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Synopsis

We present a theory of the linear viscoelasticity of dilute solutions of freely draining, inextensible,
semiflexible rods. The theory is developed expanding the polymer contour about a rigid rod
reference state, in a manner that respects the inextensibility of the chain, and is asymptotically exact
in the rodlike limit where the polymer lengthis much less than its persistence lenggh. In this

limit, the relaxation modulu&(t) exhibits three time regimes: At very early times, less than a time
T < L8/L[5) required for the end-to-end length of a chain to relax significantly after a deformation,
the average tension induced in each chain @ft) both decay as~ 34 Over a broad range of
intermediate timesy <t < 7, , wherer, o« L"’/Lp is the longest relaxation time for the
transverse bending modes, the end-to-end length deca)tsT]é‘é while the residual tension
required to drive this relaxation ar@(t) both decay at— 54 As later times, the stress is dominated

by an entropic orientational stress, givir@g(t) o« e~ t/mod \where Trod & L3 is a rotational
diffusion time, as for rigid rods. Predictions f@(t) andG* (w) are in excellent agreement with

the results of Brownian dynamics simulations of discretized free draining semiflexible rods for
lengths up to L =Lp, and with linear viscoelastic data for dilute solutions of
poly-y-benzylL-glutamate withL ~ L,. © 2002 The Society of Rheology.

[DOI: 10.1122/1.1501927

I. INTRODUCTION

While the theoretical problem of predicting linear viscoelastic functions of dilute
polymer solutions was largely solved in the 1950s for the cases of completely flexible
(Gaussiah polymers and rigid rods, the corresponding problem for the wormlike chain
model has resisted solution. Here, we present a solution to this problem in the relatively
simple limit of rodlike chains, of lengtlh. much less than their persistence length.

The theory is asymptotically exact in the linit< L, and is foundby comparison to
both simulations and experimerib remain surprisingly accurate for chains of length up
toL ~ Lp.

The wormlike chainflWLC) model describes the backbone of a polymer as a smooth
contour with a finite elastic resistance to bending, but an infinite resistance to tangential
extension or compression. Solving this model has proved difficult largely because the
dynamical equations for a single such chain are nonlinear, even in the absence of hydro-
dynamic interactions. The nonlinearity is a result of the constraint of inextensibility,
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which must be enforced by a tensi@re., Lagrange multiplierfield whose value at each
point on a chain depends upon the conformation of the entire chain. The physical reason
for treating such polymers as inextensible is suggested by a simple model of a wormlike
chain as cylindrical elastic solid of diameterand Young's modulu¥: The energy per
unit length required to change the length of such a cylinder by a specified fractional strain
is proportional toY a2, while the energy per length required to bend it into an arc of
radiusR is of orderY a*/R?, which is smaller than the strain energy by a factor of order
(a/R)z. This property of thin, weakly curved filaments is familiar to anyone who has
tried to bend and stretch a thread or human hair.
An influential previous theory for the viscoelasticity of solutions of wormlike chains
[Harris and Hearst1966); Hearstet al. (1966 ] attempted to bypass the difficulties posed
by the inextensibility constraint by introducing a modified Gaussian model in which the
constraint is imposed only in a temporally and spatially average sense, by a constant
Lagrange multiplier tension. This and related Gaussian models yield reasonable approxi-
mations for many static properties, and some dynamic properties, but, we find, yield
qualitatively incorrect results for the viscoelasticity of solutions of semiflexible rods,
because they neglect flow-induced constraint forces. We find that, at all frequencies for
which the behavior of semiflexible rods in solution differs substantially from that of true
rigid rods, the polymeric contributions to the stress is dominated by contributions arising
from constraint forces, and that a rigorous treatment of the constraint is thus a necessity.
The absence of an adequate theory has not prevented the accumulation of a body of
experimental data on the viscoelasticity of dilute solutions of wormlike polymers, much
of it by J. Schrag and coworkef§Varrenet al. (1973, Nemotoet al. (1975, Carriere
et al. (1985, (1993]. Of particular relevance to the present work are measurements of
the linear viscoelasticity of dilute solutions of pojybenzylL-glutamate (PBLG) with
L ~ L, by Warrenet al. (1973 and of somewhat shorter chains, at significantly higher
frequencies by Ookubet al. (1976. The measurements of Warrehal. revealed that the
rigid rod theory of Kirkwood and Auef1951) adequately describes the behavior of
G* (w) for such chains in the low frequency terminal regime, but not at any higher
frequencies. The present paper thus focuses on explaining the viscoelasticity of solutions
of semiflexible rods at relatively high frequencies, where their behavior differs qualita-
tively from that of truly rigid rods.

A. Model

We consider a dilute solution of monodisperse wormlike polymers of contour léngth
diameterd, and number density. The conformation of a single chain is parametrized by
a space curve(s), wheresis the arc length measured along the contour of the polymer.
The bending energy of a wormlike chain with a bending rigidétis given by

2

au(s)
. 1)

Js

1 L
Ubend: EKJO ds

whereu(s) = dr(s)/ds is the local tangent vector, ani(s)/Js is a curvature vector,
whose magnitude is the inverse of the local radius of curvature. The constraint of local
inextensibility is expressed as a requirement fl#a{s)/ds| = 1 at each point on the
chain, so thati(s) is a unit vector. The persistence lendth = «/kgT is the distance
along the chain over which tangent vectors remain correlated in equilibrium. Chains with
L > L, thus are(globally) random coils, whereas those with< L, are semiflexible
rods.
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The Brownian motion of a single free-draining wormlike chain in an imposed mean
flow with velocity gradienty = (Vv)T is described by the Langevin equation

a v o or

Ela 7' 258 o\ Tas) T @
Here, is a local friction tensor of the fornj = {juu+ ¢, (I —uu) where{; and{, are
friction coefficients for motions parallel and perpendicular to the local tangésit,
respectively. The left side of EqR) is a hydrodynamic frictional force. The first term on
the right side is the force arising from the bending energy. The second term on the right
side is a constraint force required to enforce inextensibility, in whight) is a fluctu-
ating tension, or Lagrange multiplier, field. The last term on the right side is a random
Brownian force with vanishing mean value and a variancg(s,t) n(s’,t’))
= 2kgT(s,t)6(s—s’)8(t—t"). Solutions of Eq(2) must satisfy boundary conditions
requiring thatd?r/as? = 93r/ds® = T= 0 at both chain ends.

This free-draining model ignores the effects of long range hydrodynamic interactions.
The theory of slender body hydrodynamiesg., Batchelo1970] shows that, in the
limit of a rodlike object of lengti. much greater than its hydrodynamic diamedethe
effects of hydrodynamic drag can be mimicked, to within logarithmic corrections, by the
use of an anisotropic local friction, with coefficierdts = 2¢; = 4w ns, wherez; is the
solvent viscosity. In addition, the theory predicts a weak logarithmic dependence of the
effective friction coefficient on the characteristic distance for variation of the drag forces
along the chain. For example, the effective friction coefficient for rigid transverse motion
of a rod is approximately #7g/In(L/d), while that for a bending mode of wavelength
N\ > d is approximately 4rzg/In(\/d) [Granek (1997, Kroy and Frey(1997]. The
free-draining model of Eq(2) ignores this logarithmic scale dependence, but does allow
us to retain the factor of 2 difference betwegrand{, when comparing to experiment.

B. Time and length scales

We briefly review the characteristic time and length scales relevant to stress relaxation
in a solution of semiflexible rods, with < L, [Morse (19980 ].

The slowest relaxation process in a solution of rods is rotational diffusion. The free
draining model described earlier yields a rotational diffusivityy; = 12kgT/({| L3),
and a corresponding terminal relaxation time

ﬁ'—s

- 3
frod = ZokeT ©

for the relaxation of flow-induced anisotropies in the distribution of rod orientations.
The longest wavelength bending mode of a semiflexible rod of lebhdihs a decay
time proportional to

T = —. (4)

This time scale can be estimated by dimensional analysis of Zgby balancing the
frictional force with the bending force. We also define a corresponding time-dependent
length scale

|14
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which, fort < 7, , is approximately the wavelength of a bending mode with a relaxation
time equal tat. Hereafter, the notatio§, (w) = (w{; /K)_1/4 refers to the same length
scale expressed as a function of a frequeacy: 1/.

Understanding the longitudinal response of a semiflexible rod is the key to understand-
ing the high-frequency viscoelasticity of a solution of rods. At nonzero temperature, a
semiflexible rod undergoes thermally excited transverse undulations. As a result, its av-
erage end-to-end length is thus always less than its full contour ldngiimd can be
changed slightly by longitudinal forces applied to the chain, without changing the actual
contour length, by suppressifiigr 7> 0) or enhancindfor 7 < 0) the magnitude of the
thermally excited “wrinkles.” The resulting effective extensibility can be quantified by
an effective longitudinal extension modulBs= 7 /(£) measured in a hypothetical ex-
periment in which a uniform infinitesimal tensi@his applied to the chain, and results in
an average straifii.e., fractional change in end-to-end lengtl€) = (SL)/L, where
(5L) is the change in the average end-to-end length.

MacKintoshet al. (1995 calculated an effective static modulus by using equilibrium
statistical mechanics to calculate the longitudinal response to a spatially uniform, static
tension. They obtained

K2

Bo ——
kgTL

(6

with a prefactor that depends upon the boundary conditions imposed on the ends of the
chain. The effective extensibility of the chain arises from the existence of thermal trans-
verse fluctuations; thus, the modulus increases with decreasing tempdratuirecreas-
ing rigidity «. B depends strongly on the chain length, because the calculated compliance
1/B is dominated by the contributions of the longest wavelength bending modes.
Subsequently, both Gittes and MacKinto§l998 and Morse(1998h calculated a
frequency-dependent dynamic longitudinal mod®) = 7(w)/{&E(w)), by consider-
ing the longitudinal response of a semiflexible rod to a spatially uniform but temporally
oscillating tension of complex amplitud&w) at a frequencyw, and calculating the
amplitude(SL(w)) = L{&(w)) of the resulting change in the average end-to-end length.
Both authors found a modulus

im B(w) <
im B(w) = —
1 kgT

)

2iwy, |34
K

w>7’£

at high frequenciesp > il, and confirmed that they recovered the static modulus of
Eq. (6) at low frequenciesp < 7, 1. The w¥* dependence d(w) at high frequencies

can be qualitatively understood as follows: When a chain is subjected to an oscillatory
tension withw > rll, only bending modes with wavelengths shorfg(w), which

have relaxation rates greater thancan respond to the oscillatory tension. Only these
short wavelength modes contribute significantly to the extensibility of the chain. To
estimateB(w), we can thus assume that, for> rIl, the lengthé, (w) replaces the
chain lengthL as the long-wavelength cutoff in E¢6). This scaling argument gives

K2

Blw) ~ keTE ()

®

in agreement with Eq.7).
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The slight longitudinal extensibility of a semiflexible rod gives rise to a nontrivial
longitudinal dynamic$Morse (1998h, Everaerst al. (1999]. We have noted previously
[Morse (19981, Pasqualet al. (2001)] that the average longitudinal force balance for a
semiflexible rod with a frequency-dependent longitudinal modBlgs can be recast in
the form of a modified diffusion equation for the average tensi@is,w)), with a
frequency-dependent diffusivitp(w) = B(w)/{. This yields a kind of anomolous diffu-
sion in which tension and longitudinal strain propagate a distance

IB(1h)|t 27, \3kgTLS 118
gt = N—7 ~ <—l) — P

I g) g

in a timet, giving &(t) « tY& The notations;(») = V|B(w)|/(w{|) denotes the same
length as a function of» = 1/. Settingé(t) = L yields a characteristic time scale

3,8

B ( 4|7 gL
=15 5
2, ) kgTLy
required for strain and tension to diffuse the entire length of the chain, which is also the

time required for the chain length to relax significantly after a sudden deformation.
Equations(3), (4), and(10) yield ratios of the time scalegoq,7, , and7:

7 ( L )4 T L
— x| =], — o —, (17
T Lp Trod Lp

These three time scales thus become well separated in the rodlikeLlimiL,, and

form a hierarchyry < 7, < 74¢. The dynamical response of a solution of such rods is
therefore expected to exhibit three time regimes in an experiment, such as a step strain,
that subjects the system to a sudden perturbation: At early timesr;, the end-to-end
length has insufficient time to relax significantly and so will retain the value imposed on

it by the initial perturbation. At intermediate timeg, < t < 7, , the longitudinal de-
formation of the chains has had time to undergo signifi¢lant not necessarily complete
relaxation, but the longest wavelength bending modes have not yet relaxed. At late times,
t > 7, , both longitudinal and transverse degrees of freedom are fully relaxed, and the
polymer behaves like a rigid rod. Note that the width of the intermediate regime grows
rapidly with decreasing /L, but that the gaps betweef, 7, , and7,q disappear ak
approaches , from below, causing the intermediate regime to vanish.

©)

(10

C. Stress relaxation

Here we discuss some qualitative features of the relaxation of stress
o(t) = G(t)[y+ 73] after a step strain of infinitesimal magnituglg att = 0. In what
follows, the polymer contribution t&(t) in a dilute solution oft chains per unit volume
will be characterized by an intrinsic relaxation modulus, defined by

G(t) — (1) 75

[GH)] = lim .

c—0

12

which gives the contribution t&(t) per chain and by a corresponding intrinsic dynamic
modulus,[G* (w)] = (G* (w)—iwns)/c, where[G* (w)] = iwafdt[G(t)]e_i“’t.

