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An efficient algorithm for metric correction forces in simulations
of linear polymers with constrained bond lengths
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The dynamical behavior and equilibrium distribution of linear bead-rod and bead-spring polymers
differ even in the limit of infinitely stiff springs. Imposing metric pseudopotential forces on the
bead-rod chains yields the behavior of bead-spring chains in Langevin and Brownian Dynamics
simulations. Here we present a simple, compact, and efficient algorithm for computing the required
metric correction forces at minimal computational cost. ©2002 American Institute of Physics.
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When designing a dynamical simulation of constrain
classical mechanical system, one is faced with two ma
ematically similar, but conceptually distinct, sets of sub
questions, both of which arise from the existence of m
chanical constraints: physical questions about the natur
the equilibrium state and mathematical questions about
formulation of simulation algorithms.

The first set of questions arises from the observation1–6

that the thermal equilibrium distribution for a ‘‘rigid’’ classi
cal mechanical system of point masses whose positions
subject to rigorous mechanical constraints generally diff
from that of a corresponding ‘‘stiff’’ system, in which th
constraints are approximately maintained by a stiff poten
energy, even in the limit of an infinitely stiff potential. Sp
cifically, the theoretically predicted equilibrium distributio
of bond orientations for a linear bead-rod polymer with r
orously constrained bond lengths is different from that o
bead-spring chain in the limit of infinite spring stiffness. I
finitely stiff bead-spring models yield a simple Boltzman
distribution for the bond orientations, giving uncorrelat
bond orientations when the chain is freely jointed, wher
models with rigidly constrained bond lengths lead to sub
correlations between bond orientations even for a fre
jointed chain, whose detailed form depends on the rela
bead masses.

The second set of questions arises in the analysis o
gorithms for Brownian dynamics simulations of inertiale
diffusion of systems with either variable mobility~including
unconstrained systems with hydrodynamic interactions!, or
mechanical constraints, or both. In systems with a varia
mobility but without constraints, two choices are possible
account properly for terms in the diffusion equation whi
involve derivatives of the mobility: A simple explicit Eule
algorithm in which the random bead displacements are
ased by adding derivatives of the mobility,7 or a mid-step or
predictor-corrector algorithm8 that ~in the absence of con
straints! generates automatically the required terms. For c
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strained systems, Fixman8 found that a mid-step algorithm
for a polymer with constrained bond lengths and a poten
energy that depends on the bond orientations would yield
equilibrium distribution that differs from the Boltzmann dis
tribution of bond orientations expected for a bead-spr
chain of stiff springs, and that happens to be equal to the
predicted by equilibrium statistical mechanics for bead-r
chains with equal bead masses. Fixman also noted, howe
that a Brownian dynamics simulation of a chain with co
strained bond lengths can be made to mimic that of a s
bead-spring chain by adding an appropriate metric-pseu
potential to the potential energy from which the forces on
beads are derived. More generally, the predicted equilibr
distribution of an infinitely stiff bead-spring chain can b
obtained from a constrained simulation, with or without i
ertia, by adding an appropriate metric pseudo-potential to
potential energy used in the simulation.

To design a simulation of linear polymers with consta
or nearly constant bond lengths, one must choose both
underlying physical model~i.e., chains with rigidly con-
strained bond lengths or chains with stiff bonds!, and a com-
putational method~i.e., imposing constraints via Lagrang
multipliers or using stiff potentials!. To date, Brownian dy-
namics simulations of chains with constrained bond leng
have been carried out both without metric pseudopoten
forces, for freely jointed chains without9,10 and with hydro-
dynamic interactions,11 and with the metric pseudo-potentia
forces, for free-draining freely jointed,12 and wormlike13,14

chains.
In practice, the choice of physical model and compu

tional method must be based on a combination of consid
ations of physical realism and mathematical convenien
Algorithms which enforce rigorously constraints on bo
length are generally computationally preferable to on
based on very stiff bonds, because they permit the use
longer time steps than those required to resolve rapid b
fluctuations. We believe, however, that there are both ph
cal and mathematical reasons to prefer simulations
mimic the behavior of an infinitely stiff bead-spring chain
The question of which type of model is more physica
realistic has been the subject of a long debate;1–6 classical

ty
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bead-spring models appear to us to be somewhat
wrong4,5 than classical bead-rod models in most applicatio
The mathematical advantages of the analysis of bead-sp
models arise primarily from the simple analytic form of the
equilibrium distribution of bond orientations—e.g., rando
orientations in a freely jointed chain. For example, in t
analysis of the origins of stress in solutions of wormli
chains,15 the ability to obtain a simple algebraic expressi
for the stress tensor, and a simple physical interpretatio
its components, relied directly upon the use of a bead-sp
model for the analysis. More generally, theoretical analy
and the analysis of simulations is often significantly simp
fied by using a model that has an algebraically simple eq
librium distribution.

