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An efficient algorithm for metric correction forces in simulations
of linear polymers with constrained bond lengths
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The dynamical behavior and equilibrium distribution of linear bead-rod and bead-spring polymers
differ even in the limit of infinitely stiff springs. Imposing metric pseudopotential forces on the
bead-rod chains yields the behavior of bead-spring chains in Langevin and Brownian Dynamics
simulations. Here we present a simple, compact, and efficient algorithm for computing the required
metric correction forces at minimal computational cost. 2802 American Institute of Physics.
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When designing a dynamical simulation of constrainedstrained systems, Fixm&rfiound that a mid-step algorithm
classical mechanical system, one is faced with two mathfor a polymer with constrained bond lengths and a potential
ematically similar, but conceptually distinct, sets of subtleenergy that depends on the bond orientations would yield an
questions, both of which arise from the existence of meequilibrium distribution that differs from the Boltzmann dis-
chanical constraints: physical questions about the nature afibution of bond orientations expected for a bead-spring
the equilibrium state and mathematical questions about thehain of stiff springs, and that happens to be equal to the one
formulation of simulation algorithms. predicted by equilibrium statistical mechanics for bead-rod

The first set of questions arises from the observation chains with equal bead masses. Fixman also noted, however,
that the thermal equilibrium distribution for a “rigid” classi- that a Brownian dynamics simulation of a chain with con-
cal mechanical system of point masses whose positions agrained bond lengths can be made to mimic that of a stiff
subject to rigorous mechanical constraints generally diﬁer%ead-spring chain by addmg an appropriate metric-pseudo-
from that of a corresponding “stiff” system, in which the potential to the potential energy from which the forces on the
constraints are approximately maintained by a stiff potentiaheads are derived. More generally, the predicted equilibrium
energy, even in the limit of an infinitely stiff potential. Spe- gjstribution of an infinitely stiff bead-spring chain can be
cifically, the theoretically predicted equilibrium distribution gptained from a constrained simulation, with or without in-
of bond orientations for a linear bead-rod polymer with rig- grtja, by adding an appropriate metric pseudo-potential to the
orously constrained bond lengths is different from that of ayntential energy used in the simulation.
bead-spring chain in the limit of infinite spring stiffness. In- To design a simulation of linear polymers with constant
finitely stiff bead-spring models yield a simple Boltzmann o nearly constant bond lengths, one must choose both an
distribution for the bond orientations, giving uncorrelated ngerlying physical modeli.e., chains with rigidly con-
bond orientations when the chain is freely jointed, whereag ained bond lengths or chains with stiff bopdsnd a com-
models_with rigidly constrained_ bond_ lengths lead to S“btleputational methodi.e., imposing constraints via Lagrange
correlations between bond orientations even for a freely, ivjiers or using stiff potentia)s To date, Brownian dy-
jointed chain, whose detailed form depends on the relative , yies simulations of chains with constrained bond lengths
bead masses. _ o , ave been carried out both without metric pseudopotential

The second set of questions arises in the analysis of aPorces, for freely jointed chains withdd® and with hydro-

g.c;rnth'ms f?r Bt[ownlaqtgyr?;]mlcs ‘C’.m;lljlatlor:)s.l.?f 'lne(;.t'alessdynamic interaction$! and with the metric pseudo-potential
iusion ot systems with elther vanabie mobIiunCluding ¢, o5 for free-draining freely jointed, and wormliké34
unconstrained systems with hydrodynamic interacjions chains

mechanical constraints, or both. In systems with a variable . . .
In practice, the choice of physical model and computa-

mobility but without constraints, two choices are possible totional method must be based on a combination of consider-
account properly for terms in the diffusion equation which

involve derivatives of the mobility: A simple explicit Euler at|on§ of physllcal realism r?md mathematlcall convenience.
algorithm in which the random bead displacements are bi_AIgorlthms which enforce rigorously consiraints on bond

ased by adding derivatives of the mobilftar a mid-step or Engtg are gener;llz cgmptt)itationallyh preferaple hto onesf
predictor-corrector algorithfnthat (in the absence of con- ased on very stilt bonds, because they permit the use o

straintg generates automatically the required terms. For Conl_onger F'me steps tr_lan those required to resolve rapid bon_d
fluctuations. We believe, however, that there are both physi-
cal and mathematical reasons to prefer simulations that
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bead-spring models appear to us to be somewhat less e
wrond*® than classical bead-rod models in most applications. Fi~ =
The mathematical advantages of the analysis of bead-spring
models arise primarily from the simple analytic form of their where
equilibrium distribution of bond orientations—e.g., random U= KT In(det G),
orientations in a freely jointed chain. For example, in the
analysis of the origins of stress in solutions of wormlikeandG is a (N—1)X(N—1) tridiagonal matrix

_ aUmet

PR )

©)

chains'® the ability to obtain a simple algebraic expression
for the stress tensor, and a simple physical interpretation of
its components, relied directly upon the use of a bead-spring
model for the analysis. More generally, theoretical analysis
and the analysis of simulations is often significantly simpli-
fied by using a model that has an algebraically simple equi-
librium distribution.