We first review the behavior of solutions of true rigid rogsirkwood and Auer
(1951, Doi and Edward$1986, Bird et al.(1987]. The stress in a dilute solution of thin
rigid rods is given by
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o= chLds(ﬂs)uuHSckBT(uu—I/3>, (13

where7(s) is the tension at poirg along a rod, and is the unit vector parallel to a rod.
The first term on the right-hand-sidehs) is a viscous stress arising from the tension
1(s,t) that is required to maintain the constraint of inextensibility, which depends linearly
on the instantaneous rate of strajit). The second term is the entropic orientational
stress arising from anisotropies in the distribution of rod orientations. For a step strain of
magnitudeyg att = 0, the rate-of-deformation tensor(t) is a delta-functiony(t)

= 6(t). This induces a tension

T(s,t) = 3{;6(t)s(L—s)yp:uu, (14)

in a rod with orientatioru, with a 5-function time dependence, a parabolic dependence on
s, and a magnitude that dependswnJsing this tension to evaluate the viscous tension
stress in Eq(13), averaging the result over chains of different orientations, and calculat-
ing the effect of a step strain upon the distribution of rod orientations to obtain the
entropic orientational stress, yields an intrinsic modulus

§”L3 3 —t/
[G(t)] = K) o(t)+ g kBTe rod, (15

with a delta-function viscous contribution, and an exponentially decaying orientational
contribution that decays by rotational diffusion, with the decay timg given in Eq.(3).

The behavior ofG(t) in a solution of semiflexible rods is expected to be similar to that
predicted for true rigid rods at late timés> 7, , when all internal deformations have
had time to relax. This paper thus focuses on predicting linear viscoelastic behavior at
timest < 7, , or corresponding frequencies.

Both Gittes and MacKintost1998 and Morse(19980 have predicted thad* (w) in
solutions of wormlike chains should vary asymptotically G§(w) = (iw)3’4 at very
high frequencies, ofequivalently that G(t) t=3/4 at very early times. This prediction
is based on the assumption that, at sufficiently high frequency in an oscillatory flow, or at
sufficiently short times after a step deformation, the frictional coupling between the chain
and the solvent will be strong enough to enforce a nearly affine deformation of the
end-to-end vector of a chain, i.e., the same longitudinal extension or compression as that
experienced by a straight line of ink drawn in the solvent with the orientation of a
particular rod. In an oscillatory flow, this affine strain yields a corresponding oscillatory
tension with aw3/* frequency dependence that directly reflects the frequency dependence
of B(w). The underlying assumption of an affine longitudinal deformation must break
down, however, at frequencies< 7, or timest > 7, for which the end-to-end length
has sufficient time to significantly relax. This earlier prediction is thus expected to be
valid only in the high frequency or early time regime.

The behavior of5(t) in the intermediate time regimg < t < 7, is more subtle. We
showed in an earlier report on this subjéBtasqualiet al. (2001)] that the stress is
dominated at these intermediate tinjas at early timesby a “tension” contribution that
arises from the constraint forces, and that b@itt) and the tensions in individual rods
decay ag ™ %4in this regime. This algebraic decay of the tension at intermediate times is
shown here to be an indirect result of the free relaxation of transverse bending modes
throughout this time regime: The sequential relaxation of bending modes of increasing
wavelength throughout this regime leads to an accordion-like motion, which, as a result
of the inextensibility of the chain contour, is found to yield an average longitudinal
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strain that relaxes as 4 The residual tension induced by frictional forces that oppose
the longitudinal component of this motion is proportional to the the time derivative of the
strain, and so decays &5°4,

At late times,t > 7, , the coupled relaxation of the transverse undulations and lon-
gitudinal strain is complete, and the macroscopic stress is dominated by a remaining
entropic orientational component analogous to that found for rigid rods. This component
decays exponential with a decay timgg identical (for L < L) to that found for rigid
rods.

The above description applies rigorously only to very stiff chains, Witk L,. AsL
approaches , from below, the intermediate time regime disappears, leaving an essen-
tially featureless crossover fromta 34 decay ofG(t) at early times to an exponential
termain decay. For much longer c0|I like chains, with> L, we expectG(t) to Cross-
over as a function of time from & 3 decay at early times to a Rouse- Ilke decay
at later times. This crossover should occur at a time proportlonqlltop/(kBTLp),
which is roughly the relaxation time for a bending mode of wavelehgthafter which
the stress relaxation will be controlled by the relaxation of Rouse-like modes with wave-
lengths greater thaby, .

D. Outline

The rest of this paper is organized as follows. In Sec. Il, we expand the equation of
motion and related quantities about a rigid rod reference state. In Sec. Ill we derive an
integrodifferential equation relating the average longitudinal tension and strain fields in a
semiflexible rod of known orientation, and obtain a formal solution of this relation in
terms of a spatially nonlocal longitudinal compliance, or a corresponding nonlocal modu-
lus, which is a generalization of the frequency dependent modflusdiscussed earlier.

In this section, we also introduce an analytically tractable “local compliance approxima-
tion” that ignores the spatial nonlocality of the relationship between tension and strain,
which yields the simple modified diffusion equation for strain that was used in our
previous work Pasqualiet al. (2001)]. In Sec. IV, we calculate the nonlocal compliance

in an approximation that is valid at intermediate- and high-frequencies, il, the
results of which show that the local compliance approximation is also valid throughout
the same frequency range. In Sec. V, we use the local compliance approximation to
calculate the stress and strain field along a rod in weak flow field. In Sec. VI, we review
the formal expression of Morg&998a for the stress in a solution of wormlike polymers,
and cast this in a form appropriate to a nearly straight rod. In Sec. VII, we use the local
compliance approximation to obtain analytic results for the linear viscoelastic moduli for
w > 711. In Sec. VIII, we formulate a more complete theory that is valid in the limit

L < Lp at arbitraryw, but that must be evaluated numerically. In Sec. IX, we present
Brownian dynamics simulations of semiflexible rods, and compare simulation results for
G(t) to the predictions of the full theory. In Sec. X, we compare prediction&fo(w)

to experimental data for dilute solutions of p@gnzyl-glutamate In Sec. XI, we
present an accurate analytic approximation to the full theory. In Sec. XII, we compare our
theory to that of Harris and Hear€l966. Conclusions are summarized in Sec. XIII.

The simulations results presented here, and a brief presentation of the local compli-
ance approximation for the tension stress contributio@ {t), have appeared previously
in Pasqualet al. (2001). Similar simulations of5(t) have also been conducted by Dimi-
trakopouloset al. (200J). The theoretical treatment of the inextensibility constraint used
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here is similar to that used by Liverpool and Madg801) in a recent theoretical study
of dynamical light scattering from long semiflexible filaments.

IIl. EXPANSION ABOUT A ROD

We expand the dynamical equations about a rotating rodlike reference state. Our
reference state is a straight rod parallel to a unit veadidy that rotates like a thin
non-Brownian rod in a homogeneous velocity gradient

dn ]
at = (I=nn)-y-n. (16)

We expand the polymer contoufs) about this line as
r(s,t) = [s+f(s,t)]In(t) +h(s,t), 17

wheref(s,t) andh(s,t) are the longitudinal and transverse displacements, respectively.
The transverse displacemen(s,t) always remains orthogonal tr(t), and can be ex-
panded as

h(s,t) = ;12 h,(s,t)e,(t), (18

wheree; (t) andey(t) are two unit vectors that are always orthogonahtt) and to each

other. Greek subscripts are used hereafter to represent transverse directions, and can take
values 1 and 2. We choofllowing Hinch (1976] the time evolution ok (t) andey(t)

as

de;

. de, .
P —n(e;-y-n), — = —n(ey-y-n), (19

dt
so that each transverse basis vector rotates in a plane spanned by itsg(f)asd as to
remain always orthogonal tio(t).

The constraint of inextensibility, which requires th(s)/as|2 = 1, can be ex-

panded as
gf\2  af [ah)?
—| +2—+|—| =0. (20
s os \Jds
In the limit L/Lp < 1, where|df/ds| < 1, this can be expanded, to leading approxima-
tion, as
of 1({ah\2
— = —=|—] . (21
s 2\9s

It is useful to describe longitudinal displacements in terms of a longitudinal strain field
¢ of | of -
s)= —{(—) ,
© =5/ (22

where(- - -)eq denotes an average value evaluated in the thermal equilibrium state, i.e.,
with y = 0. Using approximatiorn(21), £(s) can be expressed in terms of transverse
displacements as
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2 2
{2 ]
e
to leading order in derivatives df(s).

To expand the equation of motion, we substitute expandi@nfor r(s,t) into Lange-
vin equation(2), while using Eqs(16) and (19) for the rates of change af(t), e;(t),
and ey(t). By projecting the result onta(t), e;(t), andey(t), we obtain longitudinal
and transverse components. The transverse component in diregtien
ih, o

= —K—7 t—
o s

ah

Js

dh
Js

1
5(3) = — E[

oh,,

T—) + 94, (24

& .

dh,, .
—_— h
ot % yalg B
Where'ya,g =e, ¥ €g, and 7,(s,t) = €,(t)- n(s,t). The longitudinal component is
o AT ( ar

——rpy:nn— vine,+enh | =—«k—Fg+—|T
gt 1Y % 7( 0% o ) a] (?54 IS

d 9s

wherer(s,t) = s+f(s,t), and n(s,t) = n(t)- n(s,t). Equations(24) and (25), to-
gether with constrain21), form the equations of motion in the rodlike limit.

Ill. LONGITUDINAL DYNAMICS

In this section, we derive a formal equation relating the average of the strain and
tension fields along a rod of known orientation. We consider the average of longitudinal
force balancd25) with respect to rapid fluctuations éfh, and7 on a semiflexible rod
of much more slowly varying orientation, which is regarded as constant for this pur-
pose. This averaging procedure, which will be denoted by the syfabplthroughout
this section, yields
«f) . ot AT)
?—S'y :nn +—

as* s

di (26)

= —TK

To derive Eq(26), we have used the fact that thle,) = 0 in Eq.(25) as a result of the
invariance of Eq.(24) under the symmetrj — —h. Differentiating Eq.(26) with re-
spect tos yields an equivalent relationship

AE)

. aNE dA(T)
T—Y.HH

= —k— gt — 7 @7

i s s

in terms of the average stra{@(s,t)).

To solve Eq.(27), which relates derivatives of the average stréfiis,t)) and the
average tensiofiZ(s,t)), we need a second relationship between these two fields. This is
obtained by combining transverse equation of motiad) with Eq. (23) for the con-
straint, which relates the longitudinal strain to the derivatives ofs), by using the
transverse equation of motion to calculate the linear response of the a\/(bﬁbgBF)
of the quantity that appears on the rhs of EB3) for £(s,t). We thus consider the
solution of transverse E@24) driven by small perturbations arising from the tension field
7(s,t) in the second term on the rhs and also from the velocity gradient tenser in
the second term on the left-hand-sidies). To describe the dynamical linear response of
the (£(s,t)) to these perturbations, we must calculate the responggsbfas|?) to a
temporally oscillating velocity gradient and tension field at arbitrary frequencyWe
hereafter adopt a convention in which Fourier transforms of all time dependent functions



1120 SHANKAR, PASQUALI, AND MORSE

are indicated by replacing the time argumerty a frequencyw, so that, e.g.£(s, w)

= [dte ''&(s,t). In the limit of small perturbations, we expect the responses of
(&(s,w)) to the velocity gradient and to the tension to be additive, and so expect to be
able to write the average strain as a sum

(E(s,w)) = O(s,w)y (w):Nn+ JoLds’X(s,s’;w)T(s’,w) (28)

of contributions linear iny(w) and 7(s’,w), with response function®(s,w) and
x(s,s’;w) that will be calculated in subsequent sections. The functitss’;w) is a
nonlocal longitudinal compliance that gives the average strain induced at pbinta
tension applied as’ with frequencyw. The tensor form of the term linear ip(w) is
dictated by the fact that this contribution to the strain must be a scalar functiprand
n and linear iny, and thaty(w) must be traceless for an incompressible fluid.

A. Full theory

A closed integrodifferential equation fdZ(s,»)) can be obtained by Fourier trans-
forming Eg. (27) with respect to time and substituting E®8) for (&(s,w)), while
equating the unspecified tensigffs,t) in linear response relationshif28) with the
average valué7(s,t)) that appears in Eq27). This yields

0T (s,0)
<—2> = iw{ ¥ ®):N[1-0(s,0)].

Js
(29)
Here and hereaften(t) is approximated by its time average over one period of oscilla-
tion. The dimensionless response functidfis, w) is calculated in the Appendix, and is
found to approach a maximum value proportional ta , in the limit » > 7-1. The term
involving O (s,w) on the rhs of Eq(29) is thus uniformly smaller than the leading term

on the rhs in the limi. < L, of interest, and so can be neglected. Making the deriva-
tives dimensionless by definirgg= s/L and dividing byi {; then yields

1
(1+ b f

o7 RS

J;Lds’x(s,s’ ;o T (s, w))—

iw§||+KE1

X7 (5,0))
wgL? 8

= Y(w):nn.
(30)

An equivalent expression involving the strain, rather than the tension, can be obtained by
introducing a nonlocal modulud(s,s’;w), defined such that

)fdsx(ss )T (s w))—

J;_dS'B(S,S';w)X(S',S”;w) = §s—9), (31

i.e., such thaB is the functional inverse of. If we consistently neglect the term involv-
ing O(s,w) in Eg. (28), as done to obtain Eq(30), we can write (7(s,w))
= [ds'B(s,s’;w)(&(s’,w)), to obtain the equivalent expression

f ds'B(s,s’,w){(&(s’,w)) = Aw):nn.
(32)
Equations(30) and(32) are the starting points for the full theory developed in Sec. VIII.