Here we present a compact formula and efficient al
rithm for calculating the metric pseudo-potential forces
quired in simulations of chains with constrained bo
lengths to mimic the behavior of infinitely stiff bead-sprin
chains. An algorithm for these forces has been given pr
ously by Grassia and Hinch12 and used in simulations b
Grassia and Hinch and by Everaerset al.13 The computa-
tional cost of both algorithms scales linearly with the numb
of beads in a chain. The formula and algorithm presen
here are, however, significantly simpler than those given
Grassia and Hinch, and yield efficient code.

The Langevin equations of motion of a linear polymer
N beads with positionsR1 , . . . ,RN , connected byN21
rods of length a with unit tangent vectorsui[(Ri 11

2Ri)/a are

mi

d2Ri

dt2
5Fi

pot1Fi
const1Fi

met1Fi
hydro1Fi

rand , ~1!

for i 51, . . . ,N. Here, mi is the mass of beadi, Fi
pot

[2]U/]Ri is a force derived from a potential energyU
(U[0 in a freely jointed chain!

Fi
const5uil i2ui 21l i 21 , ~2!

is a constraint force, which depends upon bond tensi
l1 , . . . ,lN21 that must be computed to maintain consta
bond lengths,

Fi
hydro52(

j 51

N

zi j •~Ṙj2k•Rj !, ~3!

is the hydrodynamic drag force on a molecule in a flow fie
with a homogeneous velocity gradient¹v5kT, zi j is a fric-
tion tensor~e.g., either a local friction tensor or the Rotne
Prager tensor16!, Fi

rand is a random force, andFi
met is the

metric force of primary interest here. The equations of m
tion used in inertialess Brownian dynamics simulations
obtained by setting the masses to zero; they are a set of
order stochastic differential equations in which the bead
locities appearing inFi

hydro can be expressed in terms
other forces through Eq.~1!.

Hereafter we consider the calculation of metric forc
for either:~i! Inertialess Brownian dynamics simulations u
ing a mid-step algorithm,8,12,17,18or ~ii ! inertial Langevin dy-
namics simulations of Eq.~1! with nonzero bead masses.
either case the metric forces can be expressed as2,8,17
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met[2

]Umet

]Ri
, ~4!

where

Umet[
1
2kT ln~det G!, ~5!

andG is a (N21)3(N21) tridiagonal matrix

G53
d1 c2 0 �

c2 d2 c3 0 �

0 c3 � � 0 •••

� 0 � dN23 cN22 0

� 0 cN22 dN22 cN21

� 0 cN21 dN21

4 . ~6!

In inertialess Brownian dynamics,G has a purely geometri
cal meaning; its diagonal elements aredi52, and its off di-
agonal elements are

ci52ui•ui 21 , ~7!

i.e., the negative of the cosine of the angle between ne
boring bonds that share beadi. In inertial Langevin dynam-
ics, the elements ofG depend on the bead masses

di5mi 11
21 1mi

21, ~8!

ci52mi
21ui•ui 21 . ~9!

The inertialess case can be recovered from the inertial c
by settingmi51 for all beads. The metric forces obtaine
with inertialess and inertial dynamics coincide when t
beads have identical masses (mi5m) because the matricesG
obtained in these two cases differ only by a multiplicati
factor m, which does not affect derivatives of ln detG.

Differentiating Eq. ~5! with respect to the position o
beadi and using Eqs.~6!, ~8!, ~9!, and the formula for the
derivative of the determinant of a tensor with respect to
tensor components19 yields the expression of the metri
forces

Fk
met52

1

2
kT

] ln det G

]Rk

52
1

2
kT (

i , j 51

N21
1

det G

] det G

]Gi j

]Gi j

]Rk

52
1

2
kT (

i , j 51

N21

Gji
21 ]Gi j

]Rk

5kT(
i 52

N21

Gi 21,i
21 mi

21 ]~ui•ui 21!

