−4 0.08
M23 4.84× 10−4 4.84× 10−4 N/A
M33 1.00 9.10× 10−4 0.09

h = 0.14R, elements = 16092, nodes = 23824 M11 3.00 3.02× 10−2 1.01
M12 1.00 2.19× 10−3 0.22
M13 1.00 2.28× 10−3 0.23
M22 1.00 1.12× 10−3 0.11
M23 6.94× 10−4 6.94× 10−4 N/A
M33 1.00 1.20× 10−3 0.12

h = 0.20R, elements = 5666, nodes = 8702 M11 3.00 5.36× 10−2 1.76
M12 1.00 4.76× 10−3 0.48
M13 1.00 4.41× 10−3 0.44
M22 1.00 1.85× 10−3 0.19
M23 9.65× 10−4 9.65× 10−4 N/A
M33 1.00 2.00× 10−3 0.20

h = 0.25R, elements = 2911, nodes = 4654 M11 3.01 7.66× 10−2 2.55
M12 1.00 7.58× 10−3 0.76
M13 1.00 5.95× 10−3 0.60
M22 1.00 3.17× 10−3 0.32
M23 1.70× 10−3 1.70× 10−3 N/A
M33 1.00 2.60× 10−3 0.26

h = 0.30R, elements = 1796, nodes = 2928 M11 3.01 9.09× 10−2 3.03
M12 1.00 6.95× 10−3 0.70
M13 1.00 6.90× 10−3 0.70
M22 1.00 2.90× 10−3 0.29
M23 1.57× 10−3 1.57× 10−3 N/A
M33 1.00 2.70× 10−3 0.27

h = 0.35R, elements = 1125, nodes = 1892 M11 3.00 1.34× 10−1 4.47
M12 1.00 6.72× 10−3 0.67
M13 1.00 8.43× 10−3 0.84
M22 1.00 2.79× 10−3 0.28
M23 1.81× 10−3 1.81× 10−3 N/A
M33 1.00 4.30× 10−3 0.43

h = 0.45R, elements = 547, nodes = 989 M11 3.02 1.87× 10−1 6.22
M12 1.00 1.72× 10−2 1.72
M13 1.00 1.22× 10−2 1.22
M22 1.01 5.10× 10−3 0.51
M23 2.63× 10−3 2.63× 10−3 N/A
M33 1.01 5.90× 10−3 0.59

The relative error is calculated by dividing the maximum absolute error in each component by the corresponding maximum analytical value of that component.

(1) No slip and no penetration: at solid, impermeable bound-
aries, the velocity of the liquid equals that of solid, i.e.
v = vw, wherevw is the solid wall velocity; this condi-
tion is applied by replacing the momentum residual (i.e.,
essentially).

(2) Inflow and outflow conditions; one of the following three
conditions can be imposed: (i) imposed velocity pro-
file v = v0 (imposed essentially); (ii) imposed pressure
p = p0 (imposed through the boundary integral of the
traction in the momentum equation, i.e., naturally); (iii)
imposed fully developed flow, i.e.n · ∇v = 0 (imposed
naturally), possibly in conjunction with the imposed
pressure condition (see[41,42]). The latter two bound-

ary conditions are imposed through the weighted residual
integral of the tractionn · T at a boundaryΓ as follows:∫
Γ

ψβ n · T︸︷︷︸
traction

dΓ =
∫
Γ

ψβ( −p̂n︸︷︷︸
traction from
pressure

+ n · σ︸︷︷︸
traction from
elastic stress

+ n · (ηsLT + ηa(∇vT − LT))︸ ︷︷ ︸
traction from viscous stress

+ fn · (ηsL + ηa(∇v − L ))︸ ︷︷ ︸
traction from viscous stress

) dΓ

(11)
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Table 7
Computational error on the components of the conformation tensor in axisymmetric annular flow of an Oldroyd-B liquid atWe = 0.7 to 2,β = 0.59; computed
as three-dimensional flow on an unstructured tetrahedral mesh (Fig. 11, right)