14 &
1+——T4)<5( S,¥)—

loT g” HL (?S



LINEAR VISCOELASTICITY OF SEMI-FLEXIBLE RODS 1121

B. Local compliance approximation

We find in what follows that Eq9.30) and(32) can be further simplified in the limit
of intermediate and high frequencias,> ri. First, we note that the coefficient multi-
plying the fourth derivative term in Eq32) is proportional to {(w7,) 1, and that, as
result of this small prefactor, is negligible compared to the first term on the left side at all
w > rjl. Moreover, we find that the nonlocality of the compliance becomes unimpor-
tant at frequencies > TIl; thus x(s,s’;w) can be approximated at these frequencies
by a frequency dependent but spatially local compliance, of the form

x(ss";0) = x(w)&s—5"). (33

Herex(w) = 1/B(w), whereB(w) is the frequency-dependent modulus given in &g,
which was obtained by calculating the spatial average strain induced by a spatially uni-

form tension at frequencies > 711. The resulting local compliance approximation
(LCA) assumes that the average strain and tension are locally proportional, so that

(E(s,w)) = x(wNT(s,w)). (34

Substituting this approximation in E¢27), and neglecting the fourth derivative term,
yields the LCA longitudinal balance equation

{ B(w) &
iv———

é,H (932 <5(S,w)> = ;y(w):nn! (35)

where () = oY ).

Equation(35) has the form of a diffusion equation, with a frequency-dependent dif-
fusivity D(w) = B(w)/{, and a spatially uniform source term arising from the rate of
straining along direction. An analytic solution to this diffusion equation, which satisfies
the boundary conditiof7(s,w)) = 0 at the chain ends, is presented in Sec. V. At high
frequenciesw > r[l, for which & (w) < L, the solution of Eq(35) is found to yield
tension and strain fields that vary over lengths of order the longitudinal diffusion length
&(w), as suggested by dimensional analysis. At intermediate frequemjésﬁ ®
< 7”—1, for whichL < §)(w), the tension and strain are found to vary smoothly over
the entire chain length.

To justify the LCA, the predicted characteristic distances for spatial variations of
(71(s,w)) at each frequency must be compared to the calculated range of the nonlocality
of x(s,s’;w): The approximation ofy(s,s’;w) by a & function is justified only if the
predicted(7(s,w)) varies slowly over distances comparable to the range of values of
|s—s’| for which x(s,s’;w) remains significant. In Sec. I\§(s,s’;w) is calculated in
an approximation valid at» > il, and it is shown thaj(s,s’;w) has a range of
nonlocality proportional to the transverse length w). Using this result, the validity of
the LCA can be justified at alv > rjl by using Egs.(4) and (10) to confirm that
¢ (w) < §(w) throughout the high-frequency > T”—1 regime in which the tension
varies over distances of ordé€j(w), and that¢, (w) < L throughout the intermediate
regime 7'H_1 > 0> il in which the tension varies smoothly over the entire chain
length. The LCA fails at frequencies comparable to and less ﬂja]n however, for
which the nonlocality ofy(s,s’;w) extends over the full chain length.



1122 SHANKAR, PASQUALI, AND MORSE

IV. NONLOCAL COMPLIANCE AT INTERMEDIATE AND HIGH FREQUENCIES

We now calculatey(s,s’;w) in an approximation appropriate to the limit ()
< L or, equivalently,w > il. In this limit, the calculation ofy(s,s’;w) from the
transverse equation of motion becomes insensitive to the finite length of the chain, and so
the calculation can be performed as if the chain were infinite, by using an expression of
h,(s) in a continuous distribution of Fourier modes

d .
h,(st) = f Z(jha(q,t)e"qs, (36)

with amplitudesh,(q,t) = fdsh,(s,t)e'9S. The bending energy of Eql) can be ex-
panded to quadrative order in Fourier amplitudes as

1 dq
Ubend= 5 2 f kA hg(a)]®. (37
2 1% 277

Fourier transforming Eq24) yields a transformed transverse equation of motion

| dey
) = £ gl | 510G Ta (a0 + 7,00
(@8

where7(q,t) and n,(q,t) are the corresponding spatial Fourier transformg(sft) and
n.(s,t), respectively, and the random force satisfigsy,(qg,t)) = 0 and
(na(q,t) 7p(q",t")) = Sap2md(q+q")S(t—1t")2kpT{, .

To calculate the nonlocal compliance, we calculate the linear response of the average
strain(&(k,t)) to a prescribed tension, whefe-) is used in this section to represent an
average over different realizations of the transverse noise. Fourier transformig23Eq.
for &(s,t), yields

J
(Q&‘FKQA‘

dq
(kb)) = f;q(k—q)a(q,k;t), (39

where

NI

a(gkit) = = > [(hu(@h,(k=) —(Ne @y (k—0))eg]- (40)

The time derivative of(q,k;t) is calculated by using Eq38) to evaluate

ga(qkt) 1 <a Q)

s

o(K—0)
ha(k— Q)+ha(Q)T>, (41)

while setting'yaﬂ = 0 on the first term on the rhs of E(B8). To evaluate the rhs of Eq.
(41), we approximate averages of the fo(hh(q,t)h/;(q’ ,t)) that appear multiplied by
explicit factors of7(—g—q’) by their equilibrium values, for the purpose of calculating
the linear response toT using the equilibrium variance(h,(d1)hg(d2))eq

= 0qp2mo(d1+ q2)kBT/Kq1, which is obtained by applying the equipartition theorem
to Eqg. (37). We also use the identify 7,(d1)hg(q2)) = kgTdap27d(q1+0qp) for
terms involving the random forclsee, for example, Doi and Edwar(s986 p. 112.
This yields the differential equation
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a (k=q)
k-9°  ¢°
Fourier transforming Eq(42) with respect to time yields a corresponding algebraic
equation

kaT
B (42)
K

J 4 4 .
[a& +1{q"+(k—0) ]}a(q,k,t) = T(k,t)

keT
5 43)
K

T(k, k—
aqke) - (k, ) { q (k—q)

, +
i +ela*+ (k=) (k-a)®  o°
for a(q,k;w) = fdte’i“’ta(q,k;t), where7(k,w) is the corresponding Fourier trans-

form of 7(k,t). Finally, substituting Eq(43) for a(q,k;) into the temporal Fourier
transform of Eq(39) gives a strain of the form

(k) = x(k o) T(k ), (44)
where
kgT (dd 1 ¢ (k-7
whoo) == Zviwg+:<[q“+<k—q>“]Lk—q)2+ ¢ 1 9

is ak- and w-dependent nonlocal compliance.

Prior results for the response to a spatially uniform tension can be recovered by
evaluatingy(k,w) atk = 0, which we denote by a functiop(w) = x(k = 0,w). This
yields

kgT dqg 1

PP I
X K 27 '§w§¢+Kq4
q~ 1L

(46)

The lower limit of integration is included as a reminder that the existence of a finite chain
length L imposes a cutoff on the range of allowable wave numbers. At frequencies
> 7-11, where the calculation given in this section is valid, the integral is insensitive to
this lower cutoff, and yields

kgT

im x(w) = —
1 K

(47)

K

w>7’I

in agreement with results of Gittes and MacKinto&l998 and Morse(1998h for
B(w) = 1l/y(w). Form < rIl, the integral in Eq(46) instead is controlled by its lower
limit, indicating that the calculation is no longer quantitatively valid, as a result of our use
of a continuous distribution of Fourier modes rather than discrete bending modes to
expandh,(s). However, a scaling relation can be obtained by using a lower cutoff
proportional to 1, which yields y(w) « kgTL3/x?, in agreement with the result of
MacKintoshet al. (1995 for the static compliance.

The wavenumber dependencexdk,w) at frequencieso > 711 can be made more
transparent by rewriting Eq45) in the scaling form

x(ko) = x(@)F(KE (w)), (48)
where x(w) is given by Eq.(46), and
dg 1 @ (k-)?
27 i+§%+(k—g)? 3 |

F(k) = 2% (49)

+
(k-q)? 1
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whereq = q¢, (o) andk = k¢, (), and whereF(0) = 1. Carrying out an inverse
spatial transform of Eq(48) yields a corresponding nonlocal compliance of the form

s—s' ) 50
& (o) '

wherelE(x) is the inverse Fourier transform Ef(R). The existence of this scaling form
shows that, at a given frequency, x(s,s’;w) depends only on the ratids
—s'|/€, (w), and thus has a range proportional&to(w). Using this fact, the LCA can
be shown to be a consistent approximation atat> le because it leads to a tension
(7(s,w)) that varies slowly over distances of ordér(w) at these frequencies.

x(s—5',®) = x()F

V. TENSION AND STRAIN IN THE LCA

In this section, we use the LCA to calculate the average strain and tension fields along
a rod of known orientation in a solvent subjected to a weak oscillatory or step strain. To
begin, we rewrite Eq(35) in dimensionless form as

1 &
[1—;26%2](5(5,(»)) = Y w):nn, (51

wheres = s/L is dimensionless arc length, and where we have introduced a complex
dimensionless parameter

1/2 L
= (w78 = itB— (52)
(o)

The parametek(w) characterizes the relative importance of the first term on the lhs of
Eqg. (51), which arises from longitudinal drag forces, relative to the second derivative
term, which arises from forces produced by gradient$7iis,w)). [This definition of

N\ (w) differs by a factor of 2 from that used in Pasquetlial. (2001)]. Equation(51) can

be solved exactly subject to the boundary condition that the average téasidience

the average strajrvanishes at the chain ends= 0 ands = 1:

cosrwwxé—%n]
R — w).Nnn.

B(w)

Mow) =

(E(s,0)) = [1— (53)

coshiN(w)/2]
The corresponding tension is given in the LCABYs,w)) = B(w){&(S,w)).
Hereafter we focus on the response to oscillatory strains of magnjtugewhich can
be directly described by E@453), and to step straing(t) = 90 (t) of magnitudeyy at
t = 0, which must be treated by inverse Fourier transformation of(&g). To treat the
latter problem, we note that such a step strain yields a rate of st(gin= y,5(t) whose
Fourier transformy{w) = iop{w) = g is independent ob, giving Fourier amplitudes
Hw) = Y(w)l(io) = yy/(iw). To clarify the physical content of E@53), it is useful to
consider separately the high-frequency limit wheréw) > 1, corresponding tow
> 7”—1’ and the intermediate regime whekw) < 1, corresponding t()rlf1 > w
> 7 "
A. High frequencies and short times

We first consider the limiting behavior of tHé€(s, w)) and(7(s,)) in an oscillatory
flow at frequenciesw > rlfl, where\(w) > 1. In this limit, the first term on the left side



LINEAR VISCOELASTICITY OF SEMI-FLEXIBLE RODS 1125

0.005
0.004 |
£ £
E 5 oot
A A
P & 0002}
k2 ¥
0.001 |
5
0.1 07=10" — wf =10
0 1 1 L I 0 . . .
0 02 04 06 08 1 © 02 04 06 08 A
s/l s/L

FIG. 1. Magnitude of the average stra{d(s,w)), normalized by the affine straif(w):nn, as a function of
§ = s/L, as calculated from the local compliance approximaf®ec. V, Eq(53)], for o = 100 (left pane)
and w7, = 10~ 5 (right pane).

of Eq. (51), representing the drag force, is much larger than the second derivative term.
Balancing this drag force against the extensional strain on the rhs yields a spatially
uniform average strain

(&(s,w)) = Y(w):nn. (54)

This is simply the affine strain that would be experienced by a line of ink drawn in the
fluid. In the LCA, this yields a corresponding spatially uniform tension

(T(s,w)) = B(w)¥(w):nn (55

that, for fixed strain amplitude, grows as’* Because the boundary conditions require
that7(s,w) = 0 at the chain ends, however, there must be a narrow boundary layer near
each chain end where the average strain and tension drop from these uniform values to
zero; there the second derivative term in Esfl) must remain important. The thickness
of the boundary layer is given by the distan§gw) = o~ 18 over which tension can
diffuse in a time 1dk. This behavior is shown in the left panel of Fig. 1, where the
magnitude of the exact solutiof®3) is plotted at a reduced frequency efr; = 1010,
The boundary layers remain rather wide even at this extremely high frequency because
&/(w) decays only as»~ /8,

The decay of the tension at correspondingly early tilmes 7 after a small step strain
can be obtained by inverse Fourier transformation of (Bf), using Fourier amplitudes
Y(w) = yol(iw). This yields

do B(w)

s = | o

S e'“tyyinn (56)

everywhere outside of the boundary layers near the chain ends. Notind3¢hagt

o (iw)3’4, one finds, either by power counting or by evaluating the integral, Zifg}t
remains nearly spatially uniform outside the boundary layers near the chain ends, and
decays with time as

T(t) « t 34 (57)

The corresponding strait€(s,t)) is also found to remain nearly uniform outside the
boundary layers, and to approximately retain the val{gt) = yy:nn produced by the
initial affine deformation.
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B. Intermediate frequencies and times

We now consider the behavior in oscillatory flow at intermediate frequemﬁ&s
> w > rjl, for which A (w) < 1, but for which the LCA still remains valid. In this
regime the dominant balance in E§1) is between the extensional strain on the rhs and
the second derivative term on the lhs. The litk{w) — 0 can be obtained by setting
B(w) — o0. To leading order in\(w), the behavior found in this regime is thus identical
to that found for an inextensible rigid rod. However, we find that the first order correction
to this result must be analyzed to understand adequately the qualitative behavior of the
stress in this regime. We thus expand the tension as a perturbation series

(T(s,0)) = (To(s,0)) +(Ty(s,0)) + (58)

where each subsequent term is smaller than the previous by a factor the small parameter
[Mw)]?, or (iwr)Y4 and To(s,») is the asymptotic behavior obtained by setting
Mw) — 0, or B(w) — ce.

