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Abstract

Open flow boundaries are often present in viscoelastic flow calculations; their presence is not dictated by the physics of the problem, but
rather by the need of truncating the computational domain. Viscoelastic liquids flowing in complex two- and three-dimensional domains are
normally modeled by hyperbolic transport equations for the viscoelastic stress or conformationteRs®e F(Vv, S) — G(S), whereS
is the stress or conformation tenseis the velocity, andv denotes gradient in space. In steady flows, the streamlines are the characteristics
of these hyperbolic equations and boundary conditionS are necessary where the liquid enters the flow domain.

Open flow boundaries are almost always located in regions of fully-developed, rectilinear flow. Traditionally, several methods have been
used to prescribe inflow conditions; each of them has one or more drawbacks in terms of applicability to general models, computational
expense and complexity, and inability to deal with unknown flowrates, inflow-outflow boundaries, or unstructured meshes.

Here, we propose a new, general way of imposing inflow boundary conditions based on solving the coupled algebraic equations of fully
developed flow at the inflow, i.e., solving the equatiB(vv, S) — G(S) = 0 at the inflow coupled with the flow inside the domain. The
equation holds because VS = 0 in fully developed rectilinear flow. Imposing the inflow boundary condition in this fashion is fully general
and does not require additional programming in solvers based on finite elements, spectral methods, and finite differences, whether or not
Newton’s method is used for solving the nonlinear algebraic equations arising from the discretized partial differential equation.

We test this method and find excellent agreement with analytical results in combined Poiseuille and Couette flow of Oldroyd-B and
Giesekus liquids in 2-D and 3-D channels and annuli, for which analytical expressions of the velocity and conformation (elastic stress) fields
are available. We demonstrate that the new method yields shorter or equal upstream lengths than traditional ones.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction the problem, but rather by the need of truncating the com-
) o ) . putational domain. For example, in polymer processing the
~ Viscoelastic flows arise in disparate processes in engineer-modeling is frequently restricted to the extrusion section of
ing, science, and biology—for example, in polymer process- the process, and the feeding section where the polymer pellets
ing, coating, ink-jet printing, microfluidics, geological flows e melted is omitted from the model. Similarly, in coating
in the earth mantle, hemodynamics, flow of synovial fluid processes the flow in the coating bead is the focus of the
in joints, and many others. Modeling viscoelastic flows is modeling, and the pumping and distribution system are often
important for understanding and predicting the behavior of aycluded from the model or they are studied separately.
processes and thus for designing optimal flow configurations  \jiscoelastic liquids flowing in complex two- and three-
and for selecting operating conditions. dimensional domains are generally modeled by introduc-
Openflow boundaries are often presentin viscoelastic flow ing the viscoelastic stressand adding to the momentum-
calculations; their presence is not dictated by the physics Ofcontinuity pair an extra equation, usually of rate-tyje
7], e.g., Oldroyd-B[8,9], Giesekug[10], Leonov[11,12]
* Corresponding author. Tel.: +1 713 348 5830; fax: +1 713 348 5478. PTT [13,14] FENE-P[8], FENE-CR[15], etc. More re-
E-mail addressmp@rice.edu (M. Pasquali). cently, viscoleastic liquids have been modeled also by in-
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troducing microstructural variables that represents the local mentations has desirable features but none of them is free of
state of the liquid—e.g., the conformation tenkbfor poly- drawbacks in terms of applicability to generic conformation-
mer solutiong16-18}—and writing transport equations for based models, computational methods (particularly in the
the microstructural variables and a constitutive relationship case of finite-element methods with unstructured meshes,
between such microstructural variables and the viscoelasticwhich is now becoming important as three-dimensional cal-
stress[19-22] In the absence of mass diffusion, rate-type culations are being tackled), and minimal size of the com-
equations for the stress and transport equations for the conputational domainSection 2.1below reviews the available

formation tensor can be written as ways of imposing fully-developed boundary conditions on
stress and conformation at inflows and highlights their pros

V-VS=F(Vv,9) —G(9 Q) and consSection 2.2ntroduces a new, fully-general way of
imposing the boundary condition aBection 3letails how to

whereS s the elastic stress or conformation tensois the impose such boundary condition in the context of the finite

velocity, V denotes the gradient in space, aAdg are two element methodSection 4describes the solution method.
tensor-valued functions (possibly nonlinear) which specify Section 5shows that the condition works well in a number
the model completely. of two- and three-dimensional test cases.
Eq. (1)is hyperbolic; thus, boundary conditions should be
imposed at inflow boundaries to specify the state of the en-
tering liquid. More precisely, all the componentsSdhould 2. Conformation and Stress boundary conditions for
be prescribed if a viscous stress is present in addition to thefy|ly-developed, rectilinear flow boundaries
elastic stress, whereas all components but one should be pre-
scribed when the stress is purely elag¥i8]. Because open  2.1. Standard boundary conditions
flow boundaries are introduced for computational and not

physical reasons, there the distribution of elastic stress or Five methods have been used in the literature to impose
conformation is not known in general. Thus, strategies for elastic stress or conformation boundary conditions at inflow
locating open flow boundaries and for imposing reasonable houndaries. These methods are: (M1) using an analytical ex-
inflow boundary conditions have been an important issue in pression fotS(x) [19,24—28] wherex denotes position in the
non-Newtonian fluid mechanics. The main criteria for as- flow boundary; (M2) periodically retrieving internal values at
sessing the usefulness of a boundary condition are that (1) itsome point far enough from the entry in the inflow region as
should yield the smallest possible computational domain, (2) the essential inflow boundary condition; (M3) imposing di-
it should affect only minimally the solution inside the compu-  rectly the conditiorv - VS = 0 at the inflow boundary; (M4)
tational domain, and (3) it should be as general as possible—imposing arbitrary boundary conditions at the inflow and let-
i.e., itshould be applicable to different models and to different ting the flow develop in along enough rectilinear region; usu-
computational methods. ally, the no-flow condition is chosen for convenienb £ |

