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Viscoelasticity of dilute solutions of semiflexible polymers
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We show using Brownian dynamics simulations and theory how the shear relaxation m@dt)lus dilute
solutions of relatively stiff semiflexible polymers differs qualitatively from that of rigid rods. For chains shorter
than their persistence lengtii(t) exhibits three time regimes: At very early times, when the longitudinal
deformation is affineG(t)~t~%“ Over a broad intermediate regime, during which the chain length relaxes,
G(t)~t~%4 At long times,G(t) mimics that of rigid rods. A model of the polymer as an effectively extensible
rod with a frequency dependent elastic moduB{s) ~ (i w)** quantitatively describe6(t) throughout the
first two regimes.
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Many important biopolymers are wormlike chains with —t")8(s—s’). This equation can be made dimensionless in

persistence lengths, comparable to or larger than their con- terms of reduced variables=tkT/({L3), s=s/L, r=r/L,
tour length L. Examples area-helical proteins, collagen 4 L,=L,/L. The linear viscoelasticity of a solution of

ﬁ?]rils’ rodlLkei virusefs, and”p_roteilj fila_rl‘nents such I?S r'aCtir?wormlike chains may be characterized by either the shear
e cytoskeleton of a cell is primarily a network of SUCh o4y arion modulusG(t), which describes the stress(t)

pﬁlymerls, agd pIaysla critigal éﬁle in cc:cnltrolling tl?e me- =G(t)[y+ v "] at timet after an infinitesimal step straip
chanical rigidity, motility, and adhesion of living cells; un- : PR
derstanding the viscoelastic behavior semiflexible polymersiri equivalently, by the complex moduluss™(w)

o —iwt H :
in solution is thus a critical problem in biophysics. Whereas;n']g”f O(;jStC(ii(att)Oer Sir(’;vnhlc?hgesglr '?ﬁ; t:((jnt:?absuﬁ%nnsetotc;h:
the linear viscoelastic behavior of dilute solutions of flexible y ' poly

(Gaussianand rodlike polymer molecules is well understood \TO?S#L I?ne;(:(])?\I/re]htlr:)faviilclzlétseit;o:sztéoi\r/]efbi/hglgcs)rfeesrpggg
; o e s -
[1], there is thus far no qualitatively correct description of. intrinsic  moduli [G(t)]=[G(t) - n.8()]/c _and

the viscoelasticity of dilute solutions of semiflexible poly- ing o . : .
mers over the whole range of frequency and time scaled C" (@) ]=[G* (@) —iwns]/c. For wormlike chains|, G(t)]
Bridging the theoretical gap between the flexible and rigidmust have the formG(t) |=kTG(t,L). _
rod limits is thus also an important open problem in polymer  Prior work has identified some relevant time scales and
physics. Here, we present both results from Brownian dyProvided predictions forG(t) in several limits: Rodlike
namics simulations of relatively stiff semiflexible chains, chains (<L) should behave like rigid rods at=7, ,
with L,>L, and a simple theory that accurately describegvherer, ={L*/(kTL,) is roughly the relaxation time of the
their linear viscoelastic response over a very wide range ofongest wavelength bending mode. The predicted modulus
time scales. Both theory and simulation yield a relaxationfor dilute rigid rods[1,3] is
modulus G(t)~t~%* over a wide range of intermediate
t!mes, after an initial decay (_)G(t)oct 4 at very garly i 3KT
times, and bgf_ore an exponenpal (_jecaﬁoﬁt)_ at long times lim [G(t)]= 2= 8(t) + —— e /7roq, )
(like that of rigid rod$ due to diffusive tumbling of the chain - 180 5
orientation.

