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Viscoelasticity of dilute solutions of semiflexible polymers

Matteo Pasquali, V. Shankar, and David C. Morse
Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E.,
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We show using Brownian dynamics simulations and theory how the shear relaxation modulusG(t) of dilute
solutions of relatively stiff semiflexible polymers differs qualitatively from that of rigid rods. For chains shorter
than their persistence length,G(t) exhibits three time regimes: At very early times, when the longitudinal
deformation is affine,G(t);t23/4. Over a broad intermediate regime, during which the chain length relaxes,
G(t);t25/4. At long times,G(t) mimics that of rigid rods. A model of the polymer as an effectively extensible
rod with a frequency dependent elastic modulusB(v);( iv)3/4 quantitatively describesG(t) throughout the
first two regimes.
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Many important biopolymers are wormlike chains wi
persistence lengthsLp comparable to or larger than their co
tour length L. Examples area-helical proteins, collagen
fibrils, rodlike viruses, and protein filaments such as F-ac
The cytoskeleton of a cell is primarily a network of su
polymers, and plays a critical role in controlling the m
chanical rigidity, motility, and adhesion of living cells; un
derstanding the viscoelastic behavior semiflexible polym
in solution is thus a critical problem in biophysics. Where
the linear viscoelastic behavior of dilute solutions of flexib
~Gaussian! and rodlike polymer molecules is well understo
@1#, there is thus far no qualitatively correct description
the viscoelasticity of dilute solutions of semiflexible pol
mers over the whole range of frequency and time sca
Bridging the theoretical gap between the flexible and ri
rod limits is thus also an important open problem in polym
physics. Here, we present both results from Brownian
namics simulations of relatively stiff semiflexible chain
with Lp>L, and a simple theory that accurately describ
their linear viscoelastic response over a very wide range
time scales. Both theory and simulation yield a relaxat
modulus G(t);t25/4 over a wide range of intermediat
times, after an initial decay ofG(t)}t23/4 at very early
times, and before an exponential decay ofG(t) at long times
~like that of rigid rods! due to diffusive tumbling of the chain
orientation.

A single wormlike chain may be described by a cur
r (s), with a tangent vectoru(s)[]r (s)/]s, wheres is con-
tour distance along the chain. Inextensibility requires t
u]r /]su51. The bending energy of a chain with rigidityk or
persistence lengthLp[k/kT is U5 1

2 k*dsu]u(s)/]su2. The
Brownian motion of such a chain in a homogenous fl
v(r ,t)[ġ(t)•r may be described in a free-draining appro
mation @2# by a Langevin equation

zH ]r

]t
2ġ•r J 52k

]4r

]s4
1

]~uT !

]s
1h. ~1!

Here T is a tension that acts to impose the constra
u]r /]su51, z is a friction coefficient, andh is a Brownian
force with correlations ^h(s,t)h(s8,t8)&52kTzId(t
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2t8)d(s2s8). This equation can be made dimensionless
terms of reduced variablest̂5tkT/(zL3), ŝ5s/L, r̂5r /L,
and L̂p5Lp /L. The linear viscoelasticity of a solution o
wormlike chains may be characterized by either the sh
relaxation modulusG(t), which describes the stresss(t)
5G(t)@g1g T# at time t after an infinitesimal step straing,
or, equivalently, by the complex modulusG* (v)
[ iv*0

`dt G(t)e2 ivt, which describes the response to
small oscillatory strain. The polymer contribution to th
moduli per chain, in a dilute solution ofc chains per unit
volume in a solvent of viscosityhs is given by a correspond
ing intrinsic moduli @G(t)#[@G(t)2hsd(t)#/c and
@G* (v)#[@G* (v)2 ivhs#/c. For wormlike chains,@G(t)#

must have the form@G(t)#5kTĜ( t̂ ,L̂p).
Prior work has identified some relevant time scales a

provided predictions forG(t) in several limits: Rodlike
chains (L!Lp) should behave like rigid rods att*t' ,
wheret'[zL4/(kTLp) is roughly the relaxation time of the
longest wavelength bending mode. The predicted modu
for dilute rigid rods@1,3# is

lim
Lp→`

@G~ t !#5
zL3

180
d~ t !1

3kT

5
e2t/trod, ~2!

wheret rod[zL3/(72kT) is a rotational diffusion time. The
exponential contribution to@G(t)# is due to an entropic ori-
entational stress caused by an anisotropic distribution of
orientations; it decays by rotational diffusion. Thed-function
contribution arises from the longitudinal tension induced
the rods during the step deformation; it decays instan
neously after the deformation.