Two chief strategies are used for locating inflow bound- or ¢ = 0) [29,30] (M5) pre-computingS in a simple recti-
aries: the inflow boundary is placed in a region of weak, [inear flow geometry by imposing boundary condition (M4)
slowly varying flow, or the inflow boundary is placed in  on the inflow boundary and retrieving the valuesSadt the
a region of steady, fully-developed, rectilinear flow. The outflow, then using such retrieved values as inflow boundary
first strategy yields simple boundary conditions that can be conditions. Methods (M1)-(M3) come from the special form
evinced from the no-flow (zeroth order iry), or slow-flow of Eq. (1)in regions of fully-developed, rectilinear flow,
(first order inAy) limiting form of Eq. (1Y o =00rM = |
for no-flow, ando = 25D or M = | 4 2AD for slow-flow. V-VS=F(Vv,9 -GS =0 (2
Here, A is the relaxation time of the liquid, is the identity
tensor,D = (1/2)(Vv + VVv') is the rate of strainy is the Method (M1) is based on finding once and for all an ex-
square root of the opposite of the second invariant (character-plicit analytical expressio®(Vv) that satisfies the (usually
istic magnitude) oD, andn, is the polymer (more generally, nonlinear) equatiodr (Vv, S) — G (S) = 0; method (M2) is
elastic) contribution to the viscosity of the liquid. Both the based on realizing that, becauge VS = 0, then S(x) =
no-flow and the slow-flow solutions apply to generic rate-type S(x + Ax). The other methods are self-explanatory.
and conformation models and can be used in various com- A desirable method should be able to handle general
putational techniques (e.qg., finite element, finite difference, equations of the fornkq. (1) should require minimal up-
and spectral methods); frequently, the slow-flow condition stream length in the open flow domain for computational
yields slightly smaller computational domains, although this efficiency, should apply to structured as well as unstruc-
depends on the choice of momentum boundary conditions astured meshes, should be applicable to two-dimensional planar
well. and axisymmetric as well as three-dimensional flows, and

The second strategy, i.e., placing the inflow in a steady, should be able to handle problems with unknown flowrate
fully-developed, rectilinear flow region, has led to several (at and with boundaries which contain both inflow and outflow
least five) different implementations; each of these imple- portions whose location is unknown. The latter two charac-
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Table 1

Methods for imposing inflow boundary conditions in regions of fully developed flow

Boundary condition General equation  Upstream length  Unstructured mesh  3-D flows ~ Unknown flowrate = Backflow  Notes
Analytical (M1) F E E F E E

Periodic internal boundary (M2) E G D E E E 1

Zero streamwise flux (M3) E G F E E E 2

Arbitrary (M4) E P E E D F

Precomputed (M5) E E D E F F 3

New coupled algebraic (M6) E E E E E E

Letters denot&xcellent,Good, Poor, Fails, Difficult implementationNotes (1) Method yields larger bandwidth in linear system; (2) method yields degraded
accuracy near boundary; (3) enforcing the boundary condition is always cumbersome.

teristics are particularly important for the modeling of coat- 3. Mathematical formulation
ing flows[22,31,32] Table 1summarizes the advantages and
disadvantages of each method. Briefly, using an analytical 3.1. Field equations
expression—method (M1)—is always the best choice, pro-
vided that such expression is available, which is not the case In this work, the viscoelastic flow is computed by finite
for many newly-developed conformation models and also element method with DEVSS-TG/SUPG (Discrete Elastic-
for three-dimensional flows. The periodic internal bound- Viscous Split Stress, independent Traceless velocity Gradient
ary method (M2) and the zero-streamwise-flux method (M3) interpolation, Streamline Upwind Petrov-Galerkin) which is
are the next best choices, because they can handle generibased on successive variations on the EVSS (Elastic-Viscous
conformation-tensor models; however, they do not work well Split Stress) methofR]: the elastic and viscous stress are
on unstructured meshes and require slightly longer computa-separated explicitly (DEVS$33]), the entire velocity gradi-
tional domains. The arbitrary condition method (M4) is gen- ent is represented by continuous basis functions (DEVSS-G,
eral, but cannot handle backflow and requires long upstream[34]) and is traceless by construction (DEVSS-T&2]).
sections, which is particularly undesirable in large, three- Usually the elastic stress is represented by an independent
dimensional calculations. Finally, the precomputed condition variable which is computed by solving a rate-type constitu-
method (M5) is awkward to implement and cannot handle un- tive equation coupled with mass and momentum conservation
known flowrate and backflow. equation; here the conformation tensor is introduced as inde-
pendent variable and the stress is related to the conformation
2.2. New method for imposing inflow boundary condition  tensor through an algebraic constitutive equation which is in-
voked only at the Gauss points in the finite-element solution
The new boundary condition introduced here (M6) is [19,22,31]
based on imposing directly the fully developed flow equa-  The choice of conformation tensor is made to balance
tion computational efficiency, thermodynamic consistency of the
models, and microstructural insight. The conformation ten-
F(W, 9 -6G(§=0 ®) sor is an approximate measure 019 the micro-structural state of

as a boundary condition on the inflow section of an open a flowing viscoelastic liquif16-18,35] In the case of poly-
boundary, and solving this equation coupled with the mass, meric liquids, itis defined ad (x, 1) = [, _ps dr¥(r, x, )rr,
momentum, and transport equations for stress or conforma-Wheret is time, r is the end-to-end connector of a polymer
tion inside the computational domain. It is a variation of chain, and¥(r, X, 7) is the number of chains per unit mass of
method (M1) which retains all the advantageous features of material whose end-to-end distance is betweandr + dr
the parent method and also has the important advantage thaknd whose center of mass is betweeandx + dx at time
it does not require an analytical expression for stress or con-Z. The eigenvectors dfl represent the principal directions
formation; therefore, it is applicable to general models and along which the polymer chains are stretched, contracted, or
to three dimensional flows (s@able 1) oriented. The eigenvalues of the dimensionless conformation
The equation can be easily implemented in a node-by- tensorM represent the square of the principal stretch ratios.
node fashion in finite-difference codes, and it can be imposed Computational models based on conformation tensor are no
readily as an essential boundary condition in low-order finite Mmore expensive than models based on rate-type equations for
element methods as well as high-order hierarchical spectralthe viscoelastic stress, yet much cheaper than models based
element methods. Little effort is required for introducing this on more detailed microstructural representations of the lig-
boundary condition in complex computational codes even Uid based on bead-spring-rod models—e.g., stochastic meth-
when Newton’s method with analytical Jacobian is used, be- 0ds such as CONFFESS[B6], Adaptive Lagrangian Par-
cause the equation and its derivatives can be obtained simplyticle [37], and Brownian Configuration Field88], as well

by omitting the convective terms from the full transport equa- as Fokker—Planck methof89]. However, compared to rate-
tions, which are already present in such codes. type equations, conformation tensor models allow a much
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Computational error on the components of velocity and conformation computed or 4@.fesh aWe = 1 ~ 9.28, 8 = 0.59 in the 2-D channel