We Conformation Maximum numerical value Maximum absolute error Relative error (%)

We = 0.7 M11 2.00 9.96× 10−2 5.05
M12 0.70 1.18× 10−2 1.69
M13 0.70 1.38× 10−2 1.98
M22 1.00 2.91× 10−3 0.29
M23 2.00× 10−3 2.00× 10−3 N/A
M33 1.00 3.48× 10−3 0.35

We = 1 M11 3.08 2.02× 10−1 6.75
M12 1.00 1.73× 10−2 1.73
M13 1.00 2.13× 10−2 2.13
M22 1.00 5.90× 10−3 0.59
M23 4.01× 10−3 4.01× 10−3 N/A
M33 1.00 6.61× 10−3 0.66

We = 2 M11 10.46 1.46 16.20
M12 2.03 1.27× 10−1 6.35
M13 2.07 1.08× 10−1 5.39
M22 1.02 2.29× 10−2 2.29
M23 2.56× 10−2 2.56× 10−2 N/A
M33 1.03 3.04× 10−2 3.04

The relative error is calculated by dividing the maximum absolute error in each component by the corresponding maximum analytical value of that component.

whereψβ are the weighting functions of the momentum
equation. If the pressurep0 is known at the boundaryΓ ,
then p̂ ≡ p0, otherwise the pressure is computed from
the finite element basis functions and coefficients, i.e.,
p̂ ≡ pαφα (sum onα); if n · ∇v = 0, then the coefficient
f is set tof ≡ 0, otherwisef is set tof ≡ 1. The
remaining quantities in equation 11 are computed by
using the finite element basis functions and coefficients.
This boundary condition is related to the “no boundary
condition” of Papanastasiou et al.[43–45], which is
recovered by setting bothf ≡ 1 andp̂ ≡ pαφα.

(3) Symmetry: at a symmetry line or plane, the normal com-
ponent of the velocity and the tangential components
of the traction vanish; thus,n · v = 0 and tin : T = 0
(i = 1,2 in three-dimensional flows). The boundary
conditionn · v = 0 is imposed essentially at the bound-
ary nodes (i.e., by replacing the normal component
of the momentum equation). The boundary conditions
tin : T = 0 are imposed naturally (i.e., by setting to
zero the tangential components of the traction in the
boundary integral of the momentum equation weighted
residual).

3.3. New conformation boundary condition

r

F

G(M ) ≡ 1

λ
(g0I + g1M + g2M2) (13)

which yields the form of the new boundary condition for
conformation tensor models

0 = −2ξ
D : M
I : M

M − ζ

(
M · D+ D ·M − 2

D : M
I : M

M
)

−M ·W −WT ·M + 1

λ
(g0I + g1M + g2M2) (14)

Eq. (14) is a nonlinear algebraic equation in the variables
D,W, andM . It is imposed essentially by replacing the
finite element residuals associated with the relevant non-
vanishing conformation basis functions at the inflow bound-
ary nodes (wheren · v < 0) with the residuals ofEq. (14)
at the boundary nodes, and solved coupled with the flow
equations; whether each boundary node is an inflow of an
outflow node is determined at each Newton iteration by tak-
ing the scalar product of the current approximation of the
velocity field with the normal to the boundary([31] for de-
tails). Because the same constitutive functionsξ, ζ, g0, g1, g2,
and a appear in the transport equation of conformation,
in the constitutive equation of the viscoelastic stress, and
in the inflow boundary conditions, the computational code
does not need to be changed when switching from a con-
s ndi-
t thod
(

and
s in-
s ion,
t im-
The transport equation of conformation (Eq. (7)) can be
ecast in the form ofEq. (1)by setting

(∇v,M ) ≡ 2(ξ − ζ)
D : M
I : M

M + ζ(M · D+ D ·M )

+M ·W +WT ·M (12)
titutive model to another. Thus, the new boundary co
ion conveniently overcomes the disadvantages of me
M1).

