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Synopsis

We present a theory of the linear viscoelasticity of dilute solutions of freely draining, inextensible,
semiflexible rods. The theory is developed expanding the polymer contour about a rigid rod
reference state, in a manner that respects the inextensibility of the chain, and is asymptotically exa
in the rodlike limit where the polymer lengthL is much less than its persistence lengthLp . In this
limit, the relaxation modulusG(t) exhibits three time regimes: At very early times, less than a time

t i } L8/Lp
5 required for the end-to-end length of a chain to relax significantly after a deformation,

the average tension induced in each chain andG(t) both decay ast23/4. Over a broad range of
intermediate times,t i ! t ! t' , where t' } L4/Lp is the longest relaxation time for the
transverse bending modes, the end-to-end length decays ast21/4, while the residual tension
required to drive this relaxation andG(t) both decay ast25/4. As later times, the stress is dominated
by an entropic orientational stress, givingG(t) } e2t/trod, where trod } L3 is a rotational
diffusion time, as for rigid rods. Predictions forG(t) andG* (v) are in excellent agreement with
the results of Brownian dynamics simulations of discretized free draining semiflexible rods for
lengths up to L 5 Lp , and with linear viscoelastic data for dilute solutions of
poly-g-benzyl-L-glutamate withL ; Lp . © 2002 The Society of Rheology.
@DOI: 10.1122/1.1501927#

I. INTRODUCTION

While the theoretical problem of predicting linear viscoelastic functions of dilute
polymer solutions was largely solved in the 1950s for the cases of completely flexible
~Gaussian! polymers and rigid rods, the corresponding problem for the wormlike chain
model has resisted solution. Here, we present a solution to this problem in the relativel
simple limit of rodlike chains, of lengthL much less than their persistence lengthLp .
The theory is asymptotically exact in the limitL ! Lp , and is found~by comparison to
both simulations and experiment! to remain surprisingly accurate for chains of length up
to L ; Lp .

The wormlike chain~WLC! model describes the backbone of a polymer as a smooth
contour with a finite elastic resistance to bending, but an infinite resistance to tangentia
extension or compression. Solving this model has proved difficult largely because th
dynamical equations for a single such chain are nonlinear, even in the absence of hydr
dynamic interactions. The nonlinearity is a result of the constraint of inextensibility,
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1112 SHANKAR, PASQUALI, AND MORSE
which must be enforced by a tension~i.e., Lagrange multiplier! field whose value at each
point on a chain depends upon the conformation of the entire chain. The physical reaso
for treating such polymers as inextensible is suggested by a simple model of a wormlik
chain as cylindrical elastic solid of diametera and Young’s modulusY: The energy per
unit length required to change the length of such a cylinder by a specified fractional strai
is proportional toYa2, while the energy per length required to bend it into an arc of
radiusR is of orderYa4/R2, which is smaller than the strain energy by a factor of order
(a/R)2. This property of thin, weakly curved filaments is familiar to anyone who has
tried to bend and stretch a thread or human hair.

An influential previous theory for the viscoelasticity of solutions of wormlike chains
@Harris and Hearst~1966!; Hearstet al. ~1966!# attempted to bypass the difficulties posed
by the inextensibility constraint by introducing a modified Gaussian model in which the
constraint is imposed only in a temporally and spatially average sense, by a consta
Lagrange multiplier tension. This and related Gaussian models yield reasonable approx
mations for many static properties, and some dynamic properties, but, we find, yield
qualitatively incorrect results for the viscoelasticity of solutions of semiflexible rods,
because they neglect flow-induced constraint forces. We find that, at all frequencies fo
which the behavior of semiflexible rods in solution differs substantially from that of true
rigid rods, the polymeric contributions to the stress is dominated by contributions arising
from constraint forces, and that a rigorous treatment of the constraint is thus a necessi

The absence of an adequate theory has not prevented the accumulation of a body
experimental data on the viscoelasticity of dilute solutions of wormlike polymers, much
of it by J. Schrag and coworkers@Warrenet al. ~1973!, Nemotoet al. ~1975!, Carriere
et al. ~1985!, ~1993!#. Of particular relevance to the present work are measurements of
the linear viscoelasticity of dilute solutions of poly~g-benzyl-L-glutamate! ~PBLG! with
L ; Lp by Warrenet al. ~1973! and of somewhat shorter chains, at significantly higher
frequencies by Ookuboet al. ~1976!. The measurements of Warrenet al. revealed that the
rigid rod theory of Kirkwood and Auer~1951! adequately describes the behavior of
G* (v) for such chains in the low frequency terminal regime, but not at any higher
frequencies. The present paper thus focuses on explaining the viscoelasticity of solution
of semiflexible rods at relatively high frequencies, where their behavior differs qualita-
tively from that of truly rigid rods.

A. Model

We consider a dilute solution of monodisperse wormlike polymers of contour lengthL,
diameterd, and number densityc. The conformation of a single chain is parametrized by
a space curver (s), wheres is the arc length measured along the contour of the polymer.
The bending energy of a wormlike chain with a bending rigidityk is given by

Ubend5
1

2
kE

0

L
dsU]u~s!

]s
U2

, ~1!

whereu(s) [ ]r (s)/]s is the local tangent vector, and]u(s)/]s is a curvature vector,
whose magnitude is the inverse of the local radius of curvature. The constraint of loca
inextensibility is expressed as a requirement thatu]r (s)/]su 5 1 at each point on the
chain, so thatu(s) is a unit vector. The persistence lengthLp [ k/kBT is the distance
along the chain over which tangent vectors remain correlated in equilibrium. Chains with
L @ Lp thus are~globally! random coils, whereas those withL ! Lp are semiflexible
rods.
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1113LINEAR VISCOELASTICITY OF SEMI-FLEXIBLE RODS
The Brownian motion of a single free-draining wormlike chain in an imposed mean
flow with velocity gradientġ [ (“v)T is described by the Langevin equation

z•S ]r

]t
2ġ•r D 5 2k

]4r

]s4 1
]

]s S T
]r

]sD 1h. ~2!

Here,z is a local friction tensor of the formz 5 z iuu1z'(I2uu) wherez i andz' are
friction coefficients for motions parallel and perpendicular to the local tangentu(s),
respectively. The left side of Eq.~2! is a hydrodynamic frictional force. The first term on
the right side is the force arising from the bending energy. The second term on the righ
side is a constraint force required to enforce inextensibility, in whichT(s,t) is a fluctu-
ating tension, or Lagrange multiplier, field. The last term on the right side is a random
Brownian force with vanishing mean value and a variance^h(s,t)h(s8,t8)&
5 2kBTz(s,t)d(s2s8)d(t2t8). Solutions of Eq.~2! must satisfy boundary conditions

requiring that]2r /]s2 5 ]3r /]s3 5 T 5 0 at both chain ends.
This free-draining model ignores the effects of long range hydrodynamic interactions

The theory of slender body hydrodynamics@e.g., Batchelor~1970!# shows that, in the
limit of a rodlike object of lengthL much greater than its hydrodynamic diameterd, the
effects of hydrodynamic drag can be mimicked, to within logarithmic corrections, by the
use of an anisotropic local friction, with coefficientsz' 5 2z i . 4phs , wherehs is the
solvent viscosity. In addition, the theory predicts a weak logarithmic dependence of th
effective friction coefficient on the characteristic distance for variation of the drag forces
along the chain. For example, the effective friction coefficient for rigid transverse motion
of a rod is approximately 4phs / ln(L/d), while that for a bending mode of wavelength
l @ d is approximately 4phs / ln(l/d) @Granek ~1997!, Kroy and Frey~1997!#. The
free-draining model of Eq.~2! ignores this logarithmic scale dependence, but does allow
us to retain the factor of 2 difference betweenz i andz' when comparing to experiment.

B. Time and length scales

We briefly review the characteristic time and length scales relevant to stress relaxatio
in a solution of semiflexible rods, withL ! Lp @Morse ~1998b!#.

The slowest relaxation process in a solution of rods is rotational diffusion. The free
draining model described earlier yields a rotational diffusivityDrot 5 12kBT/(z'L3),
and a corresponding terminal relaxation time

trod 5
z'L3

72kBT
~3!

for the relaxation of flow-induced anisotropies in the distribution of rod orientations.
The longest wavelength bending mode of a semiflexible rod of lengthL has a decay

time proportional to

t' [
z'L4

k
. ~4!

This time scale can be estimated by dimensional analysis of Eq.~2!, by balancing the
frictional force with the bending force. We also define a corresponding time-dependen
length scale

j'~t! [ Skt

z'
D1/4

~5!
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1114 SHANKAR, PASQUALI, AND MORSE
which, for t , t' , is approximately the wavelength of a bending mode with a relaxation
time equal tot. Hereafter, the notationj'(v) [ (vz' /k)21/4 refers to the same length
scale expressed as a function of a frequencyv 5 1/t.

Understanding the longitudinal response of a semiflexible rod is the key to understan
ing the high-frequency viscoelasticity of a solution of rods. At nonzero temperature,
semiflexible rod undergoes thermally excited transverse undulations. As a result, its a
erage end-to-end length is thus always less than its full contour lengthL, and can be
changed slightly by longitudinal forces applied to the chain, without changing the actu
contour length, by suppressing~for T . 0! or enhancing~for T , 0! the magnitude of the
thermally excited ‘‘wrinkles.’’ The resulting effective extensibility can be quantified by
an effective longitudinal extension modulusB [ T /^E& measured in a hypothetical ex-
periment in which a uniform infinitesimal tensionT is applied to the chain, and results in
an average strain~i.e., fractional change in end-to-end length! ^E& [ ^dL&/L, where
^dL& is the change in the average end-to-end length.

MacKintoshet al. ~1995! calculated an effective static modulus by using equilibrium
statistical mechanics to calculate the longitudinal response to a spatially uniform, sta
tension. They obtained

B }
k2

kBTL3 ~6!

with a prefactor that depends upon the boundary conditions imposed on the ends of
chain. The effective extensibility of the chain arises from the existence of thermal tran
verse fluctuations; thus, the modulus increases with decreasing temperatureT or increas-
ing rigidity k. B depends strongly on the chain length, because the calculated complian
1/B is dominated by the contributions of the longest wavelength bending modes.

Subsequently, both Gittes and MacKintosh~1998! and Morse~1998b! calculated a
frequency-dependent dynamic longitudinal modulusB(v) 5 T(v)/^E(v)&, by consider-
ing the longitudinal response of a semiflexible rod to a spatially uniform but temporall
oscillating tension of complex amplitudeT~v! at a frequencyv, and calculating the
amplitude^dL(v)& 5 L^E(v)& of the resulting change in the average end-to-end length
Both authors found a modulus

lim

v @ t
'
21

B~v! 5
k2

kBT S 2ivz'

k D 3/4

~7!

at high frequencies,v @ t'
21, and confirmed that they recovered the static modulus of

Eq. ~6! at low frequencies,v ! t'
21. Thev3/4 dependence ofB(v) at high frequencies

can be qualitatively understood as follows: When a chain is subjected to an oscillato
tension withv @ t'

21, only bending modes with wavelengths shorterj'(v), which
have relaxation rates greater thanv, can respond to the oscillatory tension. Only these
short wavelength modes contribute significantly to the extensibility of the chain. T
estimateB~v!, we can thus assume that, forv @ t'

21, the lengthj'(v) replaces the
chain lengthL as the long-wavelength cutoff in Eq.~6!. This scaling argument gives

B~v! ;
k2

kBTj'
3~v!

~8!

in agreement with Eq.~7!.
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The slight longitudinal extensibility of a semiflexible rod gives rise to a nontrivial
longitudinal dynamics@Morse~1998b!, Everaerset al. ~1999!#. We have noted previously
@Morse~1998b!, Pasqualiet al. ~2001!# that the average longitudinal force balance for a
semiflexible rod with a frequency-dependent longitudinal modulusB~v! can be recast in
the form of a modified diffusion equation for the average tension^T~s,v!&, with a
frequency-dependent diffusivityD(v) 5 B(v)/z. This yields a kind of anomolous diffu-
sion in which tension and longitudinal strain propagate a distance

ji~t! [ AuB~1/t !ut

z i

5 F S 2z'

z i
D 3 kBTLp

5

z i

tG1/8

~9!

in a time t, giving j i(t) } t1/8. The notationj i(v) [ AuB(v)u/(vz i) denotes the same
length as a function ofv 5 1/t. Settingj i(t) 5 L yields a characteristic time scale

ti [ S zi

2z'
D3 ziL

8

kBTLp
5 ~10!

required for strain and tension to diffuse the entire length of the chain, which is also the
time required for the chain length to relax significantly after a sudden deformation.

Equations~3!, ~4!, and~10! yield ratios of the time scalest rod,t' , andt i :

ti

t'

} S L

Lp
D4

,
t'

trod
}

L

Lp
. ~11!

These three time scales thus become well separated in the rodlike limitL ! Lp , and
form a hierarchyt i ! t' ! t rod. The dynamical response of a solution of such rods is
therefore expected to exhibit three time regimes in an experiment, such as a step strain
that subjects the system to a sudden perturbation: At early times,t ! t i , the end-to-end
length has insufficient time to relax significantly and so will retain the value imposed on
it by the initial perturbation. At intermediate times,t i ! t ! t' , the longitudinal de-
formation of the chains has had time to undergo significant~but not necessarily complete!
relaxation, but the longest wavelength bending modes have not yet relaxed. At late times
t . t' , both longitudinal and transverse degrees of freedom are fully relaxed, and the
polymer behaves like a rigid rod. Note that the width of the intermediate regime grows
rapidly with decreasingL/Lp , but that the gaps betweent i ,t' , andt rod disappear asL
approachesLp from below, causing the intermediate regime to vanish.

