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Abstract

Anew method is presented for accounting for microstructural features of flowing complex fluids at the level of mesoscopic, or coarse-grained,
models by ensuring compatibility with macroscopic and continuum thermodynamics and classical transport phenomena. In this method, the
microscopic state of the liquid is described by variables that are local expectation values of microscopic features. The hypothesis of local
thermodynamic equilibrium is extended to include information on the microscopic state, i.e., the energy of the liquid is assumed to depend on the
entropy, specific volume, and microscopic variables. For compatibility with classical transport phenomena, the microscopic variables are taken
to be extensive variables (per unit mass or volume), which obey convection-diffusion-generation equations. Restrictions on the constitutive
laws of the diffusive fluxes and generation terms are derived by separating dissipation by transport (caused by gradients in the derivatives of the
energy with respect to the state variables) and by relaxation (caused by non-equilibrated microscopic processes like polymer chain stretching
and orientation), and by applying isotropy. When applied to unentangled, isothermal, non-diffusing polymer solutions, the equations developed
according to the new method recover those developed by the Generalized Bracket [J. Non-Newtonian Fluid Mech. 23 (1987) 271; A.N. Beris,
B.J. Edwards, Thermodynamics of Flowing Systems with Internal Microstructure, first ed., Oxford University Press, Oxford, 1994] and by
the Matrix Model [J. Rheol. 38 (1994) 769]. Minor differences with published results obtained by the Generalized Bracket are found in the
equations describing flow coupled to heat and mass transfer in polymer solutions. The new method is applied to entangled polymer solutions
and melts in the general case where the rate of generation of entanglements depends nonlinearly on the rate of strain. Alink is drawn between the
mesoscopic transport equations of entanglements and conformation and the microscopic equation describing the configurational distribution
of polymer segment stretch and orientation. Constraints are derived on the generation terms in the transport equations of entanglements anc
conformation, and the formula for the elastic stress is generalized to account for reversible formation and destruction of entanglements. A
simplified version of the transport equation of conformation is presented which includes many previously published constitutive models,
separates flow-induced polymer stretching and orientation, yet is simple enough to be useful for developing large-scale computer codes for
modeling coupled fluid flow and transport phenomena in two- and three-dimensional domains with complex shapes and free surfaces.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction melts, liquid crystals, colloidal suspensions, emulsions, and
many others. These liquids are not Newtonian; that is, they
Many process liquids used in the chemical, food, biomed- do not obey a simple linear relationship between stress and
ical, coating, and polymer processing industries, are mi- rate of strain. The flow behavior of these complex liquids
crostructured. Such liquids include polymer solutions and can vary enormouslj4—6]. However, liquids with like mi-
crostructure behave similarly in simple rheometric flows,
—_— and there is evidence that this similarity may carry over
* Corresponding author. Tek:1 713 348 5830; fax+-1 713 348 5478. 9 complex process flows. Specifically, the dominant mi-
E-mail addressmp@rice.edu (M. Pasquali) crostructural features of a linear polymer melt are the length
The main part of this research was conducted at the Department . .
of Chemical Engineering and Materials Science of the University of and the stiffness of the polymer chafiis-12], which in turn
Minnesota. control their degree of entanglement, i.e., the constraints
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that each chain poses to other chains’ motion. The sameBracket approach of Grmela and Beris and Edwards, the
properties are important in polymer solutions, in addition to Matrix Model of Jongschaap, and the GENERIC frame-
concentration and to solvent quality, which may depend on work of Grmela and Ottinger. liSection 4 general prin-
temperaturg5,7,8,13] As another example, the behavior ciples are introduced for developing mesoscopic thermo-
of emulsions is controlled by the volume fraction of the dynamic theories with microstructural variables; such prin-
internal phase, the ratio of the viscosity of the internal and ciples are applied to the specific case of polymeric lig-
continuous phases, the interfacial tension between the twouids in Section 5 and simplified equation sets are pre-
phases, and the type of interaction forces between dropletssented inSection 6 Section 7discusses the connection be-
(attractive or repulsive). Of course, in polymeric emulsions tween microscopic and mesoscopic theories and derives ex-
the microstructural features of polymer solutions are also pressions for the coupling between macroscopic flow and
important. polymer conformation and entanglemergegction 8derives
Processing flows almost always include a combination of the constraints on such coupling terms. FinaBgction 9
shear and extensional kinematics—the exception being fully presents our conclusions and perspective on the usefulness
developed flows in straight pipes and rectilinear channels. of thermodynamically-consistent mesoscopic models.
Extensional flow kinematics are important in flows where
the thickness of a liquid sheet or filament changes, as in
calendering, film blowing, and fiber spinning, and in regions 2. Coarse-grained and fine-grained theories
of flows where a liquid film splits, as in forward roll coating,
or accelerates and thins, as in slot, slide, and curtain coating. The theories developed to describe the behavior of the mi-
Complex liquids behave differently in shear and ex- crostructure of a material (liquid or solid) fall into two broad
tensional flows[4,5]. The length, stiffness, and degree of categories, loosely termembarse-grainedand fine-grained
branching of polymer molecules strongly affect the shear theories. The former are sometimes caltedsoscopicthe
and elongational response of polymer solutions and meltslatter microscopic The two approaches differ mainly in the
[5]. Polymeric liquids and other microstructured materials level of detail used to account for the material’s microstruc-
behave differently in shear and extensional flows becauseture.
in extensional flows the liquid rotates locally with the rate  The coarse-grained theories introduce field variables
of strain; therefore, the straining is persistent, i.e., it is al- that are expectation values or “local average values” of
ways directed along the same direction from the material's microstructural features, like the average stretch and orien-
perspective, whereas in shear flows, the material and thetation of the end-to-end connectors of polymer molecules
principal directions of the rate of strain rotate at different in a dilute polymer solutiofl2], or the orientation of the
angular velocitie$14—16] director of the nematic phase in a nematic liquid crystal
Fast complex flows of polymer solutions have not yet [6,41]. Equations of change are then needed to describe
been modeled well enough to permit accurate design of pro-how expectations of the microstructural features evolve
cess equipment without first adjusting the model to match in time and space, and how they interact with other me-
nearly the same flow. The main reason is the lack of theory chanical and thermodynamic variables like velocity and
that effectively accounts for the relevant non-equilibrium mi- temperature. The main advantage of the mesoscopic ap-
crostructural changes at time scales comparable with thoseproach is economy: only a few field variables and differ-
of the process. The need for a sound theory is even greateential equations are added to the usual mass, momentum,
when the typical rates of deformation achieved in the pro- and internal energy conservation equations. The compu-
cess flow exceed the ranges of state-of-the-art rheometers byational cost of solving flow and transport problems with
an order of magnitude or more and the process flow kine- this approach is therefore moderate and quite comparable
matics depart substantially from the simple shear achievableto the cost of solving flow and transport problems with
in viscometric flows, as often occurs in these flows (e.g., the classical constitutive equations that can be rationalized
coating, fiber spinning). Then theory is needed to project the with linear irreversible local-equilibrium thermodynamics
information acquired in simple experiments to the complex [42,43] namely Newton’s law of viscosity, Fourier's law
reality of the process. The need for robust theories is evenof heat conduction, and Fick’s law of mass diffusion. The
more pressing when tackling more complex transport phe- main disadvantage of the mesoscopic approach is that there
nomena, like coupled flow and heat trangfief—22]or mass is no general way to formulate equations of change of mi-
transfer[23—30} experimental evidence on such processes crostructure. Several theories have been developed to do
is still limited [31-36] this, and those most relevant to our approach are briefly
This article is organized as followSection 2compares discussed below. However, these theories (including the
and contrasts microscopic and mesoscopic approaches fobne introduced in this article) provide no more than the
modeling flows of polymer solutions and mel&ection 3 general structure of the equations of change and a set of
briefly recalls important theories and results for developing relationships and inequalities that restrict the functions that
mesoscopic models of flowing liquids—namely, the con- appear in them. Constitutive assumptions are still required
tinuum thermodynamic theory of Leonov, the Generalized to specify completely the behavior of a material.
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The fine-grained, or microscopic, approach represents thealgorithms for solving flow problems with microstructural
microstructural features of a material by means of a large models have to rely on segregated sequential Picard (or
number of micromechanical elements obeying stochastic Newton—Picard) iterations or on time-stepping to achieve
differential equations or, equivalently, by the distribution steady-state solutiorjd4,53,57-59] Such segregated algo-
in phase space of the state variables that describe a mi+ithms converge slowly (if they converge at all), particu-
cromechanical elemerjii2,44] The equations of change larly when the equations are tightly coupled, as is the case
of the microstructural element arise from a balance of mo- when the elastic stresses induced by the non-equilibrium
mentum on the elementary mechanical components of themicrostructure are large—e.g., in fast flows of polymer
model—e.g., the beads of a chain of beads and springs orsolutions and melts (s¢60] for details).
rods. In dilute solutions, the momentum balance usually ne- Computations with micro-macro models are very ex-
glects the inertia of the beads and includes the drag exertedpensive in two-dimensional flows and prohibitively so in
by the solvent on the beads, the elastic or constraining in- three-dimensional flows with current algorithms and su-
tramolecular forces exerted by the springs or by the rods, percomputers. In certain problems with small-scale free
and the Brownian forces representing the momentum ex-surface flows dominated by capillarity (e.g., coating flows
changed between the polymer chains and the low molecularof polymer solutions), where the motion of the free surfaces
weight solvent molecules during collisions induced by their is tightly coupled to the momentum equation, segregated
rapidly fluctuating velocities. Sometimes external fields are methods are not nearly as robust as Newton’s Method with
also consideredi12]. In concentrated solutions and melts, initialization by continuation[61-63] Moreover, process
the interaction of microstructural elements with each other flow modeling aims at identifying the regions in the space
is described through so-called “mean-field approximations” of operating parameters where steady, stable flow is pos-
[12,44] rather than with explicit interaction forces. sible. The need to explore wide ranges of parameter space

The main advantage of the microscopic approach is thatand the current high cost of computing a single flow state
it requires fewer assumptions about the forces acting onmakes impracticable modeling complex flow processes
a micromechanical element of microstructure. Another im- with fine-grained models. However, the fine-grained (or
portant advantage of this approach is its poterjtal-48] micro—macro) approach may soon become viable, as more
for representing molecular individualism observed in exper- efficient computational algorithms are developed and faster
iments with DNA solution§49,50] This behavior of DNA massively parallel supercomputers become available, par-
molecules is poorly approximated by the local average vari- ticularly because stochastic simulations are likely to take
ables approacf5,51] advantage of distributed memory parallel computers.

Microscopic models for the evolution of polymer mi-
crostructure can be coupled to macroscopic transport equa-
tions of mass and momentum to yield micro—macro models 3. Comparison of mesoscopic ther modynamic theories
[52]. The main disadvantage of such a detailed accounting
of microstructure is its computational cost, which is partly =~ Several coarse-grained theories exist that describe the
due to the lack of direct (rather than iterative time-stepping) flowing microstructure of a polymeric liquid. These theo-
algorithms for solving the coupled equations of macro- ries extend classical continuum thermodynamics based on
scopic transport and microstructure evolution at once. In the the hypothesis of local equilibrium to include microstruc-
simplest case, simulations with the most basic stochastictural variables in the set of thermodynamic variables. The
variables employ dumbbells, which require solving three theories most relevant here are the thermodynamic theory
scalar partial partial differential equations for each dumb- of Leonov [37,64,65] the Generalized Bracket formalism
bell field (or six differential equations for each trumbbell, of Grmela[38,66] Grmela and Carreall], and Beris and
etc.). The cost of introducing such a field of dumbbell Edwardg2,67,68] the Matrix Model of{3], and GENERIC
configurations—e.g., by the Brownian Configuration Fields [40,69] (the GENERIC framework can handle the Boltz-
method of[53]—is roughly equivalent to the cost of in- mann equation and does not require the local equilibrium
troducing the conformation tensor or the elastic stress asassumption). Each is briefly described in this section. Other
an additional field variable (three or four scalar partial extensions of classical continuum thermodynamics with ap-
differential equations in two-dimensional flows, six scalar plications to polymeric liquids are discussed by Maugin and
partial differential equations in three-dimensional flows). Drouot [70], Stickforth [71], Jou et al.[72], Maugin and
To obtain reliable statistics, stochastic methods must intro- Muschik [73,74] Drouot and Maugir{75], Muschik et al.
duce and track approximately 1000 duplicate cof&s [76], and Liu[77].
of the dumbbell configuration field, which shows that the
computational cost of stochastic methods is approximately 3.1. The approach of Leonov
two to three orders of magnitude larger than the cost of
coarse-grained methodsthe same solution algorithm is Leonov's first work[37,64] on using internal state vari-
used (Variance reductiorj54] and other new approaches ables to describe the rheological behavior of polymeric
[55,56] somewhateduce this cost.) However, the available liquids originated from earlier theories of plastic flow of
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elasto-plastic materia[g8]. Leonov'’s internal variable was
originally the elastic Finger tensde = Fe - Fl, which is
related to the elastic, or recoverable, pgtof the deforma-
tion gradient. The evolution equation f6% was coupled to
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Leonov’s premises are that the Helmholtz free energy per
unit massz depends on the configuration tenddrand on
temperaturdl’, i.e.,a = a(M, T), and that the elastic stress
o depends on the derivative of the free energy with respect

the macroscopic deformation through an upper-convectedto the configuration tensor in the same way as it depends on

derivative, similarly to the evolution equation of the Finger
tensorB:

Voo -
B=B—-Vv -B—B-Vv=0. (1)

Here the overdot denotes the material time derivakeg (1)

is a purely kinematic relationship that follows from the def-
inition of the Finger tensoB = F - F' in terms of the de-
formation gradient, and from the material time derivative
of the deformation gradierj79]:

F=vVv .F. 2)
or, in component form,

. 0X; ov; oA

FIJ _ Xi Vj 0Xj (3)

5.0 5. 2.0
o ox o

where 9x% denotes the position of a material point in the
reference (undeformed) configuration of the body apds

the position of the same point in the deformed configuration;
summation over repeated indices is implied.

Leonov [37] built the relaxational part of the evolution
equation ofCe from a non-equilibrium dissipative potential,
and constrained the relaxational term to maintain the con-
dition detCe = 1, which insures that the elastic part of the
deformation is isochoric. The elastic stresfllowed from
the derivative of the specific Helmholtz free energwith
respect to the recoverable strain, i.e., the elastic strain:

oa @)

ace’
(SeeAppendix Afor the expression of the derivative of a

scalar with respect to a tensor.) Conversely, the only ad-
missible Helmholtz free energy must be the isothermal in-
tegral of this relation. In theories of elastic materials, inter-

o =20pCe¢-

elastic strain,

o=2oM - S, )
where § = da/oM. Leonov then assumes that the ap-
propriate form of the evolution equation af has as the
time derivative of configuration a corotational, or Jaumann,
derivative,

oM -
57+v-VM—W M-M-W
=De-M+M - De, (6)
where
W=3Vv-Vo) (7

is the vorticity dyadic and Dy is called the elastic rate of
strain; thus, he tacitly assumes that the configuration ten-
sor translates with the liquid’s velocity and rotates with the
liquid's angular velocity—half the vorticityeq. (6) in fact,
defines the elastic rate of stral; its complement is the
rate of irreversible straiiy:

De+ Dp=D=3(Vo+ Vo). (8)
A relationship between the irreversible rate of strdig
and the other variables, i.e., a constitutive equation, must be
specified to close the equation set.
Leonov notes that, under his premises, the rate of entropy
generation per unit volume, can be written as
1 1
sg=——q VT + —a . Dy. 9
g 77 + T p 9)
In linear irreversible thermodynamics, the rate of entropy
generation is usually written as the product of what are called

nal, Helmholtz, and other free energies are ultimately basedthermodynamic forceX; and thermodynamic fluxef, as

on “reversible work”, i.e., the path-independent integral of
the product of the elastic stress multiplied by the incremen-
tal elastic strainEq. (4) generalizes this concept to include
integrals of elastic-like internal variables.

More recently Leonoy65] and Leonov and Prokunig0]

extended this theory to include most of the models that have
been developed from molecular theories by generalizing the

elastic strain tensor to a configuration tenddr (Leonov
used the symbal’) representing the second moment of the
end-to-end connector of the polymer coils in a polymer so-

lution or melt (or the connector between successive entan-

glements). In doing so, Leonov relaxed the constraint det
M = 1in order to include many rate-type constitutive equa-
tions in his framework. The stress-configuration relationship
of Eqg. (4) stayed unchanged. The later theory[@5] and
[80] is briefly outlined below.

sg = ZXka,

k

(10)

and the thermodynamic fluxes are in turn related to the ther-
modynamic forces through the matrix of phenomenological
coefficientsC, asJx = ), Lk J; [43]. Adopting this formal-
ism, Leonov identifiesr with a thermodynamic force and
Dy, with the corresponding thermodynamic flux, and writes
their relationship adp = N : o, whereN is a fourth-rank
tensor that could depend on the configuration tensor and on
the temperatureV should be positive definite to guarantee
that the rate of entropy generatiorky. (8)be non-negative.