Of course, if the problem equations are cast
olved in the stress-velocity-pressure formulation
tead of the conformation-velocity-pressure formulat
he algebraic part of the constitutive equation is
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posed as essential boundary condition at the inflow
nodes.

3.4. Specific conformation-tensor models

Three different conformation tensor models are used be-
low: Oldroyd-B[8,9], Giesekus[10], and FENE-P[8].

The constitutive functions of the Oldroyd-B model areξ =
1, ζ = 1, g0 = −1, g1 = 1, g2 = 0, and∂a/∂M = (G/2)I ,
whereG ≡ ηp/λ is the polymer modulus.

The constitutive functions of the Giesekus model are iden-
tical to those of the Oldroyd-B, except for the relaxation terms
g0 = α− 1, g1 = 1 − 2α, g2 = α, whereα is a dimension-
less parameter that describes the degree of anisotropic drag
in the liquid and controls the shear thinning (the Oldroyd-B
is recovered by settingα = 0).

The FENE-P model has the same constitutive functions
of the Oldroyd-B except for the functiong1 = (b− 1)/(b−
IM/3), which describes the fast relaxation of highly ex-
tended polymer chains, and the expression of the free en-
ergy∂a/∂M = (G/2)(b− 1)/(b− IM/3)I ; hereIM ≡ I : M
is the first invariant (trace) ofM . The dimensionless param-
eterb represents the molecular extensibility, and it equals to
the square of the ratio between the contour length of polymer
chains and their equilibrium end-to-end distance.

3
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continuous. In 3-D problems, unstructured tetrahedral ele-
ments are used. The basis functions for velocity are quadratic
and continuous, those for pressure, velocity gradient and con-
formation are linear and continuous. The fully coupled set of
nonlinear algebraic equations is solved by Newton’s method
with analytical Jacobian, which yields a large scale linear al-
gebraic systemJ�x = −r, whereJ is the Jacobian matrix,
�x is the Newton update, andr is the residual vector. A direct
frontal solver[46] parallelized by OpenMP is employed to
solve the linear system in two-dimensional flows. Because in
three dimensions the number of algebraic equations is larger
and because a direct method would generate excessive fill-in
in the LU factors of the Jacobian matrix, restarted GMRES
[47,48] is used to solve the linear system. Because the Ja-
cobian matrixJ has zero diagonal entries associated with
incompressibility and also small diagonal entries associated
with the viscoelastic momentum balance at high Weissenberg
number, an Incomplete LU preconditioner is applied to speed
the convergence rate of GMRES. The results presented here
were computed on an IBM Regatta with 64 GB shared mem-
ory and 16 Power4 processors running at 1.33 GHz .

5. Testing the new boundary condition
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.5. Dimensionless numbers

In addition to the model-specific parametersα andb, it
s convenient to introduce three dimensionless numbers
eynolds numberRe ≡ ρvd/µ characterizes the balance

ween inertial and surface (viscous and viscoelastic) fo
herev andd are the characteristic velocity and length o
ow; hereafterRe ≡ 0.

The solvent viscosity ratioβ ≡ ηs/(ηs + ηp) ≡ ηs/µ

haracterizes the relative importance of viscous and
oelastic stresses.

The Weissenberg numberWe ≡ λγ̇c represents the inte
ity of the flow on the timescale of the relaxation time of
olymer conformation.̇γc is a characteristic shear rate, wh

s defined below for each flow studied here.

. Solution method

The DEVSS-TG/SUPG Finite Element Method is app
o reduce the partial differential equations of the flow to a
raic equations. The details are presented elsewhere[22,31];
ecause the method and computational code represent
bles and residual equations as vectors and tensors[22],

he extension to three-dimensions is straightforward if
urfaces and deformable boundaries are absent. Stru
uadrilateral elements are used in two-dimensional prob
elocity basis functions are biquadratic and continuous

ocity gradient, conformation basis functions are bilinear
ontinuous, and pressure basis functions are linear an
-

The proposed new boundary condition is tested in
wo- and three-dimensional flows where exact analytica
utions are known for certain conformation-based mod
hese flows are: (1) a combination of drag (Couette)
ressure-driven (Poiseuille) flow in a planar two-dimensi
hannel; (2) pressure-driven flow in a three-dimensional
nd (3) a combination of drag and pressure-driven flow

hree-dimensional annulus. The pipe and the annulus are
en as axisymmetric in order to obtain analytical solution
he flow problem, but they are treated as three-dimens
omains in the computational problem. The new boun

s also compared with traditional boundary conditions
wo-dimensional flow around a cylinder.