Here we present a compact formula and efficient algo-
rithm for calculating the metric pseudo-potential forces re-
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quired in simulations of chains with constrained bond
lengths to mimic the behavior of infinitely stiff bead-spring
chains. An algorithm for these forces has been given previ
ously by Grassia and Hinthand used in simulations by
Grassia and Hinch and by Everaersal® The computa-

tional cost of both algorithms scales linearly with the number;

In inertialess Brownian dynamic§ has a purely geometri-
cal meaning; its diagonal elements ake= 2, and its off di-

agonal elements are
Ci=—U-U_g,

)

i.e., the negative of the cosine of the angle between neigh-

of beads in a chain. The formula and algorithm presenteg,ing honds that share beadn inertial Langevin dynam-
here are, however, significantly simpler than those given by.q the elements o8 depend on the bead masses

Grassia and Hinch, and yield efficient code.

The Langevin equations of motion of a linear polymer of
N beads with position®Ry, ... Ry, connected byN—1
rods of length a with unit tangent vectorsu;=(R; 1
—R;)/a are

2

m: ﬁ — Fpot+ Fg:onst+ Fmet+ F_hydro+ F_rand (1)
| dt2 I I I I I '

for i=1,... N. Here, m; is the mass of bead, FP*

=-9U/JR; is a force derived from a potential energy

(U=0 in a freely jointed chain

const__
Foo=uNi—ui_q\i_q,

@)

is a constraint force, which depends upon bond tensiong

N1, - .- ,An_1 that must be computed to maintain constant
bond lengths,

N
FP==2 &y (Ri-w-Ry), 3
is the hydrodynamic drag force on a molecule in a flow field
with a homogeneous velocity gradieWiv= «', & is a fric-
tion tensor(e.g., either a local friction tensor or the Rotne—
Prager tensdf), F@" is a random force, an& " is the

metric force of primary interest here. The equations of mo-
tion used in inertialess Brownian dynamics simulations are

obtained by setting the masses to zero; they are a set of fir
order stochastic differential equations in which the bead ve
locities appearing irFihydro can be expressed in terms of

other forces through Ed1).

Hereafter we consider the calculation of metric forces
for either: (i) Inertialess Brownian dynamics simulations us-
ing a mid-step algorithrft1217:3or (ii) inertial Langevin dy-
namics simulations of Eq1) with nonzero bead masses. In
either case the metric forces can be expressétt'as

di=mf+11+ mfl, (8)

(€)

The inertialess case can be recovered from the inertial case
by settingm;=1 for all beads. The metric forces obtained
with inertialess and inertial dynamics coincide when the
beads have identical massas € m) because the matric€s
obtained in these two cases differ only by a multiplicative
factor m, which does not affect derivatives of In dét

Differentiating Eq.(5) with respect to the position of
beadi and using Eqgs(6), (8), (9), and the formula for the
derivative of the determinant of a tensor with respect to the
tensor components yields the expression of the metric
rces

_ -1
Ci=—m; “Uj-Uj_q.
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St Equation(10) can be evaluated by invertir@, at a cost

of O(N3). An O(N) (linean efficient algorithm can be ob-
tained by noting that only the super- or sub-diagonal ele-
ments ofG ! are required; they can be expressed in terms of
cofactors of the super-diagonal elementsGby Cramer’s
rule

1 _COfGiyifl

-1~ detg (11
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where the cofactor cd;_,; of a subdiagonal element is minus the determinant of te 2) X (N—2) matrix obtained by
removing rowi and columni —1 from G

B dl Co 0 Ce q
c, d, (o 0
0 0

0 ¢-3 diz ¢ O
0 ¢ d- O
cofG;_;;=—def 0 ¢ci_1 ¢ 0 (12
0 Ciy1 dis1 Ciy2 O
0 ¢4z divz Gz O
0 0
0 cy-2 dy-2 Cn-a

0 cn-1 dy-ad

d, C, 0 7 Tdiyqs Cio O 7
c; dp C3 0 Civz dit2 Ciyz O
= ¢ det 0 0 def © 0 | (13)
0 ¢-3 di-z Ci 0 cn-2 dy-2 Cn-1
0 ¢, d 0 cno1 dyoa