In Refs.@4,5# the authors considered how this behavior
modified by the longitudinal compliance of a semiflexib
chain. They calculated the magnitude of changes in the e
to-end length of a wormlike chain due to changes in
magnitude of transverse fluctuations when the chain is s
jected to an oscillatory tension at frequencyv, and showed
that ratio of tension to strain is given by a frequenc
dependent effective longitudinal modulus
©2001 The American Physical Society02-1
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B~v!5
23/4kT

Lp
~ ivtp!3/4 ~3!

at all v@t'
21 , where tp[zLp

3/kT. They also predicted a
macroscopic viscoelastic modulus@G* (v)#5LB(v)/15
}( iv)3/4 @4,5# at very high frequencies, or, equivalentl
@G(t)#}t23/4 at early times, by assuming that the friction
coupling between the chain and the solvent must beco
strong enough at very high frequencies to produce an af
longitudinal strain. In Refs.@5,6# the authors considered th
dynamics of longitudinal relaxation. They showed that t
longitudinal strain propagates along a chain by an anomo
diffusion with a frequency-dependent diffusivityD(v)
5B(v)/z i , in which the strain diffuses a distancej i(t)

}AD(v51/t)t}t1/8 in time t. Both the assumption of affine
deformation and the predictedt23/4 decay ofG(t) must thus
fail beyond the time@5,6# t i[zL8/(kTLp

5) required for the
strain to diffuse the chain lengthL, and so allow signfican
longitudinal relaxation.

This prior work does not predict the behavior ofG(t) for
rodlike chains over a wide range of intermediate timest i
,t,t' , where relaxation of chain length and transve
fluctuations must be coupled. This interval must rapid
broaden asL!Lp becauset i /t'}(L/Lp)4. For L;Lp , the
gaps betweent i , t' , andt rod vanish, and so the intermed
ate regime must disappear. Coil-like chains (L@Lp) are ex-
pected@5# to crossover smoothly fromG(t)}t23/4 to Rouse-
like behavior G(t)}t21/2 at t;tp , which is roughly the
relaxation time of a bending mode of wavelengthLp .

Our simulations use discrete wormlike chains ofN beads
at positionsR1 , . . . ,RN connected byN21 rods of fixed
lengtha, with unit tangentsui5(Ri 112Ri)/a, and a bend-
ing energyU52(k/a)( i 52

N21ui•ui 21. We use a midstep al
gorithm @7# to compute bead trajectories generated by
equation of motion

zbH dRi

dt
2ġ•Ri J 5Fi5Fi

bend1Fi
met1Fi

tens1Fi
rand . ~4!

Here, zb5za is a bead friction coefficient,Fi
bend[

2]U/]Ri is a bending force,Fi
rand is a Langevin noise, and

Fi
tens5Tiui2Ti 21ui 21 is a constraint force, whereTi is the

tension in rod i. The tensions are computed by solvin
( j 51

N21Hi j Tj5ui•(F̃i 112F̃i), where F̃i[Fi
bend1Fi

met1Fi
rand

1zbġ•Ri , andHi j is a tridiagonal matrix withHii 52 and
Hi j 52ui•uj for i 5 j 61. Fi

met[2kT(]/]Ri)lnAdet(H) is
a ‘‘metric’’ force that must be included in simulations wit
constrained rod lengths to obtain a Boltzmann distribut
e2U(u1 , . . . ,uN21)/kT of rod orientations in thermal equilibrium
@7,8#.