The leading contributiofi7y) can be obtained by ignoring the first term on the lhs of
Eqg. (35), while setting(7p(s,w)) = B(w){&(s,w)) in the second. This yields a differ-
ential equation

A(Ty(s,
sz» = —iw{L2y(w):nn, (59)
Js
whose solution gives
(To(s,0)) = HwfL?(1-3) ¢ w):nn. (60)

This leading order tension is identical to that obtained for a rigid rod, which varies
linearly with the rate of strain(w) = iwy(w). In a semiflexible chain, unlike a rigid
rod, this leading order tension induces a nonzero leading order s{&ifs,w))

= (7y(s,w))/B(w). Equation(8) for B(w) o (iw)%* yields a strain

(Eo(5,0)) = Hiwr)Y*(1-8) ¢ w):nn (61)

that varies asw™ with frequency, with the same parabolic dependences@s the
tension. This strain is small compared to the affine stydin):nn whenow < ru_l, and
become comparable in magnitude to the affine strain when r[l. This small para-
bolic strain is shown in the right panel of Fig. 13, where the magnitude of the exact
solution is plotted for a reduced frequeney; = 1075,

Next, we consider the decay of the leading order tension and strain in the intermediate
time regimer; < t < 7, after a step deformation. The leading order tension, which can
be obtained by inverse Fourier transforming EY), is identical to that given in Eq14)
for a rigid rod

(To(s,1)) = 28(t)¢L%8(1—8) yo:nn, (62)

and has a delta-function time dependence. The “leading order” contributi¢@(ts,t))

in the intermediate time regime, if defined as the inverse Fourier transform of the leading
order contribution tq7(s,w)) in the corresponding frequency regime, thus vanishes in
the time domainr; < t < 7, of interest. However, the associated leading order longi-
tudinal strain{ £y(s,t)) induced by this tension does not vanish at intermediate times, and
can be calculated by Fourier transforming E8fl) for (£y(s,w)). Evaluating(or power
counting the resulting Fourier integral, using Fourier componept®) = vy/(iw),
yields a strain
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(Eo(s,1)) ~ (t/7) " Y95(1-8) y9:nn (63)

that decays with time as~ 14 This is the strain induced by th&function impulse of
tension given by Eq(62). This impulse creates a nonequilibrium distribution of bending
mode amplitudes at the beginning of the intermediate time regime, creating a strain that
relaxes via the free relaxation of bending modes of increasing wavelength throughout the
intermediate time regime. The rate of decay of the longitudinal strain in the intermediate
time regime is thus limited primarily by the rate of free decay of the bending modes,
rather than by resistance to longitudinal motion, and is completed only when the slowest
bending mode relaxes.

Because the leading order approximation for the tension vanishes at tjmes
< 7, the tension in this regime is dominated by the first order corre¢ti@(s,t)). To
calculate this correction, we again start in the frequency domain, and expaelEtp
first order in)\z(w), using the zeroth order solution to cancel all zeroth order terms. By
this method, we find tha{7; (s, w)) must satisfy

AT(s,0)
% = (0l (E(sw)) (64)

or, equivalently, that

HTi(s0) _ . A E(s,D))

65
92 ot €9

in the time domain. Equation®4) and (65) show that{7;(s,t)) is the tension required

to balance the longitudinal frictional force that opposes relaxation of the zeroth order
longitudinal strain{&qy(s,t)). This residual tension has a subdominant effect on the re-
laxation of the strain, but is important because it is found in Sec. VIl to yield the
dominant contribution td@s(t) at intermediate times. Solving Eq$4) and(65) yields

1 s . &
(Ty(s,w)) = 1—2gHL2(iw)5’4ﬁ’4 —E+s3— ?) Hw):nn (66)
in an oscillatory flow, or
- ~4
s ., S
(T1(s,1)) = t5/4( - §+s3— > ¥o:NN (67)

following a step deformation. This residual tension decayts’éé4 because, by Eq65),
the first order tension is proportional to the time derivative of the leading order strain,
which decays as~ /4,

VI. STRESS TENSOR

The intramolecular polymer contribution to the stress is given, for any discrete model
of beads interacting via an intramolecular potential energy, by the Kramer—Kirkwood
expressiorfDoi and Edward$1986)]:

U'pE Tizl<RiFi>, (68)

whereR; is the position of bead,F; = —dJd[U+kgT InV]/iR; is the effective force on
beadi,U({R}) is an intramolecular potential energy, a¥d{R}) is a single chain prob-
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ability distribution function. An expression for the intramolecular stress in a solution of
wormlike chains has been obtained by Mor€E98a by applying the Kramers—
Kirkwood formula to a discretized model of a wormlike chain as a chaiiN dfeads
connected by very stiff springs with a preferred distandsetween neighboring beads,

with a three-body bending potential that is a discretized version of bending eder@y
evaluating the rhs of Eq(68) for this discrete model, then taking the lindt< L, of
continuous, weakly curved chains, and re-expressing the results in terms of a continuous
arc length variables = ia, Morse (19984 obtained a stress

Op = Oyt Otengt Oomt— CkgTl, (69)
where
L
Otens — Cjo ds(7 uuy, (70
de guou  |oul? CkBTJLd o .
=c s{ ———uul—| )+ uu—1),
Teurv = B J o T3\ s as s a Jo X ) 7
Oomt = 5ckgT(U(0)u(0)+u(L)u(L)—31), (72)

whereu = u(s) and7 = 7(s) are the unit tangent and tension for a bond at position

= ia. The physical meaning of these three stress contributiomsfly) is: The “tension
stress”oensarises from the constraint forces that enforce inextensibility in the chain. The
“curvature stress’o, contains both a purely mechanical contribution arising from the
bending force$the first term on the rhs of E471)] and an entropic contribution arising
from the orientational entropy of the linkthe second terin The curvature stress was
shown, using the underlying discrete model, to vanish in a hypothetical partially equili-
brated state in which the variance of the curvature at each point on the chain retains its
thermal equilibrium value, or, for a rodlike polymer, in which the distribution of bending
mode amplitudes is equilibrated. The curvature stress thus arises from disturbances of this
equilibrium distribution of bending mode amplitudes. The “orientational stregsn; is

a residual contribution of the orientational entropy arising from the two end links.

These expressions can be further simplified in the rodlike limit. In this limit, to leading

order,u(s) can be approximated by the global rod orientatioexcept in terms involving

the curvatureju/ds. This approximation immediately reduces the forms of the orienta-
tional and tension stress to those found for a rigid rod. Terms involving the curvature
dul gs can be approximately by noting thati/ /s must be orthogonal ta, becausei(s)

is a unit vector, and thus nearly orthogonalntoApproximatingdu/ds by its projection

onto the plane perpendicular toyields Ju/ds = 9%h/3s2. In this approximation

L
Tiens = CJ’O ds(7 nn), (73

L [4*h d°h a°h|?\  ckgTL
Oy = CKfO ds 22 nn 2 + 2 (3nn—1), (74
0ot = CkgT(3nn—1). (75

In Egs.(73)—(75), (---) represents a complete thermal average, over both the rapid fluc-
tuations of h, f, and 7, and over overall rod orientatiom. Below, we calculate
Otens: Ocurys and ot Separately, and expre€yt) as a sum
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G(t) = Giendt) + Geynd t) + Gl t) — 150(1), (76)

of contributions arising from different stress contributions, where, eogyn(t)
= GeurdD[ 0+ yg], and similarly expan@* () and the intrinsic moduliG(t)] and
[G* ()]

VII. VISCOELASTICITY IN THE LCA

Here, the linear viscoelastic response of a solution of rods at intermediate and high
frequenciesw > rl_l, is computed using the LCA for the average tension.
A. Tension stress

The LCA approximation for the tension stress is obtained by setting the tension in Eq.
(73) equal to{7(s,w)) = B(w){&(s,w)), while using Eq(58) for the strain. This yields
a stress
cosiN(w)(5—1/2)]
coshN(w)/2]

1
Ciend ©) = chO ds B(w)[l— A w):{nnnn). (77
Here, (---) denotes an average over rod orientations, which can be approximated in a
linear response calculation by an average over an isotropic distribution, using the identity
[Doi and Edwardg1986 |:

(NiniMDeq = 15(8ij Ski T Sik 81j + iy ;) (78)

for randomly oriented unit vectors. By evaluating the integral with resped tnd
requiring that the trace of(w) vanish in an incompressible fluid, we obtain a stress of the
form

Orend @) = c[Gignd ) [ @)+ 7 (w)], (79
with
* 1 tanH\(w)/2]
[Gend @) = 1—5LB(w)| 1- W} . (80)

Equation(80) has the following limiting behaviors
(1) High frequencies and short timeAt frequenciesw > ru_l, for which A(w) — oo,
Eq. (80) reduces to

23/4 : 3/4
( Iw(L) | @1

L
. * U U 2
lim [Gndw)] = 158((»)— e keTLLp

ten
w > TH7 1

and hence[G:‘en4w)] x w34 Inverse Fourier transforming this asymptote yields a

modulus
Kt> —3/4 .
. ’

tl;mTH[Gtengtn = CikgTLL;
whereC, = 2%4[15['(¥)] = 0.0309.
(2) Intermediate frequencies and time&t intermediate frequencies, such thqfl
> o> 7, T, where\(0) = (iw7)8 < 1, Eq. (80) can be expanded in powers of
)\Z(w). The first two terms of the expansion are



1130 SHANKAR, PASQUALI, AND MORSE

* 1 : 3
[Grend @)] = oL

keT [ ¢
180

180027 ¢,

The leading contribution, which arises from the leading order tension, is identical to the
viscous contribution found for true rigid rods, and is purely imaginary. The first correc-
tion, which is proportional toi(w)5’4, thus dominates the real part[dﬁ{fans(w)]. We thus
obtain a loss modulusG,,{ w)] = w, with the same prefactor as that of rigid rods, but

a storage modulugG,,,{ )] = > This »®* contribution to[ G’ (w)] is a subdomi-

nant contribution td[ G* ]|, because it is small compared[t8” ()], but is much larger
than thew-independent storage modulusi T per chain found at these frequencies for
rigid rods, and is found to dominaf&’ (w)].

Upon transforming this intermediate asymptote to the time domain, the leading order
iw term yields an apparerd(t) contribution identical to that found for rigid rods, which
does not contribute t&(t) at intermediate times. As a resylGiendt) ] is dominated at
intermediate times by the transform of tHeuQS/“ term, which yields

fu 2 t —5/4
lim  [Ggendt)] = CszT(—) <—) , (84)
<t<7 gJ— 7L

2
) (o1 )% (83

whereC, = 1[2%47200°(3/4)] = 6.74x 10" 2. This stress arises from thée >4 decay
of the tension.

B. Curvature stress

Here, the curvature stress is computed with transverse equation of n@@fipmn an
approximation similar to that used to calculate the high-frequency compliance in Sec. 1V,
in which finite size effects are ignored and all quantities are expanded in a continuous
distribution of Fourier modes.