Weissenberg number

Velocity and conformation

Maximum numerical value

Maximum absolute error

Relative error (%)

We =1
We = 3.77
We =5
We = 9.28

Uy

My,
My
MX)(

1.10x 101
9.27x 1076
1.00
1.00
3.00

1.10x 101
4.84x 1075
1.00

3.78

2951

1.10x 101
1.22x 10~
1.02

5.05

51.65

111x 101
1.17x 104
113

9.31
17127

7.79x 1073
9.27x 106
200x 10°*
545x 104
585x 103

1.76 x 10~4
484x 1075
570x 1073
263 x 1072
150x 1071

3.73x 1074
1.22x 10°4
223x 1072
161x 101
128

3.06x 1073
117 x 104
130x 101
7.94x 1071
112 x 10*1

0.07
N/A
0.02
0.05
0.20

0.16
N/A
0.57
0.70
0.51

0.34
N/A
2.23
321
250

2.78
N/A
130
8.55
6.48

The new conformation boundary condition (M6) is imposed at the inflow regions. The relative error is calculated by dividing the maximum absdlyte error
the corresponding maximum value obtained with the analytical solution.

Table 3

Computational error on the components of velocity and conformation computed or 4@fMesh aWe = 3 and 3.778 = 0.59 in the 2-D channel

Weissenberg number

Velocity and conformation

Maximum numerical value

Maximum absolute error

Relative error (%)

We = 3

We = 3.77

vy
Myy
My
M XX

1.10x 101
9.53x 1079
1.00

3.00

18.95

111x 101
3.18x 1074
116

4.92

43.60

7.34%x 10°°
9.53x 1079
0

108x 1073
412 x 1072

1.83x 1073
3.18x 1074
160x 101
135

142 x 10*1

0.09
N/A
0

0.04
0.22

1.66
N/A
16.0
3589
4816

No boundary condition is imposed on the conformation tensor. The relative error is calculated by dividing the maximum absolute error by thelicgrrespon
maximum value obtained with the analytical solution.

Table 4

Computational error on the components of conformation computed on a sequence of increasingly refined meshes with the Oldroyd-Bemoede0at

B = 0.59 in the 2-D channel

Mesh size Conformation Maximum numerical value Maximum absolute error Relative error (%)
8x8 My, 1.00 200x 1073 0.20
My 3.00 107 x 1072 0.36
My 18.86 238 x 101 1.25
12 x 12 My, 1.00 153 x 1073 0.15
M.y 3.00 560 x 103 0.19
M,y 18.92 108 x 1071 0.57
16x 16 My, 1.00 960 x 104 0.10
M,y 3.00 445x 1073 0.15
M, 18.94 640 x 1072 0.34
20 % 20 My, 1.00 910x 104 0.09
M,y 3.00 390x 1073 0.13
M, 19.01 420 x 1072 0.22

The relative error is calculated by dividing the maximum absolute error by the corresponding maximum value obtained with the analytical solution.
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Table 5
Computational error on the components of the conformation tensor in axisymmetric pipe flow of an Oldroyd-B lifuie-élt to 4,8 = 0.59; computed as
three-dimensional flow on an unstructured tetrahedral mesh with averagesze 0

We Conformation Maximum numerical value Maximum absolute error Relative error (%)
We =1 M1 3.01 7.66 x 102 2.55
M 1.00 758 x 1073 0.76
M3 1.00 595x 103 0.60
Mo 1.00 317x 1073 0.32
M3 1.70x 1073 1.70x 1073 N/A
Mas 1.00 260x 1073 0.26
We = 2 M1y 9.01 431x 107t 4.79
M 1.99 364 x 1072 1.82
Mi3 2.01 364x 1072 1.82
Mo 1.01 136 x 102 1.36
Mo3 7.18x 1073 7.18x 1073 N/A
Ma3 101 124 x 102 124
We = 4 M 3511 398 1206
Mo 4.40 490 x 1071 123
Mas 411 712x 1071 17.8
Mo 111 108x 101 108
Ma3 7.73x 1072 7.73x 1072 N/A
Mas3 1.08 115x 101 115

The relative error is calculated by dividing the maximum absolute error in each component by the corresponding maximum analytical value ofribat.compo

richer description of the liquid microstructure and also ensure wherep is the pressurer is the viscous stress which in DE-
that the the thermodynamic-based relationship between mi-VSS is related to the raw and interpolated velocity gradients
crostructure and viscoelastic stress is always respétéed as[22,31]

18,31,35] LT T LT 9
The coupled transport equations of mass, momentum and® = ns(b +L7) +na(VV+Vvi —L —L7) ©)

conformation, together with the velocity gradient interpola- where s is solvent viscosityya is a numerical parameter
tion equation in steady, incompressible viscoelastic flow are that stabilizes the computational methfg8] and should
be comparable to the total viscosity = ns+ np of the

0=V.v @ liquid.
_ The elastic stress is related to the conformation tensor
O=pv-VW—=V-T-rg ©®) through an equation of staf#6,31,35,40]
1
0=L — VW+ —(V-V) (6) _ M . 0%
tri < =AM
elastic stress —_—
stress by molecular stretching
0= —v.vM+2:2 My M 3 a
- Y s2e(-—=M: 2 im-2) o
DM M oM oM
+¢ (M D+D-M — ZWM> +M-W stress by molecular orientation

1 wherea(M) is the Helmholtz free energy per unit volume
+WT-M — 5 (g0l +g1M + g2M ) () of the polymeric liquid; the specific form of this function

depends on the choice of conformation tensor model.