The modulus@G(t)# is obtained from equilibrium simu
lations (ġ50) by evaluating the Green-Kubo relatio
@G(t)#5^sxy(t)sxy(0)&/kT, where s[2( iRiFi is the
single-chain stress tensor. The Brownian contribution tos(t)
is computed by the method of Refs.@7,9#. A wide range of
time scales is explored at each value ofL/Lp[Na/Lp by
using coarser- and finer-grained chains to resolve longer
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shorter times, respectively. Results for chains with the sa
L/Lp but different N are collapsed onto master curves
@G(t)# versus t/t rod , where t rod5zba2N3/72kT. Because
initial chain conformations are chosen from a Boltzmann d
tribution, behavior at short times can be obtained from sh
simulations of fine-grained chains@6#.

To elucidate the physical origins of stress, we decomp
s as a sums5sornt1scurv1stens2kTI of the orientation,
curvature, and tension stresses@5#, where

sornt[
3
2 kT~u1u11uN21uN212 2

3 I !,
~5!

scurv[2(
i 51

N

RiFi
bend13kT(

i 51

N21

~uiui2
1
3 I !2sornt .

and stens5s2sornt2scurv1kTI . We also decompose
@G(t)# as @G(t)#5@Gornt(t)#1@Gcurv(t)#1@Gtens(t)#,
where @Ga(t)#5^sa,xy(t)sxy(0)&/kT, with a5 ‘‘ ornt’’,
‘‘ curv,’’ or ‘‘ tens,’’ describes the decay of the stress^sa(t)&
after a hypothetical step deformation.scurv arises from dis-
turbances of the equilibrium distribution of bending mo
fluctuations, and was predicted to vanish for rodlike chain
times t*t' ; sornt is an analog of the orientational stress
a solution of rigid rods; andstens is the stress arising from
longitudinal tension@5#.

Figure 1 shows master curves of@Gtens(t)#, @Gcurv(t)#,
and @Gornt(t)# for chains of reduced lengthL/Lp51/8, 1/4,
1/2. The regions of overlap of results obtained with differe
values ofN reflect the behavior of a continuous chain, wh
the saturation of@Gtens(t)# and @Gcurv(t)# to N-dependent
limiting values at smallt is due to the discreteness of th
chains. At long times,t*t' , the largest contribution to
@G(t)# is @Gornt(t)#, which approaches the exponential r
laxation predicted for a rigid rod solution. Att;t' , all three
contributions to@G(t)# are comparable. At earlier times
@G(t)# is dominated by@Gtens(t)#. For the most flexible
chains shown (L5Lp/2), @Gtens(t)# closely approaches th
predictedt23/4 asymptote at smallt. For the two stiffer sys-
tems, @Gtens(t)# does not reach this asymptote within th
accessible range oft, and decays more rapidly thant23/4 in
this range.

These results are consistent with the prediction of at23/4

decay of@Gtens(t)# below a reduced timet i /t rod}(L/Lp)5

that drops rapidly asL/Lp decreases, and suggest the po
sible existence of a second power law in the intermed
time regimet i!t!t' for L!Lp . By postulating the exis-
tence of an intermediate power law that meets the predic
t23/4 asymptote att;t i , and that falls to@Gtens(t)#;kT at
t;t' , we obtain@Gtens(t)#;kT(t/t')25/4. The exponent
25/4 agrees with the observed slope of log@Gtens(t)# versus
log(t) for the stiffest systems shown (L5Lp/8), which dis-
plays the widest intermediate time regime.

We now present a theory of the longitudinal dynamics
a rodlike chain that predicts the observedt25/4 decay of
@Gtens(t)# at intermediate times forL!Lp . Our analysis re-
sembles one given previously to describe longitudinal rel
ation of entangled chains@5#. For rodlike chains, we may
expand r (s,t) around a rodlike reference state asr (s,t)
2-2
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FIG. 1. ~Color! Simulation results for@Gtens(t)# ~top curve in
each plot,3), @Gcurv(t)# ~middle curve,1), and @Gornt(t)# ~bot-
tom curve, s) vs t/t rod , with t rod5zbN3a2/(72kT), for L/Lp