2|n this article the term dyadic is used in the original definition of
Gibbs[81].
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o v
BecauseM — D-M — M - D = M, the complete set of (Helmholtz) free energy depends on the the configuration

equations of Leonov’s theory is tensor; (2) the relationship between the rate of change of
v the configuration tensor and the rate of strain tensor; and
M+2M -NM,D:0=0 (11) (3) the the relationship between elastic stress and configu-

ration tensor. The analysis Bection 5.3elow shows that

o=2pM -, (12) only the first two postulates can be made independently,
together with the constitutive equations (M, T) and whereas the relationship between elastic stress and config-
a(M, T). uration tensor follows from the requirement that the local

The coupling between the configuration tensor and the ve-'até of entropy production must be non-negative—i.e., the
locity gradientinEgs. (11) and (12 expressed by means of local form of the second law of thermodynqmps.
an upper-convected derivative, which carries the implicit as- ~ Moreover, Leonov's theory offers no indication on how
sumption that the polymer molecules are deforming affinely t0 extend the relationship between elastic stress and confor-
[5], i.e., the molecular strain equals the local macroscopic Mation to the case of entangled polymeric liquids when an
strain; thereforeEgs. (11) and (12)lo not include constitu-  €xplicit entanglement q§n3|ty variable is introduced. Also,
tive equations that allow slip between the polymer molecules Leonov offers no provisions on how to include effects of
and the surrounding liquid, such as the Johnson-Segalmarnolecular conformation-induced migration in the evolution
equation[82], the Phan-Thien and Tanner equatj6B,84], equation of the configuration tensor. Clearly, the theory is
and the Larson equatidB5]. rooted in elasticity and plasticity, and it can be related to

Leonov generalizeqs. (11) and (12)y introducing the macroscopic transport theories and to molecular theories
concept of a non-equilibrium stress tensge = o /£ and a built on statistical mechanics only with ad hoc adjustments
non-equilibrium irreversible rate of strain in contrast to the (€-g., those oEgs. (15) and (16)
equilibrium irreversible rate of straiPne = £Dp, whereé
is a numerical parameter1 < &£ < 1. The set of equations ~ 3.2. The Generalized Bracket approach of Grmela, Beris,
that includes non-equilibrium stress and irreversible rate of and Edwards

strain is then
In analytical mechanics of idealized, conservative systems

M—-&D-M+M-D)+EM,T)=0 (13) of particles or bodies, the time evolution of a closed, isolated

2p system is sometimes expressed in terms of Poisson brackets,
o= ?M - S, (14) which are useful because they are invariant under canonical

transformationg88], i.e., transformations that preserve the

or, in terms of upper convected derivative, canonical form of Hamilton's equationggs. (17) and (18)
v In analytical mechanics, Newton's equations of motion for a
M+ 1-§D-M+M-D)+EM,T)=0 (15) closed system subject tmnservativdorces are rewritten in

20 terms of generalized coordinates, positighand momenta
o=M-S. (16)  p;, as

. . . . . . oH .

where E(M, T) is an isotropic function of its arguments, ¢, =—, i=1N a7
called the relaxational part of the evolution equationVpf pi
Writing the relaxational part d&q. (15)asE(M, T) is equiv- oH
alent to writing it asN : ¢ because bottV ando depend ~ Pi = “ i=1N, (18)

onM andT only.
Egs. (15) and (16pre general enough to include most where H(g1, g2, . .. , gn, P1, P2, - .- , pn) IS the Hamilto-

known rate-type constitutive equatiofR0]. Leonov [65] nian of the system, i.e., the total mechanical energy, dnd
rejects equations of change 81 where the deformation- is the number of degrees of freedom of the system. If there
dependent part differs from the standard lower={ —1) are two generic functionsg, v, that depend on only the gen-
or upper £ = 1) convected derivatives (see alfg6]); eralized coordinatesg;, p;, then the Poisson brackét, v}

mixed derivatives are rejected because these give rise tocan be defined usefully as

Hadamard unstable equations of motion, i.e., equations of N

motion whose solution does not depend continuously on the ;, -\ _ 3 (3_uﬁ B ﬁﬁ_u) ‘ (19)

initial and boundary conditiond§7], p. 227]. Of course, dq; dp;  0q; Op;

Hadamard instabilities are suppressed if the stress tensor has

a (even minute) viscous component—i.e., a component lin- Because of this definition, the equations of changarof

early proportional to the rate of strain. function of the generalized coordinateg;, p;) can be writ-
The main merits of Leonov's approach are concise- ten in the form

ness and economy. However, this approach carries severalyy,

limitations. Leonovpostulates independentft) that the g = (- H}. (20)

i=1
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Eqg. (20) can be derived by evaluating the time rate of dH

change ofx by means of implicit differentiation and recall- gy — {[H, H]} = {H, H} +[H, H] = [H, H] (30)
ing Egs. (17) and (18) ds

— ={[S,H]} = (S, H} +[S, H]. 31
. i(audqi 8udp,~> oy @ (LS. H]) = (S H) +[S. H] (31)
—ulgi, pi) = A A, A A, . . .
a1 P — \dg; dr ~ dp; dr The antisymmetric property of the Poisson bradket (25)

guarantees thdtH, H} = 0 in Eq. (30) The system’s mass

d N oudH  ou oH and energy must be conserved because the system is isolated,
—u(gi. p) = » (—— - ——) (22) d
dt —~ \ dq; dpi  Ipi 9q; M _

i=1 — = (32)

dr

d
—u(a. pi) = . dH
4. pi) = (u. H) (23) < =0 (33)

The Poisson bracket is a bilinear and antisymmetric operator, S
whereas the entropy of the system may rise in time because

ie., : .

of irreversible processes,
{au, v} = a{u, v} (24)

d—S > 0. (34)
{u + v, wh = {u, w) + (v, w) (25) 9@

_ In a continuum system, the Poisson bracket represents the
{u, v} = —{v, u}; (26) rate of change of any quantity due to reversible processes

therefore{u, u} = 0. This property guarantees the conserva- [2]. The total mass of an isolated system does not change

tion of total energy of a system whose evolution is described because of rever5|bl_e processes; s H} = 0. {S, H}
by the Poisson bracket: represents the reversible rate of change of entropy; therefore,

the Poisson bracket should be built to satigfy H} = 0,
EH — (H H)} =0. @27) because.the entropy of an isolated system cannot change due
dr to reversible processes.

These properties of the Poisson bracket, together with the
conservation laws of madsqg. (29) total energyEqg. (30)
and entropyEqg. (31)for a closed, isolated system pose con-

ditions on the dissipation bracket:

Other properties of the Poisson bracket are discusséz by
The Poisson bracket can be extended to conservative

continuous systems, for example, the ideal fluid and the

non-linearly elastic solid[67] and Ch. 5 of[2]). Kaufman

[89], Morrison [90], and Grmela[66] published the first [ H] =0 conservation of energy (35)
attempts to include dissipation in systems described by _
bracket formalisms by introducing dissipation bracket ~ [M, H] =0  conservation of mass (36)

Grmela and Carreafl], Grmela[38,91] and Beris and
Edwards[2,67,68]used the bracket formalism to formulate
the equations of change of polymeric liquids in a unified \oreover, since the time rate of change ffis linear in
framework based on introducing the conformation tensor, an r the dissipative bracket must be linearfirtoo. From the
expectation value or continuum variable that represents lo- requirements ifEgs. (35)—(37)Beris and Edwards build the
cal average values of stretch and orientation of the polymer most general dissipation bracket admissible for an isolated,
coils. The basic premise is that the dynamics of an isolated cjpsed continuum([®], Eq. (7.1-19)). Beris and Edwards

[S,H] >0 second law of thermodynamics (37)

system can be described by the equati@, [Ch. 7] point out the similarity of postulaté28) to the equations
dF proposed by Prigogine et §82] in their unified formulation
o = \[F.H]} = F.H+[F H] (28)  of dynamics and thermodynamics.

_ ) ) Beris and EdwardgZ], Ch. 8) put forward a unified ac-
where({[-, ]} is called the Generalized Brackgt, -} is the  count of the dynamics of incompressible, isothermal vis-
Poisson bracket,-[] is the dissipation bracketf is the  coelastic liquids developed by using generalized brackets.
Hamiltonian of the system, andl is any function of the  They state that the only variables needed to describe the
state variables. Beris and Edwards motivate this premise bysiate of the system are the momentum dengity= pv,

pointing out thaEq. (28)includes as limiting casdsys. (17) and the conformation densityf = pcp,M, wherep is the

and (18)of Hamiltonian dynamics an&q. (10) of irre- jiquid's density,cp is the number of polymer molecules per
versible thermodynamics. Under this premise, the equations it mass,v is the liquid's velocity, andM = (rr) is the
of change of the total mast, energyH, and entropys of conformation tensor (Beris and Edwards used the syr@bol
the system are for the conformation tensor). The vectois the end-to-end
dm connector of a polymer coil and the symbg) indicates

o = M. H)} = (M, H} +[M, H] (29) average over all possible realizations in phase space.



M. Pasquali, L.E. Scriven/J. Non-Newtonian Fluid Mech. 120 (2004) 101-135 107
The Poisson bracket of this system is taken to be identical transport equations they obtain [, Eq. (8.1-7))
to that of a nonlinearly elastic material (non-dissipative), be- 3
cause of the similarity between the conformation tensor and o V-p (39)
the Finger strain tens@® = F-F', whereF is the deforma-
tion gradient. In a crosslinked rubbéd, = N¢?B/3, where v_ =—pv-Vo—Vp+V.0o (40)
N is the number of statistical segments in a chain between o
two crosslinks and is the length of a statistical segment.
The dissipation bracket{ G] is built as a bilinear form oM = —v- VM +Vo' - M+ M- Vv
to exclude nonlinear transport effed®. [F, G] is written ot Mn S
in terms of the independent variables §y,(Eq. (8.1-5)) rate of change
3 _
[F.G] = / f —d.Q of conformation
oM - oM — A:S + L:Vv (41)
of o8 laxati ffine deformati
V— e BeV—1d relaxation  non-affine deformation
o oM 8M
a = Y 2M - S
- / LIPS v d[.? g =2V o+ M3
Q 8P extrastress yiscousstress elastic stressinduced
of og _f by affine deformation
L e e -
o\ op aM ap oM + 2L: S . (42

—————
elastic stress induced by naffine deformation

whereS = da/dM anda(M) is the isothermal Helmholtz
free energy per unit volume; thereforg€M) is the reversible
work stored in a certain class of processes. The mechanical
pressurep is constitutively indeterminate because the liquid
is incompressible.

Particular models of viscoelastic behavior are recovered
from Eqgs. (39)-(42)y specifying appropriate expressions
of the free energy(M) and the phenomenological tensors
0, A, andL. Moreover, the tensor@, A and the free energy
'must satisfy the conditions imposed by the second law of
thermodynamlcs

S:A:8>0
v:Q:Vv=>0.

(38)

where the symbols( is defined byabc o def = cba:def =
(a-d)(b-e)(c- f). In Eq. (38)the Volterra functional deriva-
tives of the extensive variablds and G used by Beris and
Edwards[2] have been replaced by partial derivatives of
their densitiesf andg with respect to the state variablps
and M because hereafter the functioAs= [, f d2 and

G = [, gds2 are supposed to depend on the state variables
but not on their spatial gradients. The first termEq. (38)
represents the dissipative effects due to molecular relaxation;
the second term characterizes dissipation due to molecular,
diffusion; and the third term expresses the effects of viscous
dissipation. The fourth term dEqg. (38)is not dissipative
and represents interactions between the conformation tenso
and the velocity gradient other than those embedded in the
Poisson bracket borrowed from the elastic solid. The cou- Eq. (43)states that the free energy of the liquid must dimin-
pling between elastic strain and velocity gradient in the Pois- ish during the spontaneous process of molecular relaxation,

(43)
(44)

son bracket of a nonlinearly elastic solid is equivalent to the
assumption of affine deformation of the microstructure be-
cause elastic solids deform affinely by definition; therefore,
the fourth-rank tensoL characterizes non-affine deforma-
tion of the microstructure. Beris and Edwaf{@$ comment

on the meaning of this coupling and point out that non-affine

andEq. (44)states that the rate of working of the viscous
stress must contribute to the local rate of entropy produc-
tion. The two inequalities must hold independently; there-
fore, molecular relaxation and viscous flow must generate
entropy separately.

The Generalized Bracket formalism for dealing with

deformation cannot be included in the Poisson bracket be-flow and transport in viscoelastic media offers several
cause it violates the Jacobi identity, even though it gives rise advantages—and some disadvantages as well. In the bracket
to an antisymmetric, non-dissipative term in the dissipation context, it is clear how to introduce more field variables
bracket. This term was not included in the first articles of into a model of a microstructured material, and how to
Beris and Edwards and was introduced [488]. The pos- describe transport in rather general situatioi2, (Ch. 9).
sibility of non-affine deformation of microstructure and its Moreover, the theory of flow and transport in polymeric lig-
connections with elastic stress and the momentum equationalids developed through the Generalized Bracket is closely
are discussed iBection 7.2 connected to molecular theories based on micromechanical
In the basic theory, Beris and Edwards assume that themodels, although GENERIC seems better suited to describe
liquid is incompressible and neglect diffusion, as has been the connection between the fine-grained and coarse-grained
customary in developing theories of flow of polymer solu- levels of descriptiorj40,69,94,95]
tions and melts, and set the sixth-rank tenBoe 0; diffu- The bracket approach is not free of drawbacks. In the
sion is considered in Ref2] (Ch. 9). The final form of the  authors’ opinion, the mathematics used is so complex as to
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Bracket Approach to Thermodynamics

Nonlinear elasticity Ideal (Euler) fluid ~ Classical transport theory &
(conservative) (conservative) linear |rreyers_|ble thefmoc*ynamncs
(dissipation by diffusion)

Y A A

Formulation using Formulation using Formulation using
Poisson brackets Poisson brackets Poisson & Dissipative brackets

| Postulate: evolution of any I
| system can be described I
| by Poisson & Dissipative brackets |

Linear superposition of
conservation and dissipation

Y

Introduction of microstructure
in bracket form

Y

Dissipation by relaxation
in bracket form

Y

Linear superposition & independence
of dissipative mechanisms

Thermodynamics of
Microstructured Materials

Fig. 1. Schematic development of the Generalized Bracket approach to the thermodynamics of microstructured materials. The Generalized Bracke
approach has been very useful in developing theories of flow and transport in polymeric [2uidhe work of Grmela and Ottingg#0] and the
analysis presented i8ections 4-&how that equally powerful approaches are available that rely on simpler mathematics.

be sometimes opaque and the concepts are not introducedather than the bracket formalism to check existing models
in the plainest and most intuitive way. The equations are of microstructured materials and to develop new ones.
neither used nor solved in the bracket form, and the bracket

is used only to generate the partial differential equations of 3 3 The Matrix Model of Jongschaap

transport as diagrammed Fg. L

Although the laws of conservatiorj of mass and energy  jongschaafid9] and Jongschaap et 48] used internal
and the second law of thermo,dynamlcs are embedded in the 5 iaples to develop a unified theory of isothermal flows of
bracket structure, the system’s transport equations must b&,_gitfusing polymer solutions and melts. The internal vari-

postulated because the bracket formalism—Iike any other gpje of choice was the conformation tenddr(Jongschaap
thermodynamic formalism—does not provide explicit for- o 41 used the symba$). In isothermal, incompressible

mulae for transport coefficients and generation terms. Build- ¢5s Gibbs’ fundamental equation ds= a(M), wherea
ing a specific form of the Poisson and dissipation brackets i the Helmholtz free energy per unit volume of the liquid.

of a system requires making assumptions on how the mi- 1,4 dissipation is

crostructure of the material and the flow interact and affect

each other; these assumptions enter the model through thq-% —T:Vvo—S' M (45)
constitutive equations of the generation (or relaxation) terms

and the diffusive transport coefficients, as usually happenswhere T is the stress dyadic§ = da/0M, and the over-

in thermodynamics. It seems therefore more natural to seekdot denotes material time derivative. Jongschaap €8hl.
an extension of thermodynamics of irreversible processes(p. 775) introduce the principle of macroscopic time rever-
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sal to distinguish reversible and irreversible contributions to More preciselyy and g must be positive semi-definite only
Eq. (45) if they are independent 6fv and S [60]. The tensord can
then be decomposed into a part that multiplies the rate of