C. Stress relaxation

Here we discuss some qualitative features of the relaxation of stress
s(t) 5 G(t)@g01g0

T# after a step strain of infinitesimal magnitudeg0 at t 5 0. In what
follows, the polymer contribution toG(t) in a dilute solution ofc chains per unit volume
will be characterized by an intrinsic relaxation modulus, defined by

@G~t!# 5 lim
c → 0

G~ t !2d~ t !hs

c
, ~12!

which gives the contribution toG(t) per chain and by a corresponding intrinsic dynamic
modulus,@G* (v)# 5 (G* (v)2 ivhs)/c, where@G* (v)# 5 iv*0

`dt@G(t)#e2 ivt.
We first review the behavior of solutions of true rigid rods@Kirkwood and Auer

~1951!, Doi and Edwards~1986!, Bird et al. ~1987!#. The stress in a dilute solution of thin
rigid rods is given by
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1116 SHANKAR, PASQUALI, AND MORSE
s 5 cE
0

L
dŝ T~s!uu&13ckBT^uu2I /3&, ~13!

whereT~s! is the tension at points along a rod, andu is the unit vector parallel to a rod.
The first term on the right-hand-side~rhs! is a viscous stress arising from the tension
T(s,t) that is required to maintain the constraint of inextensibility, which depends linearly
on the instantaneous rate of strainġ(t). The second term is the entropic orientational
stress arising from anisotropies in the distribution of rod orientations. For a step strain o
magnitudeg0 at t 5 0, the rate-of-deformation tensorġ(t) is a delta-functionġ(t)
5 g0d(t). This induces a tension

T~s,t ! 5 1
2z id~ t !s~L2s!g0 :uu, ~14!

in a rod with orientationu, with ad-function time dependence, a parabolic dependence on
s, and a magnitude that depends onu. Using this tension to evaluate the viscous tension
stress in Eq.~13!, averaging the result over chains of different orientations, and calculat-
ing the effect of a step strain upon the distribution of rod orientations to obtain the
entropic orientational stress, yields an intrinsic modulus

@G~t!# 5
ziL

3

180
d~ t !1

3

5
kBTe2t/trod, ~15!

with a delta-function viscous contribution, and an exponentially decaying orientationa
contribution that decays by rotational diffusion, with the decay timet rod given in Eq.~3!.
The behavior ofG(t) in a solution of semiflexible rods is expected to be similar to that
predicted for true rigid rods at late timest . t' , when all internal deformations have
had time to relax. This paper thus focuses on predicting linear viscoelastic behavior
times t ! t' , or corresponding frequencies.

Both Gittes and MacKintosh~1998! and Morse~1998b! have predicted thatG* (v) in
solutions of wormlike chains should vary asymptotically asG* (v) } ( iv)3/4 at very
high frequencies, or~equivalently! thatG(t) } t23/4 at very early times. This prediction
is based on the assumption that, at sufficiently high frequency in an oscillatory flow, or a
sufficiently short times after a step deformation, the frictional coupling between the chai
and the solvent will be strong enough to enforce a nearly affine deformation of th
end-to-end vector of a chain, i.e., the same longitudinal extension or compression as th
experienced by a straight line of ink drawn in the solvent with the orientation of a
particular rod. In an oscillatory flow, this affine strain yields a corresponding oscillatory
tension with av3/4 frequency dependence that directly reflects the frequency dependenc
of B(v). The underlying assumption of an affine longitudinal deformation must break
down, however, at frequenciesv , t i , or timest . t i , for which the end-to-end length
has sufficient time to significantly relax. This earlier prediction is thus expected to be
valid only in the high frequency or early time regime.

The behavior ofG(t) in the intermediate time regimet i ! t ! t' is more subtle. We
showed in an earlier report on this subject@Pasqualiet al. ~2001!# that the stress is
dominated at these intermediate times~as at early times! by a ‘‘tension’’ contribution that
arises from the constraint forces, and that bothG(t) and the tensions in individual rods
decay ast25/4 in this regime. This algebraic decay of the tension at intermediate times is
shown here to be an indirect result of the free relaxation of transverse bending mod
throughout this time regime: The sequential relaxation of bending modes of increasin
wavelength throughout this regime leads to an accordion-like motion, which, as a resu
of the inextensibility of the chain contour, is found to yield an average longitudinal
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strain that relaxes ast21/4. The residual tension induced by frictional forces that oppose
the longitudinal component of this motion is proportional to the the time derivative of the
strain, and so decays ast25/4.

At late times,t . t' , the coupled relaxation of the transverse undulations and lon-
gitudinal strain is complete, and the macroscopic stress is dominated by a remaining
entropic orientational component analogous to that found for rigid rods. This component
decays exponential with a decay timet rod identical~for L ! Lp) to that found for rigid
rods.

The above description applies rigorously only to very stiff chains, withL ! Lp . As L
approachesLp from below, the intermediate time regime disappears, leaving an essen-
tially featureless crossover from at23/4 decay ofG(t) at early times to an exponential
termain decay. For much longer coil-like chains, withL @ Lp we expectG(t) to cross-
over as a function of time from at23/4 decay at early times to a Rouse-liket21/2 decay
at later times. This crossover should occur at a time proportional toz'Lp

3/(kBTLp),
which is roughly the relaxation time for a bending mode of wavelengthLp , after which
the stress relaxation will be controlled by the relaxation of Rouse-like modes with wave-
lengths greater thanLp .

D. Outline

The rest of this paper is organized as follows. In Sec. II, we expand the equation of
motion and related quantities about a rigid rod reference state. In Sec. III we derive an
integrodifferential equation relating the average longitudinal tension and strain fields in a
semiflexible rod of known orientation, and obtain a formal solution of this relation in
terms of a spatially nonlocal longitudinal compliance, or a corresponding nonlocal modu-
lus, which is a generalization of the frequency dependent modulusB~v! discussed earlier.
In this section, we also introduce an analytically tractable ‘‘local compliance approxima-
tion’’ that ignores the spatial nonlocality of the relationship between tension and strain,
which yields the simple modified diffusion equation for strain that was used in our
previous work@Pasqualiet al. ~2001!#. In Sec. IV, we calculate the nonlocal compliance
in an approximation that is valid at intermediate- and high-frequencies,v @ t'

21, the
results of which show that the local compliance approximation is also valid throughout
the same frequency range. In Sec. V, we use the local compliance approximation to
calculate the stress and strain field along a rod in weak flow field. In Sec. VI, we review
the formal expression of Morse~1998a! for the stress in a solution of wormlike polymers,
and cast this in a form appropriate to a nearly straight rod. In Sec. VII, we use the local
compliance approximation to obtain analytic results for the linear viscoelastic moduli for
v @ t'

21. In Sec. VIII, we formulate a more complete theory that is valid in the limit
L ! Lp at arbitraryv, but that must be evaluated numerically. In Sec. IX, we present
Brownian dynamics simulations of semiflexible rods, and compare simulation results for
G(t) to the predictions of the full theory. In Sec. X, we compare predictions forG* (v)
to experimental data for dilute solutions of poly~benzyl-glutamate!. In Sec. XI, we
present an accurate analytic approximation to the full theory. In Sec. XII, we compare our
theory to that of Harris and Hearst~1966!. Conclusions are summarized in Sec. XIII.

The simulations results presented here, and a brief presentation of the local compli
ance approximation for the tension stress contribution toG(t), have appeared previously
in Pasqualiet al. ~2001!. Similar simulations ofG(t) have also been conducted by Dimi-
trakopouloset al. ~2001!. The theoretical treatment of the inextensibility constraint used
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here is similar to that used by Liverpool and Maggs~2001! in a recent theoretical study
of dynamical light scattering from long semiflexible filaments.

II. EXPANSION ABOUT A ROD

We expand the dynamical equations about a rotating rodlike reference state. O
reference state is a straight rod parallel to a unit vectorn~t! that rotates like a thin
non-Brownian rod in a homogeneous velocity gradient

dn

dt
5 ~ I2nn!•ġ•n. ~16!

We expand the polymer contourr ~s! about this line as

r ~s,t ! 5 @s1 f ~s,t !#n~ t !1h~s,t !, ~17!

where f (s,t) andh(s,t) are the longitudinal and transverse displacements, respectivel
The transverse displacementh(s,t) always remains orthogonal ton(t), and can be ex-
panded as

h~s,t ! 5 (
a 5 1,2

ha~s,t !ea~ t !, ~18!

wheree1(t) ande2(t) are two unit vectors that are always orthogonal ton(t) and to each
other. Greek subscripts are used hereafter to represent transverse directions, and can
values 1 and 2. We choose@following Hinch ~1976!# the time evolution ofe1(t) ande2(t)
as

de1

dt
5 2n~e1•ġ•n!,

de2

dt
5 2n~e2•ġ•n!, ~19!

so that each transverse basis vector rotates in a plane spanned by itself andn(t) so as to
remain always orthogonal ton(t).

The constraint of inextensibility, which requires thatu]r (s)/]su2 5 1, can be ex-
panded as

S]f

]sD2

12
]f

]s
1S] h

]s D 2

5 0. ~20!

In the limit L/Lp ! 1, whereu] f /]su ! 1, this can be expanded, to leading approxima-
tion, as

]f

]s
. 2

1

2S] h

]s D 2

. ~21!

It is useful to describe longitudinal displacements in terms of a longitudinal strain field

E~s! [
] f

]s
2K ] f

]sL
eq

, ~22!

where^•••&eq denotes an average value evaluated in the thermal equilibrium state, i.e
with ġ 5 0. Using approximation~21!, E~s! can be expressed in terms of transverse
displacements as
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E~s! . 2
1

2 FU]h

]s
U2

2K U]h

]s
U2L

eq
G , ~23!

to leading order in derivatives ofh(s).
To expand the equation of motion, we substitute expansion~17! for r (s,t) into Lange-

vin equation~2!, while using Eqs.~16! and ~19! for the rates of change ofn(t), e1(t),
and e2(t). By projecting the result onton(t), e1(t), ande2(t), we obtain longitudinal
and transverse components. The transverse component in directionea is

z'F]ha

]t
2(

b
ġabhbG 5 2k

]4ha

]s4 1
]

]sST ]ha

]s D 1ha , ~24!

whereġab [ ea•ġ•eb , andha(s,t) [ ea(t)•h(s,t). The longitudinal component is

ziF]ri

]t
2riġ :nn2(

a
ġ :~nea1ean!haG 5 2k

]4r i

]s4 1
]

]s S T
]r i

]s D 1h i , ~25!

where r i(s,t) [ s1 f (s,t), and h i(s,t) 5 n(t)•h(s,t). Equations~24! and ~25!, to-
gether with constraint~21!, form the equations of motion in the rodlike limit.

III. LONGITUDINAL DYNAMICS

In this section, we derive a formal equation relating the average of the strain a
tension fields along a rod of known orientation. We consider the average of longitudi
force balance~25! with respect to rapid fluctuations off, h, andT on a semiflexible rod
of much more slowly varying orientationn, which is regarded as constant for this pur-
pose. This averaging procedure, which will be denoted by the symbol^•••& throughout
this section, yields

ziF]^f&

]t
2sġ :nnG 5 2k

]4^ f &

]s4 1
]^T &

]s
. ~26!

To derive Eq.~26!, we have used the fact that the^ha& 5 0 in Eq.~25! as a result of the
invariance of Eq.~24! under the symmetryh → 2h. Differentiating Eq.~26! with re-
spect tos yields an equivalent relationship

ziF]^E&

]t
2ġ :nnG 5 2k

]4^E&

]s4 1
]2^T &

]s2 ~27!

in terms of the average strain^E(s,t)&.
To solve Eq.~27!, which relates derivatives of the average strain^E(s,t)& and the

average tension̂T(s,t)&, we need a second relationship between these two fields. This
obtained by combining transverse equation of motion~24! with Eq. ~23! for the con-
straint, which relates the longitudinal strain to the derivatives ofha(s), by using the
transverse equation of motion to calculate the linear response of the average^u]h/]su2&
of the quantity that appears on the rhs of Eq.~23! for E(s,t). We thus consider the
solution of transverse Eq.~24! driven by small perturbations arising from the tension field
T(s,t) in the second term on the rhs and also from the velocity gradient tensorgab , in
the second term on the left-hand-side~lhs!. To describe the dynamical linear response o
the ^E(s,t)& to these perturbations, we must calculate the response of^u]h/]su2& to a
temporally oscillating velocity gradient and tension field at arbitrary frequencyv. We
hereafter adopt a convention in which Fourier transforms of all time dependent functi
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are indicated by replacing the time argumentt by a frequencyv, so that, e.g.,E(s,v)
[ *dte2 ivtE(s,t). In the limit of small perturbations, we expect the responses of

^E(s,v)& to the velocity gradient and to the tension to be additive, and so expect to be
able to write the average strain as a sum

^E~s,v!& 5 Q~s,v!g ~v!:nn1E
0

L
ds8x~s,s8;v!T ~s8,v! ~28!

of contributions linear ing~v! and T(s8,v), with response functionsQ(s,v) and
x(s,s8;v) that will be calculated in subsequent sections. The functionx(s,s8;v) is a
nonlocal longitudinal compliance that gives the average strain induced at points by a
tension applied ats8 with frequencyv. The tensor form of the term linear ing~v! is
dictated by the fact that this contribution to the strain must be a scalar function ofg and
n and linear ing, and thatg~v! must be traceless for an incompressible fluid.

A. Full theory

A closed integrodifferential equation for^T(s,v)& can be obtained by Fourier trans-
forming Eq. ~27! with respect to time and substituting Eq.~28! for ^E(s,v)&, while
equating the unspecified tensionT(s,t) in linear response relationship~28! with the
average valuêT(s,t)& that appears in Eq.~27!. This yields

Fivzi1k
] 4

]s4GE
0

L
ds8x~s,s8;v!^T ~s8,v!&2

]2^T ~s,v!&

]s2 5 ivz ig~v!:nn@12Q~s,v!#.

~29!