51/8 and N58,16,22,32,46,64,90,128~top plot!, L/Lp51/4 and
N58,16,22,32,46,64,90,128~middle plot!, and L/Lp51/2 andN
516,32,64,90,128,180,256~bottom plot!, with different colors for
different values ofN. In each plot,@Gornt(t)# is shown only for the
few smallest values ofN. The long-dashed red lines are the pred
tion @Grod(t)#5

3
5 kTe2t/trod for rigid rods att.0. Short-dashed red

lines with slopes of23/4 and25/4 are predicted asymptotes Eq
~12! and ~13! of @Gtens(t)#. The solid red lines are the predicte
@Gtens(t)# obtained by Fourier transforming Eq.~11!.
02080
5r i(s,t)n(t)1h(s,t), where h(s,t) satisfies h(s,t)•n(t)
50, andn(t) is a unit vector that rotates with the flow like
non-Brownian rigid rod:ṅ5P•ġ•n, whereP[I2nn. Lin-
earizing Eq.~1! then yields longitudinal and transverse equ
tions

zH ]r i

]t
2r iġ:nnJ 5

]T
]s

1h i , ~6!

zP•H ]h

]t
2ġ•hJ 52k

]4h

]s4
1

]

]s S T]h

]sD1h' . ~7!

These equations are coupled by the tensionT, which is cho-
sen to satisfy the constraintu]r /]su25u]r i /]su21u]h/]su2

51.
It is convenient to introduce a longitudinal strain field

e~s![@]r i~s!/]s#2^~]r i /]s!&eq ,

where^•••&eq denotes a thermal equilibrium average. Co
bining this definition with the constraint and expanding
lowest order inu]h/]su2 yields an approximate expression
e(s) in terms of h(s), e(s).2 1

2 $u]h(s)/]su2

2^u]h(s)/]su2&eq%. This expression fore(s) and Eq.~7! was
used in Refs@4,5# to calculate the linear response of th
spatial average strain̂ē(v)&[*dŝ e(s,v)&/L to a spatially
uniform oscillating tensionT(v) at frequencyv ~where
functions ofv denote Fourier amplitudes!, yielding an effec-
tive extension modulusB(v)[T(v)/^ē(v)& that is given by
Eq. ~3! at v@t'

21 @4,5#, and by a static valueB(0)
;kTLp

2/L3 at v!t'
21 @10#.

A modified diffusion equation for the strain field may b
obtained by taking the thermal average of Eq.~6!, differen-
tiating with respect tos, Fourier transforming with respect t
t, and settinĝ T(s,v)&5B(v)^e(s,v)&. This yields

S iv2
B~v!

z

]2

]s2D ^e~s,v!&. ivg~v!:nn, ~8!

where B(v)/z is an effective diffusivity andg(v) is the
amplitude of an oscillatory strain tensor. Hereaftern(t) is
approximated by its time average over one period of osci
tion. Equation~8!, with ^e(s,v)&50 at the chain ends, ha
the solution

^e~s,v!&5F12
cosh~l~v!~2ŝ21!!

cosh~l~v!!
Gg~v!:nn, ~9!

wherel(v)[( ivzL2/4B(v))1/25( ivt i/2
11)1/8.

The tension stress of rodlike chains subjected to an infi
tesimal oscillatory straing(v) is given by

stens~v!.E
0

L

dŝ T~s,v!nn&, ~10!

where^•••& denotes an average over both weak fluctuatio
and overall rod orientations. Combining Eq.~10! with Eq.
~9! for the strain along a rod of orientationn and averaging
2-3



-
y

ion

-

rs

s
n
o

l

re

ably,
-

the

-

he

ll

ate

e
od
by

u-
tes
r
y

r
the
at
her

een

-
by

he

RAPID COMMUNICATIONS

MATTEO PASQUALI, V. SHANKAR, AND DAVID C. MORSE PHYSICAL REVIEW E64 020802~R!
over random rod orientations yields a stressstens(v)
5@Gtens* (v)#@g(v)1gT(v)#, with a modulus

@Gtens* ~v!#5 1
15 LB~v!F12

tanh~l~v!!

l~v! G . ~11!