The value of the state variables in the Gibbs fundamental . o o
strain and a part that multiplies the vorticity:

equation § = a(M)] and the dissipationllsy] defined by ] !
Eqg. (45)remain unchanged under a reversal of the rates M =AVv,8) : Vo= A W+ AL D. (58)

of change of the external rate variables. ,
Jongschaap et di3] argue that the entropy production rate

Jongschaap et al. motivate this assumption by stating that should be independent of the choice of (rigid) frame of ref-

The dissipation Tsy], being the result of rapid internal ~ €™€Nce: which implies that

fluctuations of variables which are not directly coupled to Aﬁkl = %(MnSjk + Mji ik — MikSji — M Sjk). (59)
the external variables, is expected to be invariant under a ) ) )
macroscopic time reversal. Jongschaap et al3] use isotropic representation theo-

rems to write general formulae for the tensa$, », and
According to Jongschaap’s theory, the only external rate g and show that several models of viscoelastic behavior
variable inEq. (45)is the velocity gradient. The stredS  gare included in their Matrix Model and can be recovered
and the rate of change of conformatisfi are decomposed by specifying particular forms of the tensoss® and g
into reversible and irreversible parts according to whether or (e g, upper-convected Maxwell; Leon{&7]; Johnson and
not their contribution to the dissipation changes sign when segalmar{82]; Doi [96]; Giesekug97]; Larson[85]; and

the velocity gradient is reversed: finitely extensible nonlinearly elastic dumbbgll2]). Fi-
T(Vv, S) = T'(Vv, S) + T' (Vv. S) (46) nally, Jongschaap et al. remark that because these two
_ tensors are independent of each other, it is legitimate to

M(Vv, S) =M (Vv, S) + M' (Vv, S), (47) choose the expression @' suggested by one molecular

) model, and the expression @f suggested by a different
with model, forming thus new hybrid models. Such a sugges-
T'(—Vv, S) = T' (Vv, S) (48) tion has very interesting ramifications for the development

_ _ of modular computer codes for large-scale computational
T'(-Vv,8)=-T'(Vv, S) (49) modeling of flow and transport in microstructured liquids

M (—Vo. ) = — M (Vo. § 50 (complex fluids) because it permits the separation of differ-
(=Vv,8) =-M (Vv,5) (50) ent transport phenomena and different parts of constitutive
i V. §) = i Vv, S). 51 equations m_to small computer modules (objects) at the time
( ) ( ) (1) of code-writing. Such objects can be assembled when the
Eg. (45)and the aforementioned principle of macroscopic computer codes are compiled (once specific constitutive
time reversal give equations have been selected). Creating “hybrid” constitu-
. tive equations becomes then as easy as selecting objects (or
r. . r_
r:Vv-$§:M =0 (52) subroutines) from a library, and new constitutive equations
Ty = T -Vo—S:M >0 (53) can be introduced with minimal effort—see Pasq[&0i for
' T details, Pasquali and Scriv§sB] and Zevallos et a[98] for
The reversible part of the rate of change of conformation is the application to two-dimensional free surface flows, Xie

written as and Pasqua[P9,100]for the extension to three-dimensional
i = A(Vo.S): Vo (54) flows, and Guénettfl01] for an early example.
where A is a fourth-rank tensor, andi(~Vv,S) = 3.4. GENERIC
A(Vv, S). .
The reversible (elastic) part of the stress is thus Grmela and Ottingef40,69] put forward a general for-
LT malism to model systems that are locally not in equilibrium
T"=S:A=4 :8, (55) with respect to transformation. The premise of Grmela and

~T ~ . _ Ottinger[40] is that the evolution of the state variables of
where Ay = Ayij- The irreversible part of the stress and  an jsolated system can be written as

the rate of change of conformation are

dx de ds
T = 9(V0. ) : Vo 6 @=L atM ok (60)
M= _B(VD. S): S (57) wherex is the (column) vector of the state variables that

describe the system, andand s are the energy and the
where » and B are fourth-rank tensors. According to entropy densities of the system; g. (60) the Volterra
Jongschaap et gB], n and must be positive semi-definite  functional derivative of the total energy and entropy have
to guarantee that the entropy production rate is not negative.been replaced by partial derivatives of their densities without
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loss of generality if the energy and entropy densities of the 3.5. Summary of the literature

system depend on the state variables but not on their spatial

gradients. The matrixC is antisymmetric,d - £L = —L - Leonov’s approachSection 3.}, the Generalized Bracket
aV a) and represents the reversible dynamics of the system,approach $ection 3.2 and the Matrix Model $ection
whereas the matri¥M is symmetric and positive definite 3.3 lead to identical results when applied to incompress-
(@M =M -a,a-M-a > 0Va) and represents the ible, isothermal, non-diffusing flows of polymeric liquids
irreversible dynamics of the system. Moreover, the matrices described by an explicit polymer conformation variable,

L and M enjoy the properties except that in Leonov’s theory the expression of the elas-
s s tic stress is postulated and not derived; this excludes from
ﬁ'a = _a'ﬁ =0 (61) Leonov's theory some models which are admissible in
%  Be the Generalized Bracket and Matrix Model—for example,
M —=—.M=0:; (62) the partially retracting non-affine motion of Lars@t06].
dx  ox Moreover, it is not clear how to extend Leonov’s ideas to in-

i.e., the gradient of the entropy with respect to the state clude explicitly the entanglement density in the set of state
variables is always in the null space 6f and the gradient  variables.

of the energy with respect to the state variables is always The Generalized Bracket formalism, the Matrix Model,
in the null space ofM. This property guarantees that the and GENERIC can be extended to include the entanglement
principle of conservation of energy and the local form of the density in the state variables (for example, a brief analysis

second law of thermodynamics are always satisfied, of theories that account explicitly for entanglements can be
de dx e de Qe s found in Sec. 8.2.2-C d&], and a more recent theory which
C= 5 dr ox L ax + % M- o 0 (63) accounts for a tensor and a scalar variable has been reported
9 dr s % s 2 by Ottinger[107]). Yet, it is not evident whether the sym-
f=—  —=— . L. — 4+ — . M.—>0. (64) metries that are implicit in the Generalized Brackat¢tion
dx dr  ox dx  ox dx 3.2), in the Matrix Model Gection 3.3, and in GENERIC

The GENERIC framework is very general and has been should be imposed on the equation set.

applied to a number of systems both at the macroscopic and The structure underlying the Generalized Bracket ap-
microscopic level. The chief difference between GENERIC proach, the Matrix Model, and GENERIC is that lofear

and the Generalized Bracket approach is that GENERIC isirreversible thermodynamics, even though non-linear effects
a “double generator” formalism (i.e., it employs separately have been introduced into all approaches—for example,
energy and entropy in the fundamenk. (60) which is the tensorsA in the bracket approacte. (38) and the
applicable to situations where no concept of temperature Matrix Model (Eq. (54) and the matrixM in GENERIC

is available. The relationships of GENERIC to the Matrix (Eqg. (60) can depend on the conformation tensor. More
Model and Generalized Bracket approach have been examspecifically, the equations of change of microstructure are
ined by Edwards et aJ102], Edwardq103]and Jongschaap assumed to depend linearly on the velocity gradient. The
[104]. When applied to macroscopic models, the operator currently available models of interaction between flow and
formulation of GENERIC requires simpler algebra than the polymer conformation happen to tieear in the velocity
Bracket approach. Whereas at the microscopic level somegradient Gection 7.2, therefore, it is not surprising that
of the symmetries of the matricésand M can be derived  the Generalized Bracket and Matrix Model successfully
(for example, the Onsager relations), it is not clear yet to generalized the theories of flow of polymeric liquids with
the authors whether such symmetnessthold at all levels a conformation variable. The published models of inter-
of description—specifically at the macroscopic level, and action of flow and entanglements either assume that the
when the matrice£ and M are allowed to depend on the entanglement and disentanglement processes are indepen-
state variables. One notable advantage of GENERIC is dent of flow, or assume aonlinear relationship between
that it is invariant to a nonlinear change of state variables entanglement generation and velocity gradient: it is not
y = f(x), provided that the mapping’ is one-to-one  clear to the authors whether the Generalized Bracket ap-
(bijective)—i.e., the Jacobian of the mappigf= df/dox proach, Matrix Model, and GENERIC can accommodate
is invertible everywhere. (This addresses a long-standingthese modes of interaction between flow and entangle-

criticism of the Onsager relations by Truesd&l05].) This ments.

can be verified easily because the new state variaples A different approach to the mesoscopic modeling of mi-
obey the dynamical equation crostructured liquids is presented here. It extends classical
dy . Oe -9 continuum thermodynamics based on the hypothesis of lo-
il L ay + M- 9y’ (65) cal equilibrium, but assumes no intrinsic symmetries in the

transport equations of microstructure. The physical prin-
wherel = JLJ" is skew-symmetric ifC is skew-symmetric, ciples and assumptions needed to arrive at the results of
and M = JMJ" is symmetric and positive definite ifit Leonov, Grmela, Beris and Edwards, Jongschaap et al., and
is so, provided thay/ is invertible. Grmela and Ottinger are identified, and the modeling is ex-
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tended to include the effect of changing entanglement den- (a) mass element
sity on the flow of polymer solutions and metts. '

rigid, no change

impermeable, in state

adiabatic variables
walls

4. Thermodynamics with microstructural variables
element «
Macroscopic thermodynamics deals witquilibrium

statesin which the state variables of a system do not change,
and equilibrium processesn which the state variables
change so slowly that at any instant the system is approx- ()
imately in an equilibrium state. For this to be possible, on
the time and length scales of observation spatial gradients

mass element

time

of the state variables of the thermodynamic system mustbe / — * N\ rigid, state
very small, and the microstructure and the chemical com- “mass 2t M abatic”‘ahange.
element . walls in time

position of the material must equilibrate rapidly to their
natural states. If finite gradients of the state variables occur,
then the system is not in equilibrium with respectrans-
port; if the microstructure or chemical composition change
in time when gradients are absent, then the system is not Fig. 2. Non-reacting (a) vs. reacting (b) systems.

in equilibrium with respect tdransformation This latter

case includes chemically reacting systems; it also includesfractions of the reacting chemical species change in time
systems in which shrinkage or swelling is delayed upon (Fig. 2(b) until the reactions reach equilibrium: the mass el-
change in temperature or composition. ement evolves spontaneously to a new state. The entropy of

Macroscopic thermodynamics is used with extraordinar- the mass element grows in time, and the assumption of lo-
ily few exceptions to relate local properties, even when there cal equilibrium means that the relationship between entropy
are gradients and when the system is undergoing transfor-and state variables holds even though irreversible processes
mation: the tremendously useful conditionlo€al equilib- are occurring due to the chemical reactions. Of course, the
rium, introduced by Gibb$108], is at the foundation of  choice of a time scale is implicit in the definition of equi-
the whole thermodynamics of continua and of the theory of librium with respect to transformation. For example, a mix-
transport phenomena. The local equilibrium hypothesis saysture of hydrogen and oxygen at standard temperature and
that (43], Ch. 3) pressure is not at thermodynamic equilibrium with respect
to reaction; but, absent a spark, such a mixture is changing
so slowly that for most purposes it can be taken as in ther-
modynamic equilibrium.

Microstructured liquids are similar to chemically re-
acting systems. The microstructure of the liquid is often
displaced from its equilibrium state during flow. If a small
mass element of the flowing liquid were isolated from its
This relationship between the state variables is called Gibbs’ surroundings, it would not be at equilibrium with respect
fundamental equation. to transformation: its microstructure would evolve in time

In low-molecular weight, non-reacting liquids and gases, to a natural state, and the state of the system would not
the assumption of local equilibrium implies that an infinites- change spontaneously thereafter. The characteristic time
imal element of mass would be at equilibrium (i.e., the value scale of microstructural evolution is frequently longer than
of the state variables would not change) if it were isolated the shortest timescales of practical interest in a process or
from the system by rigid, impermeable, adiabatic walls, i.e., flow, so that the microstructure cannot relax completely on
the value of the state variables in the infinitesimal mass ele- the faster time scale of interest. The same can be true of mi-
ment would be constant in tim&ig. 2(a). In particular, the crostructural relaxation required for shrinkage or swelling
entropy of the mass element would not change in time, and upon rapid change in temperature or composition.
no irreversible processes would occur. This interpretation of  This behavior of microstructured liquids can be exempli-
local equilibrium must be altered when chemically reacting, fied by the elastic recovery of a polymeric liquid (melt or
low-molecular weight liquids and gases are considered. In ansolution) following a sudden shear strain and subsequent re-
isolated infinitesimal mass element of the system, the massmoval of the boundary condition responsible for that strain.

When a sudden shear strain is imposed on a polymeric

3 The mutual relationships of the different approaches to microstructure liquid, the macroscgplc d.e_formatlo_n C.JISp'laceS the polymer
modeling and their ties with other thermodynamic theories are diagrammed Molecules from their equilibrium distribution of conforma-
in Fig 1.3 of [60]. tions, and this induces a measurable non-isotropic stress: the

. although the total system is not in [thermodynamic]
equilibrium, there exists within small mass elements a
state of “local” [thermodynamic] equilibrium, for which
the local entropy is the same functions[= s(u, v, ci)]
of u [internal energyly [specific volume] andy [mass
fractions] as in real [thermodynamic] equilibrium.
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local deformed configuration of the liquid differs fromits lo-  characteristic relaxation time is larger thag are included
cal stress-free state—i.e., free of all stress, including elastic,in Gibbs’ equation; therefore, work done on the liquid to
or recoverable stress. If after the straining the boundary of displace the microstructural variables from their equilibrium
the liquid is held in place, the polymer molecules rearrange values is completely reversible on time scales much shorter
spontaneously, and the non-isotropic stress relaxes in timethan A, and completely irreversible on time scales much
to its isotropic equilibrium value; during this relaxation, the longer thaniy. Conversely, microstructural processes that
local stress-free state of the liquid evolves towards the local relax faster than, are dissipative, whereas microstructural
deformed state. If the boundary is freed after a long time, processes that relax slower thagq are reversible (on short
the liquid remains in its sheared configuration because thetime scales) and contribute to reversible work storage.
polymer molecules have rearranged and the sheared config- An additional restriction is placed on the microstructural
uration has become the new stress-free state. variables, that they should be extensive variables. Extensive
However, if the boundary of the liquid is freed after atime variables are preferred to diffusive fluxes—which are used
shorter than that needed for a complete rearrangement ofin extended irreversible thermodynami@®,114,77}for
the polymer molecules, the sheared configuration does notconsistency with Gibbg108] original postulate that the in-
coincide with the stress-free state: the liquid evolves by ternal energy of a system is a homogeneous function of all
essentially elastic displacement (recovery) to a stress-freeextensive variables ([see al§bl3], p. 14 and 29]). More-
configuration which is intermediate between the initial over, any extensive variable per unit volud@beys a trans-
configuration at rest and the sheared configuration. This port equation of the type
phenomenon, known as recfdl,109,110] was observed as

early as a century ago by Trouton and Andrdds1] and ob

Fano[112]. Interestingly, Trouton and Andrews connected Tt v L’?L + Jo + @9 . (66)
il wi ili i i i — convection  diffusion ;

:]ceorg )\//}nth the ability of a material (pitch) to store elastic accumalation generation

wherev is the liquid’s velocity,J ¢ is the diffusive flux of®,
and®y is the local volumetric rate of generation®f Thus,
it is convenient to write the transport equations in terms
of extensive variables per unit volume. Incidentally, such
a form of transport equation is illustrative when deriving
models because it separates clearly the effects of transport
(flux term) and transformation (generation term) which can
be linked directly to microscopic modefs.