A single wormlike chain may be described by a curve
r(s), with a tangent vectou(s)=dr(s)/ds, wheresis con-  where r,,q=(L3/(72kT) is a rotational diffusion time. The
tour distance along the chain. Inextensibility requires thaexponential contribution tpG(t)] is due to an entropic ori-
|arlas|=1. The bending energy of a chain with rigidigyor ~ entational stress caused by an anisotropic distribution of rod
persistence length ;= «/kT is U= sx[ds|au(s)/ds|?. The  orientations; it decays by rotational diffusion. Theéunction
Brownian motion of such a chain in a homogenous flowcontribution arises from the longitudinal tension induced in
v(r,t)zix(t)-r may be described in a free-draining approxi- the rods during the step deformation; it decays instanta-

mation[2] by a Langevin equation neously after the deformation.
In Refs.[4,5] the authors considered how this behavior is
o P o(uT) modified by the longitudinal compliance of a semiflexible
4_ -y r] = e—+ + 7. (1) chain. They calculated the magnitude of changes in the end-
at as* Js to-end length of a wormlike chain due to changes in the

magnitude of transverse fluctuations when the chain is sub-
Here 7 is a tension that acts to impose the constraintected to an oscillatory tension at frequensy and showed
|arlas|=1, ¢ is a friction coefficient, andy is a Brownian  that ratio of tension to strain is given by a frequency-
force with correlations (#(s,t)n(s’,t’))=2kT{I5(t  dependent effective longitudinal modulus
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28%T » shorter times, respectively. Results for chains with the same
Blo)=——(iom) (30 L/L, but differentN are collapsed onto master curves of
P [G(t)] versust/ 7.y, where 7oq={,a°N%/72kT. Because

initial chain conformations are chosen from a Boltzmann dis-
tribution, behavior at short times can be obtained from short
simulations of fine-grained chaif§].

at all o> 7-11, where 7,= gL:;/kT. They also predicted a
macro;gopic viscoelastic modulusG* (w)]=LB(w)/15

oC

[ é'(fs)]m t‘[g/f]zjlta;a\:ﬁ/r{ir:g;] g;eggsggﬁ;’ tﬁ;t fﬁg';ﬁlﬁggﬁl To elucidaga the physical origins of stress, we decqmpose
coupling between the chain and the solvent must becom& as & SUmor= om; + Oeury + Tens—KTI of the orientation,
strong enough at very high frequencies to produce an aﬁingurvature, and tension stres$é$ where

longitudinal strain. In Refd5,6] the authors considered the

=2 _2
dynamics of longitudinal relaxation. They showed that the Oornt= 2 KT(Upts +Un—1Un-1=51),

longitudinal strain propagates along a chain by an anomolous N N_1 ©)
diffusion with a frequency-dependent diffusivitd () _ bend 1
=B(w)/{, in which the strain diffuses a distancg(t) ‘Tcuw=_i§l RiF*" +3|<Ti§1 (Uit = 51) = oot

«\JD(w=1/t)tct¥® in time t. Both the assumption of affine
deformation and the predicted®* decay ofG(t) mustthus  and o= 06— Gom— T +KTl. We also decompose
fail beyond the tim¢5,6] 7||E§L8/(kTLg) required for the [G(t)] as [G(t)]=[Gomi(t)]+[Geurnlt) 1+ [Giens(t) s
strain to diffuse the chain length, and so allow signficant where [G,,(t)]=(0, x,(t) 04, (0))/KT, with a= *ornt”,
longitudinal relaxation. “curv,” or “ tens,” describes the decay of the streas,(t))
This prior work does not predict the behavior®@(t) for  after a hypothetical step deformatioa,,,, arises from dis-
rodlike chains over a wide range of intermediate timgs turbances of the equilibrium distribution of bending mode
<t<7,, where relaxation of chain length and transversefluctuations, and was predicted to vanish for rodlike chains at
fluctuations must be coupled. This interval must rapidlytimest=r7, ; o, iS an analog of the orientational stress of
broaden as <L, becauser”/TLOC(L/Lp)“. ForL~L,, the a solution of rigid rods; andr,s is the stress arising from
gaps between), 7, , and 7,4 vanish, and so the intermedi- longitudinal tensior{5].
ate regime must disappear. Coil-like chaihs>(L ) are ex- Figure 1 shows master curves [05ns(t) ], [Geun(t) ],
pected 5] to crossover smoothly fror(t) =t~ ¥4 to Rouse- and[ G,m(t) ] for chains of reduced length/L ,= 1/8, 1/4,
like behavior G(t)xt~ 2 at t~ 75, Which is roughly the 1/2. The regions of overlap of results obtained with different