Here and hereafter,n(t) is approximated by its time average over one period of oscilla-
tion. The dimensionless response functionQ(s,v) is calculated in the Appendix, and is
found to approach a maximum value proportional toL/Lp in the limit v @ t'

1 . The term
involving Q(s,v) on the rhs of Eq.~29! is thus uniformly smaller than the leading term
on the rhs in the limitL ! Lp of interest, and so can be neglected. Making the deriva-
tives dimensionless by definingŝ [ s/L and dividing byivz i then yields

S11
1

ivt'

z'

zi

] 4

]ŝ4DE
0

L
ds8x~s,s8;v!^T ~s8,v!&2

1

ivz iL
2

]2^T ~ ŝ,v!&

] ŝ2 5 g~v!:nn.

~30!

An equivalent expression involving the strain, rather than the tension, can be obtained by
introducing a nonlocal modulusB(s,s8;v), defined such that

E
0

L
ds8B~s,s8;v!x~s8,s9;v! 5 d~s2s9!, ~31!

i.e., such thatB is the functional inverse ofx. If we consistently neglect the term involv-
ing Q(s,v) in Eq. ~28!, as done to obtain Eq.~30!, we can write ^T(s,v)&
5 *ds8B(s,s8;v)^E(s8,v)&, to obtain the equivalent expression

S11
1

ivt'

z'

zi

]4

]ŝ4D^E~ ŝ,c!&2
1

iv iL
2

]2

] ŝ2 E
0

L
ds8B~s,s8,v!^E~s8,v!& 5 g~v!:nn.

~32!

Equations~30! and~32! are the starting points for the full theory developed in Sec. VIII.
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B. Local compliance approximation

We find in what follows that Eqs.~30! and ~32! can be further simplified in the limit
of intermediate and high frequencies,v @ t'

1 . First, we note that the coefficient multi-
plying the fourth derivative term in Eq.~32! is proportional to (ivt')21, and that, as
result of this small prefactor, is negligible compared to the first term on the left side at all
v @ t'

21. Moreover, we find that the nonlocality of the compliance becomes unimpor-

tant at frequenciesv @ t'
21; thusx(s,s8;v) can be approximated at these frequencies

by a frequency dependent but spatially local compliance, of the form

x~s,s8;v! . x~v!d~s2s8!. ~33!

Herex(v) 5 1/B(v), whereB~v! is the frequency-dependent modulus given in Eq.~7!,
which was obtained by calculating the spatial average strain induced by a spatially uni-
form tension at frequenciesv @ t'

21. The resulting local compliance approximation
~LCA! assumes that the average strain and tension are locally proportional, so that

^E~s,v!& 5 x~v!^T ~s,v!&. ~34!

Substituting this approximation in Eq.~27!, and neglecting the fourth derivative term,
yields the LCA longitudinal balance equation

Fiv2
B~v!

zi

]2

]s2G^E~s,v!& 5 ġ~v!:nn, ~35!

whereġ(v) [ ivg(v).
Equation~35! has the form of a diffusion equation, with a frequency-dependent dif-

fusivity D(v) [ B(v)/z i , and a spatially uniform source term arising from the rate of
straining along directionn. An analytic solution to this diffusion equation, which satisfies
the boundary condition̂T(s,v)& 5 0 at the chain ends, is presented in Sec. V. At high
frequencies,v @ t i

21, for which j i(v) ! L, the solution of Eq.~35! is found to yield
tension and strain fields that vary over lengths of order the longitudinal diffusion length
j i(v), as suggested by dimensional analysis. At intermediate frequencies,t'

21 ! v

! t i
21, for which L ! j i(v), the tension and strain are found to vary smoothly over

the entire chain lengthL.
To justify the LCA, the predicted characteristic distances for spatial variations of

^T(s,v)& at each frequency must be compared to the calculated range of the nonlocality
of x(s,s8;v): The approximation ofx(s,s8;v) by a d function is justified only if the
predicted^T(s,v)& varies slowly over distances comparable to the range of values of
us2s8u for which x(s,s8;v) remains significant. In Sec. IV,x(s,s8;v) is calculated in
an approximation valid atv @ t'

21, and it is shown thatx(s,s8;v) has a range of
nonlocality proportional to the transverse lengthj'(v). Using this result, the validity of
the LCA can be justified at allv @ t'

21 by using Eqs.~4! and ~10! to confirm that

j'(v) ! j i(v) throughout the high-frequencyv @ t i
21 regime in which the tension

varies over distances of orderj i(v), and thatj'(v) ! L throughout the intermediate
regime t i

21 @ v @ t'
21 in which the tension varies smoothly over the entire chain

length. The LCA fails at frequencies comparable to and less thant'
21, however, for

which the nonlocality ofx(s,s8;v) extends over the full chain length.
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IV. NONLOCAL COMPLIANCE AT INTERMEDIATE AND HIGH FREQUENCIES

We now calculatex(s,s8;v) in an approximation appropriate to the limitj'(v)
! L or, equivalently,v @ t'

21. In this limit, the calculation ofx(s,s8;v) from the
transverse equation of motion becomes insensitive to the finite length of the chain, and
the calculation can be performed as if the chain were infinite, by using an expression
ha(s) in a continuous distribution of Fourier modes

ha~s,t! 5 Edq

2p
ha~q,t!e2iqs, ~36!

with amplitudesha(q,t) 5 *dsha(s,t)eiqs. The bending energy of Eq.~1! can be ex-
panded to quadrative order in Fourier amplitudes as

Ubend5
1

2 (
a

E dq

2p
kq4uha~q!u2. ~37!

Fourier transforming Eq.~24! yields a transformed transverse equation of motion

Sz'

]

]t
1kq4Dha~q! 5 z'(

b
ġabhb~q!2Edq1

2p
q~q2q1!T~q1!ha~q2q1!1ha~q!,

~38!

whereT(q,t) andha(q,t) are the corresponding spatial Fourier transforms ofT(s,t) and
ha(s,t), respectively, and the random force satisfieŝha(q,t)& 5 0 and
^ha(q,t)hb(q8,t8)& 5 dab2pd(q1q8)d(t2t8)2kBTz' .

To calculate the nonlocal compliance, we calculate the linear response of the avera
strain^E(k,t)& to a prescribed tension, where^•••& is used in this section to represent an
average over different realizations of the transverse noise. Fourier transforming Eq.~23!
for E(s,t), yields

^E~k,t !& 5 E dq

2p
q~k2q!a~q,k;t !, ~39!

where

a~q,k;t! [
1

2(
a

@^ha~q!ha~k2q!&2^ha~q!ha~k2q!&eq#. ~40!

The time derivative ofa(q,k;t) is calculated by using Eq.~38! to evaluate

]a~q,k;t!

]t
5

1

2 (
a

K ]ha~q!

]t
ha~k2q!1ha~q!

]ha~k2q!

]t L, ~41!

while settingġab 5 0 on the first term on the rhs of Eq.~38!. To evaluate the rhs of Eq.
~41!, we approximate averages of the form^ha(q,t)hb(q8,t)& that appear multiplied by
explicit factors ofT (2q2q8) by their equilibrium values, for the purpose of calculating
the linear response toT, using the equilibrium variance^ha(q1)hb(q2)&eq

5 dab2pd(q11q2)kBT/kq1
4, which is obtained by applying the equipartition theorem

to Eq. ~37!. We also use the identifŷha(q1)hb(q2)& 5 kBTdab2pd(q11q2) for
terms involving the random force@see, for example, Doi and Edwards~1986! p. 112#.
This yields the differential equation
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Hz'

]

]t
1k@q41~k2q!4#Ja~q,k;t! 5 T (k,t)F q

~k2q!3 1
~k2q!

q3 G kBT

k
. ~42!

Fourier transforming Eq.~42! with respect to time yields a corresponding algebraic
equation

a~q,k;v! 5
T ~k,v!

ivz'1k@q41~k2q!4#
F q

~k2q!3 1
~k2q!

q3 G kBT

k
, ~43!

for a(q,k;v) [ *dte2 ivta(q,k;t), whereT (k,v) is the corresponding Fourier trans-
form of T (k,t). Finally, substituting Eq.~43! for a(q,k;v) into the temporal Fourier
transform of Eq.~39! gives a strain of the form

^E~k,v!& 5 x~k,v!T ~k,v!, ~44!

where

x~k,v! 5
kBT

k
Edq

2p

1

ivz'1k@q41~k2q!4#
F q2

~k2q!2
1

~k2q!2

q2 G ~45!

is a k- andv-dependent nonlocal compliance.
Prior results for the response to a spatially uniform tension can be recovered

evaluatingx(k,v) at k 5 0, which we denote by a functionx(v) [ x(k 5 0,v). This
yields

x~v! 5
kBT

k
E

q ; 1/L

dq

2p

1
i
2vz'1kq4 . ~46!

The lower limit of integration is included as a reminder that the existence of a finite cha
length L imposes a cutoff on the range of allowable wave numbers. At frequenciesv
@ t'

21, where the calculation given in this section is valid, the integral is insensitive to
this lower cutoff, and yields

lim

v @ t
'
21

x~v! 5
kBT

k2 S 2ivz'

k D 23/4

, ~47!

in agreement with results of Gittes and MacKintosh~1998! and Morse~1998b! for
B(v) [ 1/x(v). Forv ! t'

21, the integral in Eq.~46! instead is controlled by its lower
limit, indicating that the calculation is no longer quantitatively valid, as a result of our us
of a continuous distribution of Fourier modes rather than discrete bending modes
expandha(s). However, a scaling relation can be obtained by using a lower cutof
proportional to 1/L, which yieldsx(v) } kBTL3/k2, in agreement with the result of
MacKintoshet al. ~1995! for the static compliance.

The wavenumber dependence ofx(k,v) at frequenciesv @ t'
21 can be made more

transparent by rewriting Eq.~45! in the scaling form

x~k,v! 5 x~v!F~kj'~v!!, ~48!

wherex~v! is given by Eq.~46!, and

F~k̂! [ 23/4E dq̂

2p

1

i 1q̂41~ k̂2q̂!4 F q̂2

~ k̂2q̂ !2
1

~ k̂2q̂!2

q̂2 G , ~49!
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where q̂ [ qj'(v) and k̂ [ kj'(v), and whereF(0) 5 1. Carrying out an inverse
spatial transform of Eq.~48! yields a corresponding nonlocal compliance of the form

x~s2s8,v! 5 x~v!F̃S s2s8

j'~v!
D , ~50!

whereF̃(x) is the inverse Fourier transform ofF( k̂). The existence of this scaling form
shows that, at a given frequencyv, x(s,s8;v) depends only on the ratious
2s8u/j'(v), and thus has a range proportional toj'(v). Using this fact, the LCA can
be shown to be a consistent approximation at allv @ t'

21 because it leads to a tension
^T (s,v)& that varies slowly over distances of orderj'(v) at these frequencies.

V. TENSION AND STRAIN IN THE LCA

In this section, we use the LCA to calculate the average strain and tension fields alo
a rod of known orientationn in a solvent subjected to a weak oscillatory or step strain. To
begin, we rewrite Eq.~35! in dimensionless form as

H12
1

l2~v!

]2

]ŝ2J^E~s,v!& 5 g~v!:nn, ~51!

where ŝ [ s/L is dimensionless arc length, and where we have introduced a comple
dimensionless parameter

l~v! [ FivziL
2

B~v!
G1/2

5 ~ ivt i!
1/8 5 i 1/8

L

j i~v!
. ~52!

The parameterl~v! characterizes the relative importance of the first term on the lhs o
Eq. ~51!, which arises from longitudinal drag forces, relative to the second derivativ
term, which arises from forces produced by gradients in^T (s,v)&. @This definition of
l~v! differs by a factor of 2 from that used in Pasqualiet al. ~2001!#. Equation~51! can
be solved exactly subject to the boundary condition that the average tension~and hence
the average strain! vanishes at the chain endsŝ 5 0 andŝ 5 1:

^E~s,v!& 5 H 12
cosh@l~v!~ŝ21

2!#

cosh@l~v!/2#
J g~v!:nn. ~53!

The corresponding tension is given in the LCA byT (s,v)& 5 B(v)^E(s,v)&.
Hereafter we focus on the response to oscillatory strains of magnitudeg~v!, which can

be directly described by Eq.~53!, and to step strainsg(t) 5 g0Q(t) of magnitudeg0 at
t 5 0, which must be treated by inverse Fourier transformation of Eq.~53!. To treat the
latter problem, we note that such a step strain yields a rate of strainġ(t) 5 g0d(t) whose
Fourier transformġ(v) 5 ivg(v) 5 g0 is independent ofv, giving Fourier amplitudes
g~v! 5 ġ~v!/~iv! 5 g0 /( iv). To clarify the physical content of Eq.~53!, it is useful to
consider separately the high-frequency limit wherel(v) @ 1, corresponding tov
@ t i

21, and the intermediate regime wherel~v! ! 1, corresponding tot i
21 @ v

@ t'
21.

A. High frequencies and short times

We first consider the limiting behavior of the^E(s,v)& and^T (s,v)& in an oscillatory
flow at frequenciesv @ t i

21, wherel~v! @ 1. In this limit, the first term on the left side
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of Eq. ~51!, representing the drag force, is much larger than the second derivative term.
Balancing this drag force against the extensional strain on the rhs yields a spatially
uniform average strain

^E~s,v!& . g~v!:nn. ~54!

This is simply the affine strain that would be experienced by a line of ink drawn in the
fluid. In the LCA, this yields a corresponding spatially uniform tension

^T ~s,v!& . B~v!g~v!:nn ~55!

that, for fixed strain amplitude, grows asv3/4. Because the boundary conditions require
thatT (s,v) 5 0 at the chain ends, however, there must be a narrow boundary layer near
each chain end where the average strain and tension drop from these uniform values to
zero; there the second derivative term in Eq.~51! must remain important. The thickness
of the boundary layer is given by the distancej i(v) } v21/8 over which tension can
diffuse in a time 1/v. This behavior is shown in the left panel of Fig. 1, where the
magnitude of the exact solution~53! is plotted at a reduced frequency ofvt i 5 1010.
The boundary layers remain rather wide even at this extremely high frequency because
j i(v) decays only asv21/8.