The local form of the second law of thermodynamics re-

A thought experiment can be constructed where the shearquires a non-negative generation term in the entropy bal-
is imposed in a vanishingly short time, and then the liquid ance equation, and this condition sets constraints on the ex-
is freed immediately. In this limiting process, the polymer pressions of the diffusive fluxes and the generation terms in
molecules have no time to rearrange after the straining, andall balance equations (see also the landmark paper by Liu
the stress-free state remains the initial unsheared configura{115]). These constraints alone simplify only slightly the
tion: the shear stress in the liquid is wholly recoverable, or constitutive equations of the diffusive fluxes and the gen-
elastic, and the liquid returns back to its initial configura- eration terms. However, important simplifications and con-
tion, like an elastomeric crosslinked rubber. clusions can be derived by further assuming that the diffu-

Material and process time scales are particularly sive fluxes should be linear functions of the thermodynamic
important in a thermodynamic theory of processes of mi- affinities, which are the spatial gradients of the conjugate
crostructured materials because a well-defined separation othermodynamic variables—the derivatives of the internal en-
material and process time scales is rarely possible. The roleergy with respect to the thermodynamics state variables. This
of time scales in process thermodynamics is thoroughly an- assumption has proven adequate to describe flow and trans-
alyzed by Wood$113], with particular reference to internal  port in low molecular weight liquids and gasgs], but its
variables. The basic idea used here (gftdB]) to introduce applicability to transport in macromolecular liquids has not
microstructure in the thermodynamics of microstructured been confirmed experimentally yet.
liquids is that there is a time scalg, that can be used Further constraints on the constitutive equations and
to separate “fast” dissipative processes like viscous flow, on the possible coupling of the diffusive fluxes with the
and “slow” dissipative processes like the rearrangementthe thermodynamic affinities can be obtained by invoking
of macromolecules in a flowing liquid, and that the slow isotropy, objectivity and frame indifference. These princi-
dissipative processes can be considered conservative on the
time scalein.

The local equilibrium hypothesis is assumed to hold on  4gq. (66)is also a useful framework for developing computational
that time scalé.,,, and the microstructural variables whose codes based on finite elements and (even more so) finite volume.

[...]onremoving the stress there is a flow back in the op-
posite direction, which gradually diminishes to zero with
time. [...] Evidently, to do this, energy must have been
stored in the substance in the form of elastic strain.][

a store of elastic energy is gradually accumulated, which
is preserved intact during the state of steady rotation, and
is given out on removal of the stress to produce the return
flow.
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ples are sometimes misusgtl 3], and their applicability
depends on the particular microstructural material in hand.

The following algorithm (the idea of an algorithm is bor-
rowed from the work of Kuikerj116] on thermodynamics
applied to linear viscoelasticity) summarizes the steps lead-
ing to a theory of flow and transport in liquids with relaxing
microstructure consistent with continuum thermodynamics;
the detailed derivation is presentedSection 5

Select a time scale A, that is appropriate to the ma-
terial and the process

Identify microstructural variables that cannot relax on
the time scale A

Apply the principle of objectivity: microstructural vari-
ables must be independent of the frame of refer-
ence in which time derivatives are evaluated, i.e.,
they must be objective scalars, vectors, dyadics,
or higher rank tensors

Recast microstructural variables as extensive vari-
ables

Write Gibbs’ equation: internal energy u is a function
of all extensive variables x;: u = u(x1, ..., xy)

Write transport equations of all extensive variables
per unit volume

Couple the transport equations with Gibbs’ equation
and compute the local rate of entropy generation
Sq

Simplify transport equations if appropriate (e.g. ne-
glect diffusive fluxes)

Enforce sg > 0 for all possible processes (local en-
tropy production inequality)

Always appropriate

e Use representation theorems on tensor-valued
isotropic functions of tensors to build general
constitutive equations of the fluxes and the gen-
eration terms

Apply the principle of indifference to the choice
of any rotating rigid frame: sg must not depend
on the rigid, rotating frame with respect to which
time derivatives are evaluated

Sometimes appropriate

e Postulate linear relationship between diffusive
fluxes and thermodynamic affinities

Postulate linear relationship between generation
terms and thermodynamic affinities

Break thermodynamic affinities into orthogonal,
i.e., independent, parts ([43], p. 58)

Assign time-reversal (motion-reversal) parities
to diffusive fluxes and generation terms, i.e.,
establish which fluxes and generation terms
would change sign (odd parity) and which would
retain their sign (even parity) if the velocity of
all molecules was suddenly reversed; derive
Onsager’s reciprocal relations ([113], p. 163 ff.)

113

Derive relationships between diffusive fluxes from lo-
cal entropy production inequality

Derive relationship between elastic stress and state
variables from the local entropy production in-
equality

Derive constraints on the constitutive equations of
the fluxes and generation terms from the local en-
tropy production inequality.

5. Application to polymeric liquids

The polymeric liquid considered here is a one-component,
compressible, non-reacting continuum, i.e., the fluctuations
in expectations are negligible compared to their means. The
local form of the balance equations of mass, momentum,
mechanical energy, internal energy, and entropy in the ab-
sence of electromagnetic fields is

dp
- =-V. 67
o pv (67)
d
Epv:—v.(vpv—T)—pV(H) (68)
Oo(trso
—p| zv

a2

1 2 T

=—-V-(vp 5V +O)|-T-v)-T":Vv (69)
d T
5pu=—V-(vpu+Ju)+T Vo (70)
&ps =—V.(vos+ Js) + sq. (72)

Here p is density,v is the magnitude of the velocity vector
v, O is the potential energy per unit mass due to stationary
external fields such as gravit¥,is the total (Cauchy) stress
dyadic, V is the usual gradient operator in physical space
(V = 9/0x), u is the internal energy per unit magk, is the
diffusive flux of internal energy is the (total) entropy per
unit mass,Js is the diffusive flux of entropy, ansl is the
local volumetric rate of entropy generatidn.

The polymeric liquid is assumed to be in equilibrium
for an observer who examines it on a time scale much

5The total entropy of an ideal rubber decreases during isothermal
deformations, yetq = 0. During the isothermal deformation of a rubber,
the internal energy stays constant even though the environment is doing
work on the rubber; thus, there is a positive flux of heat (i.e., entropy)
from the rubber into the environment. Such heat flux is responsible for the
decrease in the rubber’s configurational entropy; because the temperature
stays constant, the vibrational entropy of the rubber does not change. In
an adiabatic deformation of a rubber, the total entropy of the rubber stays
constant, while at the same time the temperature grows. The temperature
increase is accompanied by an increase in vibrational entropy which
balances the drop in configurational entropy caused by the deformation
[117].
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shorter than the characteristic relaxation time of the macro- are eliminated must either be fast compared to the dynam-
molecules. The fundamental equation has to account there-ics of the reduced variables or else they must be expressible
fore for the relevant non-relaxed molecular processes. The(at least with reasonable accuracy) in terms of the reduced
two important phenomena are the stretch and orientationvariables alone.
(conformation) of the molecules and the formation and The extensive variables that characterize the thermody-
destruction of entanglements. The latter phenomenon isnamic state of a fluid element are therefore the specific in-
relevant when the liquid’s concentration is high enough ternal energy:, specific entropy, specific volume = p~1,
that entanglements between polymer molecules are im-augmented by conformation per unit mads and number
portant [8,10}—equivalently, if the motion of each poly- of entanglements per unit massThe conformation dyadic
mer molecule is confined to a tube-like region by the can also be expressed in terms of the normalized distribution
presence of surrounding moleculgkl]. The former can function y(r) = ¥(r)/cp by
(approximately) be accounted for by a symmetric and
positive-definite dyadicM, the conformation dyadic; the M =cp / dry(r, x, rr = cp(rr) (73)
latter, by a scalae, the number of entanglements per unit reg®
mass. In the case of rod-like polymers, molecular stretching where
is less relevant and the conformation dyadic can often beC _ f dr(r. x. 1)
taken to have constant trafz11]. At high enough concen- P= reR3 T
tration, rod-like polymers order spontaneously into liquid
crystalline mesophases, and this ordering must be accounte
for [2]. The treatment below is restricted to liquids which
are isotropic in the absence of flow.

In a molecular theory of polymeric liquids, at each point
in space the liquid is fully characterized once the expectation # = u(s, v, M, e). (75)
value of the distribution functiod(r, x, r) of segments is
given, where¥(r, x, t) dr dx is the number of segments per

(74)

és the number of polymer segments per unit mass of the lig-
uid. Under the hypothesis of local equilibrium, Gibbs’ fun-
damental equation of thermodynamics that relates all exten-
sive quantities per unit mass is

The general transport equations of microstructure are

unit mass of liquid whose end-to-end distance falls between ﬁpe =—V.(voe+ Je) +eg (76)
r andr + dr, and whose center of mass is betwaeand ot
x + dx. In dilute solution theories; is usually the coil's d
end-to-end distance; in theories of entangled solutioiss EPM ==V (vpoM + Jm) + My (77)

the distance between successive entanglements on the same T
S . . . . where Je and J s are the diffusive fluxes of entanglements
coil; in theories of crosslinked rubbers,is the distance : .
: : , and conformation andg and Mg are the local volumetric
between consecutive crosslinks. In such a detailed theory all

. : . rates of generation of entanglements and conformation. Be-
the thermodynamic functions of the material element located ; : e
SN ) causeM is a symmetric tensor, the diffusive fluky must
at the position in space at timer can be calculated from

the knowledge ofl(r, x, r). In this caseM can be defined .be .symn_1etr|c with respect to transposition of its .Iast two
. LT . indices, i.e..Jmik = Jmikj, and the rate of generatiai g
in terms of the distribution functio@(r) as . T
must be symmetricMy = M.
(72) The transport equations of thermodynamic variables can

M(x,t) = drw(r, x, Hrr. )
0 /reR3 i ) be rewritten as

The information carried by is not all of that carried by; v=vV-v (78)
therefore, a theory that relies @ in place of¥ is not as . .

. . . . =-V. T:V 79
detailed. Still, the molecular theories developed to describe pu Jut v (79)
the behavior of polymeric liquidd 2] relate the elastic stress  ps = —V - Js+ sg (80)
dyadico to the second moment @¥ and it is reasonable v 81
to expect that a single dyadic-valued variable and the en-P¢ ="V Jeteq (81)
tanglement concentration may describe adequately the interpp1 = —v . J,, + Mg, (82)
nal state of the flowing liquid. (However, in more detailed ) S
models a coil is described by a chain of connected beads where the over-dot stands for the material (substantial) time
and r represents the connector of two consecutive beads.)dervative i = du/d+v-Vu. Itfollows from Gibbs’Eq. (75)
Ottinger and Grmela[§9], p. 6648) remark that a thermo- that
dynamic description in terms of the second moment of the . ou. 0w du. Ou .7
distribution function “can only be valid if all the higher mo- =TV T 5 T M
ment; el_ther are fqnct[f)ns of the secpn_d moment or poSsess _ LA deed S MT’ (83)
a rapid time evolution.” Of course, this is always true when
one tries to reduce the number of variables used to describewhere T = du/ds > 0 is defined to be the thermody-
any dynamical system—the dynamics of the variables that namic temperature-7 = —du/dv is the thermodynamic
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pressur®, ande = du/de andS = du/dM are the conjugate  the constitutive equations can still be non-linear functions
variables of entanglement and conformation density, here-Of the state variables v, e, M. Such constitutive equations
after termed microstructural affinities. are called quasilinear phenomenological laws, and are nor-
Multiplying Eq. (83) by the density, using the balance mally used in theories of transport phenomena. For exam-
equations, the symmetry af, and the identities ple, Fourier’s law of heat conduction says that the heat flux
Ju = —«(v, H)VT is a linear function of the gradient of
IV -Js=V-(TJs) = VT s temperature, but that it can depend arbitrarily on the temper-
ature and on the specific volume (or the pressure) through
the thermal conductivity ([42], pp. 249-262)—provided
thatx > 0. Similarly, Newton's law of viscosity says that
the viscous stress must be linearly proportional to the rate of
strain, but the viscosity coefficient can depend non-linearly
on the temperature and specific volume or pressi],(
pp. 15-29).

Taking constitutive equations of the generation terms that
The second law of thermodynamics requires that- 0 are linear functions of ande does not lead to significant
in any admissible process satisfying the balance laws, simplifications, yet it restricts unnecessarily the range of ad-
Egs. (78)—(82) This local statement of the second law of missible constitutive equations; therefore, this hypothesis is
thermodynamics is hereafter termed local entropy produc- not adopted here. A similar situation arises in multicom-
tion inequality; in the absence of microstructural variables, ponent reactive media, where the rate of reaction usually
the local entropy production inequality is equivalent to the depends nonlinearly on the chemical affinities—the deriva-
local Clausius—Duhem inequality used in rational thermo- tives of the internal energy with respect to concentration
dynamics [118], p. 295). at fixed entropy and specific volume—and the linear laws

The first term inEq. (86)is the divergence of a flux; break down [43], pp. 205-206).
therefore, it is not definite in sign and must vanish, leading  The diffusive fluxes of entropy, entanglements, and con-
to the relationship between the diffusive fluxes formation and the stress are each split into a term indepen-
JumTJeteTot Jor: S (87) dent of the thermodynamic affinities (respectivel, JS,

! s er M2 J%,, ando) and a term linearly dependent on the thermody-
(of course, J,, is determined only within a divergence-free namic affinities (for the stresg = o + 7, o is the elastic,
term) and the expression of the entropy production rate  Or non-dissipative part, and is the viscous, or dissipative

part):

(84)

SV Iu=V-(Ju:S)—VSeJy, (85)

yields the expression of the entropy production rate:

Tg =V -(—Ju+TJs+eJet+tIu: S+ T —7al): Vv
— (VT - Jo+ Ve Jo+VS o Jy)—(ceg+S: My).
(86)

Ty=(T —#7I):Vo— (VT - Js+Ve- Je+VSe Ju)

— 70 _ gss. _ rse, _rsM _rsv.
_(Eg+S:Mg). (88) JS—JS L vT L Ve L .VS L Vo
(89)
Not all the terms inEq. (88)necessarily produce entropy:
some terms might give a negative contribution to the rate

— 70 _ ges, __gee, _geM __gyev.
of production of entropy which is balanced exactly by other =Je— L7 VI —L™-Ve— L™ ¢ VS - L™ : Vv

Je

terms inEq. (88) It does not seem possible to extract any (90)
more information fronEq. (88)without invoking additional

principles (like the principle of macroscopic time reversal, j,, = J?W —IMs . yT —Me e LMM g y5

Section 3.3and[3]) or making further assumptions on the LMy -y, @1)

form of the constitutive equations of the fluxes and gener-
ation terms; thereforeiq. (88)should be used to check if
general nonlinear constitutive equations obey the second lawT =0 + L” - VT + L . Ve + L*"M « VS + L™ : Vv

of thermodynamics. (92)

5.1. Quasilinear phenomenological laws eg = 68 LS. VT 4+ 7%, Ve + RM ¢ VS + R - Vo

Important simplifications can be introduced by assuming (93)
that the constitutive equations of the fluxBsJs, Je, Jm
and of the generation terneg, Mg are linear functions of ~ My= Mg +RYS . VT + RM . Ve+ RMM o VS
the velocity gradienVv and of the thermodynamic affinities Mo .
VT, Ve, VS. This assumption is not very restrictive because +RT Vo (94)
The tensord.SS, LSe, L*M .. RM? are called phenomeno-

6 The negative sign comes from the convention in thermodynamics that l0gical coefficients. The phenomenological coefficients de-

compression is positive and tension is negative.

noted byL couple diffusive fluxes to affinities, whereas those
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denoted byR or r couple generation terms to affinities. The + VL™ :Vo+ (0 — 7l —eR® — S : RM) : vy
first superscript denotes the type of flux or generation term; )
the se(?ond, tr?e affinity. The pr?enomenological coefficients B (668 +5: Mg) 20 (95)
r®s, re as well as the fluxeg? and JQ are first-rank ten-  for all possible values of, v, e, M, VT, Ve, VS, Vv. The
sors (vectors)LSS, L€, LS, L®®, R’ are second-rank ten-  variablesV7, Ve, and VS appear only in the first brace of
sors (dyadics)L*?, Le*, L*, L¥, R°M | RMs, RM¢ and JS, Eq. (95) therefore, the diffusive processes driver\y, Ve,
are third-rank tensorsLM LM Ms [ Me [vo RMv gre andV S must produce entropy independently of momentum
fourth-rank tensorsl.M?, L *M RMM ge fifth-rank tensors;  diffusion and of entanglement and conformation generation.
and LMM s a sixth-rank tensor. All the fluxes and genera- Hence, in matrix form
tion terms are polar scalars, vectors, and tensors, i.e., they ss se M

. . -L>> -L>% -L*" e
do not change sign if the handedness of the basis is changeT w ou ]

(see[113] for a useful discussion). Because all the affini- | VT'V_"V - Les L% LM,
ties inEqgs. (89)—(94pre also polar tensors, so must be the oL Ms. oLMc. oMM,
phenomenological coefficients. The phenomenological co-
efficients are independent 87, Ve, VS, andVv and must £
be isotropic functions of the state variables, e, M. vT
No polar vector can be built from a combination of a ou
symmetric second-rank polar tensor, polar scalars, and the x Vg >0 (96)
isotropic tensord (second-rank idemfactor, polar) ard u
(third-rank alternator, axial)60]; therefore s = 0, r¢€ = B