.1. Two-dimensional flow in a planar channel

Fig. 1shows a combination of Poiseuille and Couette
n a planar channel of heightb and lengthL ≡ 4b, togethe
ith the boundary conditions. The combination of Poise
ow (which is pushing liquid from left to right) and Coue
ow (which is dragging liquid from right to left), genera
wo inflow sections, one on each open flow boundary.
ew boundary condition is imposed on these two inflow

ions. The Oldroyd-B and Giesekus models are tested in
ow because analytical solutions are available for valida
he numerical results.

A pressure differencep1 − p2 is imposed between th
wo open flow boundaries through the traction term in
omentum residual; the top boundary is stationary

he bottom one is moving with velocityu0 in the direc-
ion of decreasingx. vx and vy are velocities inx and y
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Fig. 1. Geometry and boundary conditions for the two-dimensional planar channel flow. The pressure difference drives flow from left to right, the moving
bottom wall drags flow from right to left; thus, both open-flow boundaries have inflow and outflow sections.

Fig. 2. Left: 16× 16 mesh used for computing the flow in the two-dimensional planar channel, computed velocity vectors (showing that both boundaries have
inflow as well as outflow sections). Right: contour lines of the non-trivial conformation components (Myy ≡ 1 here). Computed with the Oldroyd-B model at
We = 5,β = 0.59.

Fig. 3. Streamwise conformation componentMxx vs. local dimensionless
shear rateWe(y) ≡ λLyx at the right (x ≡ L) section of the flow in a planar
channel, computed on the 16× 16 mesh with the Oldroyd-B atWe = 5,
β = 0.59. The open circles denote the computed values, the solid line is the
analytical solutionMxx = 1 + 2We2(y).

Fig. 4. Convergence rate of the solution computed in the flow in the planar
channel with the Oldroyd-B model atβ = 0.59,We = 3. The symbols denote
the maximum relative errore on the conformation componentM11 versus
the dimensionless element sizeh. The solid line is the best fit log(e) =
1.89 log(h) + 1.80.
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Fig. 5. Off-diagonal component of the conformation tensorMxy (left) and difference between the diagonal (normal) components of the conformation tensor
Mxx −Myy (right) vs. local dimensionless shear rateWe(y) ≡ λLyx computed in the planar channel flow with the Giesekus model (β = 0.59,α = 0.1). The
profiles are reported at thex = 0 boundary (top),x = L/2 channel section (middle), andx = L boundary (bottom). The symbols denote the computational
results, the solid lines are the analytical solutionsEq. (21)andEq. (22).

directions respectively. The computation is carried out at
�p ≡ (p1 − p2)b/(µu0) = 50,β = 0.59. The characteristic
Weissenberg number of the flow isWe ≡ λγ̇c, whereγ̇c ≡
(�pb/(2L) + 1)(u0/b) is the maximum shear rate based on
the Newtonian (constantµ) velocity profile; the Weissenberg
number is initially set toWe = 1 and is then increased by
continuation.

The analytical expressions of velocity, velocity gradient,
and conformation are

vx =
[
−�p

2

b

L

((y
b

)2 − y

b

)
+ y

b
− 1

]
u0 (15)

vy = 0 (16)
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Fig. 6. Geometry and boundary conditions for the two-dimensional flow around a cylinder.M BC denotes that different conformation boundary conditions
were imposed there.