where p is the material densityy is the body force per

unit mass,T is the stress tensok, is the interpolated ve- 3.2, Momentum boundary conditions

locity gradient,£(M) and ¢(M) are the polymer resistance

to stretching and orientatiol = (L + LT) is the rate of Boundary conditions on the momentum equation must be

strain,W = %(L — LT)isthe vorticity,x is the characteristic ~ specified on all boundaries. The conformation tensor equa-

relaxation time, ango(M), g1(M) andg2(M) are relaxation tion is hyperbolic; thus, boundary conditions are required

functions.T is the total (Cauchy) stress; it can be splitinto 3 only at inflow boundaries, i.e., where- v < 0. The bound-

parts, ary conditions for conformation tensor equations have been
detailed inSection 2 those on the momentum equation are

T=-pl+t+0o (8) listed here.
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Table 6
Computational error on the components of the conformation tensor in axisymmetric pipe flow of an Oldroyd-B ligéa=at, 8 = 0.59; computed as
three-dimensional flow on seven increasingly refined unstructured tetrahedral meshes

Mesh Conformation Maximum numerical value Maximum absolute error Relative error (%)
h = 0.12R, elements = 27293, nodes = 39482 M1 3.00 198 x 1072 0.66
Mo 1.00 216x 1073 0.22
Mi3 1.00 213x 1073 0.21
Mo 1.00 830x 104 0.08
M>3 484x 104 484x 1074 N/A
Ma3 1.00 910x 104 0.09
h = 0.14R, elements = 16092, nodes = 23824 M1 3.00 302x 1072 1.01
M1 1.00 219x 1073 0.22
M3 1.00 228x 1073 0.23
Mo 1.00 112x 1073 0.11
Mo 6.94x 104 6.94x 1074 N/A
M33 1.00 120x 1073 0.12
h = 0.20R, elements = 5666, nodes = 8702 Miq 3.00 536 x 1072 1.76
My 1.00 476 x 1073 0.48
Mi3 1.00 441 x 1073 0.44
Mo 1.00 185x 1073 0.19
Mo 9.65x 10~* 9.65x 10~ N/A
M33 1.00 200 x 1073 0.20
h = 0.25R, elements = 2911, nodes = 4654 M1 3.01 7.66 x 102 2.55
M 1.00 758 % 1073 0.76
Mi3 1.00 595 x 103 0.60
Mo 1.00 317x 1073 0.32
M>3 1.70x 1073 1.70x 1073 N/A
Ma3 1.00 260x 1073 0.26
h = 0.30R, elements = 1796, nodes = 2928 M1, 3.01 909 x 102 3.03
M1 1.00 695 x 103 0.70
M3 1.00 690 x 1073 0.70
M>> 1.00 290 x 1073 0.29
Ma3 157 x 1073 157 x 1073 N/A
M33 1.00 270x 1073 0.27
h = 0.35R, elements = 1125, nodes = 1892 Mi1 3.00 134x 101 4.47
M1 1.00 672x 1073 0.67
M3 1.00 843 x 1073 0.84
M2 1.00 279x 1073 0.28
Mo3 1.81x 103 1.81x 1073 N/A
M33 1.00 430x 1073 0.43
h = 0.45R, elements = 547, nodes = 989 M1 3.02 187x 101! 6.22
M 1.00 172 x 1072 172
Mi3 1.00 122 x 1072 1.22
Mo 1.01 510x 1073 0.51
M>3 2.63x 1073 2.63x 1073 N/A
Ms3 1.01 590 x 1073 0.59

The relative error is calculated by dividing the maximum absolute error in each component by the corresponding maximum analytical value ofrieat.compo

(1) Noslip and no penetration: at solid, impermeable bound- ary conditions are imposed through the weighted residual
aries, the velocity of the liquid equals that of solid, i.e. integral of the tractiom - T at a boundary™ as follows:
v = vy, wherev,, is the solid wall velocity; this condi-
tion is applied by replacing the momentum residual (i.e., vPn.T dr = / vP( —pn + n-o
essentially). traction r — o
. . traction from  traction from
(2) Inflow and outflow conditions; one of the following three pressure elastic stress

conditions can be imposed: (i) imposed velocity pro- T T T
file v = vo (imposed essentially); (i) imposed pressure 0 Osk +ma(Vv —L 7))
p = po (imposed through the boundary integral of the traction from viscous stress
traction in the momentum equation, i.e., naturally); (iii) + fn-(nsk + na(Vv —L)))dr
imposed fully developed flow, i.& - Vv = 0 (imposed
naturally), possibly in conjunction with the imposed
pressure condition (s4é1,42). The latter two bound-

traction from viscous stress

(11)
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Table 7
Computational error on the components of the conformation tensor in axisymmetric annular flow of an Oldroyd-B liuid 8t7 to 2,8 = 0.59; computed
as three-dimensional flow on an unstructured tetrahedral néghl(l, right)

We Conformation Maximum numerical value Maximum absolute error Relative error (%)
We = 0.7 M1 2.00 996 x 102 5.05
M1 0.70 118 x 1072 1.69
M3 0.70 138x 1072 1.98
Mo 1.00 291x 1073 0.29
M3 2.00x 1073 2.00x 1073 N/A
Mas3 1.00 348x 1073 0.35
We =1 M1 3.08 202x 1071 6.75
M 1.00 173x 1072 173
Mi3 1.00 213x 1072 2.13
Mo 1.00 590 x 1073 0.59
Mo 401x 1073 4.01x 1073 N/A
Ma3 1.00 661x 1073 0.66
We = 2 M1 10.46 146 1620
M 2.03 127x 101 6.35
Mi3 2.07 108x 101 5.39
Mo 1.02 229 x 1072 2.29
M>3 2.56 x 1072 256 x 1072 N/A
Ma3 1.03 304 x 1072 3.04

The relative error is calculated by dividing the maximum absolute error in each component by the corresponding maximum analytical value ofribat.compo

wherey? are the weighting functions of the momentum
equation. If the pressung is known at the boundar¥/,
then p = pg, otherwise the pressure is computed from
the finite element basis functions and coefficients, i.e.,
p = p*¢® (sum ony); if n - Vv = 0, then the coefficient