0, J2 = 0, and J2 = 0. Similarly, no polar third-rank
or fifth-rank tensor can be built from a combination of for all possible values oVT, Ve, and VS; thus the ma-
the state variables and isotropic tensors; therefore, all thetrix £ must be positive semidefinite. All the second-rank
third-rank and fifth-rank tensors vanish. Consequently, in tensorsL®®, L%, L®, and L®¢ are symmetric because they
this system fluxes of even tensorial-rank do not couple with are isotropic functions of the symmetric tensddrand the
affinities of odd tensorial rank and fluxes of odd rank do scalarss, v, e.
not couple with affinities of even rank, because the only
anisotropy of this system is represented by the second-rank2.2. Onsager’s reciprocal relations
symmetric polar tensa¥..’” This property of some systems
is sometimes called Curie’s Principle, even though it follows ~ The general applicability of Onsager’s reciprocal relations
from isotropy and representa’[ion theorqﬁ%]_ Moreover, is still a controversial issu505,113]and their use may or
isotropy has the (quite intuitive) consequence that there can-not be appropriate in this case. It is beyond the scope of
not be fluxes of entropy, entanglements, and conformation this article to discuss whether Onsager’s reciprocal relations
in the absence of spatial gradients of temperature and mi-should be used when they cannot be derived from micro-
crostructural affinitiegven in the presence of a macroscopic SCOpic considerations.
Ve|0city gradient whereas there can be a non_\/anishing IfOnsager’s reciprocal relations hold,then the of'f—diagonal
stress even in the absence of a velocity gradient. tensors in the matrixC are related[(13], p. 163). The par-

The flux of conformation is symmetric with respect to ities of all the fluxesJs, Je, and Jy under a macroscopic
transposition of the last two indicegy ik = Jumij, and time-reversal is odd-1); therefore, the second-rank ten-
so is the conformational affinity S becauseM is symmet-  Sor L% = L°T, the fourth-rank tensorgsyf = L¥, and
ric, i.e., V Sk = V;Si; therefore, the phenomenological L¢M = L¥¢, and the sixth-rank tensdtMM — MM

= . Y . j ij ijkpar pari

coefficients have the following symmetrlesfj‘ﬁ,A = L{l‘fjf; - . " o
IMe _ pMe. psM _ [sM. peM _ peM. [MM _ [ MM . or, in invariant notationag - L : dcb = dcb : L"* - a,

ijk ikjl * *ijkl ijlk * ijkl ulk.’ ijklpg ikjlpg’ oM o Me C MM .
LM, = LY. The entropy production ratéq. (88)re- a-L :dcb=dchb: LY a, andabc : L™" = def =
duces to def : LMM:qp¢ for any choice of the vectors, b, . .. , f.
The cross-coupling terms relating the vector fluxes of en-

_ ss se M
Ty ={(VT - (L% - VT + L%®- Ve + L*" o VS) tropy Js and entanglementge to the third-rank tensov S

+ Ve - (L®. VT + L®®. Ve + LM ¢ V) need not vanish. Coupling terms of the form
Ms Me MM
FVSe (LT VI LT Vet LT e V) Ll = LG = ao(8idu + Sidj + 8idj0)

_ + o1 (MM + MM + Mj Mjk)

“In case of anisotropic media, the tensors describing the anisotropy 2.9 2.0 2.9
of the medium must be added to the list of variables that can be used +0‘2(Mij M, + MiijI + MiIMjk)
in the constlt‘utlve equations for the phenomenologlca_l coefficients. Such +013(3ij My + 5iijI 4 5i|Mjk + Mij S + Mik5j|
tensors may introduce other couplings between the various thermodynamic 2 s s s
variables. + M 6jk) + aa(di My, + SikM“ + & Mjk + Mij8k|
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+ M38) + M38)) + as(Mij Mg, + Miij2|

+ MM + MMy + MM + MiMyo — (97)
wherea; = «;(s, v, e, M), are isotropic inM and satisfy
Onsager’s relations as well as the other symmetries previ-
ously established; thus, they should be admissible. Beris an
Edwards [2], EqQ. (9.1-2), p. 329) excluded a cross-coupling
between flux of entropy and conformation gradient (and flux
of conformation and gradient of entropy) because this cou-
pling is not allowed by the Curie’s Principlg], p. 2476);
however, later they stated that they excluded from the dis-
sipation bracket some terms which were unlikely to con-
tribute to the physics of the situation even though such
terms were compatible with the Curie’s Princidl&l9];
cross-coupling terms between different rank tensors are in-
cluded, for example, in the description of stress-induced dif-
fusion in Egs. (9.2-6)—(9.2.8) ¢2].

5.3. The stress dyadic

The termVwv : L* : Vv must also give a positive entropy
production; thereforeL®’ is a positive definite fourth-rank
tensor, the viscosity tetradic, and the viscous stress-=is
L™ : V. If Onsager’s relations hold, thebi’;i’(’, = Lﬁﬁj. If
the stress tensor is symmetric, as it commonly is in polymeric
liquids, thenL®® has the following symmetrietﬁﬁl = Lj';l'(’l,
and Lﬁﬁl = Lﬁﬁ( and the viscous stress is= L : D,
whereD = (Vv + Vv')/2 is the rate of strain.

The contribution to the entropy production rakg( (95)

(a —FI—¢R®—S: RM”) - Vo (98)
changes sign if the velocity is suddenly rever§gld there-
fore, it cannot be positive definite, and it should vanish. It
can be split into two independent parts by defining the ten-
sors

MD
Ry

Mv

= %(Rijkl + Rfj‘ﬁ(") (99)

MW _ 1 pM M
Rig" = 5 (R’ — Ryj) (100)
such thatRM* = RMD  RMW RMD s symmetric with
respect to transposition of the last two indices, wheR4¥
is skew symmetric with respect to transposition of the last
two indices. Then
RM:vy=RMP . p 4 RMY . w (101)
whereD is the rate of strain anW is the vorticity dyadic. In
polymeric liquids the stress dyadic is symmetric; therefore,
o : W = 0. R is an isotropic function of the symmetric
tensor M; therefore, it is symmetric an®“®* : W = 0.
Eqg. (98)can be rewritten as

S:RMPy:D+S:RM :w=0
(102)

(0 — 7l —eR” —

d

117

for any value ofD andW. The rate of strain and the vorticity
are independent; therefore, the elastic steesrist obey the
equation

o =7l +€R”+S: RMP (103)

which shows that the elastic stress is related to the part of
the generation terms of entanglements and conformation that
depend on the rate of strain—an equivalent relationship was
derived by Ottingef107]. It is important to point out that
the expression of the elastic stressiéivedhere, as in the
Generalized Bracket, Matrix, and GENERIC approaches,
whereas it ipostulatedn the approach of Leonofzq. (102)

also implies that

S:RMV . w=0 (104)

for any skew symmetric tensd¥. However,Eq. (104)is not
an additional constraint oRM" because any fourth-rank
tensor isotropic inM, symmetric with respect to transpo-
sition of the first pair of indices and skew symmetric with
respect to transposition of the second pair of indices enjoys
that property[60].

The mechanical pressupgmean normal stress) is related
to the thermodynamic pressurer by

p=—3T=—7 — ZetrR® — 35 : RMP . 1
—3I1:L™:D. (105)

To recover the definition of thermodynamic pressure at equi-
librium with respect to transporMp = 0) and microstruc-
tural changesM = M°, ¢ = ¢°), the relationship
(e, MO)trRe*(e°, M©)

+58@E° M® : RMP (O M%) :1=0
should hold.

(106)

5.4. Microstructure relaxation

The last term inEqg. (95) must be non-negative be-
cause it is independent of the other terms in the expres-
sion of the entropy production rate. This term represents
entropy generation due to re-equilibration of microstruc-
ture, i.e., relaxation and re-entanglement of the polymer
molecules:

—(eg+S: MY >0. (107)

If the dissipative processes leading to the relaxation of
the polymer molecules and their re-entanglement are
taken to be independent, then each of them must produce
entropy:

—e3>0 (108)

—S:My>0. (109)

Not enough is known of the mechanisms of entanglement
formation and destruction during flow and relaxation; there-
fore, it is preferable to use inequality 107 to check the
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thermodynamic consistency of constitutive equations which ;o — v . j. 4+ R : D + 68 (114)
include explicitly the effect of changing entanglement con-

centration Appendices B and Ghow that the expressionof oM = -V - Jy + RMP : D+ RMV - w + Mg_ (115)

the entropy production rate and the transport equations of ) _ )

conformation hold both in inertial frames and rigid rotating The relationships between fluxes and linear phenomenolog-

frames. ical laws are

T=T =0+1 (116)
5.5. Specification of models

o=0' =7l +€R"+S:RMP (117)

Constitutive functions for the internal energy, the phe- T w .
. . : =t =L":D (118)

nomenological coefficients, and the generation terms must
be specified tp close t_hg equations of the model gnd thusj, =TJs+eJe+Ju: S (119)
permit theoretical predictions of flow and transport in poly- u
meric liquids. This is in contrast to the case of isotropic Js= —L%-VT — L%¢. Ve — L*" ¢ VS (120)

unstructured liquids, where the thermal conductivity, the
shear and bulk viscosities, and the internal energy func-
tion suffice to specify completely the model. The com- j, = _LMs.yr — [Me.ye_ [MM g y5§. (122)
plete set of equations that describes flow and transport in

a polymeric liquid is the following. The balance equations and the definitions of temperature, thermodynamic pressure,

Je=—L%. VT — L. Ve— LM o V§ (121)

are and other conjugate variables are
b=V v (10) 7= z_” (123)
A
pp=V.T —-VO (111) o
T=— (124)
pit ==V -Jy+T:D (112) v
3
1 e= 2 (125)
,05“=—V-Js~|—?(-t:D—VT~JS—V6~Je de
ou
1 =
~VSeJu)+ 1 (—e§— S MY 113  S=ar (126)

Table 1

Phenomenological coefficients and material functions that must be specified through constitutive laws to close the set of balance equations of mas:s
momentum, internal energy, entropy, entanglement, and conformdiiga (110)—(119)together with the relationships between the diffusive fluxes

and affinities Eqgs. (116)—(123) and restrictions placed on the constitutive laws. The independent variablesvald, e. All the tensors are isotropic
functions of M

Physical quantity Tensorial rank Symmetries Other properties
u 0 — —
LSS 2 Lﬁs: Lﬁs aa: L% >0 Va
Lse 2 Lﬁe — L]S|e Lse — Les
LES 2 LﬁS: Lﬁs LES — Lse
L®® 2 Lﬁez Lﬁe aa:L%®*>0 VYV a
M M M M M
L 4 Lisjkl = Lisjlk L?jkl = Llijks
Ms Ms _ 1 Ms Ms _ 1 sM
L™ 4 Lyi = Lig Ly’ = Lij
M M _ peM M _ 7 Me
L 4 Liig = Lij Ly = Ly
M M Me M M
L™¢ 4 Lijkle = Likjr Lijkle = Lﬁjk
MM MM _ yMM _ yMM _ MM MM
L 6 Lijklpq = Likjlpq = Lijqup = Llpqijk abce L eabc >0V a,b,c
L™ 4 Li'fﬁl = Lj””ﬁl = Li'fff< = Lﬁﬁj ab:L" :ab>0 V a,b
R 2 R =R
ij ji
MD MD _ pMD _ pMD
R 4 Rjyi” = R~ = Rjji
MW MW MW MW . pMW .
R 4 R = Riy = —Rijic S:RY" :W=0
eg 0 — eeg <0
0 0 _ a0 . 40
Mg 2 Mgij = ngi S: Mg <0
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The phenomenological coefficients and the material func- Constitutive equations must be specified for the internal en-

tions that must be specified through constitutive laws are ergyu(s, M, e), the viscosity tetradid.” (s, M, ¢), the cou-

listed inTable 1, and the restrictions on the constitutive laws pling between rate of strain and entanglement generation

are summarized there. R°’(s, M, e), the coupling between rate of strain and con-
Kinetic theories play a very important role in selecting formation generatioR™? (s, M, e), the thermal conductiv-

appropriate constitutive functions by suggesting particular ity tensorL3%(s, M, ¢), and the relaxation term% andM?;

dependencies of the free energy on the state variables andhe coupling between vorticity and conformation generation

particular forms of the diffusive and generation terms in the RM% (s, M, ¢) is given byEq. (C.2)

transport equationd.2,120,27,121]However, the transport

and constitutive equations derived from kinetic theories rely g 2 |sothermal, incompressible, non-diffusing flows

on specific micromechanical models of microstructure and

should be used to complement, not substitute, Macroscopic - |spthermal, incompressible flows are the most important
theories. class of process flows of polymer solutions. Virtually all
coating flows and many polymer processing applications fall

into this category. The balanéggs. (78)—-(82pecome
6. Simplified models gory deys. (78)—(82p

0=V-.v (137)

In practical applications it is often possible to neglect
some of the phenomena includedkis. (110)—(122)and pv=V.T-VE (138)
therefore to simplify the modeling. For example, polymer
melts and solutions behave as incompressible liquids in mostpi = =V - Ju+T : Vv (139)
processing flows. Diffusion and heat transfer seem usually
negligible in fast processes like coating flows, and they are p§ = =V - Js+ sg (140)
commonly neglected in viscoelastic flow modelif@22]
and references therein). The most relevant reduced equatiorP¢ = €g (141)
sets that apply in the simpler situations of incompressible
flow, non-diffusing flows, and isothermal flows are reported PM = Myg. (142)
in the next sections; other interesting cases are summarized ) o ]
in Appendices D and E Because the temperature is constant, it is convenient to use

the Helmholtz free energy = u — Ts= a = a(T, e, M)
6.1. Incompressible liquid, non-diffusing polymer rather than the internal energy to describe these flows; thus
conformation and entanglements Q=i —Ts—Ts= —sT+eet S M: (143)

The equation set describing the flow of an incompress- therefore
ible, non-diffusing polymer solution or melt is obtained from
Egs. (67)—(77)py settingv constant and by zeroing the dif-  da _ s da . da S (144)
fusive fluxes of entanglementk and conformation/ y;: or 7 de oM~
0=V-v (127) By using Egs. (139)—(143)the local entropy production
pii=—V-Jy+T:D (128) inequality can be put in the form

1 Tsg=V - (=Ju+TJs)—Js-VT+T:D
pS:—V-JS—i—?(—JS-VT—i—r:D—eeg—S:Mg) —Mg: S —ege > 0. (145)
(129) L .
Because the flow is isothermal, = 0 andVT = 0, the
pe=R?":D+ eg (130) fluxes of internal energy and entropy are constitutively un-

) determined and behave as Lagrange multipliers to ensure
oM = RMP D+ RMV W + Mg (131) that the balance equations of internal energy and entropy are
T—o+41 (132) always satisfied. The _relationshm = T Js must still hold.

The balance laws of internal energy and entropy need not
o =—nl +eR® + S : RMPD (133) be considered further because internal energy, entropy, and

their diffusive fluxes do not enter the balance equations of
t=L":D (134) mass, momentum, conformation and entanglements.
Ju=TJs (135) The stress tensd is also constitutively determined only

up to an isotropic value, because the velocity field of an
Js=—L.VT. (136) incompressible material is divergence-fré&s((137):
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(T+x7l):D=T:D+xl:D 0=S:R"" . w (161)

=T:D+7V-v=T:D. (146) In non-linear theoriesEq. (157)should be used to check

The field 7(x) is determined by solving the balance equa- Cconstitutive assumptions against the second law of ther-

tions together with boundary conditions, and the stress ten-modynamicsEgs. (154)—(156), (158)—(1611goincide with
sor follows the equation Eqgs. (8.1-7a)—(8.1-7c) of Beris and Edwaf2sand with the

equations proposed by Jongschaap ef3lby identifying
. _ _ _ Rﬂ-‘ﬁf) = dikMjl + &t Mik + S Mir + & Mik

whereo is the elastic stress andis the viscous stress. The = ——

local entropy production inequality simplifies therefore to 1S work

T=-nl+0+1 (147)

+ Liid = A} 162

6:D+1:D—Mg:S—ege>0. (148) = M (162)
Generalized Bracket  Matrix Model

If the rates of generation of conformatidfiy and entan-

glementseg depend linearly on the velocity gradieRt,
then the analysis isection 5holds and thus

where Ljjq is the tensor defined i&q. (41)in Section 3.2
(Eq. (8.1-7¢) off2]), A is the tensor defined ifq. (58)
(Eq. (36)of [3]); and by identifying the viscosity tensors

eg=eg+R”:D (149) L™ = Q = y. This shows that the simple thermody-
0 MD . MW namic approach yields the same equations as the General-
Mg=Myg+R"™:D+R W, (150) ized Bracket and Matrix Model, at least when the equations

of change of microstructure depend linearly on the velocity

and

D gradient and diffusion is neglected. The model of Leonov is
0=€R"+S:R (151) not recovered because in that model the stress is postulated
T L™ D (152) rather than derived—see the discussio8éttion 5.3bove.
0=S:R"Y . .w. (153)

7. Evolution equations of conformation and
In fully non-linear theories (theories in which the genera- entanglement concentration
tion terms may depend non-linearly on the rate of strain),
Eq. (148)should be used to check constitutive assumptions  The evolution equations of conformation and entan-
against the second law of thermodynamics, as discussed irglement concentration must reflect the effects of local

Section 8 macroscopic deformation on the material and its internal

relaxations.Egs. (114) and (115¢an be simplified sub-
6.3. Isothermal, incompressible, non-diffusing flows, stantially by using micromechanical models of polymer
unentangled polymer behavior.