]Rk
. ~10!

Equation~10! can be evaluated by invertingG, at a cost
of O(N3). An O(N) ~linear! efficient algorithm can be ob
tained by noting that only the super- or sub-diagonal e
ments ofG21 are required; they can be expressed in terms
cofactors of the super-diagonal elements ofG by Cramer’s
rule

Gi 21,i
21 5

cofGi ,i 21

det G
, ~11!
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where the cofactor cofGi 21,i of a subdiagonal element is minus the determinant of the (N22)3(N22) matrix obtained by
removing rowi and columni 21 from G

cofGi 21,i[2det3
d1 c2 0 . . .

c2 d2 c3 0 . . .

0 � � � 0 . . .

. . . 0 ci 23 di 23 ci 22 0 . . .

. . . 0 ci 22 di 22 0 . . .

. . . 0 ci 21 ci 0 . . .

. . . 0 ci 11 di 11 ci 12 0 . . .

. . . 0 ci 12 di 12 ci 13 0 . . .

. . . 0 � � � 0

. . . 0 cN22 dN22 cN21

. . . 0 cN21 dN21

4 ~12!

52cidetF d1 c2 0 . . .

c2 d2 c3 0 . . .

0 � � � 0 . . .

. . . 0 ci 23 di 23 ci 22

. . . 0 ci 22 di 22

G detF di 11 ci 12 0 . . .

ci 12 di 12 ci 13 0 . . .

0 � � � 0 . . .

. . . 0 cN22 dN22 cN21

. . . 0 cN21 dN21

G . ~13!
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Equation~13! is obtained by expanding the determinant
the large matrix along the row containingci . When i .2,
this row contains only the two nonzero elementsci andci 21 ,
whereas wheni 52 it contains only the single nonzero el
mentci . The cofactor ofci 21 vanishes for alli .2, leaving
only the term arising fromci and its cofactor. In the generi
case (3, i ,N21), the cofactor ofci 21 in Eq. ~12! is the
determinant of an (N23)3(N23) matrix that contains two
rectangular~and thus rank-deficient! blocks of nonzero ele-
ments: A top left block containingi 22 rows with nonzero
elements in the firsti 23 columns of the original matrix
whose rows cannot be linearly independent, and a bot
right block containingN2 i columns with nonzero element
in the lastN212 i columns, whose columns cannot be li
early independent. In the special casei 53, the cofactor of
ci 215c2 in Eq. ~12! is the determinant of an (N23)3(N
23) matrix containing all zeroes in its first row, yielding
zero determinant. In the remaining casei 5N21, the cofac-
tor of ci 215cN22 is the determinant of a matrix whose la
column contains all zeroes.

For all i 52, . . . ,N21, the determinant of the (N22)
3(N22) matrix shown in Eq.~12! is thus given byci times
the cofactor ofci in that matrix. The cofactor ofci in this
matrix is given for 2, i ,N21, by the determinant of an
(N23)3(N23) block diagonal matrix with a top left block
containing the intersection of rows and columns 1, . . . ,i
22 of the original matrixG and a bottom right block con
taining rows and columnsi 11, . . . ,N21 of G @these are the
two matrices in Eq.~13!#. In more compact notation

Gi 21,i
21 52ci

det Ti 22 det Bi 11

det G
, ~14!
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whereTj denotes the top leftj 3 j square matrix containing
rows and columns 1, . . . ,j of G, andBj is the bottom right
(N2 j )3(N2 j ) square matrix containing rows and colum
j , . . . ,N21 of G, with the convention detT05det BN51.
The full matrix G is given byG5TN215B1.

The determinants of the top left and bottom right mat
cesT and B can be calculated efficiently with a simple re
cursion relation2

det Ti 115di 11det Ti2~ci 11!2det Ti 21, ~15!

det Bj 215dj 21det B j2~cj !
2det B j 11, ~16!

wherei 51, . . . ,N22 and j 52, . . . ,N21.
At each time step, the metric forces can be computed

calculating the determinants of all of the submatricesT and
B with the recursion relations20 ~15! and ~16!, then using
Eqs.~10! and ~14! to calculate the metric forces. This algo
rithm is the main result of this paper.

Equation~10! for the metric forces is nearly identical t
the formula of the bending forcesFk

pot arising from the bend-
ing energy

U52
k

a (
i 52

N21

ui•ui 21 , ~17!

of a discrete wormlike chain with bending rigidityk, viz.