Lyx =
[
−�p b

L

(
y

b
− 1

2

)
+ 1

]
u0

b
(17)

Myy = 1 (18)

Mxy = λLyx (19)

Mxx = 1 + 2λ2L2
yx (20)

and the remaining components ofL vanish.
The flow of the Oldroyd-B liquid is computed on a 16×

16 mesh (Fig. 2); the computed velocity vectors and contours
of conformation componentsMxy andMxx are also shown
in Fig. 2. As expected, both inflow and outflow sections are
present at the two ends of the flow domain and the contours
of Mxy andMxx are straight lines parallel to the channel
walls.Fig. 3compares the streamwise normal conformation
componentMxx computed atWe = 5 at the right (x = L)
boundary of the flow with the analytical expressionMxx =
1 + 2(λLyx(y))2 ≡ 1 + 2We(y)2; the agreement is excellent.

F ole dom

The numerical results are compared with the analytical
solution point by point.Table 2shows the error of veloc-
ity and conformation tensor atWe = 1,3.77,5, and 9.28
when the new conformation boundary condition is imposed
on the inflow regions. Of course, the error grows withWe

because linear basis functions are used to approximate the
components ofM , whereas the streamwise component ofM
depends quadratically on the cross-stream coordinate. For
comparison,Table 3shows the error on the computed veloc-
ity and conformation components atWe = 3 and 3.77 when
no conformation boundary condition is imposed at all. In-
terestingly, when the Weissenberg number is low (below 3
in this case), not imposing a boundary condition yields little
error; however, as soon as the Weissenberg number grows be-
yond a critical value, omitting the boundary condition yields
large errors. In this case, atWe = 3.77 the relative error on
the streamwise conformation component is nearly 50% if no
boundary condition is imposed, whereas it is below 0.7% if
the boundary condition is imposed.
ig. 7. Mesh of the two-dimensional flow around a cylinder. Top: the wh
 ain mesh withLu = 20R; bottom: magnified mesh of the region−2R ≤ x ≤ 2R.
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Fig. 8. Comparison of the errors on the conformation components obtained with different conformation inflow boundary conditions in a two-dimensional flow
around a cylinder atWe = 0.6. Left: maximum relative erroreMij

(Eq. (31)); right: average relative error ¯eMij
(Eq. (32)).

Fig. 9. Geometry and boundary conditions for the three-dimensional flow in a cylindrical pipe.
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Fig. 10. Geometry and boundary conditions for the three-dimensional flow in a cylindrical annulus. The pressure difference drives flow from left to right, the
moving inner cylinder drags flow from right to left; thus, both open-flow boundaries have inflow and outflow sections.

Table 4shows the computational error on conformation at
We = 3 on different meshes with the Oldroyd-B fluid. The
maximum relative error ofM11 versus element size is plotted
in log-log inFig. 4and shows that with mesh refinement the fi-
nite element solution is converging to the analytical solution.
The extrapolated convergence rate is 1.89, which is slightly
higher than the theoretical value of 1.5 for methods based
on EVSS/SUPG and linear basis functions[49] (the theo-
retical result is based on linear basis functions on triangular
elements; here we use bilinear basis functions on rectangu-
lar elements, which are known to yield superconvergence in
certain cases[50,51]).

The Giesekus model is also tested in channel flow on a
40× 40 mesh; the parameterα is chosen to be 0.1, the ratio of
the solvent viscosity to the (zero-shear) total viscosity is kept
atβ = 0.59. The analytical expressions of the components of
the conformation tensor can be easily obtained in shear flow
[8]

Mxy = (1 − f )2

1 + (1 − 2α)f
λLyx (21)

Mxx −Myy = 2
f (1 − αf )

(λLyx)2α(1 − f )
λ2L2

yx (22)

F in a
c t,
m

wheref andχ are two auxiliary functions

f = 1 − χ

1 + (1 − 2α)χ
(23)

χ2 = (1 + 16α(1 − α)(λLyx)2)1/2 − 1

8α(1 − α)(λLyx)2
(24)

Fig. 5 compares the analytical solution to the conformation
componentsMxy (left) andMxx −Myy (right) computed at
We = 11.60 at the channel sectionsx = 0,x = L/2, andx =
L; the computed results are almost indistinguishable from the
analytical solution in all three sections of the flow, showing
that the boundary condition works well when applied to a
nonlinear conformation model.