We first expand Eq(74) for the curvature stress in terms of Fourier amplitudeb.of
Becauser, vanishes when the distribution of bending mode amplitudes is equilibrated
[Morse(1998a], the contribution ofo, from a rod with a specified orientatianmay
be equated with the difference between the rhs of (Z4) and its thermal equilibrium
value. Expanding this difference in Fourier modes yields a contribution

dq
Ocurvy = CKf ;q4<b(q1t)_nnTr[b(qat)Dn7 (85)

whereb(q,t) = Z,ge.(t)eg(t)b,p(q,t) is a tensor with components

ba(at) = (hp(@hg(—a)—(hy(Dhg(—A))eq- (86)

Here, the averagé:-) in Eq. (86) represents an average over fluctuations of the bending
mode amplitudes for rods of known orientation, while the sympel), in Eq. (85) is
used to indicate an average with respect to rod orientations.
To evaluate Eq(85), it is convenient to calculate the contributionsii@,t) and o¢ry
that are induced by the presence of a nonzero valljpagfin Eq. (38) separately from
those induced by the existence of a nonzero tension and then add these two contributions.
(1) Flow-induced curvature stres$Ve first consider the contribution induced directly
by the velocity gradient in Eq.38), while settingZ = 0. The resulting contribution to
b,p(g,w) on a chain of known orientation in an oscillatory flow can be calculated using
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equation of motior(38) by a method closely analogous to that used to derivg4).for
a(q,k; w) in Sec. IV. This yields

keTL iwl

b.g(0.w) = P 2[Yap(@) T vga(w)]. (87)

iwl| +2kq
We then expandd(q,») = = ,4b,p(0,w)€e,€5, and use the identit¥ ,gy.5(w)€.€3

= (I=nn)- Y w)-(I—nn) to expresh(q,w) explicitly as a function ofy(w) andn.
After substituting the resulting expression fi(ig, ) into the temporal Fourier transform
of Eq. (85), averaging over random rod orientations, and integrating with respeciie
obtain a stress of the formore,n (@) = c[G:urV’t][y(w)ﬂL v ()], with an intrinsic
modulus

3kgT
curvl( w)] = 23 410(| wTJ_)lm (89

We refer to this as the “transverse” contnbunon[t@cun,(w)], because it arises directly
from the components of{ w) along the directions transverseio

(2) Tension-induced curvature stred8e next consider the contribution bfq, w) and
ocurd @) induced by the tension on the rhs of E§8), while setting'ya,g = 0. This
calculation is closely analogous to the calculatiorafd,k; ) in the casé&k = 0. On an
infinite chain,b, (g, w) depends only on the = 0 component of the tension, as a result
of translational invariance. On a finite chain at intermediate or high frequencies,
b, p(d, ) thus depends upon the integfBlq = 0,0) = [dS7(s,w). Another calcula-
tion analogous to that leading to E@-3), in which the tension in Eq398) is equated to
the thermal averag€Z(s,w)), yields

2kgT

baﬂ(q,w) a,B_Z_ J'LdS<T S,w; n)> (89)

Ia)é_-l—ZKq

in which (7(s,w;n)) is the average, with respect to rapid transverse fluctuations of the
tension in a rod with known orientatiom Substituting this expression into E@5), and
again evaluating averages with respect to chain orientations usin@®&gyields a stress
contribution characterized by an intrinsic modulus

3 L
[Gourf(@)] = Zem—(iw7) " Gindw)]. (90
p

Here[G{‘ens(w)] is the tension modulus given in EEO0), which also depends on the
integral [ds{7(s,w;n)). Equation(90) has the following limiting behaviors: Fow
> 7, %, where[Gppd@)] = (iw)¥4,

. * L 1/2

lim  [Ggypy(@)] ~ kgT| — (I(m'l) ) (91

w > 7'“71

For TH_1>(.0> il, where the dominant contribution tdGj,,J scales as
(kgTLp/L)(iwTy),

lim [Gium(@)] ~ kBTé—(l wr, )34 (92)

-1 -1 1
u > > T
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[Gaunv,(@)] is termed the “longitudinal” contribution td Gg,(w)] because it arises
from the tension, which is proportional to the compongfi):nn of y alongn. The total
curvature modulu§Gy, ()] is given by the sum of G}, (@)1 and[ G (w)].

C. Results

The total modulus is given by the sum of the tension and curvature contributions
calculated earlier and of an orientational contribution. In the rodlike limits Ly, the
orientational contribution can be approximated by that of a dilute solution of rigid rods

lwToq

3
[Gonl(@)] = —kgT————.
o 5 l+iwrg

(93

For frequenciesw7,qq > 1, this expression fo[G;‘mt] yields a plateau of magnitude
2kgT in the storage modulus.

This orientational component dominates the total storage modulus at low frequencies,
o< rjl, giving behavior identical to that of rigid rods, but becomes negligible com-
pared to either the tension or curvature components at intermediate and high frequencies.
A comparison of the earlier expressions for the different contributiorG*¢w) shows
that, throughout intermediate and high frequency regimes, they form a hierarchy

Ggrm(w) < Géurv,t(w) < G:urv,l(w) < Gikengw)' (99

The tension contributioi Gy, { @)] dominates the total modulus at al > rjl. At
frequenciesy ~ il, all four of these contributions faG* (w)] become comparable to
kgT, and thus to each other. Though the earlier LCA calculation is valid only at

> rIl, the more complete calculation given in the next section shows that both the
curvature and tension contributions@g§t) decay exponentially @t> 7, , with terminal
times of orderr, , leading to terminal behavior in the corresponding components of
G*(w) atw < il. The resulting time dependence Gfendt),Geoundt), and Gom(t)

for chains withL < L, is shown schematically in Fig. 2.

VIIl. FULL THEORY

In order to describe accurately viscoelasticity at frequencies of o@érand lower,
the preceding calculation must be extended in two ways. First, because the nonlocality of
x(s,s’;w) becomes important at these frequencies, we must abandon the LCA and use
the full nonlocal compliance when solving the average longitudinal force balance of Eq.
(30), while respecting the condition that the tension vanish at both chain ends. Second,
when using the transverse equation of motion to calculate both the compliance and the
curvature stress, the transverse displacement field must be expanded in discrete eigen-
modes that respect the boundary conditions for the transverse dynamics. To formulate a
full theory, accurate at arbitrary frequency, we first introduce expansioffSamid h in
appropriate basis functions.
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L<<L,

G(b)

3/5 ckT

T|| t— TJ_ Trod

FIG. 2. Schematic showing the asymptotic behavior&ef dt),Gcunlt), andGgn(t), in a log—log plot, for
stiff chains withL < L.

A. Longitudinal mode expansion

The tensiorn7(s), which must vanish at both ends of the chain, is expanded in a basis
of sines

T(8) = % Ted(®), (3 = V2sinn), (95)

where\y = ka for k = 1,2,3,... . Substituting this expansion into E§0), multiplying
the result bye;(S) and integrating with respect ®yields the expansion of the longitu-
dinal force balance

S lioguers -5 224 6Ai2<T> 0d X w):NF (96
iofxikw)+t 7| —7—| T2 [{T) = lof{jnw):nnF,
X L4 & . L2
where
1 (1 o
Xik(w) = L fo ds fo ds' ¢i(5) (3 x(sS";w), (97)
34)((00) 1 (1 P
n =L | ds| dS'¢(5)—z x5S w), (99
W - ffwan
and

242

1 —— i odd
Fi = fo ds¢i(s) = I .
0 i even

(99

Here, xik(w) are the “matrix elements” ofy(s,s’;w) in a basis of sines.
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B. Transverse mode expansion
The transverse displacememi(s) is expanded as

ha(®) = 2 ha jWi(3), (100

where W is the jth normalized eigenfunction of the fourth order eigenvalue problem
[Aragon and Pecorél985, Kroy and Frey(1997, Wigginset al. (19991:

% = ajW(3), (101)
subject to the homogeneous boundary conditions

HZWJ 193Wj

P (102

ats=0 ands = 1. The eigenfunctionsV; are orthogonal, because the differential
operator in(101) is self-adjoint, and are taken to be orthonormal, so yfﬁfstWk

= Jjk - The eigenvalue problem has a degenerate trivial eigenvajue 0, with eigen-
functions /W =1 and W = \/1_2(§— 1/2) corresponding to rigid translations and rota-
tions, respectively. The nontrivial eigenfunctions, corresponding to bending modes, are

W(8) = Aj{[sinh(q))+sin(e))][sin(¢;) +sinh¢;9)]

~ A (103
+[cog @) —costie;)][cog ¢;S)+coshq; s}

where Aj = [3+ %cosh(zhj)+aj_lcosh@zj)sin(aj)]_l/z. The eigenvaluesyj satisfy the
solvability condition cosgj) = 1/coshgy). The first few nontrivial eigenvalues are
= 4.73= 37/2+0.0176, ap = 57/2—0.000 781 6, and a3 = 7m/2+0.000 033 5.
Higher eigenvalues are accurately approximated by settingrgos(0, which yields
aj = (2j+1)m/2.
The harmonic approximatiof87) of the bending energy can be expanded in mode
amplitudes as
1k -
Upend = 503 2}: a?(ha,j)z- (104)

The transverse dynamical E@4) can be expanded by substituting expangib@0 for
h, and expansion(95) for 7, multiplying the result by»V(s), and integrating with
respect tcs; this yields

J ~ ~ 1 ~
: —4 4 ~
él% 5043&— YaplNgj = —KL “q ha,j_EZ% HikZiNa k™t 74, » (109
where
1. OV(S) IW(S)
Hi = | dsoy(s L —, 106
ljk Jo (9 prs P (106

and 7,,; = f'adéwj(é) 74(S) is a mode amplitude for componeatof the transverse
noisen, .
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C. Nonlocal compliance

We now present a calculation of the nonlocal compliangs,s’;w) at arbitrary
frequency. The longitudinal strain given in EQ3) is expanded as

Wi Wn,
(£(3)) sz —&S — Qm: (107)
where
1
EE; [(haj am> <ha] am>eq] (108

To calculate the compliance, we derive an expressiort &y, (t)/dt in the presence of

an infinitesimal tension, while setting,g(w) = 0, by a method closely analogous to

that used to derive Eq42) for da(q,k;t)/dt. Here, we use expansiofi05 of the
transverse dynamical equation, and evaluate the required thermal averages using the

relations(h,, jh s k)eq = SapdkikaTL3/ (k) and(7a jhp k) = S.58ikkaT/L. This
yields the differential equation

g keTL ,
{orL e+ aig) 1aym(t) = —T(am4+aj 4)2 HimiZi (1), (109

for ajm(t), or the equivalent algebraic equation

kTl ap*+a*

K ol +xL (a+ m)

(@) = — 2 HimjTi(@), (110
for its Fourier transformajm(w) = fdtajm(t)e_"‘". Substituting Eq(110) for ajm(w)
into Eqg. (107 vyields an average strain of the form(&(s,w))
= f'@ds’)((s,s’;w)’](s’,w), where

keT (s *+ af“)H,jm Ii(3) IWn(9)

Xsse) = kL IJEmeQ—i-KL (a+ ) S Js 4(s) (113

is the desired nonlocal compliance.

The matrix elementsix(w) and[d*x/ds*]jx defined in Eqs(97) and (98) can be
obtained by evaluating the defining double integral, using the orthonormality of the
functions ¢y (S). The result can be expressed in terms of non-dimensional matrix ele-
ments yix(®) = il L2xik(w) and [0*x/95Mik = iol, LY *x(w)/35%ik, which
are given hy

(a 44 an )Hlijkjm

Xik(®) = ijﬁm) T Gam ) N oy (112

_ts (4 *+am ) FimHign w3
Lp fm 1+ (iwr) Naj+ap)’

M)
(9§4

ik

. J'ldA W IWn,
ljm osd"as s a5 |

where
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D. Tension and tension stress

To calculate the spatial Fourier components of the average tension, longitudinal force
balance(96) can be expressed in nondimensional form as a matrix equation

g — 1 [Fxo)] _
; |ZXik(w)+E T ik'H\i @k}(ﬂf(‘”» =7 (114
where
_ (T(win)
TR = o Zayenn e

is the nondimensional Fourier component of the tension, @€w;n)) is a Fourier
amplitude for the average tension in a chain with a known orientatioBy Eq. (96),
(7x(w;n)) depends linearly o (w):nn. This dependence has been factored out in the
earlier definition, so that the reduced Fourier amplit¢@g (o)) is independent of both
n and ¢¥(w). These reduced Fourier amplitudes are calculated by solving matri¢d E4).
with a finite number of modes.

The tension modulu@fen;w) is calculated by substituting expansi@¥) in Eq. (73
for the tension stress, while using EG15) to recast the results in terms of the dimen-
sionless Fourier components of the tension. This yields a stress

Orond ©) = ciw§HL3y(w):<nnnn>% (Th () Fp. (116

After evaluating the average @finnn) over rod orientations, as before, we obtain a stress
of the form ayend @) = c[Giopd @) I[N @) + ¥ (w)], with

[Grond @)1 = %siww% (Th () Fy. 117

E. Curvature stress

Substituting expansiofiL00Q) for the transverse displacement in E@4) for the curav-
ture stress, and using the fact that,, vanishes when the bending modes are equili-
brated, yields an expansion of the curvature stress as

Ocury = CKL73% aﬁ(bk—nn Tr b n. (118

whereby(t) = 2, z€,(t)eg(t)by op(1) is a tensor with components

bk,aﬁ = <ha,khB,k>_<ha,kh,8,k>eq' (119

The calculation of the components bf(w) in a weak oscillatory flow field is closely
analogous to the calculation bfq,w) given in Sec. VII B, except for the use of expan-
sions (100) and (95) for h and 7, respectively, rather than Fourier transforms, and the
corresponding use of E¢105 for time derivatives of the mode amplitudes. As in Sec.
VII B, we consider separately the contributionship and oy, arising from the direct
coupling of the velocity gradient th, and from the tension.
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(1) Flow-induced curvature stres$Ve calculate the curvature stress that is induced
directly by the velocity gradient tensor by calculating the time derivativeof 5(t),
which setting the tension to zero in EQ.05. This yields

keTL3 iwl,
Kcv‘k1 iwd| +2xL

bk,aﬁ(w) = _4a,4[’Yar,8(w)+7ﬁa(w)] (120)
k
for the Fourier transform dby ,g(t). Substituting Eq(120) in Eq. (118), and evaluating
the orientational averages yields a stress contributiggh, ( @) = c[GX (@) ][ N w)
¥ (w)], with

3 ol
Gz = —kgT . 121
[Geunf )] = ke % iwl, +2kL "4y (120

(2) Tension-induced curvature stresghe contribution toby .z induced by the ten-
sion, for y(w) = 0, is given by

2kBTL 1
Kak Iw§L+2KakL 4

Brap = ~Oup E HiidZi(@)). (122

Substituting this in Eq(118), expressing the tension coefficients in terms of the reduced
coefficients(7* (w)), and averaging over chain orientations, yields a stress contribution
characterized by an intrinsic modulus

o)

[ +2kl % 42 Hik( 7} (@) . (123
lw 1 K

2
[Gounif@)] = ZkaT2 -

F. Results

The total complex modulus of dilute solutions of semiflexible rods, Wit L but
arbitrary frequency, is obtained by adding E¢kL7), (121), (123, and(93):

[G*(w)] 24¢
o g”(lmrod)E (T (0)) F

2a

+5§ E

1+ 24 ),12 (T (@))H ki
o (,L)TJ_

1
7. =
1+ 2ak(lw7'l)

3
t5

E "‘.’Trod , (124
51+i W Trod
where(Tf) is obtained as a solution to matrix Eq.14), Fy is defined in Eq(99), and
Hijm is defined in Eq(106). The first line in Eq(124) represent§Gr,,{ )], the second
line represent$Gg,,, ()] the third[ G, and the fourtd Gg, ().