Fk
pot[2

]U

]Rk
5

k

a (
i 52

N21
]~ui•ui 21!

]Rk
. ~18!

For such linear wormlike chains, the bending and me
forces are calculated most effectively by first computi
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Gi 21,i
21 with the recursion relations~15!, ~16!, and Eq.~14!,

and then by computing the bending and metric forces
gether, as

Fk
pot1Fk

met5
1

a (
i 52

N21

k i
eff ]~ui•ui 21!

]Rk
, ~19!

by replacing the true bending rigidityk with a conformation-
dependent effective rigidity

k i
eff[k1kTa mi

21Gi 21,i
21 ~20!

for the joint connecting bondsi andi 21 at beadi, In a freely
jointed chain, of course,k50. The derivative with respect to
Rk in Eq. ~19! can be evaluated with the identity

]

]Rk
ui5

1

a
~dk,i 112dki!~ I2uiui !, ~21!

which is easily derived by differentiatingui[(Ri 112Ri)/
uRi 112Ri u with respect toRk , and settinguRi 112Ri u5a
after evaluating the derivative.

We have confirmed in Brownian dynamics simul
tions of free-draining wormlike chains, with a mid-ste
algorithm,12 that this new algorithm for the metric forces~as
that of Grassia and Hinch! yields the expected equilibrium
distribution of angles between neighboring bonds in a be

FIG. 1. Distribution of cosine of angles between rods 1 and 2 and rods 4
5 in a free-draining chain of 9 beads, fork50 ~top! andk/(akT)51 ~bot-
tom!. The solid line denotes the normalized theoretical predictionP(cosu)
}ek cosu/(akT). The symbols were computed by averaging the configuration
400 free-draining molecules for;14 times the rotational diffusion time of a
multi-bead rod of equal length, or 73106 time steps. Initial configurations
of the molecules were generated by sampling the theoretical distribu
then letting the system equilibrate for;3 rotational diffusion times before
collecting data.
Downloaded 22 Jan 2002 to 128.42.105.35. Redistribution subject to A
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spring polymer: We obtain uncorrelated bond orientations
a freely jointed chains, withk50, and a Boltzmann distri-
bution P(cosui)}ek cosui /(akT) of the cosine cosui5ui•ui 21

of the angle between neighboring bonds whenkÞ0 ~Fig. 1,
bottom!. When the metric forces are neglected, the distrib
tion deviates measurably from this prediction~Fig. 1, top!,
and, forN53, it agrees with the theoretical prediction for
trimer with beads of equal masses.6

In our simulations, computing the metric forces in th
way adds only 15% computation time to a mid-step alg
rithm for a free-draining bead-rod~Kramers! chain without
bending forces—see Appendix for details. The marginal c
of the metric forces is even lower in simulations of fre
draining wormlike chains, because the metric forces
evaluated with the bending forces at virtually no extra co
putational cost other than the time to calculate the subde
minants. TheO(N) cost of calculating the metric force
would become completely negligible in any simulation wi
hydrodynamic interactions. Because the procedural comp
ity of our algorithm is also minimal, there is no longer an
real penalty for including the metric forces in simulations
linear polymers with constrained bond lengths, if one ha
reason to prefer a constrained simulation that mimics
dynamics of infinitely stiff, rather than rigid, polymers.
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APPENDIX A: COMPUTATIONAL DETAILS

The inertialess equations of motion of a free-drainin
wormlike chain were integrated with a midstep algorithm12

and the procedure and formulas for the metric and bend
forces @Eqs. ~14!–~16! and ~19!–~21!# described in this ar-
ticle. The tensions were computed by solving by fastLU
factorization without pivoting21 of the symmetric, diagonally
dominant matrixG; uniformly distributed random number
were generated with a Tausworthe long-period generato22

The algorithm was programmed in Fortran 90, compiled a
optimized with IBM’s XL Fortran 7.1, and run on an IBM S
with Power3-II 375 MHz processors running IBM AIX 4.3
The optimized code performed 10 000 time steps for 1
Kramers chains of 128 beads in 119 s. Computing the me
forces required additional 20 s, i.e., 17% more CPU tim
When bending forces were added, the simulation time w
123 and 139 s without and with metric forces, respective
i.e., the metric forces required 13% extra computational
fort.
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