relaxation time of a bending mode of wavelength. values ofN reflect the behavior of a continuous chain, while
Our simulations use discrete wormlike chainshbbeads the saturation of Gins(t)] and [ Gg,n(t)] to N-dependent
at positionsRy, ... ,Ry connected byN—1 rods of fixed limiting values at smalk is due to the discreteness of the

lengtha, with unit tangentss;=(R;;;—R;)/a, and a bend- chains. At long timest=r,, the largest contribution to
ing energyU=— («x/a)=N"'u;-u;_,. We use a midstep al- [G(t)] is [Gom(t)], which approaches the exponential re-
gorithm [7] to compute bead trajectories generated by thdaxation predicted for a rigid rod solution. At- 7, , all three
equation of motion contributions to[G(t)] are comparable. At earlier times,
[G(t)] is dominated by Gis(t)]. For the most flexible
chains shown (=L ,/2), [ Gns(t)] closely approaches the
predictedt ~%* asymptote at smatl For the two stiffer sys-

dR; .
gb: dtl —y. Ri] _ Fi — Fibend+ Fimet+ F;[ens_’_ Firand ) (4)
tems, [ Gens(t)] does not reach this asymptote within the

Here, {,=¢a is a bead friction coefficient,F*"'=  accessible range df and decays more rapidly than* in
—dU/4R; is a bending forceF@ is a Langevin noise, and this range. _ _ o .
Flens—7u,—7_,u;_, is a constraint force, wher® is the These results are consistent with the prediction of ¥

tension in rodi. The tensions are computed by solving 9€cay of[Gens(t)] below a reduced timey /74 (L/L)°
EJN:]lHij jIUi'(|~:i+1—|~:i), where ﬁiEFibend_"FimEt"' Firand that drops rapidly a& /L, decreases, and_ suggest the pos-
: i v o sible existence of a second power law in the intermediate
+ 4oy Ri, andHj; is a tridiagonal matrix withH;; =2 and  time regimer<t<r, for L<L,. By postulating the exis-
Hij=—u;-u; for i=j=1. F"'=—kT(d/dR;)In\detH) is  tence of an intermediate power law that meets the predicted
a “metric” force that must be included in simulations with =34 3gymptote at~ 7, and that falls td Giens(t)]~KT at
constrained rod lengths to obtain a Boltzmann distributiont— 7 we obtain[ Gens(t)]~kT(t/7,) ~>% The exponent

e~V - in-/KT of rod orientations in thermal equilibrium _5/4 agrees with the observed slope of[Bg,(t)] versus

[7.8]. log(t) for the stiffest systems showr €L ,/8), which dis-
The mOdu|US[G(t)] iS Obtained from equi|ibl‘ium Simu- p|ays the Widest intermedia‘[e t|me regime_

lations (y=0) by evaluating the Green-Kubo relation  We now present a theory of the longitudinal dynamics of

[G(t)]=( 0oy (t)oxy(0))/KT, where o=—3RiF; is the a rodlike chain that predicts the observed®* decay of

single-chain stress tensor. The Brownian contributioat [Giens(t)] at intermediate times fdr <L, . Our analysis re-

is computed by the method of Refg,9]. A wide range of sembles one given previously to describe longitudinal relax-

time scales is explored at each valueldl ;=Na/L, by  ation of entangled chaings]. For rodlike chains, we may

using coarser- and finer-grained chains to resolve longer anekpandr(s,t) around a rodlike reference state B&s,t)
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10° — T T T T =r(s,t)n(t) +h(s,t), where h(s,t) satisfies h(s,t)-n(t)

10° L/Ly=1/8 7 =0, andn(t) is a unit vector that rotates with the flow like a
107 non-Brownian rigid rod:n="P- y-n, whereP=1-nn. Lin-
10tk earizing Eq(1) then yields longitudinal and transverse equa-
10 tions

- |

= TD3 MH 0T

S 0 Z ——rHynn —s T (6)
il
“’;' 5. oh ol a*h 9 Tah .
10°F {P-{—=—vhi= Kg s . (7)

These equations are coupled by the tensipwhich is cho-
sen to satisfy the constraifdr/as|?=|ar/3s|?+|dhids|?
=1.