The generation termafy andeg represent changes due
As in the preceeding section, the energy and entropy equa-to internal processes only, i.e., processes that do not involve
tions decouple from the mass, momentum, and conformationtransfer through the boundary of a liquid element. The dis-
balance equations; thus, the relevant balance equations arecussion in the following subsections is therefore restricted to

0=V.0v (154) internal processes. A simpler form of the generation terms of
conformationMg is presented below iGection 7.2where
pv=V.-T-VO (155) the effect of the macroscopic deformation gradient on coil
) stretching, coil rotation with respect to neighboring coils,
oM = My, (156) and collective rotation of coils splits into independent parts.

The resulting equation of change of conformation is a par-
ticular case ofEqg. (115)and includes the mechanisms of
o0:D+1:D—My:S>0, (157) affine deformation, partial slip as put forward by Gordon
and Schowaltef123,124] incomplete retractiofil06,125]

and complete retractiofi1,96] which are at the basis of
all known rate-type constitutive equations for dilute solu-
tions, semidilute unentangled and entangled solutions, con-

and the local entropy production inequality is

with a = a(M).
Assuming a linear coupling between generation of con-
formation My and velocity gradienVv (as inSection §

Mg = Mg +RMD . p 4 RMW - W, (158) centrated solutions, and melts.

No general mechanism of entanglement formation and
then destruction is known: published models of polymer behav-
o=S: RMD (159) ior that account explicitly for an entanglement variable are

reviewed by Yosick et al[126]. The salient difference be-
t=L":D (160) tween the models that have been proposed so far is whether
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or not the velocity gradient affects the rates at which entan-
glements break and reform.
The generation terms of entanglements and conformation

121
7.1. Rate of change of entanglements by internal processes

The rate of generation of entanglemeaiss the rate of

are related respectively to the rates of change due to internalchange of entanglement densiigydue to internal processes.
processes of the zeroth and second moment of the segmenit is related to the rate of change of segment dengsity.

distribution function¥(r, x, t). If only internal processes
are considered, the distribution function obeys the equation
[12,39,127]

W vt L wi—wy
P - — .Yy = — s
o or p—d

(163)
where ¥ (r) dr and ¥4(r) dr are respectively the rates of
production and destruction of segments of lergtFer unit
mass. In theories of unentangled solutions, segments repre

sent the end-to-end connectors of polymer molecules; there-

fore, Yp(r)dr = Wy(r)dr 0 if no polymerization re-

Because the number of polymer segments per unit mass
equals the number of polymer molecules per unit mass plus
twice the number of entanglements per unit mags—=

¢m + 2e, andcp, is constant,

veg = ¢ = ep. (167)
Egs. (164) and (167ive
- - / dry, 1 / dry, (168)
veg = = r¥, — = réYq =ep—eq

9 2 reR3 P 2 reR3 P

actions occur. In theories of entangled solutions, segments,yhere the specific rate of entanglement generation has been

portray the connectors between successive entanglements o
the same polymer chain; thereforg,(r) dr and Wy (r) dr
need not vanish.

Taking the zeroth moment dtq. (163) recalling that
Joegs dr¥ = cp, and applying the divergence theorem
leads to

Cp:/ dr'J/p—/ drllfd
reR3 reRrs

irrespective of the expression #f In an unentangled, non-
reacting solutionEq. (164)simply states that the number

(164)

Qplit into a production and a destruction tergpseq > 0.

There is no consensus in the literature on the general
expressions fow, and¥q. The simplest assumption about
the rate of production of entanglement is that entanglement
formation is a random process driven by thermal fluctu-
ations and is independent of flow and coil deformation
[128], whencey, = kw0, wherek is a rate constant and
0 is the equilibrium distribution function of segments.
Graessley[129] considered simple shear flow and argued
that the rate of entanglement formation may depend on the

of segments per unit mass does not change due to internaF_OﬂtaCt time between neighboring polymer chains, i.e., the

processes. In an entangled solution of linear polymers the

number of segments (defined as connectors between twd
entanglements or between an entanglement and a loose end

per unit mass isp = cm + 2¢, wheree is the number of en-
tanglements per unit mass and is the number of polymer
molecules per unit mass. If no chemical reactions occur,

cm IS constant and the number of segments per unit mass

can change due to breaking and forming of entanglements,
ép = 2e.

The rate of change of the second momentoflepends
on the expression af. The conformation of a segment is
changed by effects of flow and deformation, and by effects
of Brownian motion and entropic elasticity. Splitting these
effects as

r= f(Vu,r)+g(r, ¥
leads to

M:VMgz

(165)

/ drv(fr+rf) + / dr(gr + rg)
reRr3 reRr3

—i—/ drlI/prr—/ drgrr.
reRs reRs

The integrals inEgs. (164) and (1663an be expressed in
terms ofcp (or e) andM only if f(Vv,r), g(r, ¥), ¥, and

¥y have very simple forms. Yet, these integrals can be used
to suggest expressions of the generation terms of confor-
mation Mg and entanglements,, as described isections
7.1and 7.2

(166)

ime in which the centers of mass of two chains are closer
han a critical distance, approximately equal to the radius of
yration of the polymer coil. This contact time is inversely
proportional to the relative velocity of molecules, identified
by Graessley with the product of shear rate and charac-
teristic molecular size; therefore, the rate of entanglement
formation drops with growing shear rate, and the number
of entanglements per polymer molecule is lower during
flow than at equilibrium. Graessley argued that Lodge’s as-
sumption of first-order kinetics of entanglement formation
is inadequate and that the rate of production of entangle-
ments should be higher when few entanglements are present
because the molecules are “much freer of encumbrances”
([229], p. 2700). To estimate the contact time between
polymer molecules, Graessley treated the flowing coils as
spheres whose radius corresponded to the molecules’ equi-
librium sizes; he neglected any flow-induced anisotropic
shape. This approximation is reasonable at moderate rates
of strain in weakly-stretching flows, such as simple shear
flow; it becomes questionable in flows strong enough to dis-
tort considerably the polymer coils. The rate of production
of entanglements may depend therefore on the segments’
lengths and on their orientations with respect to the prin-
cipal directions of the rate of strain. In general, the rate of
production of segments may depend on the segment distri-
bution function¥, segment stretch, segment density, local
value of the velocity gradient, and the other thermodynamic
variables ¢ andT or s).

t
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Similar considerations apply to the rate of destruction of . (7. v, ¢0, ¢;NI?I, 0) = eq(T, v, €°, c,NI1, 0) (171)
plL, Vs > Cp ) dl4, v, » Cp )
entanglements. Lodge 28] assumed that the rate of de-
struction of entanglements follows linear kinetigg, = k. where ¢? and cpNIZI are the equilibrium values of and

Graessley129] suggested that the rate of destruction of en- M. Hereafter the constitutive laws fag, andeq are not
tanglements should rise with shear rate because the rate ohssumed to be linear i2 (unlike inSection 5.}, and this has
separation of polymer coils grows with shear rate. Marrucci interesting implications for the formula of the elastic stress
et al.[130] suggested that the rate of destruction of entangle- and for the local entropy production inequality, as discussed
ments should depend on the elastic stress rather than the vein Section 8
locity gradient because structural rearrangements occur dur-
ing relaxation processes, and they assumed that elastically7 2. Rate of change of conformation by internal processes
stressed molecules disentangle faster. Of course, stressed
molecules are extended and bent ones; therefore, the argu- The generation term of conformatiaW is the rate of
ment of Marrucci et al[130] can be reformulated interms of  change of conformatioM = cp(rr) by internal processes.
molecular conformation dyadic rather than elastic stress, i.e., The average molecular conformation per unit magsan
in terms of polymer segment’s stretch and orientation. The change if the end-to-end distance of the segmestsgnges
relationship between rate of destruction of entanglementsor if the number of segments per unit masgsis not con-
and elastic stress was slightly modified in a later wakl]. stant. Polymer coils stretch and rotate by action of the ve-
Other expressions of the rate of destruction of entanglementsjocity gradient. Entropic elasticity drives the coils towards
involving the elastic stress were proposed by De Cleyn and 5 most-probable average end-to-end distaiice; v/NI2,
Mewis[132] and by Mewis and Denfi27]. Liu et al.[133] where N is the number of Kuhn steps arids the length
postulated that the rate of destruction of entanglements risesyf 5 Kuhn step [(], pp. 411-412). When a segment repre-
with the rate of strain. A collection of published expressions gents the end-to-end connector of a polymer molecule (as
of the rates of production and destruction of entanglements;, gilute and semi-dilute unentangled solutions and melts),
has been compiled by Yosick et a[1Z6], Table 3, who  then the number of segments per unit mass can change only
also slightly modified the model of Liu et gl 33] if a polymerization reaction is occurring. When a segment
The concept of persistent straining seems also importantportrays an entanglement-to-entanglement connector (as in
in describing how polymer molecules entangle and disen- semj.dilute and concentrated entangled solutions and melts),
tangle. The strain is persistent when an ensemble of polymerihen the number of segments per unit mass can change due
coils rotates with the same angular velocity of the eigenvec- 14 preaking and forming of entanglements. Of course, this

tors of the rate of straifi.5]. If molecular conformation is  ¢arries the tacit assumption that unentangled strands do not
included in a model, then the straining is persistent when the -gntribute to the stress.

principal direction of extensional straining is aligned with It is convenient to split the rate of generation of con-
the principal direction of elongation of the conformation ten- o mation per unit massMy into three parts representing
sor[63]; the liquid is recoiling when the principal direction  ¢ijls’ stretch-and-orientation by action of flow and defor-
of elongation of the conformation tensor is aligned with the mation, coils’ relaxation by effect of entropic elasticity and

principal direction of contraction ab, and the principal di-  grownian motion, and change in coils’ conformation due to
rection of contraction of the conformation tensor is aligned formation and destruction of entanglements:

with the principal direction of extension of the rate of strain;
the straining is intermittent in other situations. Of course, in vMg=F(Vo,M,e) +G(M, e)
three-dimensional flows with a non-uniform velocity gradi-

ent, the liquid could be recoiling along one axis while suffer- demrmatig‘v ;‘e/llaxaﬂo” 17
ing persistent or intermittent straining in the perpendicular + u (172)

plane. entanglement and disentanglement
From the point of view of a description in terms of local

expectation values, it is reasonable to assume that the rate

of production and destruction of entanglements may depend

on the thermodynamic variablds (or s), v, e, and M, and

the rate of strain—they must be independent of the vorticity

gvhere the functionH(Vv, M, ¢) should be related to the
rates of generation and destruction of entanglements. Com-
paringEq. (172)to Eq. (166) and recalling thatf = VM
when only internal processes are considered, leads to

W ([60], for details)
F(Vv,M,e) = / dre( fr + rf) 173)
ep=ep(T,v,e, M, D) (169) reRr3
eq = ed(T,v, e, M, D). (170)  GgM.e) = / drw(gr + rg) (174)
reRr3

At equilibrium the number of entanglements per unit mass

should be constant; therefore, the rates of entanglement pro;(vy, M, ¢) = / drprr — f drwgrr. (175)
duction and destruction are related by reR3 reRd
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r = = rr. D
r=ortb=oar+c+d f(Vo.r) =E&r-r) ,
—— .
changeduetoflow — >
segment stretching
rr: D
+¢(r-ryr- (D — I+W-R)
r-r
segment orientation
+ r-R (177)
~———

segment soliebody rotation
Fig. 3. Decomposition of the motion of a material filament into a stretch
ar and a rotatiorb, the latter with respect to a chosen frame of reference  Where& and¢ (0 < &, ¢ < 1) are functions ofr| that repre-
{e;}. ¢ is the rotation with respect to the franfi&}, which rotates with an sent the resistance of the molecules to stretch and rotation
angular VelOCltyR with respect tofe;}; thus, ¢ describes the orientation andR is a dyadlc representlng the average over a material

of filamentr with r_espect to other fllame_nts in an ensemble_that rotates volume of the rate of rotation of the molecules. Hereafter,
with angular velocityR, whereasd describes rigid-body rotation of all

the filaments of an ensemble. R = W (the caseR # W is analyzed by[60].)
According to the definition ofF(Vv, M, e), Eqs. (173)
and (177)
7.2.1. Conformation changes by flow and deformation D:rr
Virtually all microscopic theories of polymer dynamics 7 (Vv M., e) :/ . drw2g P
approximate a polymer segment with an infinitesimal linear rek D:rr
element, or a sequence of connected infinitesimal linear el- —i—/ drwg |:rr D+ D-rr—2— rr}
ements[12,41,11] The motion of an infinitesimal (on the reR r-r
macroscopic length scale of the flow) material filameént +/ dro(rr - W+ W7 - rr). (178)
is instructive. Up to first order in¢|, itis £ = £ - Vv = reR3

L-(D+ W) and can be broken into a stretch along the axis, Eq. (178)suggests approximating(Vv, M, ¢) as
a rotation with respect to the center of mass of the material Y

. L ; : . DM
element in which¢ is embedded and a solid body rotation F(Vo. M, ¢) = 26(1. ?) M

with the material elemenfg. 3): I:M
_ D:M
M,eM-D+D-M—-2————M
o WP, L, D, oM OG- D ™
T €0 +M-W+W' - M (179)
N —’ N——
rate of stretching relative rotation rate

whereM = 3M /cpNI?, & = e/eg, ande is the number of
w (176) entanglements per unit mass at equilibrium. The approx-
solid-body rotation rate imations involved in passing fronkgs. (178) and (179)
depend on the particular expressionsadnd ¢, and cannot
The vorticity dyadicW corresponds to the average angular be justified in generalEq. (179)relies on an assumption
velocity (with respect to a chosen frame of reference) of the similar to the quadratic closure approximation, except that
material element only if the material element is isotropic the (unknown) constitutive functionr) and ¢(r) appear
[134] or, more generally, symmetric with respect to reflec- inside the configurational integrals Fq. (178) The most
tions about the principal axes of the rate-of-strin appropriate closure approximation for various classes of lig-
Polymer segments are finitely extensible unlike material uids is still a subject of debate, and various forms have been
filaments; therefore, the contribution of the stretch to their derived from microscopic theories as well as macroscopic
instantaneous incremental deformation should decrease witharguments (e.g[136—140). The choice of closure approxi-
their extension. Also, bundles of stretched coils are not mation has quantitative and sometimes qualitative effects on
isotropic and can rotate at an average angular velocity differ- the dynamics predicted by the mod&h1-146}—note that
ent from half the vorticity, the angular velocity of isotropic  one of the restrictions placed on the closure approximation
liquid “particles”. The difference between the average an- in [141] using the bracket approackd. (18) i.e., that the
gular velocity of the coils and the vorticity can be related to closure tensor should be a homogeneous function of degree

+

the concept of a deformational part of the vortiditg5]; in one of M) can be derived simply by dimensional analysis.
fact, such a difference of angular velocities is independent However,Eq. (179)is a special case dEq. (99) it has
of the choice of frame and so is objective. the advantage of a relatively simple form, separates the