F the
c -
b nt
M fit
l

ig. 11. Unstructured finite element meshes used for computing flow
ylindrical pipe (left, mesh size 0.25R) and in a cylindrical annulus (righ
esh size 0.11R2 on the inner wall and 0.14R2 on the outer wall).
ig. 12. Convergence rate of the solution computed in the flow in
ylindrical pipe with the Oldroyd-B model atβ = 0.59,We = 1. The sym
ols denote the maximum relative errore on the conformation compone

11 vs. the dimensionless element sizeh. The solid line is the best
og(e) = 1.65 log(h) + 1.38.
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Fig. 13. (color online). Contours of conformation componentM11 at the
y = 0 plane computed atβ = 0.59 with the Oldroyd-B (top row), FENE-P
(b = 10, middle row) and Giesekus (α = 0.1, bottom row) models. Left:
three-dimensional pipe flow,We = 1, characteristic mesh size 0.14R; right:
three-dimensional annular flow,We = 2, characteristic mesh size 0.14R.

5.2. Two-dimensional flow around a cylinder

The new boundary condition is further tested in a two-
dimensional flow around a cylinder by varying the upstream
length and comparing different boundary conditions.Fig. 6
shows a schematic diagram of the flow and details the bound-
ary conditions. The channel height isH = 2R, the down-
stream length is fixed atLd = 15R, which was found to be
sufficient in earlier studies[52]. The upstream section is pro-
gressively shortened by decreasingLu from Lu = 20R to
Lu = 3R.

The computation is carried out with the Oldroyd-B
model at the conditions: flow rateQ = 1, β = 0.59,We ≡
λ(Q/H)/R = 0.6. At the inflow, the analytical expressions
of the velocity and stresses for the Oldroyd-B fluid are

vx = 3Q

2H

(
1 −

( y
H

)2
)

(25)

vy = 0 (26)

Lyx = −3Qy

H3
(27)

Myy = 1 (28)

Mxy = λLyx (29)

Mxx = 1 + 2λ2L2
yx (30)

The flow is first computed atLu = 20R on the Mesh shown
in Fig. 7. For comparison, different methods (M1, M2, M3,
M4, and M6) are used to impose boundary conditions at the
inflow. Method M5 is not used here because it gives the
same results as M1 but is very cumbersome to apply be-
cause it requires precomputing the flow in a straight channel.
Method M2 is also difficult to implement if periodicity is
imposed over a length which exceeds that of one element
because it couples elements which are not neighboring each
other and thus introduces non-locality in the Jacobian matrix.
Therefore, we impose M2 by enforcing periodicity along the
flow direction in the first “column” of elements at the inflow
boundary.1

The computations performed by using methods M2, M3,
M4, and M6 differ from the computations obtained with
method M1 by less than 10−8 in absolute value at any node
whenLu = 20R; thus the upstream length is sufficiently long
and the results obtained withLu = 20R and method M1 are
u up-
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sed as reference solution for comparing with shorter
tream length cases. The reference solution is denoted
uperscript ‘o’.

The accuracy of solutions obtained with shorter upstr
engths is assessed by calculating the maximum relative
n each of the computed components of velocity, confo

ion, velocity gradient, and on the pressure in the region
he cylinder,−2R < x ≤ 2R.2 The average relative error
lso computed to assess the quality of the solution. Fo
mple, the maximum and average relative errors on co
ation componentMij are respectively

Mij ≡ max
k

|Mij(k) −Mo
ij(k)|

|Mo
ij(k)| (31)

M̄ij ≡ 1

NM

NM∑
k=1

|Mij(k) −Mo
ij(k)|

|Mo
ij(k)| (32)

herek is the node counter andNM is the number of con
ormation mesh nodes in the region−2R < x ≤ 2R. Fig. 8
eports the maximum (left) and average (right) error on
onformation components. The errors on the other varia
re comparable or smaller, and the off-diagonal compo
f the conformation tensorMxy dominates the error as t