It is convenient to introduce a longitudinal strain field

1 1
"0 107 107 1077 107 10 107 107 107 10" 10”10’

e(s)=[ar|(s)/ds]—((Ir19s))eq.

where(- - - )¢, denotes a thermal equilibrium average. Com-
bining this definition with the constraint and expanding to
lowest order ifdh/ds|? yields an approximate expression of
e(s) in terms of h(s), e(s)=-—3{|anh(s)/ds|?
—(|ah(s)/3s|?)eq}- This expression foe(s) and Eq.(7) was
used in Refg[4,5] to calculate the linear response of the
spatial average straife(w))=[ds(e(s,w))/L to a spatially
uniform oscillating tensionZ{w) at frequencyw (where
functions ofw denote Fourier amplitudgsyielding an effec-
tive extension moduluB(w)=7(w)/{e(w)) that is given by
Eq. 3) at w>7,* [4,5], and by a static valueB(0)

e R e B L ~KTLYL? at w<7, * [10].

Lilp=1/2 7 A modified diffusion equation for the strain field may be

(G { KT

1 1 1 1
107107 107 107 107 107" 107" 107 107 107 107 10° 10
thm

10 T obtained by taking the thermal average of Eg), differen-
10° 5 tiating with respect te, Fourier transforming with respect to
10° . t, and setting 7(s,w) ) = B(w){ e(s,w)). This yields
= .
g 0 1 o= 22 2 (s =ione) ®
= lo— —— — {e(S,0 =jwyw):nn,
3 ¢ - { 9s?
o' . . e .
; P _G’*:":' 1 where B(w)/{ is an effective diffusivity andy(w) is the
T”_I_ Qamp” T amplitude of an oscillatory strain tensor. Hereaftgt) is
1”4 TR TR 1 approximated by its time average over one period of oscilla-
mw_'lm-mm-aw-aw-r e e Yoy [ gy P tion. quation(8), with (€(s,w))=0 at the chain ends, has
the,, the solution
cosh\ (w)(25—1))
, . _ (e(s,w))=|1- (@) Hw):nn, (9
FIG. 1. (Color Simulation results fof Gens(t)] (top curve in coshiA ()

each plot,X), [G¢un(t)] (middle curve,+), and[Gg(t)] (bot- . .
fom curve, 0) Vs t/ g, With reg= LN2a2/(7T), for LIL,  WHEreA () =(iwlL?/4B(w)) 2= (iwn/2") ", o
—1/8 andN=8,16,22,32,46,64,90,1280p plot, L/L,=1/4 and '_I'he tens_lon stress qf rodI|I_<e c_halns subjected to an infini-
N=8,16,22,32,46,64,90,126niddle plo), and L/L,=1/2 andN tesimal oscillatory strain/(w) is given by
=16,32,64,90,128,180,25®ottom plo}, with different colors for L

different values oN. In each plot] G,(t)] is shown only for the a'tens(w)zf ds(7(s,w)nn), (10)

few smallest values dfl. The long-dashed red lines are the predic- 0

tion [ Goq(t) 1= 2k Te Y7rod for rigid rods att>0. Short-dashed red

lines with slopes of-3/4 and—5/4 are predicted asymptotes Egs. Where(- - -) denotes an average over both weak fluctuations
(12) and (13) of [Gyens(t)]. The solid red lines are the predicted and overall rod orientations. Combining EG.0) with Eq.
[Giens(t)] Obtained by Fourier transforming E€L1). (9) for the strain along a rod of orientationand averaging
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over random rod orientations yields a streeg.,s() gimes, but the broad crossovers between them. Remarkably,
=[G} (@) [N w)+ 7' (w)], with a modulus the theory remains accurate for=L ,/2, despite the assump-
tion of a nearly straight chain.