G(M) = (g0l + M +g2M?) (139

which yields the form of the new boundary condition for
conformation tensor models

f is set to f =0, otherwisef is set to f = 1. The D:M D:M

remaining quantities in equation 11 are computed by 0= _ZEWM —¢ (M D+D-M -~ ZWM)

using the finite element basis functions and coefficients. 1

This boundary condition is related to the “no boundary —M-W—=WT-M + (g0l +g1M +gM?) (14)
condition” of Papanastasiou et g43-45] which is A

recovered by setting botfi= 1 andp = p“¢“. Eq. (14)is a nonlinear algebraic equation in the variables

(3) Symmetry: ata symmetry line or plane, the normal com- p, w, and M. It is imposed essentially by replacing the
ponent of the velocity and the tangential components finite element residuals associated with the relevant non-
of the traction vanish; thusy-v=0 andt;n: T =0 vanishing conformation basis functions at the inflow bound-
(i=1,2 in three-dimensional flows). The boundary ary nodes (whera - v < 0) with the residuals oEq. (14)
conditionn - v = 0 is imposed essentially at the bound- at the boundary nodes, and solved coupled with the flow
ary nodes (i.e., by replacing the normal component equations; whether each boundary node is an inflow of an
of the momentum equation). The boundary conditions outflow node is determined at each Newton iteration by tak-
tin: T =0 are imposed naturally (i.e., by setting to ing the scalar product of the current approximation of the
zero the tangential components of the traction in the velocity field with the normal to the boundaj1] for de-
boundary integral of the momentum equation weighted tajls). Because the same constitutive functions go, g1, g2,
residual). and a appear in the transport equation of conformation,

in the constitutive equation of the viscoelastic stress, and

) N in the inflow boundary conditions, the computational code

3.3. New conformation boundary condition does not need to be changed when switching from a con-

) ) stitutive model to another. Thus, the new boundary condi-

The transport equation of conformatioid(. (7) can be  tjon conveniently overcomes the disadvantages of method
recast in the form oEq. (1)by setting (M1).

D:M Of course, if the problem equations are cast and

FOVVM)=2¢E—-¢)——M+¢M-D+D-M) solved in the stress-velocity-pressure formulation in-

M stead of the conformation-velocity-pressure formulation,
+M-W+W'.M (12) the algebraic part of the constitutive equation is im-



166 X. Xie, M. Pasquali / J. Non-Newtonian Fluid Mech. 122 (2004) 159-176

posed as essential boundary condition at the inflow continuous. In 3-D problems, unstructured tetrahedral ele-

nodes. ments are used. The basis functions for velocity are quadratic
and continuous, those for pressure, velocity gradient and con-
3.4. Specific conformation-tensor models formation are linear and continuous. The fully coupled set of

nonlinear algebraic equations is solved by Newton’s method
Three different conformation tensor models are used be- with analytical Jacobian, which yields a large scale linear al-

low: Oldroyd-B[8,9], Giesekug10], and FENE-H8]. gebraic systeny Ax = —r, whereJ is the Jacobian matrix,
The constitutive functions of the Oldroyd-B model &re Ax isthe Newton update, amds the residual vector. A direct

1,c=1,g0=-1,g1=1, g2=0, andda/oM = (G/2)I, frontal solver[46] parallelized by OpenMP is employed to

whereG = np/A is the polymer modulus. solve the linear system in two-dimensional flows. Because in

The constitutive functions of the Giesekus model are iden- three dimensions the number of algebraic equations is larger
tical to those of the Oldroyd-B, except for the relaxation terms and because a direct method would generate excessive fill-in
go=a—1,g1=1—2u, g2 =, wherea is a dimension- in the LU factors of the Jacobian matrix, restarted GMRES
less parameter that describes the degree of anisotropic drag47,48] is used to solve the linear system. Because the Ja-
in the liquid and controls the shear thinning (the Oldroyd-B cobian matrixJ has zero diagonal entries associated with

is recovered by setting = 0). incompressibility and also small diagonal entries associated
The FENE-P model has the same constitutive functions with the viscoelastic momentum balance at high Weissenberg
of the Oldroyd-B except for the functiogy = (b — 1)/(b — number, an Incomplete LU preconditioner is applied to speed

Iy/3), which describes the fast relaxation of highly ex- the convergence rate of GMRES. The results presented here
tended polymer chains, and the expression of the free en-were computed on an IBM Regatta with 64 GB shared mem-
ergyda/oM = (G/2)(b — 1)/(b — Im/3)l; herelyy =1 : M ory and 16 Power4 processors running at 1.33 GHz .
is the first invariant (trace) d¥1. The dimensionless param-
eterb represents the molecular extensibility, and it equals to
the square of the ratio between the contour length of polymer5. Testing the new boundary condition
chains and their equilibrium end-to-end distance.
The proposed new boundary condition is tested in both

3.5. Dimensionless numbers two- and three-dimensional flows where exact analytical so-
lutions are known for certain conformation-based models.
In addition to the model-specific parameterandb, it These flows are: (1) a combination of drag (Couette) and

is convenient to introduce three dimensionless numbers. Thepressure-driven (Poiseuille) flow in a planar two-dimensional
Reynolds numbeRe = pvd/u characterizes the balance be- channel; (2) pressure-driven flow in a three-dimensional pipe;
tween inertial and surface (viscous and viscoelastic) forces,and (3) a combination of drag and pressure-driven flow in a
wherev andd are the characteristic velocity and length of a three-dimensional annulus. The pipe and the annulus are cho-

flow; hereafterRe = 0. sen as axisymmetric in order to obtain analytical solutions to

The solvent viscosity ratiof = ns/(ns + np) = ns/1 the flow problem, but they are treated as three-dimensional
characterizes the relative importance of viscous and vis- domains in the computational problem. The new boundary
coelastic stresses. is also compared with traditional boundary conditions in a