The decay of the tension at correspondingly early timest ! t i after a small step strain
can be obtained by inverse Fourier transformation of Eq.~55!, using Fourier amplitudes
g~v! 5 g0 /( iv). This yields

^T ~s,t !& 5 E dv

2p

B~v!

iv
eivtg0 :nn ~56!

everywhere outside of the boundary layers near the chain ends. Noting thatB(v)
} ( iv)3/4, one finds, either by power counting or by evaluating the integral, thatT (t)

remains nearly spatially uniform outside the boundary layers near the chain ends, and
decays with time as

T ~ t ! } t23/4. ~57!

The corresponding strain̂E(s,t)& is also found to remain nearly uniform outside the
boundary layers, and to approximately retain the valueE(s,t) 5 g0 :nn produced by the
initial affine deformation.

FIG. 1. Magnitude of the average strain^E(s,v)&, normalized by the affine straing~v!:nn, as a function of
ŝ 5 s/L, as calculated from the local compliance approximation@Sec. V, Eq.~53!#, for vt i 5 1010 ~left panel!
andvt i 5 1025 ~right panel!.
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B. Intermediate frequencies and times

We now consider the behavior in oscillatory flow at intermediate frequenciest i
21

@ v @ t'
21, for which l(v) ! 1, but for which the LCA still remains valid. In this

regime the dominant balance in Eq.~51! is between the extensional strain on the rhs and
the second derivative term on the lhs. The limitl~v! → 0 can be obtained by setting
B(v) → `. To leading order inl~v!, the behavior found in this regime is thus identical
to that found for an inextensible rigid rod. However, we find that the first order correction
to this result must be analyzed to understand adequately the qualitative behavior of t
stress in this regime. We thus expand the tension as a perturbation series

^T ~s,v!& 5 ^T0~s,v!&1^T1~s,v!&1••• ~58!

where each subsequent term is smaller than the previous by a factor the small parame
@l(v)#2, or (ivt i)1/4, and T0(s,v) is the asymptotic behavior obtained by setting
l~v! → 0, or B~v! → `.

The leading contribution̂T0& can be obtained by ignoring the first term on the lhs of
Eq. ~35!, while setting^T0(s,v)& 5 B(v)^E(s,v)& in the second. This yields a differ-
ential equation

]2^T0~s,v!&

] ŝ2 5 2 ivz iL
2g~v!:nn, ~59!

whose solution gives

^T0~s,v!& 5 1
2ivz iL

2ŝ~12 ŝ!g~v!:nn. ~60!

This leading order tension is identical to that obtained for a rigid rod, which varies
linearly with the rate of strainġ(v) 5 ivg(v). In a semiflexible chain, unlike a rigid
rod, this leading order tension induces a nonzero leading order strain^E0(s,v)&
[ ^T0(s,v)&/B(v). Equation~8! for B(v) } ( iv)3/4 yields a strain

^E0~s,v!& 5 1
2~ ivt i!

1/4ŝ~12 ŝ!g~v!:nn ~61!

that varies asv1/4 with frequency, with the same parabolic dependence onŝ as the
tension. This strain is small compared to the affine straing~v!:nn whenv ! t i

21, and

become comparable in magnitude to the affine strain whenv ; t i
21. This small para-

bolic strain is shown in the right panel of Fig. 13, where the magnitude of the exac
solution is plotted for a reduced frequencyvt i 5 1025.

Next, we consider the decay of the leading order tension and strain in the intermedia
time regimet i ! t ! t' after a step deformation. The leading order tension, which can
be obtained by inverse Fourier transforming Eq.~60!, is identical to that given in Eq.~14!
for a rigid rod

^T0~s,t !& 5 1
2d~ t !z iL

2ŝ~12 ŝ!g0 :nn, ~62!

and has a delta-function time dependence. The ‘‘leading order’’ contribution to^T (s,t)&
in the intermediate time regime, if defined as the inverse Fourier transform of the leadin
order contribution tô T(s,v)& in the corresponding frequency regime, thus vanishes in
the time domaint i ! t ! t' of interest. However, the associated leading order longi-
tudinal strain̂ E0(s,t)& induced by this tension does not vanish at intermediate times, and
can be calculated by Fourier transforming Eq.~61! for ^E0(s,v)&. Evaluating~or power
counting! the resulting Fourier integral, using Fourier componentsg(v) 5 g0 /( iv),
yields a strain
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^E0~s,t !& ; ~ t/t i!
21/4ŝ~12 ŝ!g0 :nn ~63!

that decays with time ast21/4. This is the strain induced by thed-function impulse of
tension given by Eq.~62!. This impulse creates a nonequilibrium distribution of bending
mode amplitudes at the beginning of the intermediate time regime, creating a strain tha
relaxes via the free relaxation of bending modes of increasing wavelength throughout th
intermediate time regime. The rate of decay of the longitudinal strain in the intermediate
time regime is thus limited primarily by the rate of free decay of the bending modes,
rather than by resistance to longitudinal motion, and is completed only when the slowes
bending mode relaxes.

Because the leading order approximation for the tension vanishes at timest i ! t
! t' , the tension in this regime is dominated by the first order correction^T1(s,t)&. To

calculate this correction, we again start in the frequency domain, and expand Eq.~51! to
first order inl2(v), using the zeroth order solution to cancel all zeroth order terms. By
this method, we find that̂T1(s,v)& must satisfy

]2^T1~s,v!&

]s2 5 ivz i^E0~s,v!& ~64!

or, equivalently, that

]2^T1~s,t !&

]s2 5 z i

]^E0~s,t !&

]t
~65!

in the time domain. Equations~64! and ~65! show that̂ T1(s,t)& is the tension required
to balance the longitudinal frictional force that opposes relaxation of the zeroth orde
longitudinal strain^E0(s,t)&. This residual tension has a subdominant effect on the re-
laxation of the strain, but is important because it is found in Sec. VII to yield the
dominant contribution toG(t) at intermediate times. Solving Eqs.~64! and ~65! yields

^T1~s,v!& 5
1

12
z iL

2~ iv!5/4t i
1/4S 2

ŝ

2
1 ŝ32

ŝ4

2 D g~v!:nn ~66!

in an oscillatory flow, or

^T1~s,t !& } t25/4S 2
ŝ

2
1 ŝ32

ŝ4

2 D g0 :nn ~67!

following a step deformation. This residual tension decays ast25/4 because, by Eq.~65!,
the first order tension is proportional to the time derivative of the leading order strain,
which decays ast21/4.

VI. STRESS TENSOR

The intramolecular polymer contribution to the stress is given, for any discrete mode
of beads interacting via an intramolecular potential energy, by the Kramer–Kirkwood
expression@Doi and Edwards~1986!#:

sp [
21

V
(

i 5 1

N

^RiFi &, ~68!

whereRi is the position of beadi ,Fi 5 2]@U1kBT ln C#/]Ri is the effective force on
beadi ,U($R%) is an intramolecular potential energy, andC~$R%! is a single chain prob-
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ability distribution function. An expression for the intramolecular stress in a solution of
wormlike chains has been obtained by Morse~1998a! by applying the Kramers–
Kirkwood formula to a discretized model of a wormlike chain as a chain ofN beads
connected by very stiff springs with a preferred distancea between neighboring beads,
with a three-body bending potential that is a discretized version of bending energy~1!. By
evaluating the rhs of Eq.~68! for this discrete model, then taking the limita ! Lp of
continuous, weakly curved chains, and re-expressing the results in terms of a continuou
arc length variables 5 ia, Morse~1998a! obtained a stress

sp 5 scurv1stens1sornt2ckBTI , ~69!

where

stens5 cE
0

L
dŝ T uu&, ~70!

scurv 5 ckE
0

L
dsK ]u

]s

]u

]s
2uuU]u

]s
U2L 1

ckBT

a
E

0

L
dŝ 3uu2I &, ~71!

sornt 5 3
2ckBT^u~0!u~0!1u~L !u~L !2 2

3I &, ~72!

whereu 5 u(s) andT 5 T ~s! are the unit tangent and tension for a bond at positions
5 ia. The physical meaning of these three stress contributions~briefly! is: The ‘‘tension

stress’’stensarises from the constraint forces that enforce inextensibility in the chain. The
‘‘curvature stress’’scurv contains both a purely mechanical contribution arising from the
bending forces@the first term on the rhs of Eq.~71!# and an entropic contribution arising
from the orientational entropy of the links~the second term!. The curvature stress was
shown, using the underlying discrete model, to vanish in a hypothetical partially equili-
brated state in which the variance of the curvature at each point on the chain retains it
thermal equilibrium value, or, for a rodlike polymer, in which the distribution of bending
mode amplitudes is equilibrated. The curvature stress thus arises from disturbances of th
equilibrium distribution of bending mode amplitudes. The ‘‘orientational stress’’sornt is
a residual contribution of the orientational entropy arising from the two end links.

These expressions can be further simplified in the rodlike limit. In this limit, to leading
order,u(s) can be approximated by the global rod orientationn except in terms involving
the curvature]u/]s. This approximation immediately reduces the forms of the orienta-
tional and tension stress to those found for a rigid rod. Terms involving the curvature
]u/]s can be approximately by noting that]u/]s must be orthogonal tou, becauseu~s!
is a unit vector, and thus nearly orthogonal ton: Approximating]u/]s by its projection
onto the plane perpendicular ton yields ]u/]s . ]2h/]s2. In this approximation

stens5 cE
0

L
dŝ T nn&, ~73!

scurv 5 ckE
0

L
dsK ]2h

]s2

]2h

]s22nnU]2h

]s2U2L 1
ckBTL

a
^3nn2I &, ~74!

sornt 5 ckBT^3nn2I &. ~75!

In Eqs.~73!–~75!, ^•••& represents a complete thermal average, over both the rapid fluc-
tuations of h, f, and T, and over overall rod orientationn. Below, we calculate
stens,scurv, andsornt separately, and expressG(t) as a sum
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G~t! 5 Gtens~ t !1Gcurv~ t !1Gornt~ t !2hsd~ t !, ~76!

of contributions arising from different stress contributions, where, e.g.,scurv(t)
5 Gcurv(t)@g01g0

T#, and similarly expandG* (v) and the intrinsic moduli@G(t)# and
@G* (v)#.

VII. VISCOELASTICITY IN THE LCA

Here, the linear viscoelastic response of a solution of rods at intermediate and hig
frequencies,v @ t'

21, is computed using the LCA for the average tension.

A. Tension stress

The LCA approximation for the tension stress is obtained by setting the tension in Eq
~73! equal to^T(s,v)& 5 B(v)^E(s,v)&, while using Eq.~58! for the strain. This yields
a stress

stens~v! 5 cLE
0

1
dŝ B(v)H 12

cosh@l~v!~ŝ21/2!#

cosh@l~v!/2#
J g~v!:^nnnn&. ~77!

Here, ^•••& denotes an average over rod orientations, which can be approximated in
linear response calculation by an average over an isotropic distribution, using the identit
@Doi and Edwards~1986!#:

^ninjnknl&eq 5 1
15~d i j dkl1d ikd l j 1d i l dk j! ~78!

for randomly oriented unit vectors. By evaluating the integral with respect tos, and
requiring that the trace ofg~v! vanish in an incompressible fluid, we obtain a stress of the
form

stens~v! 5 c@Gtens* ~v!#@g~v!1gT~v!#, ~79!

with

@Gtens* ~v!# 5
1

15
LB~v!H 12

tanh@l~v!/2#

l~v!/2 J . ~80!

Equation~80! has the following limiting behaviors
~1! High frequencies and short times:At frequenciesv @ t i

21, for which l~v! → `,
Eq. ~80! reduces to

lim

v @ t i
21

@Gtens* ~v!# .
L

15
B~v! .

23/4

15
kBTLLp

2S ivz'

k D 3/4

, ~81!

and hence,@Gtens* (v)# } v3/4. Inverse Fourier transforming this asymptote yields a
modulus

lim
t ! t i

@Gtens~ t !# 5 C1kBTLLp
2S kt

z'
D 23/4

, ~82!

whereC1 5 23/4/@15G( 1
4)# 5 0.0309.

~2! Intermediate frequencies and times:At intermediate frequencies, such thatt i
21

@ v @ t'
21, wherel(v) 5 ( ivt i)1/8 ! 1, Eq. ~80! can be expanded in powers of

l2(v). The first two terms of the expansion are
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@Gtens* ~v!# .
1

180
ivz iL

32
kBT

1800 23/4S z i

z'
D 2

~ ivt'!5/41•••. ~83!

The leading contribution, which arises from the leading order tension, is identical to the
viscous contribution found for true rigid rods, and is purely imaginary. The first correc-
tion, which is proportional to (iv)5/4, thus dominates the real part of@Gtens* (v)#. We thus

obtain a loss modulus@Gtens9 (v)# } v, with the same prefactor as that of rigid rods, but

a storage modulus@Gtens8 (v)# } v5/4. This v5/4 contribution to@G8(v)# is a subdomi-
nant contribution tou@G* #u, because it is small compared to@G9(v)#, but is much larger
than thev-independent storage modulus of3

5kBT per chain found at these frequencies for
rigid rods, and is found to dominate@G8(v)#.

Upon transforming this intermediate asymptote to the time domain, the leading order
iv term yields an apparentd~t! contribution identical to that found for rigid rods, which
does not contribute toG(t) at intermediate times. As a result,@Gtens(t)# is dominated at
intermediate times by the transform of the (iv)5/4 term, which yields

lim
t i ! t ! t'

@Gtens~ t !# . C2kBTS z i

z'
D 2S t

t'
D 25/4

, ~84!

whereC2 5 1/@23/47200G(3/4)# 5 6.7431025. This stress arises from thet25/4 decay
of the tension.

B. Curvature stress

Here, the curvature stress is computed with transverse equation of motion~24!, in an
approximation similar to that used to calculate the high-frequency compliance in Sec. IV,
in which finite size effects are ignored and all quantities are expanded in a continuous
distribution of Fourier modes.