Our derivation of Eq(8) explicitly assumes #éocal pro-
portionality of the tension and strain at each point on the
) o S ) chain, with{e(s,w))=B"}(w){7(s,w)), rather than allow-
This predlctlorl has the following limiting behaviors: At fre- ing for a spatially nonlocal response of the fof@(s, )}
quenciesw> 7| ! Eq. (1) reduces to the high-frequency = [ds'B~Y(s,s",w)(T(s',)). To examine this approxima-
asymptote[ Gig,s(@)]=LB(w)/15 found previously[4,5].  tion, we calculated the nonlocal complianBe i(s,s’, o).
Fourier transforming this asymptote yields a relaxationye find that the range of nonlocality is of the order of the

tanh(\(w))

1= M)

[Glens(®)]=15LB(w)

(11)

modulus wavelength ¢, (0) = (wZ/kTLy) ¥ of the bending mode
KTL/ t ) 34 with frequencyw, and that the strain predicted by E®)
Iim[Gtens(t)]=ClL—<T—) , (12 varies slowly over lengths of ordef, (w) for all o= rjl.
t<7) p p

This justifies our local compliance approximation for all
-1

_ 5304 1y1— ; ; W=7

V\{heregl_ 2 /E115F(4)]—0.0309. At mterm-edlate ffeq‘ﬂe” A conceptually simple, analytically solvable, and accurate

cies 7 "> w>7, ", wherex(w)<1, expanding Eq(11) in  a4e| of the dominant contribution thG(t)] at timest

powers ofA(w) yields a modulus <7, , valid for all L<L,, is thus obtained by treating the
* —i 3 _ 14 (i 54, inextensible wormlike chain as an effectively extensible rod

[Glons(@)]=1w({L°/180 — (KT/1800 2% (lw7y)*%+ - -, with a frequency-dependent longitudinal modulus given by

which includes a dominant contribution of ordes, whose ~ EQ: (3)- At later times,[G(t)] is dominated by Gomi(t) ],

prefactor is identical to that found for rigid rods, and a first Which mimics the behavior of a solution of rods. The simu-
correction proportional toi ()54 This yields a loss modulus lations show that the curvature stress never dominates

[G"(w)]*w (like rigid rods, but a storage modulus [G(1)] in such.solutiorjs. A useful global approximgtion for
[G’(w)]> % (unlike rigid rods at these frequencies. Upon [G(t)]. for rodlike challns may thus be obtained simply by
transforming this intermediate asymptote, the term proporf€placing the 5 function in Eq. (2) by our result for
tional to iw yields an apparens-function contribution to [Gtegsg)]- Our results confirm thatG(t)] initially decays
[G(t)] (as for rigid rod$, and s Gens(t)] is instead domi- ast™ ™", but also show that, wheh=<L,, this behavior is
nated atrj<t<r, by the transform of the term proportional observable only below a time proportional tp that drops

to (i )% which yields rqpidly yvith decreas.incj;./Lp to values inaccessible to either
simulation or experiment. Therefore, measurements of the
) t |54 viscoelastic modulus of dilute solutions of rodlike chains at
lim  [Giens(t)]=CokT Z ' (13 practically attainable high frequencies may often probe either

<L the t 5 regime identified here, instead of the initiel®*

regime, or the broad—but calculable—crossover between
them.

Note added in proofSimulations similar to those pre-
sented here have recently been submitted for publication by
P. Dimitrakopoulos, J.F. Brady, and Z.-G. Wange.

where C,=1/[2%4720a"(2)]=0.0000674. Atwo=<r7, ' or t
=7, , Eq.(3) for B(w) becomes inapplicable, bpG cns(t) ]
also becomes small compared[8,,(t)].

The predictions of Gps(t)] shown in Fig. 1 were ob-
tained by Fourier transforming Eq11) numerically. They
agree with the simulation results fqiGns(t)] at all t This work was supported by NSF DMR-9973976 and the
=<7, , and accurately describe not just the power law re-Minnesota Supercomputing Institute.
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