The Weissenberg numb@fe = 1y represents the inten-  two-dimensional flow around a cylinder.
sity of the flow on the timescale of the relaxation time of the
polymer conformationy is a characteristic shear rate, which  5.1. Two-dimensional flow in a planar channel
is defined below for each flow studied here.
Fig. 1shows a combination of Poiseuille and Couette flow
in a planar channel of heightand lengthL. = 4b, together
4. Solution method with the boundary conditions. The combination of Poiseuille
flow (which is pushing liquid from left to right) and Couette
The DEVSS-TG/SUPG Finite Element Method is applied flow (which is dragging liquid from right to left), generates
to reduce the partial differential equations of the flow to alge- two inflow sections, one on each open flow boundary. The
braic equations. The details are presented elsewb2yel] new boundary condition is imposed on these two inflow sec-
because the method and computational code represents varitions. The Oldroyd-B and Giesekus models are tested in this
ables and residual equations as vectors and terjgats flow because analytical solutions are available for validating
the extension to three-dimensions is straightforward if free the numerical results.
surfaces and deformable boundaries are absent. Structured A pressure differencg1 — p» is imposed between the
quadrilateral elements are used in two-dimensional problems.two open flow boundaries through the traction term in the
Velocity basis functions are biquadratic and continuous, ve- momentum residual; the top boundary is stationary and
locity gradient, conformation basis functions are bilinear and the bottom one is moving with velocityp in the direc-
continuous, and pressure basis functions are linear and distion of decreasinge. v, andv, are velocities inx and y
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Fig. 1. Geometry and boundary conditions for the two-dimensional planar channel flow. The pressure difference drives flow from left to right,ghe movin
bottom wall drags flow from right to left; thus, both open-flow boundaries have inflow and outflow sections.

CONFORMATION Mxy

1.00, — ‘ME‘SH‘ T — 1.00L
075 0.75}
050| S —=——trtrF 11— 0.50}
025| =t 0.25} ————————
D_OO T 1 T T T T T T T T T T T T T 0-00_ |
0 1 2 8 4 0 1 2 3 4
1.00 VELO_CITY VI_ECT_OR_S _ 1.00L CONFORMATION Mxx
0.75}
0.50+
0.25} g
s . s . ; O.OO-I = a — ’"Ii :
0 1 2 3 4 0 1 2 3 4

Fig. 2. Left: 16x 16 mesh used for computing the flow in the two-dimensional planar channel, computed velocity vectors (showing that both boundaries have
inflow as well as outflow sections). Right: contour lines of the non-trivial conformation compomnénts=(1 here). Computed with the Oldroyd-B model at
We =5, 8 =0.59.
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Fig. 3. Streamwise conformation compon@it, vs. local dimensionless Fig. 4. Convergence rate of the solution computed in the flow in the planar
shear ratéVe(y) = AL, at the right ¢ = L) section of the flow in a planar channel with the Oldroyd-B model At= 0.59,We = 3. The symbols denote
channel, computed on the %616 mesh with the Oldroyd-B aVe = 5, the maximum relative errar on the conformation compone;; versus

B = 0.59. The open circles denote the computed values, the solid line is the the dimensionless element size The solid line is the best fit log) =
analytical solutionM,, = 1+ 2We?(y). 1.89log(z) + 1.80.
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Fig. 5. Off-diagonal component of the conformation ten&gy, (left) and difference between the diagonal (normal) components of the conformation tensor
M, — M,, (right) vs. local dimensionless shear ra¥e(y) = AL,, computed in the planar channel flow with the Giesekus mqgtiet 0.59,« = 0.1). The
profiles are reported at the= 0 boundary (top)x = L/2 channel section (middle), and= L boundary (bottom). The symbols denote the computational
results, the solid lines are the analytical soluti&us (21)andEg. (22)

directions respectively. The computation is carried out at
Ap = (p1 — p2)b/(nug) = 50,8 = 0.59. The characteristic
Weissenberg number of the flow e = Ay, wherey, =

The analytical expressions of velocity, velocity gradient,
and conformation are

(Apb/(2L) + 1)(uo/b) is the maximum shear rate based on  _ [_ﬂﬁ ((Z)z B X) L2 1} 3 (15)
the Newtonian (constapt) velocity profile; the Weissenberg * 2 L\\b b b 0

number is initially set toWe = 1 and is then increased by

continuation. vy, =0 (16)
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Fig. 6. Geometry and boundary conditions for the two-dimensional flow around a cylMdB€ denotes that different conformation boundary conditions
were imposed there.

b(y 1 uo The numerical results are compared with the analytical
Ly = [_Apz (g B §> + 1} b a7 solution point by pointTable 2shows the error of veloc-
ity and conformation tensor a¥Ve = 1, 3.77,5, and 928
Myy =1 (18) when the new conformation boundary condition is imposed
My =L, (19) on the infl_ow regions. Of course, the error grows witla
Y »x because linear basis functions are used to approximate the
M, =1+ 222 Lgx (20) components oM, whereas the streamwise componentiof
depends quadratically on the cross-stream coordinate. For
and the remaining componentslofvanish. comparisonJable 3shows the error on the computed veloc-
The flow of the Oldroyd-B liquid is computed on a ¥6 ity and conformation components We = 3 and 377 when

16 meshFig. 2); the computed velocity vectors and contours no conformation boundary condition is imposed at all. In-
of conformation component®,, and M,, are also shown terestingly, when the Weissenberg number is low (below 3
in Fig. 2 As expected, both inflow and outflow sections are in this case), not imposing a boundary condition yields little
present at the two ends of the flow domain and the contourserror; however, as soon as the Weissenberg number grows be-
of M., and M,, are straight lines parallel to the channel yond a critical value, omitting the boundary condition yields
wallls. Fig. 3compares the streamwise normal conformation large errors. In this case, 8te = 3.77 the relative error on
componentM,, computed atWe = 5 at the right { = L) the streamwise conformation component is nearly 50% if no
boundary of the flow with the analytical expressibtfy, = boundary condition is imposed, whereas it is belo®?@ if

1+ Z(ALy)C(y))2 = 1+ 2We(y)?; the agreement is excellent.  the boundary condition is imposed.
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Fig. 7. Mesh of the two-dimensional flow around a cylinder. Top: the whole domain mesh with20R; bottom: magnified mesh of the regiet2R < x < 2R.
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Fig. 9. Geometry and boundary conditions for the three-dimensional flow in a cylindrical pipe.
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Fig. 10. Geometry and boundary conditions for the three-dimensional flow in a cylindrical annulus. The pressure difference drives flow frorhigtfiiéo rig
moving inner cylinder drags flow from right to left; thus, both open-flow boundaries have inflow and outflow sections.