1 Because periodicity is imposed over the first column of element in
f over a prescribed length, the upstream length required for obtainin

sfactory results with method M2 isunderestimatedhere.
2 If the absolute value of the variable in the reference solution is b
.04, then the absolute error is used in place of the relative error.
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domain is shortened. WhenLu ≥ 10R, all the boundary con-
ditions yield the same error at the same upstream length;
M4 yields considerably higher errors than the other methods
when 4R � Lu � 8R. If the criterion is used that a solution
should differ from the reference solution at any node by at
most 1%, then method M4 fails atLu ≈ 7R, whereas M1,
M2, M3, and M6 all fail whenLu ≈ 4R. None of the meth-
ods produces an acceptable solution whenLu < 4R. Plots
of the average relative error (Fig. 8, right) show that when
4R ≤ Lu ≤ 8R M1 is marginally better than M6, which is
marginally better than M2 and M3; thus, methods M1, M2,
M3, and M6 are roughly equivalent in terms of required up-
stream length. However, M2 and M3 are not applicable to
unstructured meshes and M1 is not applicable to general con-
stitutive equations.

5.3. Three-dimensional flow in a pipe and an annulus

The new boundary condition is tested here in two three-
dimensional flows using unstructured meshes: flow in a cylin-
drical pipe with radiusR and lengthL ≡ 2R and flow in
a cylindrical annulus with outer radiusR2, inner radius
R1 ≡ R2/2, and lengthL ≡ 2R2; Figs. 9 and 10report the
geometric dimensions and the boundary conditions. Here-
after, x1 denotes the axial coordinate andx2 and x3 de-
n dial
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and in the annular flow are
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The conformation components have the same expressions
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In both cases, a pressure difference�P = p1 − p2 is im-
osed between the two open sections of the flow thro

he traction term in the weighted residuals of the mom
um equation (seeEq. (11)). The outer cylindrical wall
ave zero velocity in both flows; in the annular flow,

nner cylinder is moving with velocityu0 in the direc-
ion of decreasing axial coordinatex1. Thus, the annula
ow is a combination of pressure-driven flow (from left
ight) and drag flow (from right to left), and both open s
ions of the annular flow include an inflow and an outfl
ortion.

The Oldroyd-B model is used in both flows because in
ldroyd-B model the shear viscosity is constant and thu

elocity and shear rate profiles coincide with those of a N
onian flow in pure shear flows. Both flows are axisymme
ut are computed as fully three-dimensional.

In both cases, the axial velocity is the only non-zero ve
ty component. The non-trivial components of velocity
elocity gradient in the cylindrical channel flow are

1 = �PR2

4µL

[
1 −

(x2

R

)2 −
(x3

R

)2
]

(33)

21 = − �P

2µL
x2 (34)

31 = − �P

2µL
x3 (35)
n the two flows

11 = 1 + 2λ2(L2
21 + L2

31) (39)

12 = λL21 (40)

13 = λL31 (41)

22 = 1 (42)

23 = 0 (43)

33 = 1 (44)

The Weissenberg number is based on the Newto
elocity profile and isWe ≡ 4λQ/(πR3) = λ�PR/(2µL)
n pipe flow and We ≡ λ[(−�PR1)/(2µL) + [�PR2

2/

4µL)(1 − (R1/R2)2) + u0]/(R1 ln(R2/R1))] in annular
ow.

The pipe flow is computed on seven different mes
Table 6); the mesh with average element size 0.25R is shown
n Fig. 11(left). Table 5shows the error on the computed c
ormation components atWe = 1, 2, and 4 on the mesh wi
verage size 0.25R. The agreement is good, although it
rades as the Weissenberg number grows because the
onformation basis functions cannot capture well the a
ormal conformation profile, which is quadratic in the ra
irection.