An example of theoretical predictions for various contributions to the storage and loss
modulus, Viz.[Gignd. [Gaynil: [Geurvd: and[Gg, ], are shown in Fig. 3 fok/L
= 1/8. Also plotted in this figure are the corresponding asymptotes derived in Sec. VII
for high and intermediate frequency regimes. Note that the high freqm?(éyasymp-
totes of[G’ (w)] and[G”(w)] are approached rather slowly and at very high frequen-
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T
L/Lp=1/8

|
10"
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FIG. 3. Predictions of the full theory for the tensidétens, curvature(curv] and cur), and orientatior{ornt)
contributions to the intrinsic storage modullG’ ()] (left pane) and intrinsic loss modulugG” (w)] (right

pane), divided bykgT, as functions ofw g for L/L = 1/8. Intrinsic moduli are defined in E¢12) as
contributions per chain. Dashed lines are the asymptotic power laws predicted for each component at interme-
diate and high frequencies.

cies, wroq > 10°, corresponding roughly ta > 7-”_1. The slow approach to this as-
ymptote is a result of the slow ™~ Y8 decrease in the thickness of the boundary layers at
the chain ends. The®* dependence dfG.nd @)] at intermediate frequencies is clearly
visible for this value oL/Lj, over a rangev ryoq ~ 10°-1°. The quantity[G{;ne(w)],
which dominate§G”(w)] at all > Tr_oé, is proportional tow at all w < 1-”_1, with a
constant of proportionality identical to that found for rigid rods. As a re§@t,(w)] for

a solution of semiflexible rods closely approaches that of a corresponding rigid rod
solution at allow < 7”—1_ Both the tension contribution and the two curvature contribu-
tions to[ G* (w)] exhibit terminal behavior below 7,04 ~ 107, corresponding roughly

to frequencies below the relaxation raiéil of the longest wavelength bending mode.
At all lower frequencies, for which the bending modes are relaxed, the oy&&(lw) ]

and [G"(w)] both closely mimic the behavior of rigid rods, leading to a plateau of
magnitude[ G’ (w)] = #gT at roa < @ < @77, ', which grows broader ak/L, is
decreased, and terminal behaviorat< 7,05

Figure 4 shows the evolution of the total predicted storage and loss modulLgss
varied from 1/8 to 1. A4 /L , increases, both the®* intermediate regime i’ (w) and
the orientational plateau at lower frequencies gradually disappear, while the high-
frequencyw3’4 asymptote is approached at lower reduced frequencies for more flexible
chains.

Figure 5 compares the predictions of the full theory to those of the LCA, and to the
analytic approximation of Sec. XI, fdt/L, = 1/8. The LCA agrees well with the full
theory at frequencies well above the relaxation r@fefl of the longest wavelength
bending mode, but fails at lower frequencies. The conspicuous failure of the LCA at low
frequencies is primarily a result of the fact that the LCA predicts algebraic frequency and
time dependence for the tension and curvature contributions to the modulus even at
frequenciesy < ril, due to the use of a continuous distribution of modes with no lower
cutoff, which yields a theory with no terminal relaxation time. The full theory instead
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FIG. 4. The storagd G’ ()] and los§ G”(w)] moduli vs w7,oq Obtained from the full theory for different
values ofL/L,. The solid and dash-dotted straight lines are the predi@%ﬂ high-frequency asymptote for
G" and »° intermediate frequency asymptote 8¢, respectively.

yields normal terminal frequency dependence of all component&*ofw) at these
frequencies, and exponential decay @{t) at corresponding times, due to the finite
length of the chain. Because existing experimental data for dilute solutions of semiflex-
ible rods(which are discussed in Sec) Are in the regimes r,oq < 10*, we must use the

full theory when making quantitative comparisons to experiments.

IX. BROWNIAN DYNAMICS SIMULATIONS

To test these predictions over a much wider frequency range than those accessible to
current experiments, we have carried out Brownian dynamics simulations of noninteract-
ing, free-draining wormlike chains. We simulate discretized wormlike chains in which
each chain containd beads with position&; for i = 1,...N, which act as point sources
of frictional resistance, connected By—1 rods of constant length. We use a dis-
cretized bending energy
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—— Full theory
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FIG. 5. Comparison of predictions fd' (w)) andG"(w) as functions ofw ryoq for L/L, = 1/8, as obtained
from the full theory(continuous black linesthe local compliance approximatidgdashed black lingsand the
analytic approximation of Sec. Xtdashed gray lines

N—1
K
Upend = _Eizz Uj-Uj—1, (125
where
= R R
'R+ R (126

is a unit tangent vector along radFor simplicity, we simulate free-draining chains with
isotropic friction at each bead, corresponding to a continuum modeldyith | = ¢,
in the creeping flow limit, where we ignore any inertia of the chain.

The equation of motion for a chain in a flow with velocity gradignis

dr,
—— ¥R,

T = F = I:ibend_|_ I:imet_|_ I:itens_|_ I:irand' (127)

{h

EP2M= — jUpend JR; is the force on bead

Here,{, = {ais a bead friction coefficien

i due to the bending of the chaiR"*'is a “metric force” (discussed below F\*"®is a
constraint force that is chosen to impose the constraints of constant rod (disgthissed
below), and F®"is a random Langevin force with vanishing mean and a variance
(Frandt) Fjra”d(t’)) = 2kgT{pl 8ij 8(t—t") given by the fluctuation dissipation theorem.
The stochastic equation of motig¢h27) for the bead positionR; is integrated numeri-
cally with a mid-step algorithmGrassia and Hinckl996] to generate bead trajectories.

The constraint forc& °"°is of the form

Fe"= Tu—T_qu_q, (128
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where7; is the tension in bond Requiring that%Ri+1—Ri|2 = 0 for each bond in the
chain, and using Eq127) to calculate this time derivative, yields a set of linear equations
for the instantaneous tensions

N-1

J,ZlHijTj = ui-(Fi 1= Fp), (129

where F; = FPendy pmety prandy » (4. R;), and Hij is an NXN symmetric, positive
definite, tridiagonal matrix with elementsjj = 2 andHjj = —u;-u; fori = j=1.
The metric forceFim‘at for such a free draining chain is given by the derivative

Fimetz B EkBTaIn(detH) (130
2 IR;
of the “metric pesudopotential” introduced by Fixm&h978 where deH is the deter-
minant of the matrix with elementsl;; introduced above. This metric force must be
included in simulations of free-draining chains with constrained rod lengths, in the mid-
step  algorithm used here, to  obtain a Boltzmann distribution
exd —Upend U1, - - . ,un)/kgT] of rod orientations in thermal equilibriunpFixman
(1978, Hinch (1994 ]. The metric forces are computed using the algorithm described by
Pasquali and Mors€002.
The stress relaxation functioB(t) is obtained from equilibrium simulations, with
v = 0, by using the Kubo relation that relaté§t) to the autocorrelation function of the
microscopic stress tensor

1
G(t) = k_-l-<0'xy(t)0'xy(0)>v (139
B

where o0 = —3;RjF; is the contribution of a single chain to the stress tensor. The
Brownian contribution tao(t) is calculated using the stochastic filtering method of Gras-
sia and Hinch(1996 and Doyleet al. (1997, which avoids including large but tempo-
rally uncorrelated contributions to the stress arising from the random force.

To simulateG(t) over a wide range of time scales, we use a technique introduced by
Everaerset al. (1999 and run simulations with different values bff for each value of
L/Lp (whereL = Na), using simulations with relatively coarse-grained chaamallN)
to resolve slow relaxation procesgesy., rotational diffusionand shorter simulations of
finer-grained chainglarge N) to resolveG(t) at shorter times. For each value Nf
meaningful results fo6(t) are obtained only at times greater than a time proportional to
the relaxation time§a4/K of a bending mode of wavelengiy below which[G(t)]
saturates to a finite value whose existence is an artifact arising from the use of a dis-
cretized model. The initial chain conformations in each simulation are chosen from an
equilibrium Boltzmann distribution. These are generated by an algorithm in which chains
are “grown” from one end, by adding each new rod at an orientation chosen randomly
from a Boltzmann distributiore ™ ¥Ui+1-Ui/(akeT) for the bending energy of the joint
between each new rod and the previous one. The use of a pre-equilibrated distribution of
initial states allows one to use data from relatively short simulations of fine-grained
chains without having to equilibrate the system initially. Results for chains with the same
L/Lp but differentN are collapsed onto master curves[@&(t)] vs t/7roq, Where g

= gba2N3/7Z<BT for the discretized WLC. An example of this collapse is shown in Fig.
6. Ensuing figures show only the regions of overlap of the results obtained with different
values ofN, which reflect the behavior of a continuous wormlike chain.
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FIG. 6. Simulation results illustrating collapse of simulation data [f@:endt)] (top curve,X), [Geun(t)]
(middle curve,+), and [Gom{t)] (bottom curve,O) Vs t/7yoq With 7roq = {pN3a?/(72kgT) for L/L,
= 1/8 andN = 8, 16, 22, 32, 46, 64, 90, 12BGn(t)] is shown only for the few smallest values Nf

We decompose the stress obtained from our simulations as a sum= ogmnt
+ ocunvt Otens— kgTl of orientational, curvature, and stress componefi#orse
(19984], given by

Oomt = ngT(U1U1+ UN_luN_1—2|/3), (132)

N N—-1
Ocurv = — : ;l R; Fibend+ 3kBTi Zl (Uu;—1/3) = oot (133
Otens= O~ Oomi— Oyt KTl (134

Corresponding,[G(t)] = [Gomdt) 1+[Geurdt) 1+ [ Giendt) ], Where [G,(t)], with

a = “ornt,” “curv”, or “tens,” describes the decay of the stress compondnt,(t))

after a small step deformation. These partial intrinsic moduli are calculated from the
Kubo relation

1
keT

which cross correlates components of the single-chain stress with the total.

Figure 7 shows the master curves obtained for the components
[Gtend!)], [Geurdt)], and [Gorn(t)] for chains withL/L, = 1/8, 1/4, 1/2, and 1,
respectively. Also shown, as continuous gray lines, are the predictions of the full theory
for these functions. Dashed lines represent the predicted asymptote&fggt)] at
early and intermediate timé&qgs.(82) and(84)]. Figure 8 shows simulation results and
predictions for the total intrinsic modul(i&(t) ] (rather than the individual components
forL/L, = 1/8 andL/Lp = 1. The theoretical predictions were obtained by numerically
Fourier transforming the results of the full theory for the tension and curvature compo-
nents tof G* (w)], using isotropic friction coefficients; = ¢, = ¢p/a, as in the simu-
lations.

Consider first the stiffest chains simulated, withL, = 1/8. For these, we obtain
excellent agreement between theory and simulations over the entire range of time scales

[Ga®] = ——(04 (DT (O)), (135
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accessible to simulations. This set of simulations clearly show a broad intermediate
regime wherd Giendt)] ~ t~% but does not access the®* decay predicted at ex-
tremely early times, which was computationally inaccessible. A clear orientational pla-
teau, with[G(t)] = [Gomit)] = %kBTe_“”Od, is also visible at times approaching
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FIG. 8. Comparison between theoretical predictigmay lines and the results of Brownian dynamics simula-

tions (black symbols for the intrinsic modulug G(t)] vs t/ryoq, for L/L = 1/8 (left pane) andL/Lp = 1
(right pane).
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Trod- AS L/L is increased from 1/8 to 1/4, 1/2, and 1 in the remaining simulations, the
intermediate regime gradually disappearsragapidly) andr, (more slowly approach
Trod, While the predicted 3 regime moves into the computationally accesible window.
For the most flexible chains shown, withiL , = 1, both the intermediate regime and the
orientational plateau are absent, but the simulation results begin to closely approach the
early timet ™3/ asymptote. The predictions of the full theory become noticeably less
accurate with increasing/L,, as expected for a theory that is based upon an expansion
about a rigid rod reference, but remain remarkably accurate for chains of length up to
L = Lp. For the most flexible chains, with = L, the predictions of the individual
components of G(t)] are noticeably less accurate at times approachigg than the
predictions of the total G(t) ], indicating a partial compensation of errors.