We first expand Eq.~74! for the curvature stress in terms of Fourier amplitudes ofh.
Becausescurv vanishes when the distribution of bending mode amplitudes is equilibrated
@Morse~1998a!#, the contribution ofscurv from a rod with a specified orientationn may
be equated with the difference between the rhs of Eq.~74! and its thermal equilibrium
value. Expanding this difference in Fourier modes yields a contribution

scurv 5 ckE dq

2p
q4^b~q,t !2nnTr @b~q,t !#&n , ~85!

whereb(q,t) [ (abea(t)eb(t)bab(q,t) is a tensor with components

bab~q,t! [ ^ha~q!hb~2q!&2^ha~q!hb~2q!&eq. ~86!

Here, the averagê•••& in Eq. ~86! represents an average over fluctuations of the bending
mode amplitudes for rods of known orientation, while the symbol^•••&n in Eq. ~85! is
used to indicate an average with respect to rod orientations.

To evaluate Eq.~85!, it is convenient to calculate the contributions tob(q,t) andscurv
that are induced by the presence of a nonzero value ofġab in Eq. ~38! separately from
those induced by the existence of a nonzero tension and then add these two contributions.

~1! Flow-induced curvature stress:We first consider the contribution induced directly
by the velocity gradient in Eq.~38!, while settingT 5 0. The resulting contribution to
bab(q,v) on a chain of known orientation in an oscillatory flow can be calculated using
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equation of motion~38! by a method closely analogous to that used to derive Eq.~43! for
a(q,k;v) in Sec. IV. This yields

bab~q,v! 5
kBTL

kq4

ivz'

ivz'12kq4 @gab~v!1gba~v!#. ~87!

We then expandb(q,v) [ (abbab(q,v)eaeb , and use the identity(abgab(v)eaeb
5 (I2nn)• g(v)•(I2nn) to expressb(q,v) explicitly as a function ofg~v! and n.

After substituting the resulting expression forb(q,v) into the temporal Fourier transform
of Eq. ~85!, averaging over random rod orientations, and integrating with respect toq, we
obtain a stress of the formscurv,t(v) 5 c@Gcurv,t* #@g(v)1gT(v)#, with an intrinsic
modulus

@Gcurv,t* ~v!# 5
3kBT

23/410
~ ivt'!1/4. ~88!

We refer to this as the ‘‘transverse’’ contribution to@Gcurv* (v)#, because it arises directly
from the components ofġ(v) along the directions transverse ton.

~2! Tension-induced curvature stress:We next consider the contribution tob(q,v) and
scurv(v) induced by the tension on the rhs of Eq.~38!, while settingġab 5 0. This
calculation is closely analogous to the calculation ofa(q,k;v) in the casek 5 0. On an
infinite chain,bab(q,v) depends only on theq 5 0 component of the tension, as a result
of translational invariance. On a finite chain at intermediate or high frequenci
bab(q,v) thus depends upon the integralT (q 5 0,v) 5 *dsT (s,v). Another calcula-
tion analogous to that leading to Eq.~43!, in which the tension in Eq.~38! is equated to
the thermal averagêT(s,v)&, yields

bab~q,v! 5 2dab

2kBT

kq2

1

ivz'12kq4E
0

L
ds^T ~s,v;n!&, ~89!

in which ^T (s,v;n)& is the average, with respect to rapid transverse fluctuations of t
tension in a rod with known orientationn. Substituting this expression into Eq.~85!, and
again evaluating averages with respect to chain orientations using Eq.~78!, yields a stress
contribution characterized by an intrinsic modulus

@Gcurv,l* ~v!# 5
3

25/4

L

Lp
~ ivt'!21/4@Gtens* ~v!#. ~90!

Here @Gtens* (v)# is the tension modulus given in Eq.~80!, which also depends on the
integral *dŝ T(s,v;n)&. Equation ~90! has the following limiting behaviors: Forv
@ t i

21, where@Gtens* (v)# } ( iv)3/4,

lim

v @ t i
21

@Gcurv,l* ~v!# ; kBTS Lp

L D ~ ivt'!1/2. ~91!

For t i
21 @ v @ t'

21, where the dominant contribution to@Gtens* # scales as
(kBTLp /L)( ivt'),

lim

t i
21 @ v @ t

'
21

@Gcurv,l* ~v!# ; kBT
z i

z'

~ ivt'!3/4. ~92!
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@Gcurv,l* (v)# is termed the ‘‘longitudinal’’ contribution to@Gcurv* (v)# because it arises
from the tension, which is proportional to the componentġ~v!:nn of ġ alongn. The total
curvature modulus@Gcurv* (v)# is given by the sum of@Gcurv,t* (v)# and @Gcurv,l* (v)#.

C. Results

The total modulus is given by the sum of the tension and curvature contributions
calculated earlier and of an orientational contribution. In the rodlike limit,L ! Lp , the
orientational contribution can be approximated by that of a dilute solution of rigid rods

@Gornt* ~v!# 5
3

5
kBT

ivt rod

11 ivt rod
. ~93!

For frequenciesvt rod @ 1, this expression for@Gornt* # yields a plateau of magnitude
3
5kBT in the storage modulus.

This orientational component dominates the total storage modulus at low frequencie
v ! t'

21, giving behavior identical to that of rigid rods, but becomes negligible com-
pared to either the tension or curvature components at intermediate and high frequencie
A comparison of the earlier expressions for the different contributions toG* (v) shows
that, throughout intermediate and high frequency regimes, they form a hierarchy

Gornt* ~v! ! Gcurv,t* ~v! ! Gcurv,l* ~v! ! Gtens* ~v!. ~94!

The tension contribution@Gtens* (v)# dominates the total modulus at allv @ t'
21. At

frequenciesv ; t'
21, all four of these contributions to@G* (v)# become comparable to

kBT, and thus to each other. Though the earlier LCA calculation is valid only atv
@ t'

21, the more complete calculation given in the next section shows that both the
curvature and tension contributions toG(t) decay exponentially att @ t' , with terminal
times of ordert' , leading to terminal behavior in the corresponding components of
G* (v) at v ! t'

21. The resulting time dependence ofGtens(t),Gcurv(t), andGornt(t)
for chains withL ! Lp is shown schematically in Fig. 2.

VIII. FULL THEORY

In order to describe accurately viscoelasticity at frequencies of ordert'
21 and lower,

the preceding calculation must be extended in two ways. First, because the nonlocality
x(s,s8;v) becomes important at these frequencies, we must abandon the LCA and us
the full nonlocal compliance when solving the average longitudinal force balance of Eq
~30!, while respecting the condition that the tension vanish at both chain ends. Second
when using the transverse equation of motion to calculate both the compliance and th
curvature stress, the transverse displacement field must be expanded in discrete eig
modes that respect the boundary conditions for the transverse dynamics. To formulate
full theory, accurate at arbitrary frequency, we first introduce expansions ofT and h in
appropriate basis functions.
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A. Longitudinal mode expansion

The tensionT ~ŝ!, which must vanish at both ends of the chain, is expanded in a basis
of sines

T ~ ŝ! 5 (
k

Tkfk~ ŝ!, fk~ ŝ! 5 A2sin~lkŝ!, ~95!

wherelk 5 kp for k 5 1,2,3,... . Substituting this expansion into Eq.~30!, multiplying
the result byf i ( ŝ) and integrating with respect toŝ yields the expansion of the longitu-
dinal force balance

(
k

Fivzixik~v!1
k

L4F]4x~v!

]ŝ4 G
ik

1dik

li
2

L2G ^Tk& 5 ivz ig~v!:nnFi , ~96!

where

xik~v! 5 LE
0

1
dŝE

0

1
ds8fi~ŝ!fk~ŝ8!x~ŝ,ŝ8;v!, ~97!

F]4x~v!

]ŝ4 G
ik

5 LE
0

1
dŝE

0

1
dŝ8fi~ŝ!

]4

]ŝ4x~ŝ,ŝ8;v!, ~98!

and

Fi 5 E
0

1
dŝf i~ ŝ! 5 H 2A2

ip
i odd

0 i even

. ~99!

Here,x ik(v) are the ‘‘matrix elements’’ ofx(s,s8;v) in a basis of sines.

FIG. 2. Schematic showing the asymptotic behaviors ofGtens(t),Gcurv(t), andGornt(t), in a log–log plot, for
stiff chains withL ! Lp .
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B. Transverse mode expansion

The transverse displacementha( ŝ) is expanded as

ha~ŝ! 5 (
j

h̃a,jWj ~ ŝ!, ~100!

whereWj is the jth normalized eigenfunction of the fourth order eigenvalue problem
@Aragon and Pecora~1985!, Kroy and Frey~1997!, Wigginset al. ~1998!#:

]4Wj ~ ŝ!

] ŝ4 5 a j
4Wj ~ ŝ!, ~101!

subject to the homogeneous boundary conditions

]2Wj

] ŝ2 5
]3Wj

] ŝ3 5 0 ~102!

at ŝ 5 0 and ŝ 5 1. The eigenfunctionsWj are orthogonal, because the differential
operator in~101! is self-adjoint, and are taken to be orthonormal, so that*0

1dŝWjWk
5 d jk . The eigenvalue problem has a degenerate trivial eigenvaluea0 5 0, with eigen-

functionsW 5 1 andW 5 A12(ŝ21/2) corresponding to rigid translations and rota-
tions, respectively. The nontrivial eigenfunctions, corresponding to bending modes, are

Wj ~ ŝ! 5 Aj $@sinh~aj!1sin~aj!#@sin~ajŝ!1sinh~ajŝ!#

~103!
1@cos~aj!2cosh~aj!#@cos~ajŝ!1cosh~ajŝ!#%,

where Aj 5 @ 1
21 1

2cosh(2aj)1aj
21cosh(aj)sin(aj)#

21/2. The eigenvaluesa j satisfy the
solvability condition cos(aj) 5 1/cosh(aj). The first few nontrivial eigenvalues area1
5 4.735 3p/210.0176, a2 5 5p/220.000 781 6, and a3 5 7p/210.000 033 5.

Higher eigenvalues are accurately approximated by setting cos(aj) 5 0, which yields
a j 5 (2 j 11)p/2.

The harmonic approximation~37! of the bending energy can be expanded in mode
amplitudes as

Ubend5
1

2

k

L3 (
j

a j
4~ h̃a, j !

2. ~104!

The transverse dynamical Eq.~24! can be expanded by substituting expansion~100! for
ha and expansion~95! for T, multiplying the result byWj (s), and integrating with
respect tos; this yields

z'(
b

Fdab

]

]t
2ġabGh̃b,j 5 2kL24aj

4h̃a,j2
1

L2 (
lk

HljkTl h̃a,k1h̃a, j , ~105!

where

Hljk [ E
0

1
dŝfl~ŝ!

]Wj ~ ŝ!

] ŝ

]Wk~ ŝ!

] ŝ
, ~106!

and h̃a, j 5 *0
LdŝWj ( ŝ)ha( ŝ) is a mode amplitude for componenta of the transverse

noiseh' .
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C. Nonlocal compliance

We now present a calculation of the nonlocal compliancex(s,s8;v) at arbitrary
frequency. The longitudinal strain given in Eq.~23! is expanded as

^E~ ŝ!& 5 2
1

L2 (
jm

]Wj

] ŝ

]Wm

] ŝ
ajm , ~107!

where

ajm [
1

2(a @^h̃a,jh̃a,m&2^h̃a,jh̃a,m&eq#. ~108!

To calculate the compliance, we derive an expression fordajm(t)/dt in the presence of
an infinitesimal tension, while settinggab(v) 5 0, by a method closely analogous to
that used to derive Eq.~42! for da(q,k;t)/dt. Here, we use expansion~105! of the
transverse dynamical equation, and evaluate the required thermal averages using th
relations ^h̃a, j h̃b,k&eq 5 dabdk jkBTL3/(kak

4) and ^h̃a, j h̃b,k& 5 dabd jkkBT/L. This
yields the differential equation

Hz'

]

]t
1kL24~aj

41am
4 !Jajm~t! 5 2

kBTL

k
~am

241aj
24!(

l
HlmjTl~ t !, ~109!

for ajm(t), or the equivalent algebraic equation

ajm~v! 5 2
kBTL

k

am
241aj

24

ivz'1kL24~aj
41am

4 !
(
l

HlmjTl~v!, ~110!

for its Fourier transformajm(v) [ *dtajm(t)e2 ivt. Substituting Eq.~110! for ajm(v)
into Eq. ~107! yields an average strain of the form ^E(s,v)&
5 *0

Lds8x(s,s8;v)T(s8,v), where

x~s,s8;v! 5
kBT

kL2 (
ljm

~am
241aj

24!Hljm

ivz'1kL24~aj
41am

4 !

]Wj ~ ŝ!

] ŝ

]Wm~ ŝ!

] ŝ
f l~ ŝ8! ~111!

is the desired nonlocal compliance.
The matrix elementsx ik(v) and @]4x/]s4# jk defined in Eqs.~97! and ~98! can be

obtained by evaluating the defining double integral, using the orthonormality of the
functionsfk( ŝ). The result can be expressed in terms of non-dimensional matrix ele-

ments x̄ ik(v) [ ivz'L2x ik(v) and @]4x̄/] ŝ4# ik [ ivz'L2@]4x(v)/] ŝ4# ik, which
are given by

x̄ik~v! 5
L

Lp
(
jm

~aj
241am

24!HijmHkjm

11~ivt'!21~aj
41am

4 !
, ~112!

F]4x̄~v!

]ŝ4 G
ik

5
L

Lp
(
j,m

~aj
241am

24!FijmHkjm

11~ivt'!21~aj
41am

4 !
, ~113!

where

Fijm 5 E
0

1
dŝfi

] 4

]ŝ 4 S]Wj

] ŝ

]Wm

] ŝ D .
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D. Tension and tension stress

To calculate the spatial Fourier components of the average tension, longitudinal force
balance~96! can be expressed in nondimensional form as a matrix equation

(
k H zi

z'

x̄ik~v!1
1

ivt'
F]4x̄~v!