This prediction has the following limiting behaviors: At fre
quenciesv@t i

21 , Eq. ~11! reduces to the high-frequenc
asymptote@Gtens* (v)#.LB(v)/15 found previously@4,5#.
Fourier transforming this asymptote yields a relaxat
modulus

lim
t!t i

@Gtens~ t !#5C1

kTL

Lp
S t

tp
D 23/4

, ~12!

whereC1523/4/@15G( 1
4 )#50.0309. At intermediate frequen

cies t i
21@v@t'

21 , wherel(v)!1, expanding Eq.~11! in
powers ofl(v) yields a modulus

@Gtens* ~v!#5 iv~zL3/180!2~kT/1800 23/4!~ ivt'!5/41•••,

which includes a dominant contribution of orderiv, whose
prefactor is identical to that found for rigid rods, and a fi
correction proportional to (iv)5/4. This yields a loss modulus
@G9(v)#}v ~like rigid rods!, but a storage modulu
@G8(v)#}v5/4 ~unlike rigid rods! at these frequencies. Upo
transforming this intermediate asymptote, the term prop
tional to iv yields an apparentd-function contribution to
@G(t)# ~as for rigid rods!, and so@Gtens(t)# is instead domi-
nated att i!t!t' by the transform of the term proportiona
to (iv)5/4, which yields

lim
t i!t!t'

@Gtens~ t !#.C2kTS t

t'
D 25/4

, ~13!

where C251/@23/47200G( 3
4 )#50.0000674. Atv&t'

21 or t
*t' , Eq.~3! for B(v) becomes inapplicable, but@Gtens(t)#
also becomes small compared to@Gornt(t)#.

The predictions of@Gtens(t)# shown in Fig. 1 were ob-
tained by Fourier transforming Eq.~11! numerically. They
agree with the simulation results for@Gtens(t)# at all t
&t' , and accurately describe not just the power law
s

s

pe
ch
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gimes, but the broad crossovers between them. Remark
the theory remains accurate forL5Lp/2, despite the assump
tion of a nearly straight chain.

Our derivation of Eq.~8! explicitly assumes alocal pro-
portionality of the tension and strain at each point on
chain, with ^e(s,v)&5B21(v)^T(s,v)&, rather than allow-
ing for a spatially nonlocal response of the form^e(s,v)&
5*ds8B21(s,s8,v)^T(s8,v)&. To examine this approxima
tion, we calculated the nonlocal complianceB21(s,s8,v).
We find that the range of nonlocality is of the order of t
wavelengthj'(v)5(vz/kTLp)21/4 of the bending mode
with frequencyv, and that the strain predicted by Eq.~8!
varies slowly over lengths of orderj'(v) for all v*t'

21 .
This justifies our local compliance approximation for a
v*t'

21 .
A conceptually simple, analytically solvable, and accur

model of the dominant contribution to@G(t)# at times t
&t' , valid for all L&Lp , is thus obtained by treating th
inextensible wormlike chain as an effectively extensible r
with a frequency-dependent longitudinal modulus given
Eq. ~3!. At later times,@G(t)# is dominated by@Gornt(t)#,
which mimics the behavior of a solution of rods. The sim
lations show that the curvature stress never domina
@G(t)# in such solutions. A useful global approximation fo
@G(t)# for rodlike chains may thus be obtained simply b
replacing the d function in Eq. ~2! by our result for
@Gtens(t)#. Our results confirm that@G(t)# initially decays
as t23/4, but also show that, whenL&Lp , this behavior is
observable only below a time proportional tot i that drops
rapidly with decreasingL/Lp to values inaccessible to eithe
simulation or experiment. Therefore, measurements of
viscoelastic modulus of dilute solutions of rodlike chains
practically attainable high frequencies may often probe eit
the t25/4 regime identified here, instead of the initialt23/4

regime, or the broad—but calculable—crossover betw
them.

Note added in proof. Simulations similar to those pre
sented here have recently been submitted for publication
P. Dimitrakopoulos, J.F. Brady, and Z.-G. Wange.
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