Table 6shows the computational error on the confor
ion components on a set of different meshes atWe = 1,
ndFig. 12displays the maximum relative error on the

al normal conformation componentM11 versus the chara
eristic element sizeh. The logarithmic plot shows that t
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error drops as≈ h1.65, in accord with theoretical estimates
for SUPG with linear basis functions applied to hyperbolic
equations[53] as well as results for EVSS/SUPG methods
for viscoelastic flow[49] (the basis functions used here in
three dimensional flows are linear). Thus, the new boundary
condition works correctly in three-dimensional flows with
unstructured meshes.

The FENE-P and Giesekus models are also solved in pipe
flow. Fig. 13(left) shows the comparison between the con-
formation componentM11 in pipe flow computed with the
Oldroyd-B, FENE-P (b = 10), and Giesekus (α = 0.1) mod-
els, computed on a mesh with average size 0.14R. As ex-
pected, the contours are straight lines alongx1-direction (the
small jaggedness is introduced by the interpolation routines
of the postprocessor). Naturally, the Oldroyd-B model pre-
dicts the highest values of streamwise conformation, whereas
(for this choice of parameters) the Giesekus model yields the
least distorted conformation.

Fig. 11 (right) shows the mesh used for computing the
annular flow; the element size is 0.11 to 0.14R2 because the
volume mesh is generated based on face mesh size 0.11R2
on the inner cylindrical face and 0.14R2 on the outer cylin-
drical face. This mesh has 30189 nodes, 19691 elements
and 159047 unknowns. The computations are performed at
β = 0.59,�P∗ ≡ �PR2/(µu0) = 100, andWe = 0.70 to 2.
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the transport equations or conformation tensor equation at the
inflow boundary. Tests on simple two- and three-dimensional
flows with three different conformation-based models show
that the method works well, and that this method retains the
best features of earlier methods without having their draw-
backs in terms of general applicability to novel conformation-
based models, accuracy, computational efficiency, and abil-
ity of handling complex situations such as unknown flowrate,
inflow-outflow boundaries, and unstructured meshes.

Although new methods which can account for distribu-
tions of polymer behavior through stochastic or Fokker–
Planck are becoming increasingly important, models based
on conformation tensor are still the best candidates for mod-
eling complex process flows because they offer a balance of
reasonable accuracy, sound physical grounding, molecular
insight, and computational efficiency, which is very important
in view of three-dimensional flow calculations, particularly
when free-surfaces or deformable boundaries are included
[54]. Moreover, coarse-graining efforts underway may soon
offer more systematic ways of linking detailed molecular
models to conformation based models[55]. The boundary
condition introduced here provides a very convenient, accu-
rate, and inexpensive method for building universal computa-
tional tools for simulating flows with general coarse-grained
models, as well as for solving other hyperbolic problems.
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The computed conformation components are compar
he analytical solutions inTable 7. As in pipe flow (and fo
he same reasons), the relative error grows with Weisse
umber and is highest in the componentM11.

Fig. 13(right) shows the axial conformation tensor co
onentM11 in 3-D annular flow computed atWe = 2, β =
.59, with the Oldroyd-B, FENE-P (b = 10), and Gieseku
α = 0.1) models. The contours of conformation are ne
traight, as expected, and the axial conformation compo
s largest near the inner wall, where the shear rate is hig
s in pipe flow, the Oldroyd-B model yields higher axial c

ormation values than the FENE-P and the Giesekus mo
In summary, the tests reported above show that impo

he new boundary condition on the inflow section of o
ow boundaries located in regions of fully developed fl
ields correct results in both two- and three-dimensiona
oelastic flows, both when structured and when unstruc
eshes are used.

. Conclusions

Viscoelastic fluids are usually described by rate-type e
ions for the viscoelastic stress or transport equations fo
onformation tensor. Because these equations are hype
convection-generation) and the streamlines are char
stic lines in steady flows, such equations require bo
ry conditions at inflow boundaries. A new method is

roduced here for imposing inflow conditions in regions
ully-developed, rectilinear flow. The method is based on
osing as an essential boundary condition the algebraic p
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