Table 4shows the computational error on conformation at where f and x are two auxiliary functions
We = 3 on different meshes with the Oldroyd-B fluid. The
maximum relative error aff11 versus element size is plotted f= 1—x 23)
inlog-log inFig. 4and shows that with mesh refinement the fi- 1+ (21— 2w)x
nite element solution is converging to the analytical solution.
The extrapolated convergence rate is 1.89, which is slightly , (14 16a(1 — a)(AL)?)Y? — 1
higher than the theoretical value of 1.5 for methods based X = 8a(1 — )(AL )2
on EVSS/SUPG and linear basis functigd9] (the theo-
retical result is based on linear basis functions on triangular Fig. 5 compares the analytical solution to the conformation
elements; here we use bilinear basis functions on rectangu-components\,, (left) and M., — M,, (right) computed at
lar elements, which are known to yield superconvergence in We = 11.60 at the channel sections= 0,x = L/2, andx =
certain casefb0,51)). L; the computed results are almost indistinguishable from the
The Giesekus model is also tested in channel flow on a analytical solution in all three sections of the flow, showing
40 x 40 mesh; the parameters chosentobe.Q, theratioof  that the boundary condition works well when applied to a
the solvent viscosity to the (zero-shear) total viscosity is kept nonlinear conformation model.
atg = 0.59. The analytical expressions of the components of
the conformation tensor can be easily obtained in shear flow

(24)
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Fig. 12. Convergence rate of the solution computed in the flow in the
cylindrical pipe with the Oldroyd-B model g = 0.59, We = 1. The sym-
Fig. 11. Unstructured finite element meshes used for computing flow in a bols denote the maximum relative erzoon the conformation component
cylindrical pipe (left, mesh size.B5R) and in a cylindrical annulus (right, ~ M11 vs. the dimensionless element size The solid line is the best fit
mesh size 1R, on the inner wall and A4R, on the outer wall). log(e) = 1.65log() + 1.38.
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Fig. 13. (color online). Contours of conformation componghf at the
y = 0 plane computed g = 0.59 with the Oldroyd-B (top row), FENE-P
(b = 10, middle row) and Giesekus & 0.1, bottom row) models. Left:
three-dimensional pipe flodWe = 1, characteristic mesh sizel@Rr; right:
three-dimensional annular flow/e = 2, characteristic mesh sizel@R.

5.2. Two-dimensional flow around a cylinder

The new boundary condition is further tested in a two-
dimensional flow around a cylinder by varying the upstream
length and comparing different boundary conditiofig. 6

_ 1
shows a schematic diagram of the flow and details the bound-e;; = — Z

ary conditions. The channel height ¥ = 2R, the down-
stream length is fixed at; = 15R, which was found to be
sufficient in earlier studig$2]. The upstream section is pro-
gressively shortened by decreasihg from L, = 20R to
L, = 3R.

The computation is carried out with the Oldroyd-B
model at the conditions: flow rat@ = 1, 8 = 0.59, We =
A(Q/H)/R = 0.6. At the inflow, the analytical expressions
of the velocity and stresses for the Oldroyd-B fluid are

=32

vy, =0 (26)

3Qy
Lyx = _F (27)
My =1 (28)
Myy = ALy, (29)

(30)

The flow is first computed at,, = 20R on the Mesh shown

in Fig. 7. For comparison, different methods (M1, M2, M3,
M4, and M6) are used to impose boundary conditions at the
inflow. Method M5 is not used here because it gives the
same results as M1 but is very cumbersome to apply be-
cause it requires precomputing the flow in a straight channel.
Method M2 is also difficult to implement if periodicity is
imposed over a length which exceeds that of one element
because it couples elements which are not neighboring each
other and thus introduces non-locality in the Jacobian matrix.
Therefore, we impose M2 by enforcing periodicity along the
flow direction in the first “column” of elements at the inflow
boundary:

The computations performed by using methods M2, M3,
M4, and M6 differ from the computations obtained with
method M1 by less than 16 in absolute value at any node
whenL, = 20R; thus the upstream length is sufficiently long
and the results obtained wii), = 20R and method M1 are
used as reference solution for comparing with shorter up-
stream length cases. The reference solution is denoted by the
superscript ‘0’

The accuracy of solutions obtained with shorter upstream
lengths is assessed by calculating the maximum relative error
on each of the computed components of velocity, conforma-
tion, velocity gradient, and on the pressure in the region near
the cylinder,—2R < x < 2R.2 The average relative error is
also computed to assess the quality of the solution. For ex-
ample, the maximum and average relative errors on confor-
mation componeny;; are respectively

|Mi(k) — MOGK)|
maxX———
CN VIR

eMi» = (31)

o [ Myj(k) — MY (K)]

M) 2

M=
wherek is the node counter andly is the number of con-
formation mesh nodes in the regiei2R < x < 2R. Fig. 8
reports the maximum (left) and average (right) error on the
conformation components. The errors on the other variables
are comparable or smaller, and the off-diagonal component
of the conformation tensa¥/,, dominates the error as the

1 Because periodicity is imposed over the first column of element instead
of over a prescribed length, the upstream length required for obtaining sat-
isfactory results with method M2 isnderestimatetiere.