]ŝ4 G
ik

1li
2dikJ^T k* ~v!& 5 Fi , ~114!

where

^T k* ~v!& [
^Tk~v;n!&

ivz iL
2g~v!:nn

~115!

is the nondimensional Fourier component of the tension, and^Tk(v;n)& is a Fourier
amplitude for the average tension in a chain with a known orientationn. By Eq. ~96!,
^Tk(v;n)& depends linearly ong~v!:nn. This dependence has been factored out in the
earlier definition, so that the reduced Fourier amplitude^T k* (v)& is independent of both
n andg~v!. These reduced Fourier amplitudes are calculated by solving matrix Eq.~114!
with a finite number of modes.

The tension modulusGtens* (v) is calculated by substituting expansion~95! in Eq. ~73!
for the tension stress, while using Eq.~115! to recast the results in terms of the dimen-
sionless Fourier components of the tension. This yields a stress

stens~v! 5 civz iL
3g~v!:^nnnn&(

p
^T p* ~v!&Fp . ~116!

After evaluating the average of^nnnn& over rod orientations, as before, we obtain a stress
of the formstens(v) 5 c@Gtens* (v)#@g(v)1gT(v)#, with

@Gtens* ~v!# 5 1
15ivz iL

3(
p

^T p* ~v!&Fp . ~117!

E. Curvature stress

Substituting expansion~100! for the transverse displacement in Eq.~74! for the curav-
ture stress, and using the fact thatscurv vanishes when the bending modes are equili-
brated, yields an expansion of the curvature stress as

scurv 5 ckL23(
k

ak
4^bk2nn Tr@bk#&n , ~118!

wherebk(t) [ (abea(t)eb(t)bk,ab(t) is a tensor with components

bk,ab [ ^ha,khb,k&2^ha,khb,k&eq. ~119!

The calculation of the components ofbk(v) in a weak oscillatory flow field is closely
analogous to the calculation ofb(q,v) given in Sec. VII B, except for the use of expan-
sions ~100! and ~95! for h and T, respectively, rather than Fourier transforms, and the
corresponding use of Eq.~105! for time derivatives of the mode amplitudes. As in Sec.
VII B, we consider separately the contributions tobk and scurv arising from the direct
coupling of the velocity gradient toh, and from the tension.
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~1! Flow-induced curvature stress:We calculate the curvature stress that is induced
directly by the velocity gradient tensor by calculating the time derivative ofbk,ab(t),
which setting the tension to zero in Eq.~105!. This yields

bk,ab~v! 5
kBTL3

kak
4

ivz'

ivz'12kL24ak
4 @gab~v!1gba~v!# ~120!

for the Fourier transform ofbk,ab(t). Substituting Eq.~120! in Eq. ~118!, and evaluating
the orientational averages yields a stress contributionscurv,t(v) 5 c@Gcurv* (v)#@g(v)
1gT(v)#, with

@Gcurv,t* ~v!# 5
3

5
kBT(

k

ivz'

ivz'12kL24ak
4 . ~121!

~2! Tension-induced curvature stress:The contribution tobk,ab induced by the ten-
sion, for g~v! 5 0, is given by

bk,ab 5 2dab

2kBTL

kak
4

1

ivz'12kak
4L24 (

l
Hlkk^Tl~v!&. ~122!

Substituting this in Eq.~118!, expressing the tension coefficients in terms of the reduced
coefficients^T* (v)&, and averaging over chain orientations, yields a stress contribution
characterized by an intrinsic modulus

@Gcurv,l* ~v!# 5
2

5
kBT(

k

ivz i

ivz'12kL24ak
4 (

l
Hlkk^T l* ~v!& . ~123!

F. Results

The total complex modulus of dilute solutions of semiflexible rods, withL ! Lp but
arbitrary frequency, is obtained by adding Eqs.~117!, ~121!, ~123!, and~93!:

@G* ~v!#

kBT
5

24

5

z i

z'

~ ivt rod!(
k

^Tk* ~v!&Fk

1
2

5

z i

z'
(
k

1

112ak
4~ ivt'!21 (

l
^Tl* ~v!&Hlkk

1
3

5 (
k

1

112ak
4~ ivt'!21

1
3

5

ivt rod

11 ivt rod
, ~124!

where^T k* & is obtained as a solution to matrix Eq.~114!, Fk is defined in Eq.~99!, and

Hl jm is defined in Eq.~106!. The first line in Eq.~124! represents@Gtens* (v)#, the second

line represents@Gcurv,l* (v)# the third @Gcurv,t* #, and the fourth@Gornt* (v)#.
An example of theoretical predictions for various contributions to the storage and loss

modulus, viz.@Gtens* #, @Gcurv,l* #, @Gcurv,t* #, and @Gornt* #, are shown in Fig. 3 forL/Lp
5 1/8. Also plotted in this figure are the corresponding asymptotes derived in Sec. VII

for high and intermediate frequency regimes. Note that the high frequencyv3/4 asymp-
totes of@G8(v)# and @G9(v)# are approached rather slowly and at very high frequen-



1138 SHANKAR, PASQUALI, AND MORSE
cies, vt rod @ 109, corresponding roughly tov @ t i
21. The slow approach to this as-

ymptote is a result of the slowv21/8 decrease in the thickness of the boundary layers at
the chain ends. Thev5/4 dependence of@Gtens8 (v)# at intermediate frequencies is clearly

visible for this value ofL/Lp , over a rangevt rod ; 103– 106. The quantity@Gtens9 (v)#,

which dominates@G9(v)# at all v @ t rod
21, is proportional tov at all v ! t i

21, with a
constant of proportionality identical to that found for rigid rods. As a result,@G9(v)# for
a solution of semiflexible rods closely approaches that of a corresponding rigid rod
solution at allv ! t i

21. Both the tension contribution and the two curvature contribu-
tions to @G* (v)# exhibit terminal behavior belowvt rod ; 102, corresponding roughly
to frequencies below the relaxation ratea1

4t'
21 of the longest wavelength bending mode.

At all lower frequencies, for which the bending modes are relaxed, the overall@G8(v)#
and @G9(v)# both closely mimic the behavior of rigid rods, leading to a plateau of
magnitude@G8(v)# 5 3

5kBT at t rod , v , a1
4t'

21, which grows broader asL/Lp is

decreased, and terminal behavior atv ! t rod
21.

Figure 4 shows the evolution of the total predicted storage and loss moduli asL/Lp is
varied from 1/8 to 1. AsL/Lp increases, both thev5/4 intermediate regime inG8(v) and
the orientational plateau at lower frequencies gradually disappear, while the high-
frequencyv3/4 asymptote is approached at lower reduced frequencies for more flexible
chains.

Figure 5 compares the predictions of the full theory to those of the LCA, and to the
analytic approximation of Sec. XI, forL/Lp 5 1/8. The LCA agrees well with the full
theory at frequencies well above the relaxation ratea1

4t'
21 of the longest wavelength

bending mode, but fails at lower frequencies. The conspicuous failure of the LCA at low
frequencies is primarily a result of the fact that the LCA predicts algebraic frequency and
time dependence for the tension and curvature contributions to the modulus even at
frequenciesv , t'

21, due to the use of a continuous distribution of modes with no lower
cutoff, which yields a theory with no terminal relaxation time. The full theory instead

FIG. 3. Predictions of the full theory for the tension~tens!, curvature,~curv,l and curv,t!, and orientation~ornt!
contributions to the intrinsic storage modulus@G8(v)# ~left panel! and intrinsic loss modulus@G9(v)# ~right
panel!, divided by kBT, as functions ofvtrod for L/Lp 5 1/8. Intrinsic moduli are defined in Eq.~12! as
contributions per chain. Dashed lines are the asymptotic power laws predicted for each component at interme-
diate and high frequencies.
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yields normal terminal frequency dependence of all components ofG* (v) at these
frequencies, and exponential decay inG(t) at corresponding times, due to the finite
length of the chain. Because existing experimental data for dilute solutions of semiflex-
ible rods~which are discussed in Sec. X! are in the regimevt rod , 104, we must use the
full theory when making quantitative comparisons to experiments.

IX. BROWNIAN DYNAMICS SIMULATIONS

To test these predictions over a much wider frequency range than those accessible
current experiments, we have carried out Brownian dynamics simulations of noninteract
ing, free-draining wormlike chains. We simulate discretized wormlike chains in which
each chain containsN beads with positionsRi for i 5 1,...,N, which act as point sources
of frictional resistance, connected byN21 rods of constant lengtha. We use a dis-
cretized bending energy

FIG. 4. The storage@G8(v)# and loss@G9(v)# moduli vsvtrod obtained from the full theory for different
values ofL/Lp . The solid and dash-dotted straight lines are the predictedv3/4 high-frequency asymptote for
G9 andv5/4 intermediate frequency asymptote forG8, respectively.
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Ubend5 2
k

a
(

i 5 2

N21

ui•ui 21 , ~125!

where

ui [
Ri 112Ri

uRi 112Ri u ~126!

is a unit tangent vector along rodi. For simplicity, we simulate free-draining chains with
isotropic friction at each bead, corresponding to a continuum model withz i 5 z' 5 z,
in the creeping flow limit, where we ignore any inertia of the chain.

The equation of motion for a chain in a flow with velocity gradientġ is

zbFdRi

dt
2ġ•Ri G 5 Fi 5 Fi

bend1Fi
met1Fi

tens1Fi
rand. ~127!

Here,zb 5 za is a bead friction coefficient,Fi
bend5 2]Ubend/]Ri is the force on bead

i due to the bending of the chain,Fi
met is a ‘‘metric force’’ ~discussed below!, Fi

tens is a
constraint force that is chosen to impose the constraints of constant rod length~discussed
below!, and Fi

rand is a random Langevin force with vanishing mean and a variance

^Fi
rand(t)Fj

rand(t8)& 5 2kBTzbId i j d(t2t8) given by the fluctuation dissipation theorem.
The stochastic equation of motion~127! for the bead positionsRi is integrated numeri-
cally with a mid-step algorithm@Grassia and Hinch~1996!# to generate bead trajectories.

The constraint forceFi
tens is of the form

Fi
tens[ Tiui2Ti 21ui 21 , ~128!

FIG. 5. Comparison of predictions forG8(v)) andG9(v) as functions ofvtrod for L/Lp 5 1/8, as obtained
from the full theory~continuous black lines!, the local compliance approximation~dashed black lines!, and the
analytic approximation of Sec. XI~dashed gray lines!.
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whereTi is the tension in bondi. Requiring thatd
dtRi 112Ri u2 5 0 for each bond in the

chain, and using Eq.~127! to calculate this time derivative, yields a set of linear equations
for the instantaneous tensions

(
j 5 1

N21

HijTj 5 ui•~ F̃i 112F̃i !, ~129!

where F̃i [ Fi
bend1Fi

met1Fi
rand1zb(ġ•Ri ), and Hi j is an N3N symmetric, positive

definite, tridiagonal matrix with elementsHii 5 2 andHi j 5 2ui•uj for i 5 j 61.
The metric forceFi

met for such a free draining chain is given by the derivative

Fi
met 5 2

1

2
kBT

] ln~detH)

]Ri
~130!

of the ‘‘metric pesudopotential’’ introduced by Fixman~1978! where detH is the deter-
minant of the matrix with elementsHi j introduced above. This metric force must be
included in simulations of free-draining chains with constrained rod lengths, in the mid-
step algorithm used here, to obtain a Boltzmann distribution
exp@2Ubend(u1, . . . ,uN)/kBT# of rod orientations in thermal equilibrium@Fixman
~1978!, Hinch ~1994!#. The metric forces are computed using the algorithm described by
Pasquali and Morse~2002!.

The stress relaxation functionG(t) is obtained from equilibrium simulations, with
ġ 5 0, by using the Kubo relation that relatesG(t) to the autocorrelation function of the
microscopic stress tensor

G~t! 5
1

kBT
^sxy~t!sxy~0!&, ~131!

where s [ 2( iRiFi is the contribution of a single chain to the stress tensor. The
Brownian contribution tos~t! is calculated using the stochastic filtering method of Gras-
sia and Hinch~1996! and Doyleet al. ~1997!, which avoids including large but tempo-
rally uncorrelated contributions to the stress arising from the random force.

To simulateG(t) over a wide range of time scales, we use a technique introduced by
Everaerset al. ~1999! and run simulations with different values ofN for each value of
L/Lp ~whereL 5 Na), using simulations with relatively coarse-grained chains~smallN!
to resolve slow relaxation processes~e.g., rotational diffusion! and shorter simulations of
finer-grained chains~large N! to resolveG(t) at shorter times. For each value ofN,
meaningful results forG(t) are obtained only at times greater than a time proportional to
the relaxation timeza4/k of a bending mode of wavelengtha, below which @G(t)#
saturates to a finite value whose existence is an artifact arising from the use of a dis-
cretized model. The initial chain conformations in each simulation are chosen from an
equilibrium Boltzmann distribution. These are generated by an algorithm in which chains
are ‘‘grown’’ from one end, by adding each new rod at an orientation chosen randomly
from a Boltzmann distributione2kui 11•ui /(akBT) for the bending energy of the joint
between each new rod and the previous one. The use of a pre-equilibrated distribution of
initial states allows one to use data from relatively short simulations of fine-grained
chains without having to equilibrate the system initially. Results for chains with the same
L/Lp but differentN are collapsed onto master curves of@G(t)# vs t/t rod, wheret rod
5 zba2N3/72kBT for the discretized WLC. An example of this collapse is shown in Fig.

6. Ensuing figures show only the regions of overlap of the results obtained with different
values ofN, which reflect the behavior of a continuous wormlike chain.
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We decompose the stresss obtained from our simulations as a sums 5 sornt
1scurv1stens2kBTI of orientational, curvature, and stress components@Morse
~1998a!#, given by

sornt [ 3
2kBT~u1u11uN21uN2122I /3!, ~132!

scurv [ 2 (
i 5 1

N

RiFi
bend13kBT (

i 5 1

N21

~uiui2I /3!2sornt, ~133!

stens[ s2sornt2scurv1kBTI . ~134!