Simulations very similar to those discussed above and in our earlier fd&festuali
et al. (2001 ] have also been carried out by Dimitrakopouéisal. (2001). These authors
reported that their simulation results fd&(t) ] could be adequately fit over a wide range
of intermediate times by a single power-law deday(t)] « t~ ¢, with an apparent
exponenta that varies continuously with/L, and approaches = 5/4 forL/Lp < 1.
This description is broadly consistent with the simulation data of both groups: For ex-
ample, the simulation data fpG(t)] for L/L, = 1 in Fig. 8 is fit well by at~ "/ power
law, as reported by these authors. The theory shows, however, that this is an empirical
description of a broad crossover in both time drdl,, which can be accurate only at
intermediate values df/L, since universal power laws are predicted ffor< L, and
L > Lp, and only in an intermediate range of computationally accessible times, since a
universalt ~3/4 decay is expected at early times for BllL ;.

X. COMPARISON WITH EXPERIMENTS

In this section, we compare our predictions with the experimental data of Weiredn
(1973 and Ookuboet al. (1976, who carried out linear viscoelastic measurements of
G’ (w) andG"(w) for dilute solutions of PBLG in the solvemt-Cresol. The persistence
length of PBLG is approxiamtely 150 nm, though there does not appear to be a consensus
in the literature on the exact value; reported estimates range from 100 to 180 nm. The
average lengths of the chains used in the experiments of Watrah (1973 include
L = 108 and 162 nm, while Ookubet al. (1976 used chains with. = 116, 82, and 51
nm. The chain lengths in most of these experiments are thus comparable to the persis-
tence length. Although our theory is constructed so as to be accurate only in the limit
L/Lp < 1, a comparison between the theory and these experiments seems reasonable in
light of the level of agreement found above between the theory and Brownian dynamics
simulations of chains with comparable valuesLét ;.

A. Experiments of Warren et al.

Warrenet al. (1973 used a multiple-lumped resonator to meagu®& (w)] of dilute
solutions of PBLG inm-Cresol with molecular weights ranging from ¥6.0% to 57
% 10% in the frequency range 106—6060 Hz and concentration range 0.0015-0.005 g/ml.
They reported intrinsic moduli data, which were obtained by extrapolation to infinite
dilution, for three samples containing chains of length 108, 162, and 387 nm. We com-
pare the theory only to data from the samples Witk 108 and 162 nm, since signifi-
cantly exceeds j, for the third sample. Warreet al. (1973 report a polydispersity index
Mw/M, = 1.234 for these samples.

We take into account polydispersity in the theory by calculating an average
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FIG. 9. Comparison with the experiments of Warrenal. (1973: Intrinsic storage modulugG’]/(kgT) and
loss modulug G”]/(kgT) as a function of reduced frequenayroq for two different(averagglengthsL = 108
nm, L = 162 nm. 7,4 for the experiments is determined fromnSL3l[18kBT In(L/d)] whered = 2.5 nm.
SymbolsO (L = 162 nm and [J (L = 108 nnj are the data from Warreat al. (1973 and the lines are
theoretical predictions fok, = 130 nm. Also shown as a dash-dotted line is the predip@d »)] for true
rigid rods.

G(t) = fo “dL mLG(EL)] (136

where[ G(t;L)] is the predicted intrinsic modulus for chains with lengthand»(L)dL
is the number of chains per unit volume with contour length betweandL +dL. We
assume a distribution of the form

L o

y(L) o« (L—) exd —L/Lg], (137
0

whereLg is chosen to obtain a weight averaged length equal to the reported value. We

use an exponent = 3, which yields a polydispersity index of 1.25 very close to the

reported value.

In Fig. 9, we compare theoretical predictions and the data reported by Wetregn
(1973 (digitized from their Fig. 4 for the ratio[ G* (w)]/(kgT) VS wT,pq. We have
followed Warrenet al.in plotting data for chains with two different lengtfis = 108 nm
andL = 162 nm in a single graph, as in their Fig. 4, because the resulting data very
nearly superpose for these two samples. Theoretical predictions for both reported chain
lengths are calculated using a persistence lehgth- 130 nm, with anisotropic friction
coefficients{, = 2¢,. Frequencies in the theoretical curves have been rescaled using
Trod = {1 L3/(7Z<BT), wherelL is the length averaged chain length. The experimental
data in this and all other plots have been made dimensionless using the rotational diffu-
sion time 7,0qg = m7sL3/[18kgT In(L/d)] predicted by slender-body hydrodynamics,
where L is the reported weight-averaged chain length, using the hydrodynamic chain
diameter ofd = 2.5 nm reported by Warreaet al. (1973 and the reported solvent vis-
cosity. Also shown in this figure is the storage modulus predicted by the rigid rod theory
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(corrected for polydispersipywhich agrees well with the data in the terminal regime but
clearly fails at higher frequencies. Like the experimental data, our predictions for the two
different chain lengths are only slightly different, despite the 50% differende indi-

cating that both the predicted and measured shape of the curves in this representation
change only slowly with changes in the ratigL, for L = L,. The same point is
evident in Fig. 10, where we show the effect of varying from 110 to 150 nm on the
theoretical predictions fob = 108 nm. Aside from the uncertainty introduced by the
existence of a substantial range of estimated values for the persistence length of PBLG in
the literature, which seems to have a weak effect on our predictions, this comparison with
experiment contains no adjustable parameters.

B. Experiments of Ookubo et al.

Ookuboet al. (1976 used a torsional free decay method to measure linear viscoelastic
measurements of dilute PBLG solutionsnirCresol at concentrations 0.002—0.05 gm/ml
in a frequency range 2:210°-5.25¢< 10° Hz, giving a maximum frequency an order of
magnitude larger than that obtained by Ware¢ral. (1973. These authors, who reported
measurements of the complex viscosify (w) = 7' (w) —i7"(0) = G* (w)/(iw), re-
ported that their accuracy for'(w) = G”(w)/w is higher than that fory”(w)

= G'(w)/w, and that the lack of accuracy of their data fgi{ w) made extrapolation to
infinite dilution to impossible for this component. We thus consider the data of Ookubo
et al. (1976 to be less reliable than that of Warrehal. (1973. We nevertheless have
compared the theory with this data because it contains data for both shorter chain lengths
and significantly higher frequencies than those reported by Watrah (1973.

Ookuboet al. (1976 carried out measurements on three fractionated samples, with
lengthsL = 116, 82, and 51 nm, and one unfractionated sample, which we do not con-
sider. No value for the polydispersity index is reported, and so, in the absence of a better
estimate, we assume a polydispersity of 1.25 similar to that reported by Weirgdn
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FIG. 11. Comparison with the experiments of Ookuébal. (1976 for different values oL: Intrinsic storage
modulus[G']/(kgT) and loss modulugG”]/(kgT) as a function ofw roq for three different chain lengths
indicated above, with at several concentrations per chain length. Symbols are the data from €wo#&lubo
(1976 and the lines are from our theory witly, = 130 nm. Unfilled symbols represent storage modulus and
filled symbols represent loss modulus.

Figures 11a)—11(c) show the values dfG']/(kgT) and[G"]/(kgT) VS w7roq Obtained

for these three chain lengths at all of the reported concentration. The intrinsic moduli in
these graphs are calculated from the digitized plots of Oolattal. (1976 for %" (w)

and »’ (w) by dividing the resultings’ (w) andG”(w) —iw 75 by the actual concentra-
tion, rather than by extrapolating to infinite dilution. Values o4 are calculated, as
before, using reported chain lengths and solvent viscosityyof 0.105 P. The solid
lines are corresponding theoretical predictions for the intrinsic moduli, calculated for
Lp = 130 nm, for these three chain lengths. The lack of a smooth variation of the data
for [G'(w)] with concentration explains the authors’ conclusion that this data cannot
support a meaningful extrapolation to infinite dilution. Figuregal-211(c) indicate that
there is nonetheless good agreement between theoretical and experimental results for
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unfilled symbols represent storage modulus data and filled symbols represent loss modulus data. Solid lines are

our theoretical predictions fdr = 116 nm and_, = 130 nm. The dotted line is the predicte@’ (w)]/(kgT)
for rigid rods.

[G"(w)] and (in light of the evident experimental uncertainjigsasonable agreement
for [G'(w)] at all three chain lengths.

In Fig. 12, we have combined the infinite dilution data of Waretral. (1973 with
L = 108 and 162 nm, which have already been shown to nearly superpose, together with
the data of Ookubet al. at several concentrations for the fraction with= 116 nm. In
general, there is good collapse of these three data sets, over a combined frequency range
of nearly four decades, which is substantially wider than that obtained in any single
measurement. Theoretical predictions ffor= 116 nm and., = 130 nm agree well with
this data over this entire range.

XI. AN ANALYTIC APPROXIMATION

The LCA results for the stress relaxation modulgd) and related quantities such as
the single chain compliancg(t) agree well with the results of the full theory at short
times, less than the longest transverse relaxation b’rm/ay‘ll, but fail at longer times
because the approximation uses a continuous distribution of Fourier modes rather than
discrete set of bending modes, and thus contains no terminal relaxation time. As a result,
the LCA predicts power law decays for the tension and curvature contributi@{tfp
even at timeg > 7, , whereas the full theory predicts exponential decay of these com-
ponents with relaxation times proportional t@/a‘ll.

A physically motivated approximation to the full theory can thus be obtained by taking
the LCA results for these components @ft) and multiplying them by an exponential
cutoff, i.e., by approximating

Gu(t) = G, Lca(tie Ve, (139
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where G, | ca(t) is the LCA prediction for component of G(t), and 7, is a time
proportional to 7, . Corresponding analytic approximations for the components of
G* (w) can be obtained by using the following property of Fourier transforms: If

G(t) = F(ye 77, (139

then the one-sided Fourier transfo@{w) = [5dtG(t)e 't of G(t) is given by
G(w) = fo dt Fe Ve ' = Fw—ir Y, (140

i.e., by the analytic continuation of the one-sided transfér(m)) of F(t) to a complex
f[equencyw—ir_l. The one-sided Fourier transform @(t) is given by the ratio
G(w) = G*(w)/(iw) = fﬁdtG(t)e_i“’t, so this prescription requires us to analytically
continue the LCA predictions for components®t (w)/(i ), rather than ofG* (w).

We obtain analytic approximations for the tension and curvature components of
G* (w) by evaluating the analytic LCA predictions for the compon%s(w)/i w and
Geunvd®)/iw, and for the raticGg,,, ()/Gignd ), at complex frequencies with imagi-
nary parts proportional te- 0“11711- This yields

N B 1 tanf\N(w1)/2] | o
[Gend @)] = 1—5|-B(w) 1—W .
* s L i -1/ *
[Gou(@)] = Zma i (iw2m) M {Gindw)], (142
p

* 3 14 “
[chrv,t(w)] = 2_3/%(|w37l) w_3'
where (1) = [iw14L%/B(w1)]Y? is calculated by evaluating E¢7) for B(w) at a
complex frequencynq, and in whichwq,w», andws are three complex frequencies, of
the form

1

W = w—iCiagTI (142

with i = 1,.2,3 with different numerical constan;,C,, and C3. These numerical
constants are treated as fitting parameters, which are adjusted to optimize the fit of the
resulting approximation to the results of the full theory. The chozg= 0.14,

C, = 0.72, andC3 = 1.26 yields an approximation of the total loss and storage moduli
that differs from the results of full theory by less than 6% at any frequency for
L/Lp = 1/8, 1/4, 1/2, and 1. The approximate storage and loss moduli obtained for
L/Lp = 1/8 with these constants are compared with the results of the full theory in Fig.
5.

Xll. RELATION TO THE HARRIS AND HEARST MODEL

We now compare our theoretical predictions for linear viscoelastic moduli to those of
Harris and Hearst1966 and Hearset al. (1966 (HH), who also attempted to calculate
linear viscoelastic moduli for dilute solutions of wormlike chains. These authors consid-
ered a generalized Gaussian approximation for a wormlike chain, in which the equilib-
rium distribution of contoulR(s) is controlled by an effective potential energy
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fo
U= —J'Ld K
2Jo
in which 7'is a Lagrange multiplier introduced to impose approximately the constraint of
constant length. In this model, howevérjs not treated as a fluctuating field, but as a
constant, which is independent of batlandt. The value of7 for a given chain length
is chosen to yield an equilibrium mean-squared end-to-end distance equal to that of a true
wormlike chain of equal length. Harris and Hea($966 find that, in the rodlike limit
L > L, of interest here, this criterion yields a valtfle= 3kgT/L. While the HH model
can be applied to chains of arbitrary length, we consider only its predictions for the
rodlike limit, L < Lp-
The dynamical equation used by Harris and HeétS66 is identical to our Eq(2),
except for the crucial fact that HH treat the tensibas a constant, independentf,
and the state of flow. Their model thus does not allow any tension to be induced in the
chain by flow. HH expand all three Cartesian components of the chain caRtsuin
eigenfunctions of the eigenvalue problem

2
+7

IR\ 2

L (143

#R
932

aay Aﬁzwj W 144
P M (149
with A = TL%/ k, with corresponding boundary conditions
FW . W R (145
982 98° P

at both chain ends. Equatio(44) and(145) reduce to our Eq9101) and (102 in the
limit A — 0. In the rodlike limit,L < L, where the coefficien = 3L/L, is small,
the presence of the second derivative term in(E44) has a significant effect only on the
smallest eigenvalueq, which vanishes whenA = 0. We find by a perturbation analysis
of Egs. (144 and (149 that the presence of a small nonzeko= 3L/Lj splits the
degeneracy between the two zero modes of our(EQQ), yielding a vanishing eigen-
value for the translation mode, with « const., but producing a small nonzero eigen-
valueaa1 = 36L/L, for the eigenvectoyV « (s—1/2) that, in Eq(100), represents rigid
rotations.