2 If the absolute value of the variable in the reference solution is below
0.04, then the absolute error is used in place of the relative error.
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domain is shortened. Whdr), > 10R, all the boundary con-  and in the annular flow are
ditions yield the same error at the same upstream length;

2 2 2 2
M4 yields considerably higher errors than the other methods ; — APR; 1—(X2) (23 _,_ﬂ;
4L In(Rz2/R1)

when 4R < L, < 8R. If the criterion is used that a solution Al Rz Rz
should differ from the reference solution at any node by at
most 1%, then method M4 fails dt, ~ 7R, whereas M1, y (1 3 (&)2) n \/(2)2 N (E)z
M2, M3, and M6 all fail whenL, ~ 4R. None of the meth- R> R> R>
ods produces an acceptable solution wligh< 4R. Plots
of the average relative erroFig. 8 right) show that when 2 2
4R < L, < 8R M1 is marginally better than M6, which is + _ % \/<E> + <§> (36)
marginally better than M2 and M3; thus, methods M1, M2, In(R2/R1) Rz Rz
M3, and M6 are roughly equivalent in terms of required up-
stream length. However, M2 and M3 are not applicable to 2 2
. . —APxo A PR Rq
unstructured meshes and M1 is not applicable to general con-7,,; = 2(1- <_> + ug
stitutive equations. 2L |: 4uL ( R2 ) i|
S 2 (37)

5.3. Three-dimensional flow in a pipe and an annulus In(R2/R1) x5 + x3

_ The new boundary condition is tested here in two thrge- — APx3 |:APR§ < (Rl)z) :|
dimensional flows using unstructured meshes: flowinacylin- L3 = + 1-|(— + uo
drical pipe with radiuskR and lengthL = 2R and flow in 2nL L Rz
a cylindrical annulus with outer radiugy, inner radius 1 x3
R1 = Ro/2, and lengthL = 2R»; Figs. 9 and 10@eport the X In(Ra/R1) 22 + 22 (38)
geometric dimensions and the boundary conditions. Here- 2773
after, x1 denotes the axial coordinate ang and x3 de- The conformation components have the same expressions
note coordinates along two mutually perpendicular radial in the two flows
axes.

In both cases, a pressure difference = p; — po isim- My =1+ 25(L3, + L3y) (39)
posed between the two open sections of the flow through pz,, — 37,5, (40)
the traction term in the weighted residuals of the momen-
tum equation (se€q. (11). The outer cylindrical walls ~ M13=AL31 (41)
have zero velocity in both flows; in the annular flow, the Moo — 1

22 = (42)

inner cylinder is moving with velocityug in the direc-
tion of decreasing axial coordinatg. Thus, the annular  My3=0 (43)
flow is a combination of pressure-driven flow (from left to

right) and drag flow (from right to left), and both open sec- M3z =1 (44)

portion. . _ . velocity profile and isWe = 41Q/(7R3) = AAPR/(2uL)
The Oldroyd-B model is used in both flows because inthe i, pine flow and We = A[(—APR1)/(2uL) + [APR2/

Oldroyd-B model the shear viscosity is constantand thus the 4 1 y1 _ (r+/R»)2 + R+ In(R>/R
velocity and shear rate profiles coincide with those of a New- (L)1 = (Ra/R2)") + ol /(ReIn(Rz/ R1))}
tonian flow in pure shear flows. Both flows are axisymmetric

but are computed as fully three-dimensional. (Table §; the mesh with average element siz23R is shown

In both cases, the axial velocity is the only non-zero veloc- Fig. 11(left). Table Sshows the error on the computed con-
ity component. The non-trivial components of velocity and ¢, 14tion components a¥e = 1, 2, and 4 on the mesh with

velocity gradient in the cylindrical channel flow are average size .@Q5R. The agreement is good, although it de-
grades as the Weissenberg number grows because the linear

in annular
flow.
The pipe flow is computed on seven different meshes

v = APR? |:1 _ (2)2 _ (E)z] (33)  conformation basis functions cannot capture well the axial
4pL R R normal conformation profile, which is quadratic in the radial
direction.
Lo = _ﬁxz (34) Table 6shows the computational error on the conforma-
2L tion components on a set of different meshedvat= 1,
andFig. 12displays the maximum relative error on the ax-
L3 = —ﬁm (35) ial normal conformation componei;; versus the charac-

2L teristic element sizé. The logarithmic plot shows that the
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error drops asv 71165, in accord with theoretical estimates  the transport equations or conformation tensor equation at the
for SUPG with linear basis functions applied to hyperbolic inflow boundary. Tests on simple two- and three-dimensional
equationg53] as well as results for EVSS/SUPG methods flows with three different conformation-based models show
for viscoelastic flow{49] (the basis functions used here in that the method works well, and that this method retains the
three dimensional flows are linear). Thus, the new boundary best features of earlier methods without having their draw-
condition works correctly in three-dimensional flows with ~backs interms of general applicability to novel conformation-
unstructured meshes. based models, accuracy, computational efficiency, and abil-

The FENE-P and Giesekus models are also solved in pipeity of handling complex situations such as unknown flowrate,
flow. Fig. 13 (left) shows the comparison between the con- inflow-outflow boundaries, and unstructured meshes.

formation componeniq in p|pe flow Computed with the AIthough new methods which can account for distribu-
Oldroyd-B, FENE-P§ = 10), and Giesekusy(= 0.1) mod- tions of polymer behavior through stochastic or Fokker—
els, computed on a mesh with average siZ&4R. As ex- Planck are becoming increasingly important, models based

pected, the contours are straight lines alepglirection (the on conformation tensor are still the best candidates for mod-
small jaggedness is introduced by the interpolation routines €ling complex process flows because they offer a balance of
of the postprocessor). Naturally, the Oldroyd-B model pre- reasonable accuracy, sound physical grounding, molecular
dicts the highest values of streamwise conformation, whereasinsight, and computational efficiency, which is very important
(for this choice of parameters) the Giesekus model yields thein view of three-dimensional flow calculations, particularly
least distorted conformation. when free-surfaces or deformable boundaries are included

Fig. 11 (right) shows the mesh used for computing the [54]. Moreover, coarse-graining efforts underway may soon
annular flow; the element size isld to Q14R; because the ~ offer more systematic ways of linking detailed molecular
volume mesh is generated based on face mesh slA®§  models to conformation based modg#s]. The boundary
on the inner cylindrical face and 4R, on the outer cylin- condition introduced here provides a very convenient, accu-
drical face. This mesh has 30189 nodes, 19691 elementgate, and inexpensive method for building universal computa-
and 159047 unknowns. The computations are performed attional tools for simulating flows with general coarse-grained
B = 0.59,AP* = APR»/(uug) = 100, andWe = 0.70to 2. models, as well as for solving other hyperbolic problems.

The computed conformation components are compared to
the analytical solutions iffable 7 As in pipe flow (and for
the same reasons), the relative error grows with WeissenbergAcknoledgements
number and is highest in the componaéft;.
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