Corresponding, @G(t)# 5 @Gornt(t)#1@Gcurv(t)#1@Gtens(t)#, where @Ga(t)#, with
a 5 ‘‘ornt,’’ ‘‘curv’’, or ‘‘tens,’’ describes the decay of the stress component^sa(t)&
after a small step deformation. These partial intrinsic moduli are calculated from the
Kubo relation

@Ga~t!# 5
1

kBT
^sa,xy~t!sxy~0!&, ~135!

which cross correlates components of the single-chain stress with the total.
Figure 7 shows the master curves obtained for the components

@Gtens(t)#, @Gcurv(t)#, and @Gornt(t)# for chains with L/Lp 5 1/8, 1/4, 1/2, and 1,
respectively. Also shown, as continuous gray lines, are the predictions of the full theory
for these functions. Dashed lines represent the predicted asymptotes for@Gtens(t)# at
early and intermediate times@Eqs.~82! and~84!#. Figure 8 shows simulation results and
predictions for the total intrinsic modulus@G(t)# ~rather than the individual components!
for L/Lp 5 1/8 andL/Lp 5 1. The theoretical predictions were obtained by numerically
Fourier transforming the results of the full theory for the tension and curvature compo-
nents to@G* (v)#, using isotropic friction coefficients,z i 5 z' 5 zb /a, as in the simu-
lations.

Consider first the stiffest chains simulated, withL/Lp 5 1/8. For these, we obtain
excellent agreement between theory and simulations over the entire range of time scales

FIG. 6. Simulation results illustrating collapse of simulation data for@Gtens(t)# ~top curve,3!, @Gcurv(t)#

~middle curve,1!, and @Gornt(t)# ~bottom curve,s! vs t/trod with trod [ zbN3a2/(72kBT) for L/Lp
5 1/8 andN 5 8, 16, 22, 32, 46, 64, 90, 128.@Gornt(t)# is shown only for the few smallest values ofN.
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accessible to simulations. This set of simulations clearly show a broad intermediate
regime where@Gtens(t)# ; t25/4, but does not access thet23/4 decay predicted at ex-
tremely early times, which was computationally inaccessible. A clear orientational pla-
teau, with @G(t)# . @Gornt(t)# . 3

5kBTe2t/trod, is also visible at times approaching

FIG. 7. Comparison of theory and simulations for different values ofL/Lp : Data points~black symbols!
represent simulation results for@Gtens(t)# ~top curve,3!, @Gcurv(t)# ~middle curve,1!, and@Gornt(t)# ~bottom
curve,s!, plotted vst/trod with trod [ zbN3a2/(72kBT). Continuous gray lines are our theoretical results for
these three componentsG(t). Short dashed gray lines are predicted asymptotic power laws as indicated.

FIG. 8. Comparison between theoretical prediction~gray lines! and the results of Brownian dynamics simula-
tions ~black symbols! for the intrinsic modulus@G(t)# vs t/trod, for L/Lp 5 1/8 ~left panel! andL/Lp 5 1
~right panel!.
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1144 SHANKAR, PASQUALI, AND MORSE
t rod. As L/Lp is increased from 1/8 to 1/4, 1/2, and 1 in the remaining simulations, the
intermediate regime gradually disappears, ast i ~rapidly! andt' ~more slowly! approach
t rod, while the predictedt23/4 regime moves into the computationally accesible window.
For the most flexible chains shown, withL/Lp 5 1, both the intermediate regime and the
orientational plateau are absent, but the simulation results begin to closely approach th
early time t23/4 asymptote. The predictions of the full theory become noticeably less
accurate with increasingL/Lp , as expected for a theory that is based upon an expansion
about a rigid rod reference, but remain remarkably accurate for chains of length up t
L 5 Lp . For the most flexible chains, withL 5 Lp , the predictions of the individual
components of@G(t)# are noticeably less accurate at times approachingt rod than the
predictions of the total@G(t)#, indicating a partial compensation of errors.

Simulations very similar to those discussed above and in our earlier report@Pasquali
et al. ~2001!# have also been carried out by Dimitrakopouloset al. ~2001!. These authors
reported that their simulation results for@G(t)# could be adequately fit over a wide range
of intermediate times by a single power-law decay@G(t)# } t2a, with an apparent
exponenta that varies continuously withL/Lp and approachesa 5 5/4 for L/Lp ! 1.
This description is broadly consistent with the simulation data of both groups: For ex-
ample, the simulation data for@G(t)# for L/Lp 5 1 in Fig. 8 is fit well by at27/8 power
law, as reported by these authors. The theory shows, however, that this is an empiric
description of a broad crossover in both time andL/Lp , which can be accurate only at
intermediate values ofL/Lp , since universal power laws are predicted forL ! Lp and
L @ Lp , and only in an intermediate range of computationally accessible times, since
universalt23/4 decay is expected at early times for allL/Lp .

X. COMPARISON WITH EXPERIMENTS

In this section, we compare our predictions with the experimental data of Warrenet al.
~1973! and Ookuboet al. ~1976!, who carried out linear viscoelastic measurements of
G8(v) andG9(v) for dilute solutions of PBLG in the solventm-Cresol. The persistence
length of PBLG is approxiamtely 150 nm, though there does not appear to be a consens
in the literature on the exact value; reported estimates range from 100 to 180 nm. Th
average lengths of the chains used in the experiments of Warrenet al. ~1973! include
L 5 108 and 162 nm, while Ookuboet al. ~1976! used chains withL 5 116, 82, and 51
nm. The chain lengths in most of these experiments are thus comparable to the pers
tence length. Although our theory is constructed so as to be accurate only in the limi
L/Lp ! 1, a comparison between the theory and these experiments seems reasonable
light of the level of agreement found above between the theory and Brownian dynamic
simulations of chains with comparable values ofL/Lp .

A. Experiments of Warren et al.

Warrenet al. ~1973! used a multiple-lumped resonator to measure@G* (v)# of dilute
solutions of PBLG inm-Cresol with molecular weights ranging from 163104 to 57
3104 in the frequency range 106–6060 Hz and concentration range 0.0015–0.005 g/m
They reported intrinsic moduli data, which were obtained by extrapolation to infinite
dilution, for three samples containing chains of length 108, 162, and 387 nm. We com
pare the theory only to data from the samples withL 5 108 and 162 nm, sinceL signifi-
cantly exceedsLp for the third sample. Warrenet al. ~1973! report a polydispersity index
Mw /Mn 5 1.234 for these samples.

We take into account polydispersity in the theory by calculating an average
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G~t! 5 E
0

`
dL n~L!@G~t;L!#, ~136!

where@G(t;L)# is the predicted intrinsic modulus for chains with lengthL, andn(L)dL
is the number of chains per unit volume with contour length betweenL andL1dL. We
assume a distribution of the form

n~L! } S L

L0
Da

exp@2L/L0#, ~137!

whereL0 is chosen to obtain a weight averaged length equal to the reported value. W
use an exponenta 5 3, which yields a polydispersity index of 1.25 very close to the
reported value.

In Fig. 9, we compare theoretical predictions and the data reported by Warrenet al.
~1973! ~digitized from their Fig. 4! for the ratio @G* (v)#/(kBT) vs vt rod. We have
followed Warrenet al. in plotting data for chains with two different lengths~L 5 108 nm
and L 5 162 nm! in a single graph, as in their Fig. 4, because the resulting data ver
nearly superpose for these two samples. Theoretical predictions for both reported ch
lengths are calculated using a persistence lengthLp 5 130 nm, with anisotropic friction
coefficientsz' 5 2z i . Frequencies in the theoretical curves have been rescaled usin
t rod 5 z'L3/(72kBT), whereL is the length averaged chain length. The experimenta
data in this and all other plots have been made dimensionless using the rotational dif
sion time t rod 5 phsL

3/@18kBT ln(L/d)# predicted by slender-body hydrodynamics,
where L is the reported weight-averaged chain length, using the hydrodynamic cha
diameter ofd 5 2.5 nm reported by Warrenet al. ~1973! and the reported solvent vis-
cosity. Also shown in this figure is the storage modulus predicted by the rigid rod theo

FIG. 9. Comparison with the experiments of Warrenet al. ~1973!: Intrinsic storage modulus@G8#/(kBT) and
loss modulus@G9#/(kBT) as a function of reduced frequencyvtrod for two different~average! lengthsL 5 108
nm, L 5 162 nm.trod for the experiments is determined fromphsL

3/@18kBT ln(L/d)# where d 5 2.5 nm.
Symbolss ~L 5 162 nm! and h ~L 5 108 nm! are the data from Warrenet al. ~1973! and the lines are
theoretical predictions forLp 5 130 nm. Also shown as a dash-dotted line is the predicted@G8(v)# for true
rigid rods.
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1146 SHANKAR, PASQUALI, AND MORSE
~corrected for polydispersity! which agrees well with the data in the terminal regime but
clearly fails at higher frequencies. Like the experimental data, our predictions for the tw
different chain lengths are only slightly different, despite the 50% difference inL, indi-
cating that both the predicted and measured shape of the curves in this representa
change only slowly with changes in the ratioL/Lp for L . Lp . The same point is
evident in Fig. 10, where we show the effect of varyingLp from 110 to 150 nm on the
theoretical predictions forL 5 108 nm. Aside from the uncertainty introduced by the
existence of a substantial range of estimated values for the persistence length of PBLG
the literature, which seems to have a weak effect on our predictions, this comparison w
experiment contains no adjustable parameters.

B. Experiments of Ookubo et al.

Ookuboet al. ~1976! used a torsional free decay method to measure linear viscoelas
measurements of dilute PBLG solutions inm-Cresol at concentrations 0.002–0.05 gm/ml
in a frequency range 2.23103– 5.253105 Hz, giving a maximum frequency an order of
magnitude larger than that obtained by Warrenet al. ~1973!. These authors, who reported
measurements of the complex viscosityh* (v) [ h8(v)2 ih9(v) 5 G* (v)/( iv), re-
ported that their accuracy forh8(v) 5 G9(v)/v is higher than that forh9(v)
5 G8(v)/v, and that the lack of accuracy of their data forh9(v) made extrapolation to

infinite dilution to impossible for this component. We thus consider the data of Ookub
et al. ~1976! to be less reliable than that of Warrenet al. ~1973!. We nevertheless have
compared the theory with this data because it contains data for both shorter chain leng
and significantly higher frequencies than those reported by Warrenet al. ~1973!.

Ookuboet al. ~1976! carried out measurements on three fractionated samples, wi
lengthsL 5 116, 82, and 51 nm, and one unfractionated sample, which we do not co
sider. No value for the polydispersity index is reported, and so, in the absence of a be
estimate, we assume a polydispersity of 1.25 similar to that reported by Warrenet al.

FIG. 10. Effect of variations ofLp on the theoretical prediction~lines!, and on the comparison with the data
~h! of Warrenet al. ~1973!: @G8#/(kBT) and@G9#/(kBT) vs vtrod for L 5 108 nm, forLp 5 110, 130, and
150 nm.
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Figures 11~a!–11~c! show the values of@G8#/(kBT) and@G9#/(kBT) vs vt rod obtained
for these three chain lengths at all of the reported concentration. The intrinsic moduli in
these graphs are calculated from the digitized plots of Ookuboet al. ~1976! for h9(v)
andh8(v) by dividing the resultingG8(v) andG9(v)2 ivhs by the actual concentra-
tion, rather than by extrapolating to infinite dilution. Values oft rod are calculated, as
before, using reported chain lengths and solvent viscosity ofhs 5 0.105 P. The solid
lines are corresponding theoretical predictions for the intrinsic moduli, calculated for
Lp 5 130 nm, for these three chain lengths. The lack of a smooth variation of the data
for @G8(v)# with concentration explains the authors’ conclusion that this data cannot
support a meaningful extrapolation to infinite dilution. Figures 11~a!–11~c! indicate that
there is nonetheless good agreement between theoretical and experimental results for

FIG. 11. Comparison with the experiments of Ookuboet al. ~1976! for different values ofL: Intrinsic storage
modulus@G8#/(kBT) and loss modulus@G9#/(kBT) as a function ofvtrod for three different chain lengths
indicated above, with at several concentrations per chain length. Symbols are the data from Ookuboet al.
~1976! and the lines are from our theory withLp 5 130 nm. Unfilled symbols represent storage modulus and
filled symbols represent loss modulus.
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@G9(v)# and ~in light of the evident experimental uncertainties! reasonable agreement
for @G8(v)# at all three chain lengths.

In Fig. 12, we have combined the infinite dilution data of Warrenet al. ~1973! with
L 5 108 and 162 nm, which have already been shown to nearly superpose, together with
the data of Ookuboet al. at several concentrations for the fraction withL 5 116 nm. In
general, there is good collapse of these three data sets, over a combined frequency range
of nearly four decades, which is substantially wider than that obtained in any single
measurement. Theoretical predictions forL 5 116 nm andLp 5 130 nm agree well with
this data over this entire range.

XI. AN ANALYTIC APPROXIMATION

The LCA results for the stress relaxation modulusG(t) and related quantities such as
the single chain compliancex~t! agree well with the results of the full theory at short
times, less than the longest transverse relaxation timet' /a1

4, but fail at longer times
because the approximation uses a continuous distribution of Fourier modes rather than
discrete set of bending modes, and thus contains no terminal relaxation time. As a result,
the LCA predicts power law decays for the tension and curvature contribution toG(t)
even at timest @ t' , whereas the full theory predicts exponential decay of these com-
ponents with relaxation times proportional tot' /a1

4.
A physically motivated approximation to the full theory can thus be obtained by taking

the LCA results for these components ofG(t) and multiplying them by an exponential
cutoff, i.e., by approximating

Ga~t! . Ga,LCA~ t !e2t/ta, ~138!