In the present notation, the Harris and Hedd966 result[their Eq. (55)] for the
complex modulus is

o]

[GHH(Q))] = kBTi ZO m (146)

iw

In the rodlike limit, the eigenvalueg; can be approximated by those obtained with
A = 0, except for the = 0 mode, for whichag = 36L/Lp. Comparing the relaxation
rate 2711(13 of the contribution arising from the= 0 mode to the relaxation rata_oé

for the orientational stress in a solution of rods shows that they are equal

T2kgT
-1 -1 4 B
Trod = 27, g = Q_Lg . (147

Separating the contribution of thhe= 0 mode from the remaining sum in Ed.46) yields
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o0

i
lim [GﬁH(w)] = kBTﬁ-i-kBT'E P — (148
L<L, lw+ 7o i=liow+27 "o

i

The first term on the rhs of E¢148) resembles Eq93) for [ Gy, ()], and the remain-

ing sum overi = 1 resembles Eq121) for [Gg,, {@)]. However, our Eqs(93) and
(121) each contain a prefactor of 3/5 that is absent from either term on the rhs of Eq.

(148); thus, the HH result fof G* (w)] in the rodlike limit is related to our results by

E[GﬁH(w)] = [Ggrnt]+[G:urv,t]’ (149

where the two terms on the rhs are given by HE88) and(121), respectively.

This relationship shows that, in the rodlike limit, the Harris—Hearst model neglects the
two contributions tg G* (w)] that dominate at intermediate and high frequencies, viz.
[Giend and[Gg,, I, which both arise from flow induced tension, while retaining con-
tributions that(aside from a different prefactoresembld G, J and[G3 .|, which are
subdominant at these frequencies. As a result, the HH model predicts storage and loss

moduli that increase a&* at w > 7, %, like our [G¥,{w)], and so enormously

underestimatesG’ (w)] at all o > il and[G"(w)] at all o > T[Oé, as shown in Fig.

13. The model’s predictions are less egregiously wrong at lower frequencies: At
< il, where[G'(w)] is dominated by the orientational stress, the model correctly
predicts a Maxwellian behavior fgiG’ (w)], with the correct relaxation rater_oé, but

with a numerical prefactor that is too large by 5/3. Interestingly, the model predicts the
correct intrinsic zero shear viscosity [ofig] = kgT 7roq fOr a model of rods with isotro-

pic friction, because the use of too large a prefactor for the “orientational” contribution
to ng (i.e., thei = 0 mode is exactly compensated by the absence of a tension contri-
bution. This success is a consequence of the fact that the zero shear viscosity of such a
free-draining model depends only on the polymer’'s equilibrium radius of gyrd&jpn
[see Eq.(16.3-20 of Bird et al. (1987], and that the model gives the correct limiting
value forRg in the rodlike limit.

Xlll. CONCLUDING REMARKS

This paper presents a theory that describes accurately the linear viscoelastic response
of dilute solutions of freely draining semiflexible rods, with lengthsmaller than their
persistence lengths,, over the whole range of possible frequency and time scales. The
theory treats the inextensible wormlike chain as an effectively extensible rod with an
effective longitudinal compliance that arises from the existence of transverse thermal
fluctuations. A simplified, analytically solvable local compliance approximation, which
ignores the spatial nonlocality of the relationship between the average tension and strain
fields, describes accurately the viscoelastic behavior throughout the intermediate and high
frequency regimes in which the predicted behavior differs significantly from that of rigid
rods.

In the limit of very stiff chains, the theory predicts a stress relaxation moda(i¥
that decays as~ 3/4 at very early times, as found previously by Mof4®98h and Gittes
and MacKintosh(1998, but that decays as % over a range of intermediate timeg

<t < 7, which broadens rapidly ds/L, decreases. At times larger than the relax-
ation time 7, of the longest bending mode, the theory predicts an exponential decay
G(t) « e~ V/7rod jdentical to that found for rigid rods. This description is accurate, how-
ever, only for very stiff rods: A4 approache& , from below, the timesy, 7, , andryoqg
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FIG. 13. Comparison of the present theoretical predictions with the theoretical results of Harris and Hearst
(1966 (denoted as HH in the figurelntrinsic storage and loss moduli wsryq for L/Lp = 1/8.

approach one another, and hence both the intermetii@¥é decay and the rigid rod
orientational plateau disappear gradually. An initiaP/4 decay ofG(t) is expected for

any value ofL/Lp, but only below a timer « Trod(L/Lp)s that remains much lower
than roq even forL ~ L, and that drops with decreasingLj, to values that, foiL

< Lp, rapidly become inaccessible to either our simulations or experiment. The inter-
mediate timet >4 decay inG(t), and the corresponding intermediaté’ frequency
dependence d&’ (w), is observable at more easily accessible times and frequencies, but
is well defined only for very stiff chains. In light of the resulting difficulties facing any
attempt compare our asymptotic power law predictions directly to experiment, we wish to
emphasize that the full theory and the analytic approximation of Sec. Xl both provide
accurate predictions over much wider ranges of frequency and reduced chainléingth
than those provided by asymptotic analysis alone.

In the opposite limit of a dilute solutions of coillike chains, with lengths much larger
than a few persistence lengths, we expett E decay at very early times followed by
a Rouse-like ~ /2 decay at longer times for models of free-draining chains, or a Zimm-
like decay for very long chains with hydrodynamic interactions. Thus, with the results of
the present study, theoretical understanding of the linear viscoelasticity of dilute solutions
of freely draining wormlike chains is nearly complete for the whole range/bf, from
rigid rods (L/L, — 0) to random coilsi(/L, > 1), except for a smallin a logarithmic
sensg crossover region in which is somewhat larger thahp, where there must be a
crossover from the behavior described here to a Rouse—Zimm behavior.

Comparison of the theoretical predictions to the results of our Brownian dynamics
simulations of stress relaxation show striking quantitative agreement over roughly nine
orders of magnitude in time. Predictions®{t) remain reasonably accurate for chains of
length up toL = L, despite the expansion about a rigid-rod reference state that is used
throughout the derivation of the theory. We have also compared the theory with the
available linear viscoelastic data for dilute solutions of rodlike poéjybenzyl-L-
glutamaté in m-Cresol[Warrenet al. (1973, Ookuboet al. (1976]. These data are for
chains withL/Lp, = 0.4—1.2 at reduced frequencies @foq = 10~ 1-10%, which is a
crossover region in which none of the asymptotic power laws are valid. The predictions
of the full theory are nonetheless found to be in good quantitative agreement with these
experiments, with essentially no adjustable parameters.
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APPENDIX

In this appendix, we calculate the response funcidfs, w) defined in Eq.(28),
which describes the direct response(6fs,w)) to the velocity gradient that appears in
transverse dynamical E(R4). Here, as in the full theory of Sec. VIII, we use eigenvector
expansion(100 for h,(s), expansion(105 of the transverse dynamical equation, and
expansior(107) of the average strain field. A calculation similar to that used to obtain Eq.
(120 shows that the velocity gradient term in E@.05 introduces a contribution to
ak|(w) given by

keTL®

3 iwl|
(@) = Kaf(1 Iwgl-f—ZakTIl % Yaal @ A

Substituting this into Eq(107), and using the expressiat,y,«(®) = Y(w):(1—nn)
= —yY(w):nn for traceless Yw) vyields a strain of the form (&(s,w))
0O (s,w)¥(w):nn, where

awk) 2 1
(A2)

S a‘kl[1+2a‘k1'(iw7l)_l]'

L
oo - -3

p

The rhs of Eq.(A2) is a factor ofL/L, times a dimensionless function efand w7,
alone, which is defined by the sum. This sum increases linearly with for w7,

< 1, and approaches a finite limit fow > il. In the rodlike limit L/Lj

< 1,0(s,w) is thus always small compared to unity as a result of the overall prefactor
of L/Lp. This justifies our neglect of this contribution in the main text, as discussed in
Sec. Il

References

Aragon, S. R. and R. Pecora, “Dynamics of wormlike chains,” Macromolecli8<868—-18751985.

Batchelor, G. K., “Slender-body theory for particles of arbitrary cross-section in stokes flow,” J. Fluid Mech.
44, 419-420(1970.

Bird, R. B., C. F. Curtiss, R. S. Armstrong, and O. HassaDgnamics of Polymeric Liquids, Vol. 2: Kinetic
Theory(Wiley, New York 1987.

Carriere, G. J., E. Amis, J. L. Schrag, and J. D. Ferry, “Dilute solution dynamic viscoelastic properties of
schizophyllan polysaccharide,” Macromolecule8 2019-20231985.

Carriere, G. J., E. Amis, J. L. Schrag, and J. D. Ferry, “Dilute solution dynamic viscoelastic properties of
xanthan polysaccharide,” J. Rhe@7, 469—-478(1993.

Dimitrakopoulos, P., J. F. Brady, and Z.-G. Wang, “Short- and intermediate-time behavior of the linear stress
relaxation in semiflexible polymers,” Phys. Rev.G2, 050803R) (2001).

Doi, M. and S. EdwardsThe Theory of Polymer Dynami¢€larendon, Oxford, 1986

Doyle, P. S., E. S. G. Shagfeh, and A. P. Gast, “Dynamic simulation of freely draining flexible polymers in
steady linear flows,” J. Fluid Mecl834, 251-291(1997.

Everaers, R, F. Julicher, A. Ajdari, and A. C. Maggs, “Dynamic fluctuations of semiflexible filaments,” Phys.
Rev. Lett.82, 3717-3720(1999.

Fixman, M., “Simulation of polymer dynamics. |. General theory,” J. Chem. PB@s1527-15371978.

Gittes, F. and F. C. MacKintosh, “Dynamic shear modulus of a semiflexible polymer network,” Phys. Rev. E
58, R1241-R12431998.



1154 SHANKAR, PASQUALI, AND MORSE

Granek, R., “From semiflexible polymers to membranes: Anomalous diffusion and reptation,” J. Piys. Il
1761-17881997).

Grassia, P. S. and E. J. Hinch, “Computer simulation of polymer chain relaxation of Brownian motion,” J. Fluid
Mech. 308 255-288(1996.

Harris, R. A. and J. E. Hearst, “On polymer dynamics,” J. Chem. Ph¥s2595-26021966).

Hearst, J., R. A. Harris, and E. Beals, “On polymer dynamics. II,” J. Chem. PHys3106—-31331966.

Hinch, E. J., “The distortion of a flexible inextensible thread in a shearing flow,” J. Fluid M&4h317-333
(1978.

Hinch, E. J., “Brownian motion with stiff bonds and rigid constraints,” J. Fluid Me2i1, 219—-234(1994).

Kirkwood, J. and P. Auer, “Viscoelasticity of solutions of rodlike macromolecules,” J. Chem. Rlgy281—
283(195).

Kroy, K. and E. Frey, “Dynamic scattering from solutions of semiflexible polymers,” Phys. R&5, B092—
3101(1999.

Liverpool, T. B. and A. C. Maggs, “Dynamic scattering from semiflexible polymers,” Macromolecsdes
6064—-60732007).

MacKintosh, F. C., J. Kas, and P. A. Janmey, “Dynamic shear modulus of a semiflexible polymer network,”
Phys. Rev. Lett58, 4425—-44281995.

Morse, D. C., “Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 1. Model and stress
tensor,” Macromolecule81, 7030—704319983.

Morse, D. C., “Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 2. Linear re-
sponse,” Macromolecule31, 7044—-70671998b.

Nemoto, N., J. L. Schrag, and J. D. Ferry, “Infinite-dilution viscoelastic properties of(pdigxyl isocyan-
ate,” Polym. J.7, 195-201(1975.

Ookubo, N., M. Komatsubara, H. Nakajima, and Y. Wada, “Infinite-dilution viscoelastic properties ofypoly-
benzyl-I-glutamate in m-cresol,” Biopolymefks, 929-947(1976.

Pasquali, M., V. Shankar, and D. C. Morse, “Viscoelasticity of dilute solutions of semiflexible polymers,” Phys.
Rev. E64, 020802R) (2001).

Pasquali, M. and D. C. Morse, “An efficient algorithm for metric correction forces in simulations of linear
polymers with constrained bond lengths,” J. Chem. Phy§ 1834-18382002.

Warren, T. C., J. L. Schrag, and J. D. Ferry, “Infinite-dilution viscoelastic properties of pblgnzyl-I-
glutamate in helicogenic solvents,” Biopolymetg, 1905-19151973.

Wiggins, C. H., D. Riveline, A. Ott, and R. E. Goldstein, “Trapping and wiggling: Elastohydrodynamics of
driven microfilaments,” Biophys. J/4, 1043—10601998.