If stretch, rotation, and relaxation are regarded as inde- effect of polymer segment stretch and orientation at the
pendent phenomena, then a more general time rate of changenacroscopic level, and includes all the well-known mod-
of polymer segments due to flow and deformation can be els of flow-induced conformational changes—the affine de-
defined as formation model for§ = ¢ = 1, the Gordon-Schowalter
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‘non-affine’ deformation fo = ¢ < 1 [123,124] the par- The functiong; is often related to the finite extensibil-
tially extending mechanism (or incomplete retraction) of ity of polymer coils, as in the FENE-RL2] and FENE-CR
Larson[106,85]for § < 1,¢ = 1, and the non-extending [150] models. The functiomg, is sometimes associated with
chain deformation mechanism of Di@6] for £ = 0, ¢ = 1. the idea that a polymer molecule in a concentrated solution
A function ¢ # 1 implies that the eigenvectors of the con- or melt relaxes faster along the direction of mean orienta-
formation dyadic do not rotate at the same angular veloc- tion of the surrounding moleculd$49,147,97,151]How-
ity as the eigenvectors of the strain dyadic, which violates ever, a general way has not been found to separate the ef-
the experimentally valid (for flexible polymer melts and so- fects of finite extensibility and anisotropic relaxation in the
lutions) Lodge—Meissner relationship in step straifd], coarse-grained expression @M). The form of the func-
pp. 83—-85 and 136—138). This can be avoided by choosing ationsé, ¢, go, g1, andgz2 as well as the expressions of the free
slowly decreasing functiop(M) such that;(M) = 1 when energy and the local rate of entropy production due to mi-
M =~ I. This constraint org(M) is also consistent with the  crostructural relaxation are summarizedTable 2for sev-
physical meaning of the functiog(M) because when the eral constitutive models—see also Beris and Edw42iis
coils are almost unstretched they tend to follow the macro- Jongschaap et aJ3], Kwon and LeonoV86] for similar
scopic deformation entirely (affinely). Similarly, whéii ~ summaries.
I the stretching resistance should be low (unless the poly-
mer is rod-like),&(M) =~ 1, so that the affine deformation 7.2.3. Conformation changes by production and
formula is recovered, i.eE(Vv, M, e) = Vo' -M+M-Vv. destruction of entanglements
) ) o The rate of change of conformation by formation and de-
7.2.2. Conformation changes by entropic elasticity and  gy;ction of entanglement&g. (175) is closely related to
Brownian motion _ the rates of production and destructidiq( (168) of en-
The rate of change of segment conformation due t0 en- ¢, qiements because the same kertigland ¥y appear in
tropic elasticity and Brownian motion is usually written as ha definition OfH. ep, andeq. An exact relationship be-
[12] tweenep, eq, and?# can be derived if particularly simple,
gr, W =— ¢ r yet physically meaningful, expressions are chosendfgr
— and ¥y, for example ¥, = kp(T, v, M, e, D)¥° and ¥y =

anisotropic . .
friclzon P ko(T, v, M, e, D)¥. This expression of the rate of produc-
tion of entanglements states that entanglement generation is
a random process that may progress at a rate that depends
P L on the local average thermodynamic variables, and that the
nr  +_—-§ "y (180) segments created when new entanglements form are dis-
intramolecular tributed according to the equilibrium distribution of segment
Brownian forces ; ; i ;
elastic forces stretch and orientatioy. Similarly, the expression of the

rate of destruction of entanglements accounts for possible
where¢~1(r) is a friction dyadic that represents the possi- non-linear effects only through the zeroth and second mo-
bility that a segment may move preferentially along partic- ment of the distribution function, and not the distribution
ular directions due to the presence of neighboring oriented function itself; the segments lost to disentanglements have
segmentq12,97,147-149] I'(r) = 9®/dr represents the the same distributio’ of those that are left, i.e., the like-
effect of intramolecular forces derived from a potental lihood that a segment disappears due to disentanglement is
i.e., elastic forces[{2] and references therein), agd(r) independent of the stretch and orientation of the segment
is a dyadic that accounts for the possibility of anisotropic itself. The definitions irEq. (168)lead to
Brownian motion, i.e., a non-Maxwellian velocity distribu-
tion [12,97,149] Becausez is independent oVv, G is also 1 o 1 o 1 o
taken to be independent of it. The most general expressionep = 5/ . drkp¥™ = Ekp/ . dry” = Ekpcp
of G(M, ¢) allowed by the isotropic representation theorems rek reR

is then , = Ekp(zeo + ¢m) (182)
cpNI _ _
GM. ) = == —[g0(M.&)I + 1(M.2) M
- o2
+ g2(M, e)M"], (181) 1 1 1
_ eq= = / drkq¥ = —kd/ dr¥ = —kdcp
wherego, g1, and g» are dimensionless functions o1, e, 2 Jrersd 2 " Jrers 2
and the other thermodynamic state variablesis a re- 1
. . = —kq(2 1

laxation time, and the factorcp/A has been grouped for de( ¢+ ¢m) (183)

convenienceEq. (181)is completely general, and its only
drawback is that the effects of anisotropic friction, entropic and the rate of production and destruction of conformation
elasticity, and Brownian motion are not uncoupled. associated with these processes is
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Table 2

Constitutive functions for several models of polymer dynamics: upper-convected Maxwell/Oldrfya7B Leonov [37]; Johnson and Segalmd82];

PTT-1 and PTT-283,84] Doi (dilute and semidilute rods); Giesek{&7]; Larson[85] (the parametet in “Larson-1" is one-third the parametérin

Larson’s original paper; the parametein “Larson-2—4" coincides with the parameterI in Larson’s original paper); note thdjy +1: M1 — 6=

M~1: (M — I? > 0; FENE-P[12]; FENE-CR[150]; Marrucci[158]. I, I 37, andlll 3¢ are the first (trace), second, and third (determinant) invariants

of M. Notes In Doi's [96] equation, the derivatives of the free energy eoastrainedderivatives because thig; = 3 in the model and the derivatives

with respect toM must be taken by accounting for the constraint (gependix A). There are four versions of Larson’'s equation because of the
approximations in Larson’s original article. Larson-1 is equivalent to Eq. (54b) of Lg&®n(see the analysis if80]); Larson-2 is equivalent to

Eq. (54a) of the original paper; Larson-3 uses the same free energy and the same form of the relaxation terms of conformation as the original paper;
Larson-4 uses the same free energy and the postulate of the original paper that the relaxation rate should be proportional to the stress

Constitutive model & ¢ go g1 g2 (2p/G)a(M) 201/ G) Ty
UCM/Oldroyd-B 1 1 -1 1 0 Iy-3 Iy —3
Leonov 1 1 -1/2 (ly — In)/6 12 Iy -3 12,/3+ (In/6 — Dy — 3/2
Johnson-Segalman & & -1 1 0 (In —3)/Z Iy —3)/E
PTT-1 E & —-l1-a(y-23 1+ a(ly —3) 0 (Uun-3)/= A+a(ly —3)Uy —3)/E
PTT-2 E & —expa(y—-3) expaly—-3) 0 (Uu-3)/& expla(ly —3) Iy —3)/8
Doi (rods) 0 1 -1 1 0 —Inlily I:M1-3
Giesekus 1 1 a-1 1- 2« o Iy -3 Iy —3+4al : (M —I)?
Larson-1 1 1 —1-Z(y -9 1+2(Iy —3) 0 7 lIn@+4iUy-23) Iy —3
Larson-2 £ 1 -1 1 0 (Uy-93/E (Iny —3)/E
Larson-3 E 1 -1 1 0 Iy—lly Iy+1:M1—-6
Larson-4 E 1 —E-31-8/Iy E+30-8/Iy O Iy—lly E+3A-8/Iy)Uy+1:M1—-6)
FENE-P 1 1 -1 b—1/b—1Iy/3 O  3Ab—1Inb—1/b—1Iy/3 b—1/b—Iy/3(b—1/b— Iy/3Iy — 3)
FENE-CR 1 1 —b—1b—1Iy/3 b—1b—1Iy/3 0 3b—0Inb—1/b—1Iy/3 (b—1/b— Iy/3)2Uy —3)
Marrucci 1 1 —1/1-BUy-3) 11-BUy—-3) 0 Iy-3 Iy —3/1— By —3)
24P — drkptlforr — / dr ey — kpMO 7.3. Relationship to reptation-based models
reRr3 reRr3

1 _ )
= ShpeINPT = ky(26° + cm)M° = 2ep1°

Hi= / drkg¥rr = kq / dr¥rr = kaM
reR3 reR3

= kdcpM = kp(2e + cm)M = 2eqM,

(185)

(184)

where i1° = NI21/3 andM = M /cp, are respectively the

average segment conformation at equilibrium and during

flow. Egs. (184) and (185uggests the definition

H = 2epNPHP — 2egNIZH°,

where the dyadicsﬁlp and #° represent the average con-
formation of new segments that are created by entanglement
formation and existing segments that disappear by entan-df 0 L0

glement destruction. The isotropic representation theorems g7 to-Vi+ ar S+ %fs =0

lead to the final expression

H = 2epNP(KDI + k2B + K57

(186)

The theory developed here to describe temporary net-

works with variable (in space and time) number of junctions

(entanglements) can be related to simple descriptions of rep-
tation such as those of Larsd85] and Jongschaaf39].
Reptation is based on introducing a distribution function
f(s, 1, r, x), wheres is arclength along a tube that constrains
segments at location in spageThe quantityf(s, ¢, r, x) ds

is the number of strands with stretch and orientati@t ar-
clength location betweenands + ds and is related to the

distribution¥(z, r, x) by

L/2
Ut r, x) = / ds f(s, t, r, x)
2

L/

(188)

where+L /2 are the extremities of the tube. Of courge,

r

obeys a continuity equation

(189)

wheres is the arclength velocity with which a segment mi-
grates along the chain, which is assumed to be due to diffu-
sive processes,= — Dyepdf/ 0s. IntegratingEq. (189)along

— 2egNI2(K3T + k9 + k3017 (187) the length of the tube yields
wherek, ... , kS are dimensionless scalar functions that ¥ . Lz 5 . L2
o _ — +4+v-V — Y= —f5=—
may depend on the invariants o, ¢/¢°, and the other ot oVt or wr /—L/z ds /3 [fs]—L/Z
thermodynamic propertiekq. (187)is merely a reasonable (190)

postulate founded on the similarity of the expressions of the

rate of generation of entanglements and the rate of gener-where the last term in the equation is the flux of segments
ation of conformation due to entanglement formation and into (or out of) the tube. Defining this flux as the sum of
destruction. positive (entering segments) and negative (exiting segments)
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contributions—[ £5]%/? = [f5]-1/2 = (1/2)(¥in — You) evolution equation of conformation can be important if
yields the three-dimensional stability of a two-dimensional flow
ow 5 is investigated, as is frequently dgsirable in the_ a_mal)_/sis
o +v-V¥ + o Ui = Yin — Yout, (191) of process flows of polymer solutions, because it implies

that a strong planar extensional flow will induce a span-
which has the same form &sj. (163) the rate of generation ~ wise deformation (usually a contraction) of the polymer
of entanglements parallels the rate at which segments entefmolecules and thus will induce spanwise stresses (usually
the tube; the rate of destruction of entanglements parallelscompressive)—se¢63] for a discussion of this effect in
the rate at which segments exit the tube. Therefore, it seemdree surface flows. This property also has important im-
that the same analysis holds at the coarse-grained level bottplications for the development of computational codes for

for reptation-based and entanglement-based models. planar flows, because in such flows the spanwise compo-
nent of the conformation tensor must be computed together
7.4. Equation of change of conformation with the in-plane components. This has caused errors in

previously published work (see, for example, the work of

Egs. (172), (179), (181) and (18¥ield the expression of ~ Lee et al[152] with the FENE-P equation).
the rate of generation (Change) of Conformawg due to Fina”y, once reliable eXperimental data are available on
internal processes and the balance equation of conformatiorthe average molecular stretch in the neutral direction, this
(no diffusion):

. oM D: M
M=—+v-VM =vMg= 2%——M
ot I'M
e —’
molecular stretching

D:M T
+{(M-D+D~M—ZWM+M-(W—R)+(W—R) -M)

molecular orientation

NI2 _ _ _ _
+M- R+ R M — (g0l + 1M + gol?) + 2epNR(UKET + kP M + kB3P
[N ——

A
solid—body rotation molecular relaxation segmentgeneration
- =2
— 2egNP (kST + k{M + k5M°) (192)
segment destruction
The dimensionless functions, ¢, A, go, g1, £2, €p, €ds kg, simple test can be used to decide which class of models is

kP k5, kd, k9, and kd depend on the thermodynamic state MOSt appropriate to describe each type of molecules.

variabless (or T), v (if the liquid is compressible)}, and
e (if the liquid is entangled)Eq. (192) holds in inertial . .
frames as well as in rigid frames translating and rotating 8 Constraints on generation terms

with respect to them[§0], for details). ) ] )
The constraints on the form of the evolution equations

and the expressions of the stress are obtained by substituting
Egs. (167), (169), (170) and (19R) Eq. (148) This leads
to the local entropy production inequalit}6Q], for details)

7.5. Molecular contraction along the neutral eigenvector
of the velocity gradient in two-dimensional flows

An interesting feature of the equation of change of con- 4 1
formation Eq. (192)is that it can predict a contraction of —o: D+ —7:D — (ep — ed)e
the “molecules” in the neutral direction in two-dimensional P
flows both for entangled and unentangled solutions. Inan _»2 [(g — g)lM :S— (M - S} D
unentangled solution, the equation of change of the eigen- M

valuem of M associated with the eigenvector Mf aligned cpNI? _ _ _ o
along the neutral direction of the flow is +— (gl - S+ 1M S+ gM :5)

W —2epNPMy 0 S + 2egNIPMg : S > 0 (194)
=0T = T+ g b g, (199) PR

' where M, is the average dimensionless conformation of
which always admits the steady solution= 1 irrespec- new segments generated when entanglements form (strands
tive of the rate of strain only if both conditions = ¢ enter the tube), and is the average dimensionless con-

and go + g1 + g2 = 0 are satisfied. This property of the formation of segments lost due to entanglement destruction
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(strands escaped from the tube). If Lodge88] simplify-
ing hypotheses are used, th&q) coincides with the mean
conformation,Mp = M, and My equals the equilibrium
conformation, My = I.

Some of the terms ifkEq. (194)do not contribute to en-
tropy production. Specifically : D is the rate of reversible
working on time scales shorter than the relaxation times of
the microstructural elastic-like conformation and entangle-
ment variables; therefore, it must be balanced by the rate of
change of Helmholtz free energy associated with the rate of

127

Sec. 8.1:ep, eq are independent oD, ep eg(M, e),
andeg = eg(M, ¢). This case includes the models of
Marrucci et al.[130], Acierno et al[131], Mewis and
Denn[127], and De Cleyn and MewifL32].

Sec. 8.2¢p, eq are even functions ab, e, = eg(M, e)+
el’ (M, e, D), and eq (M, e) + ¢lP(M, e, D),
which means that entanglement formation and destruc-
tion are irreversible processes. This case includes the
models of Liu et al.[133], Moldenaers and Mewis
[153], and Yosick et al[126].

change of conformation and entanglements due to reversible ggc 8.3:¢p, eg depend onD, and all the terms in

processes. The analysis Bfj. (194)in the nonlinear case
is complicated by the possible nonlinear dependence of the
rates of productiorep and destructioreg of entanglements
on the strain rate tens®rTo streamline the analysis, it is
convenient to split the rates of production and destruction

of entanglements into strain rate independent terms, respec-

tively eg andeg, reversible, strain rate dependent terag?,
and P, and irreversible, strain rate dependent tenfg%
andel”:

ep=ep(M.e) +¢,” (M, e, D) + e}’ (M., e, D) (195)

ed=eQ(M,e) + e’ (M, e, D) + P (M, e, D). (196)

The functionSeg and eg represent entanglement forma-

tion and destruction independent of flow. They account

Egs. (195) and (196are non-zero. This is the most
general case and it includes both reversible and irre-
versible mechanisms of entanglement production and
destruction. None of the published models falls into
this category. The general model of Ottingi07]
includes the case where the rate of change of a scalar
(which could be taken as the entanglement density)
consists both by an irreversible part (independent of
rate of strain) and a reversible part (linear in the rate
of strain).

8.1. Strain-rate independent entanglement generation

The local entropy production inequaligg. (194)can be
rewritten as

for spontaneous microstructural rearrangements due to the

non-equilibrium conformation of the polymer segments and
of their degree of entanglement. An additional principle

is needed to split the deformation-dependent entanglement

formation and destruction into reversible and irreversible
parts: the entropy production rate is an even function of the
rate of strain,

sg(T,v, M, e, D) = sg(T, v, M, e, — D) (197)

More general forms of this principle were recorded by
Woods (113], p. 157) and Jongschaap et @]. Eq. (197)
implies that the terms iRq. (194)that change signh when the
sign of D is reversed do not contribute to entropy production
and must add to zero. Becauggandeq multiply functions
that are independent d? in Eq. (194) the reversible part
of the entanglement formatim’g” and destruction&D rates
are odd functions oD, whereas the irreversible parts of the
entanglement formatioa? and destructiore’? are even
functions of D. It is useful to analyze separately the three
important cases included EBqgs. (194)—(196)

8n this case, the “Grmela expressiof8,39,91]for the elastic stress

=%

i

da
00;

00;8~
oD

wherea is the Helmholtz free energ®; are the internal variable@ff

is the reversible part of the generation term in the equation of change of
©; and © is an appropriate dot product does not hold because one of
the @ is not a linear function ofD.