FIG. 12. Attempted data collapse of intrinsic storage and loss modulus data reported in Warrenet al. ~1973!
~L 5 108, 162 nm! and Ookuboet al. ~1976! ~L 5 116 nm! as a function ofvtrod. Symbols denote the data
at different concentrations of Ookuboet al. ~1976! and the two different lengths of Warrenet al. ~1973!. All
unfilled symbols represent storage modulus data and filled symbols represent loss modulus data. Solid lines are
our theoretical predictions forL 5 116 nm andLp 5 130 nm. The dotted line is the predicted@G8(v)#/(kBT)
for rigid rods.
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where Ga,LCA(t) is the LCA prediction for componenta of G(t), and ta is a time
proportional to t' . Corresponding analytic approximations for the components of
G* (v) can be obtained by using the following property of Fourier transforms: If

G~t! 5 F~t!e2t/t, ~139!

then the one-sided Fourier transformG̃(v) [ *0
`dtG(t)e2 ivt of G(t) is given by

G̃~v! 5 E
0

`
dt F~t!e2t/te2ivt 5 F̃~v2it21!, ~140!

i.e., by the analytic continuation of the one-sided transformF̃(v) of F(t) to a complex
frequencyv2 i t21. The one-sided Fourier transform ofG(t) is given by the ratio
G̃(v) [ G* (v)/( iv) 5 *0

`dtG(t)e2 ivt, so this prescription requires us to analytically
continue the LCA predictions for components ofG* (v)/( iv), rather than ofG* (v).

We obtain analytic approximations for the tension and curvature components of
G* (v) by evaluating the analytic LCA predictions for the componentsGtens* (v)/ iv and

Gcurv,t* (v)/ iv, and for the ratioGcurv,l* (v)/Gtens* (v), at complex frequencies with imagi-

nary parts proportional to2a1
4t'

21. This yields

@Gtens* ~v!# .
1

15
LB~v!F12

tanh@l~v1!/2#

l~v1!/2 G v

v1
,

@Gcurv,l* ~v!# .
3

25/4

L

Lp
~ iv2t'!21/4@Gtens* ~v!#, ~141!

@Gcurv,t* ~v!# .
3

23/410
~ iv3t'!1/4

v

v3
,

wherel(v1) [ @ iv1z iL2/B(v1)#1/2 is calculated by evaluating Eq.~7! for B(v) at a
complex frequencyv1, and in whichv1 ,v2, andv3 are three complex frequencies, of
the form

vi [ v2iCia0
4t'

21 ~142!

with i 5 1,.2,3 with different numerical constantsC1 ,C2, and C3. These numerical
constants are treated as fitting parameters, which are adjusted to optimize the fit of the
resulting approximation to the results of the full theory. The choiceC1 5 0.14,
C2 5 0.72, andC3 5 1.26 yields an approximation of the total loss and storage moduli
that differs from the results of full theory by less than 6% at any frequency for
L/Lp 5 1/8, 1/4, 1/2, and 1. The approximate storage and loss moduli obtained for
L/Lp 5 1/8 with these constants are compared with the results of the full theory in Fig.
5.

XII. RELATION TO THE HARRIS AND HEARST MODEL

We now compare our theoretical predictions for linear viscoelastic moduli to those of
Harris and Hearst~1966! and Hearstet al. ~1966! ~HH!, who also attempted to calculate
linear viscoelastic moduli for dilute solutions of wormlike chains. These authors consid-
ered a generalized Gaussian approximation for a wormlike chain, in which the equilib-
rium distribution of contourR~s! is controlled by an effective potential energy
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U 5
1

2
E

0

L
dsFkS]2R

]s2 D 2

1T S ]R

]s D 2G , ~143!

in which T is a Lagrange multiplier introduced to impose approximately the constraint of
constant length. In this model, however,T is not treated as a fluctuating field, but as a
constant, which is independent of boths andt. The value ofT for a given chain lengthL
is chosen to yield an equilibrium mean-squared end-to-end distance equal to that of a true
wormlike chain of equal length. Harris and Hearst~1966! find that, in the rodlike limit
L @ Lp of interest here, this criterion yields a valueT . 3kBT/L. While the HH model
can be applied to chains of arbitrary length, we consider only its predictions for the
rodlike limit, L ! Lp .

The dynamical equation used by Harris and Hearst~1966! is identical to our Eq.~2!,
except for the crucial fact that HH treat the tensionT as a constant, independent ofs, t,
and the state of flow. Their model thus does not allow any tension to be induced in the
chain by flow. HH expand all three Cartesian components of the chain contourR~s! in
eigenfunctions of the eigenvalue problem

]4Wj

] ŝ4 2L
]2Wj

] ŝ2 5 a j
4Wj , ~144!

with L [ T L2/k, with corresponding boundary conditions

]2Wj

] ŝ2 5 0,
]3Wj

] ŝ3 2L
]Wj

] ŝ
5 0 ~145!

at both chain ends. Equations~144! and~145! reduce to our Eqs.~101! and~102! in the
limit L → 0. In the rodlike limit,L ! Lp , where the coefficientL . 3L/Lp is small,
the presence of the second derivative term in Eq.~144! has a significant effect only on the
smallest eigenvaluea0, which vanishes whenL 5 0. We find by a perturbation analysis
of Eqs. ~144! and ~145! that the presence of a small nonzeroL 5 3L/Lp splits the
degeneracy between the two zero modes of our Eq.~100!, yielding a vanishing eigen-
value for the translation mode, withW } const., but producing a small nonzero eigen-
valuea0

4 . 36L/Lp for the eigenvectorW } ( ŝ21/2) that, in Eq.~100!, represents rigid
rotations.

In the present notation, the Harris and Hearst~1966! result @their Eq. ~55!# for the
complex modulus is

@GHH* ~v!# 5 kBT (
i 5 0

`
iv

iv12t'
21a i

4 . ~146!

In the rodlike limit, the eigenvaluesa i can be approximated by those obtained with
L 5 0, except for thei 5 0 mode, for whicha0

4 5 36L/Lp . Comparing the relaxation

rate 2t'
21a0

4 of the contribution arising from thei 5 0 mode to the relaxation ratet rod
21

for the orientational stress in a solution of rods shows that they are equal

trod
21 5 2t'

21a0
4 5

72kBT

z'L3 . ~147!

Separating the contribution of thei 5 0 mode from the remaining sum in Eq.~146! yields
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lim
L ! Lp

@GHH* ~v!# 5 kBT
iv

iv1t rod
21 1kBT (

i 5 1

`
iv

iv12t'
21a i

4 . ~148!

The first term on the rhs of Eq.~148! resembles Eq.~93! for @Gornt* (v)#, and the remain-

ing sum overi > 1 resembles Eq.~121! for @Gcurv,t* (v)#. However, our Eqs.~93! and
~121! each contain a prefactor of 3/5 that is absent from either term on the rhs of Eq
~148!; thus, the HH result for@G* (v)# in the rodlike limit is related to our results by

3
5@GHH* ~v!# 5 @Gornt* #1@Gcurv,t* #, ~149!

where the two terms on the rhs are given by Eqs.~93! and ~121!, respectively.
This relationship shows that, in the rodlike limit, the Harris–Hearst model neglects the

two contributions to@G* (v)# that dominate at intermediate and high frequencies, viz.
@Gtens* # and @Gcurv,l* #, which both arise from flow induced tension, while retaining con-

tributions that~aside from a different prefactor! resemble@Gcurv,t* # and@Gornt* #, which are
subdominant at these frequencies. As a result, the HH model predicts storage and lo
moduli that increase asv1/4 at v @ t'

21, like our @Gcurv,t* (v)#, and so enormously

underestimates@G8(v)# at all v @ t'
21 and@G9(v)# at all v @ t rod

21, as shown in Fig.
13. The model’s predictions are less egregiously wrong at lower frequencies: Atv
! t'

21, where@G8(v)# is dominated by the orientational stress, the model correctly

predicts a Maxwellian behavior for@G8(v)#, with the correct relaxation ratet rod
21 , but

with a numerical prefactor that is too large by 5/3. Interestingly, the model predicts the
correct intrinsic zero shear viscosity of@h0# 5 kBTt rod for a model of rods with isotro-
pic friction, because the use of too large a prefactor for the ‘‘orientational’’ contribution
to h0 ~i.e., thei 5 0 mode! is exactly compensated by the absence of a tension contri-
bution. This success is a consequence of the fact that the zero shear viscosity of such
free-draining model depends only on the polymer’s equilibrium radius of gyrationRg
@see Eq.~16.3-20! of Bird et al. ~1987!#, and that the model gives the correct limiting
value forRg in the rodlike limit.

XIII. CONCLUDING REMARKS

This paper presents a theory that describes accurately the linear viscoelastic respon
of dilute solutions of freely draining semiflexible rods, with lengthsL smaller than their
persistence lengthsLp , over the whole range of possible frequency and time scales. The
theory treats the inextensible wormlike chain as an effectively extensible rod with an
effective longitudinal compliance that arises from the existence of transverse therma
fluctuations. A simplified, analytically solvable local compliance approximation, which
ignores the spatial nonlocality of the relationship between the average tension and stra
fields, describes accurately the viscoelastic behavior throughout the intermediate and hig
frequency regimes in which the predicted behavior differs significantly from that of rigid
rods.

In the limit of very stiff chains, the theory predicts a stress relaxation modulusG(t)
that decays ast23/4 at very early times, as found previously by Morse~1998b! and Gittes
and MacKintosh~1998!, but that decays ast25/4 over a range of intermediate timest i

, t , t' , which broadens rapidly asL/Lp decreases. At times larger than the relax-
ation time t' of the longest bending mode, the theory predicts an exponential decay
G(t) } e2t/trod identical to that found for rigid rods. This description is accurate, how-
ever, only for very stiff rods: AsL approachesLp from below, the timest i ,t' , andt rod
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approach one another, and hence both the intermediatet25/4 decay and the rigid rod
orientational plateau disappear gradually. An initialt23/4 decay ofG(t) is expected for
any value ofL/Lp , but only below a timet i } t rod(L/Lp)5 that remains much lower
than t rod even forL ; Lp and that drops with decreasingL/Lp to values that, forL
! Lp , rapidly become inaccessible to either our simulations or experiment. The inter

mediate timet25/4 decay inG(t), and the corresponding intermediatev5/4 frequency
dependence ofG8(v), is observable at more easily accessible times and frequencies, bu
is well defined only for very stiff chains. In light of the resulting difficulties facing any
attempt compare our asymptotic power law predictions directly to experiment, we wish to
emphasize that the full theory and the analytic approximation of Sec. XI both provide
accurate predictions over much wider ranges of frequency and reduced chain lengthL/Lp
than those provided by asymptotic analysis alone.

In the opposite limit of a dilute solutions of coillike chains, with lengths much larger
than a few persistence lengths, we expect at23/4 decay at very early times followed by
a Rouse-liket21/2 decay at longer times for models of free-draining chains, or a Zimm-
like decay for very long chains with hydrodynamic interactions. Thus, with the results of
the present study, theoretical understanding of the linear viscoelasticity of dilute solution
of freely draining wormlike chains is nearly complete for the whole range ofL/Lp from
rigid rods (L/Lp → 0) to random coils (L/Lp @ 1), except for a small~in a logarithmic
sense! crossover region in whichL is somewhat larger thanLp, where there must be a
crossover from the behavior described here to a Rouse–Zimm behavior.

Comparison of the theoretical predictions to the results of our Brownian dynamics
simulations of stress relaxation show striking quantitative agreement over roughly nin
orders of magnitude in time. Predictions ofG(t) remain reasonably accurate for chains of
length up toL 5 Lp , despite the expansion about a rigid-rod reference state that is used
throughout the derivation of the theory. We have also compared the theory with the
available linear viscoelastic data for dilute solutions of rodlike poly~g-benzyl-L-
glutamate! in m-Cresol@Warrenet al. ~1973!, Ookuboet al. ~1976!#. These data are for
chains withL/Lp . 0.4– 1.2 at reduced frequencies ofvt rod . 1021– 104, which is a
crossover region in which none of the asymptotic power laws are valid. The predictions
of the full theory are nonetheless found to be in good quantitative agreement with thes
experiments, with essentially no adjustable parameters.

FIG. 13. Comparison of the present theoretical predictions with the theoretical results of Harris and Hears
~1966! ~denoted as HH in the figure!: Intrinsic storage and loss moduli vsvtrod for L/Lp 5 1/8.
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APPENDIX

In this appendix, we calculate the response functionQ(s,v) defined in Eq.~28!,
which describes the direct response of^E(s,v)& to the velocity gradient that appears in
transverse dynamical Eq.~24!. Here, as in the full theory of Sec. VIII, we use eigenvector
expansion~100! for ha(s), expansion~105! of the transverse dynamical equation, and
expansion~107! of the average strain field. A calculation similar to that used to obtain Eq.
~120! shows that the velocity gradient term in Eq.~105! introduces a contribution to
akl(v) given by

akl~v! 5 dkl

kBTL3

kak
4

ivz'

ivz'12ak
4t'

21 (
a

gaa~v!. ~A1!

Substituting this into Eq.~107!, and using the expression(agaa(v) 5 g(v):(I2nn)
5 2g(v):nn for traceless g~v! yields a strain of the form ^E(s,v)&
5 Q(s,v)g(v):nn, where

Q~s,v! 5
L

Lp
(
k

S]Wk

] ŝ D 2 1

ak
4@112ak

4~ ivt'!21#
. ~A2!

The rhs of Eq.~A2! is a factor ofL/Lp times a dimensionless function ofŝ and vt'

alone, which is defined by the sum. This sum increases linearly withivt' for vt'

! 1, and approaches a finite limit forv @ t'
21. In the rodlike limit L/Lp

! 1,Q(s,v) is thus always small compared to unity as a result of the overall prefactor
of L/Lp . This justifies our neglect of this contribution in the main text, as discussed in
Sec. III.
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