1 .

o M
—r.D+|:;—2(§—§)WM.S—2§M~S:|.D

2

C — _
+ 2 (gOI:S+g1M:S+g2M2:S)
- (eg — eg)e - ZegleMp S+ ZegleMd :S$>0,
(198)
with (= D) = —1(D) by definition of viscous stress. Be-

causekEq. (198)should hold for all possible values @, it
follows that

1
Zt:D >0 (199)
L __
dissipation by
viscous flow
M
=206——M : S
< ATm
elastic stress ~—mm——
stress by molecular
stretching
+2p¢ M y.sim.s (200)
P\TT M

stress by molecular
orientation
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pNI2 — — 2
Iy (gol : S+gM:S+gM :S)

free energy drop by segment relaxation

(eg — eg)e
———
free energy drop by net destruction of entanglements

2¢INIPM, - S
free energy rise by entanglemeditiven generation of segments
2¢INIPMy : S
free energy drop by disentanglemedriven destruction of segments

(201)

+

+ > 0.

Eq. (199)says that viscous stress contributes to entropy pro-
duction independently of molecular relaxation and entan-
glement.Eq. (200)says that the elastic stress is due to the
stretching (terms with the prefact§y and orientation due
to relative rotation (terms with the prefactoy of segments
induced by the rate of straiieq. (201)accounts for the dis-

sipation caused by molecular relaxation and entanglement

generation.

Egs. (199)—(201are aconsequencef the balance laws,
the entropy inequality, and the constitutive assumptions
about My and eg. One morepostulatecan be added to
Egs. (199)-(201)The functionsg and # account for two
distinct physical phenomena. The relaxation of segménts
describes the effects of intramolecular forces and Brown-
ian motion on segment conformation, wheréasaccounts

for losses and gains of segments due to destruction and

formation of entanglements (reptation out of and into the

tube). These two processes occur on the same time scale;

thus the entropy produced by therollectively should be
non-negative £q. (201). However, the microscopic defini-
tions of G (Eq. (174) andH (Eq. (175) suggest that each

of these two processes produces entropy independently;

therefore, it isreasonableto postulate that

CpN 2

(gol : S+g1M:S+gM*:8) >0 (202)

(e — epe — 2¢pNIPMp : S + 2eINIPMy: S > 0. (203)
Constitutive models that violate eith&g. (202)or Eq. (203)

but satisfyEq. (201)cannot be dismissed as unrealistic be-
cause they do not violate the second law of thermodynamics.
Yet they include either of the following concepts:

e entropic elasticity can drive segments to states of higher
free energy by feeding on entanglement production and
destruction, which simultaneously tend to drive the system
to a state of lower free energy;

entanglement production and destruction may push the
system to states of higher free energy by feeding on the
concurrent entropic relaxation of segments, which drive

the system toward a state of lower free energy.
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Whether onlyEq. (201)should be satisfied or boHygs. (202)
and (203)cannot be decided by using the “equilibrium
version” of the second lawsy > 0), although it seems
reasonable to postulate that both inequalities should hold in
“non-equilibrium” situations.

8.2. Entanglement generation as irreversible process

The local entropy production inequalitiq. (194) is

1 .
—r:D—i—(eldD—

eP)e + 26 PNIPMg = S — 2e[PNPM,, - S
M
+ |:z—2(§—§)—M:S—2§M-S} D
P 1M

cN2

(gol : S+g1M S+g2M S)

+(eg ep)e+2¢INIPMy: S—2eINIPM 2 S > 0. (204)

The term

M
[5 ~ 26—y M S — %M - s] (205)
o)

is the only one that changes sign when the strain rate is
reversed; therefore, it cannot contribute to dissipation and
Eq. (200)holds (seeSection 8.). The first four terms in
Eq. (204)depend onD, whereas the last four terms are
independent oD; therefore, the inequalities

1

—-1:D

0

free energy drop by viscous flow
iD
+ (eg

N’
free energy drop by strainingnduced net destruction of entanglements

iD
—¢p )e

NI Y
—— e’
free energy rise by strainingnduced generation of segments
- 2¢f’NPMq : S >0
D
free energy drop by strainingnduced destruction of segments
(206)
free energy drop by segment relaxation
da
0 0
+ (eg—ep)—
d P e
free energy drop by flowinndependent net destruction of entanglements
+ 2¢INPMy : S
————
free energy drop by flonndependent destruction of segments
— 2¢INIPMy : S >0

—————
free energy rise by flonndependent generation of segments

(207)
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hold independently. These inequalities follow from the bal- where R” and Ry’ may depend on the state variables but
ance laws, the entropy inequality, the constitutive equations gre independent oD, and e;)NL, e(erL are non-linear, odd
of the rates of generation of entanglements and conforma-fynctions of D. Eq. (211)then becomes

tion, and the postulate that the entropy production rate is an
even function of the rate of strain.

Additional assumptions can be made to break down
Egs. (206) and (207further. If dissipation by viscous -
stresses and that by flow-induced entanglement generation ~ + €(R’ — Ry") + 2NPR Mg : S
are taken to be independent, then

o M
:[;—2(5—4)—I:MM.S—2§M~S

— 2NIPRE" M, : s] i D+ (et — ep')e

1

-t:D>0 (208) _ B

P + 26" "NIPMy : S — 2¢5""NI°M, : S. (214)

(eéD _ ei)D)e n zeéDl\”ZMd S Ze;')DNIZMp §>0. Eq. (2_14)is of the_ formA : D + f(D) = 0, wheref(D) is
(209) a nonlinear function, and must hold for any traceless, sym-

metric D; therefore,A : D = 0 and f(D) = 0 separately. It

Whether the inequalitieEqgs. (208) and (209%hould hold follows that the relationship between elastic stress, confor-
separately or not is an open question. Howetzy, (206) mation, and entanglements is
carries the interesting implication that the viscous stress may

. . M
be related to the rate of generation of entanglements induced o = 206——M:S
by fl —— I'M
y Tlow. elastic stress _—
If segment relaxation and flow-independent entanglement stress by molecular stretching
generation are assumed to dissipate separately (see discus- i
sion in Section 8.] then inequalities (202) and (203) hold. +208 | - I: MM S+M-S

. . . . stress by molecular orientation
8.3. Reversible and irreversible entanglement generation Y

+ ,oe(Rf)” - R
In this case, the local entropy production inequality stress bymnmglemem
(Eq. (194) reads B 2pNI2R§"Md g
E'L' D+ (eéD — ef)D)e + ZeGDNIZMd S - Zei)DleMp 'S stress by loss of segments by disentanglement
g o M + 2pNIPR M, - S (215)
+ [; - 26 OWM S —%M- S] D stress by gain of segments byrentanglement
+ (e’ — eP)e + 26 PNPMy - S — 2¢LPNIPM, - S up to a constitutively indeterminate isotropic term; the
Cp,\”z _ _, non-linear cqntributions to the reversible ra_te of formatipn
+ . (gol : S+ g1M:S+goM :S) ;r]lltz) destruction of entanglements must satisfy the relation-

+(e§ — ep)e + 2eNIPM g = S — 2eINIPM g - S > 0.
(210) 0= (e(erL —eMbye + ZeENLlel\Nld :S - ZeLNLNIZMp . S.

p
The terms that change sign when the strain rate is reversed (216)

must add to zero: Eq. (215)shows that if the free energy depends on entangle-
0— [g P M M:S_2M. S} D ments (or on the number of strands inside the tube) and the
0 I:M rates of formation and destruction of entanglements include
D D D2y D2y a term that depends linearly on the rate of strain, then there
+leq” —ep)et 2 NIEMy 2 S = 26 "NIPMy - . is a reversible stress that arises from the deformation-driven
(211) entanglement and disentanglement of the molecules.
The rate of entropy production due to internal molecular
The reversible rates of production and destruction of entan- processes reduces to that examinedSection 8.2 there-
glements must be split into a linear term and a non-linear fgre Egs. (206) and (207and the following discussion ap-
term to obtain the relationship between elastic stress, CON-ply here too. The analysis in this section hinges on the same
formation and entanglements; the two terms are defined by assumptions used in Sec. 8.2. The relationship between elas-
e’r)l) =RY:D+ e[)NL (212) tic stress and microstructural state variatiegs (215)holds
because the reversible work done by the elastic stresB
el =RY: D+ Pt (213) depends linearly o, i.e.,s is independent ob; therefore,
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a non-linear dependence of the rates of production and de-variable. The thermodynamic framework is advantageous
struction of entanglements on the rate of strain cannot leadfor computational modeling; the calculation of separate
to a net reversible work. constitutive functions (seBable 2 and their derivatives can
be delegated to subroutines or objects in a computational
code; thus, changing constitutive equations, adding new
9. Summary and conclusions ones, or mixing parts of one equation with another become
straightforward, all of this while retaining the power of
A new method has been developed to account for the Newton’s Method and arclength continuation. Yet, caution
evolving microstructure of a flowing polymeric liquid by must be exercised when mixing models because the range
introducing microstructural variables that are local expec- of admissible values of the invariants of the conformation
tation values of microscopic features. The method extendstensor depends on the choice of model, and the local rate
irreversible thermodynamics based on the local equilibrium of entropy production in turn depends on the instantaneous
hypothesis, ensuring that the coarse-grained equations of thevalue of the invariants of the conformation tensor; thus, a
microstructural models are compatible with the first and sec- proof must be sought that the entropy production rate is
ond laws of thermodynamics. non-negative in the admissible range of conformation val-
When applied to unentangled polymeric liquids, the for- ues or, alternatively, the entropy production rate must be
malism developed here reproduces the results of the Generalmonitored during calculations.
ized Bracket formalism of Grmela and Carrdajiand Beris However, thermodynamics (in whatever embodiment)
and Edwardg2], and of the Matrix Model of Jongschaap cannot provide the constitutive form of the diffusive fluxes
et al.[3]. But it appears simpler than both the Generalized and generation terms that appear in the transport equations
Bracket and the Matrix Model. Moreover, it is more gen- of microstructure, but only a set of relationships between
eral than the thermodynamic framework of LeorigV,64], such terms. To arrive at a predictive set of equations guid-
because it specifies how to introduce as many microstruc-ance will be needed from kinetic theory and statistical
tural variables as needed, and because it clarifies the relaimechanics and from insightful experiments that in the near
tionship between the elastic stress and the microstructuralfuture may be able to separate the effects of flow on molecu-
variables (which is assumed in Leonov’s work and derived lar stretch and orientation, entanglement density, and elastic
here). When applied to polymer solutions undergoing cou- and viscous stress.
pled flow and heat or mass transfer, some differences appear To this extent, a multi-level modeling approach may prove
between the equations derived here and those derived by thénighly effective: the same flow could be modeled in a few
Generalized Brackg2]—namely, that a gradient of temper-  selected cases with both a fine-grained model free (or nearly
ature can drive a diffusive flux of conformation (and vice so) of adjustable parameters and a coarse-grained model.
versa), or that a gradient of chemical potential can drive a Developing an automatic estimation algorithm seems pos-
flux of conformation (and vice versa); however, these differ- sible that would tune the unknown constitutive parameters
ences disappear if appropriate expressions for the generatingind functions of the coarse-grained model to best repro-
functionals are assumed in the Generalized BrafkE9]; duce the predictions obtained with the fine-grained model,
therefore, the simple thermodynamic approach and the Gen-thereby achieving the goal of projecting effectively the
eralized Bracket formalism seem to yield consistent results. multitude of degrees of freedom of the fine-grained model
When applied to entangled polymeric liquids, the formal- onto a relatively small set of variables characteristic of the
ism presented here reproduces a key result obtained withcoarse-grained model, which could then be used to model
GENERIC[107]—that if the rate of generation of entangle- efficiently complex process flows.
ments is coupled linearly to the rate of strain, then a part of
the elastic (reversible) stress is related to this coupling term.
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Appendix A. Derivative of a scalar function of a therefore the requirement that the entropy production rate
second-order tensor be the same in inertial and non-inertial frames demands that
. o o mw .
The formulae for computing the derivatives of a scalar - - R"" :2=0 (B.2)

isotropic functioru(A) with respect to a second-order tensor

A are reported here for convenience; they can also be foundfor any skew-symmetric dyadi€. This condition is the
for example, in Truesdell and No[iL18] and Wang and ~ Same asq. (104) which was derived from the symmetry
Truesdell[154]. Because of isotropy; depends only on the  of the stress dyadic and is always satisfiedif'" is an

invariants ofA, i.e.,a(A) = a(1, II, Il1); Thus, isotropic function ofM with R%W = Rﬂﬁw = —Rﬂ.‘ﬁ(“’.
However, the symmetry of the stress tensor and the require-

8_a — a_aﬂ 3_“8_” a_aﬂ (A.1) ment that the entropy production rate be independent of

dA  9I9A  9dll 9A ~ dlll 9A frame are independent conditions; the first is not always true

where [155,156] the latter is a widely accepted postulate.

a_ I; M- AT M yat (A.2)

0A 0A 0A

Appendix C. Invariance of transport equations of

whereA~T denotes the transpose of the inversetofCom- microstructure under rigid changes of frames

bining the two expressions above yields
The requirement that the transport equations of mi-

da (8_a + 1%) I— @AT +10 8_“A—T. (A.3) crostructure hold unchanged in any rotating rigid frame puts
0A or ol oll olll an additional constraint on the tensk*". The transport
equation of entanglements does not change in a rotating

If one of the invariants of the tensor is constrained to be - R
s . frame because the time derivative of a scalar does not de-
constant, then the derivative has to be taken subject to the . . )
pend on the choice of frame and the independent variables

appropriate constraint. If the trace 4fis constant, asinthe | I~ : 0 o i
) o in the constitutive functions offe, e¢;, and R¢® are inde-
rod model[96], then the constrained derivative (denoted by " g .
pendent of frame. Additional terms appear in the transport

ad)is equation of conformation, because the time derivative of a
da da 1 da dyadic depends on the choice of rigid frame and so does the
54 0A 304 -1 (A.4) vorticity, and these terms must cancel because the equation

holds in the rotating frame as well as the inertial frame.
If the determinant of4 is constant, then the constrained This gives
derivative (denoted by 8) is

) o(—2T - M—M-2)=—-R"V: @ (C.1)
da da da  ATlATT
3A =34 94 m (A.5) which leads to the expression

R = 30(Midy + Mikdit — Midjx — Mj8ik)- (C.2)
Appendix B. Invariance of entropy production under An equivalent expression ofRMY was derived by
rigid changes of frames Jongschaap et d3].

The expression of the entropy production rate ordinarily
should not change if the balance equations are written in apappendix D. Non-entangled, non-isother mal,
non-inertial, rigid frame, because the relative accelerations jncompressible polymer solutions, uniform
arising in accelerating frames ordinarily do not contribute ~oncentration
to the rate of conversion of mechanical energy and internal

energy,T" : Vv ([113], p. 160). Exceptin extraordinary cases,  The equation set describing the flow of a unentangled
the value qf the th_e_rmodynamic variables Q(Bes noE dependpolymer solution is obtained frorlgs. (67)—(77)y drop-
on the choice of rigid frame of reference, i.é.= u,§ = ping the transport equation of entanglement density and the

5,0 =1, M = M, = e, where () indicates the value of  gependence of the energy on the specific volume and entan-
a variable in the non-inertial frame. The vorticiy is the glement density:

only quantity inEq. (95)that changes in a rotating frame,
W = W+ 2, where® is the angular velocity of the rotating 0=V -v (D.1)
frame with respect to the inertial frame affl= —2". The
entropy production rate in the rotating frame is
ou
TSy=Ty+ — R : @ B.1
Sg= 19+ o7 (B.1)

pp=V -T—VO (D.2)

pii=—-V-Jy+T:D (D.3)
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) 1 0 in Egs. (E.3) and (E.4whereas gradients of elastic stress
ps==V Js+ (@:D=VT Js=VSeJu—S8:My . 50arin the Generalized Bracket formulation; moreover,
(D.4) Eq. (9.2.8) is not cast in the classical convection-diffusion
form (the last term is not the divergence of a flux). However,
it is possible to recoveEgs. (E.3) and (E.4by changing
the form of the generating functional in the Generalized

pM=-V - Jy+R":D+R" W+ M] (D5)

— 7T —
=T =o+z (0-6) Bracket formulatior{119].
o=0' =—nl+S:RMP (D.7)
r=1"=L":D (D.8)
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