Equation(13) is obtained by expanding the determinant of whereT! denotes the top lefiX j square matrix containing
the large matrix along the row containirg. Wheni>2,  rows and columns,1 .. ,j of G, andB! is the bottom right
this row contains only the two nonzero elemegitandc; _ 4, (N—=])X(N—j) square matrix containing rows and columns
whereas wheri=2 it contains only the single nonzero ele- j, ... N—1 of G, with the convention deT’=detBN=1.
mentc; . The cofactor ofc;_; vanishes for ali>2, leaving  The full matrix G is given byG=TN"1=BL
only the term arising front; and its cofactor. In the generic The determinants of the top left and bottom right matri-
case (Xi<N-—1), the cofactor oft;_; in Eq. (12) is the cesT andB can be calculated efficiently with a simple re-
determinant of anN—3)x (N—3) matrix that contains two cursion relatiof
rectangulariand thus rank-deficienblocks of nonzero ele- ) . )
ments: A top left block containing—2 rows with nonzero detT'"'=d;, ;detT'—(c;, 1)°det T4, (15
elements in the first—3 columns of the original matrix, i—1_ J. ) (41
whose rows cannot be linearly independent, and a bottom detB’"*=d;_,detB’—(c;)°detB ', (16)
_right block contai_ning\l—i columns with nonzero elemen_ts wherei=1,... N—-2 andj=2, ... N—1.
in the lastN—1—i columns, whose columns cannot be lin-
early independent. In the special cdse3, the cofactor of
C;_1=C, in Eq. (12) is the determinant of anN—3)X (N
—3) matrix containing all zeroes in its first row, yielding a
zero determinant. In the remaining caseN— 1, the cofac-
tor of ¢;_;=cpn_» is the determinant of a matrix whose last
column contains all zeroes.

For alli=2,... N—1, the determinant of theN—2)

At each time step, the metric forces can be computed by
calculating the determinants of all of the submatri¢eand
B with the recursion relatio$ (15) and (16), then using
Egs.(10) and(14) to calculate the metric forces. This algo-
rithm is the main result of this paper.

Equation(10) for the metric forces is nearly identical to
the formula of the bending forcdg® arising from the bend-

ing ener
X (N—2) matrix shown in Eq(12) is thus given byc; times ¢ 9y
the cofactor ofc; in that matrix. The cofactor of; in this P
matrix is given for 2<i<N—1, by the determinant of an U=-7 22 Ui~ Ui—1, 17)
(N—3)x(N—3) block diagonal matrix with a top left block o
containing the intersection of rows and columns. 1 ,i  qf 4 discrete wormlike chain with bending rigidiy, viz.
—2 of the original matrixG and a bottom right block con-
taining rows and columnist-1, . .. N—1 of G [these are the U k"G auiuiy)
e . pol— = (18
two matrices in Eq(13)]. In more compact notation k dR, a i< IR,
o6l o— o detT' ~2detB'** (14  For such linear wormlike chains, the bending and metric
=L ! detG ' forces are calculated most effectively by first computing
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spring polymer: We obtain uncorrelated bond orientations for

T T 1 T T T T T T
0 a freely jointed chains, withkk=0, and a Boltzmann distri-
45 bution P(cos#)oce<cs4/@N of the cosine co®=u;-u;_;
055 045 M 015 of the angle between neighboring bonds whehaO (Fig. 1,
VT e ;;1;2;;;;“,, WITH METRIC bottom). When the metric forces are neglected, the distribu-
@ I ““““::::"_ o "-,';C.)F*CES tion deviates measurably from this predictig@fig. 1, top,
§ 05 (i ""“"""!-!;;uug and, forN=3, it agrees with the theoretical prediction for a
L i;* 845 AND 045 f;; ] trimer with beads of equal masses.
& THEORETICAL i In our simulations, computing the metric forces in this
osspd 845 02 —/Li way adds only 15% computation time to a mid-step algo-
N‘go“giTE'g'C N‘go"l';'éTEF;'C ] rithm for a free-draining bead-rotKramers chain without
I T R S S S S bending forces—see Appendix for details. The marginal cost
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of the metric forces is even lower in simulations of free-
draining wormlike chains, because the metric forces are
evaluated with the bending forces at virtually no extra com-
putational cost other than the time to calculate the subdeter-
minants. TheO(N) cost of calculating the metric forces
would become completely negligible in any simulation with
hydrodynamic interactions. Because the procedural complex-

g 045 ] ity of our algorithm is also minimal, there is no longer any
= NO METRIC real penalty for including the metric forces in simulations of
05012 AND 045 FORCES linear polymers with constrained bond lengths, if one has a
| THEORETICAL 15 AND B5 reason to prefer a constrained simulation that mimics the
WITH METRIC dynamics of infinitely stiff, rather than rigid, polymers.
. . . l —FORCES
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ocgr©0sd@M The symbols were computed by averaging the configuration of P

400 free-draining molecules for14 times the rotational diffusion time of a the f'gure'
multi-bead rod of equal length, or10° time steps. Initial configurations

of the molecules were generated by sampling the theoretical distributionAPPENDlX A: COMPUTATIONAL DETAILS
then letting the system equilibrate fer3 rotational diffusion times before '

collecting data. The inertialess equations of motion of a free-draining,
wormlike chain were integrated with a midstep algoritim
and the procedure and formulas for the metric and bending
forces[Egs. (14)—(16) and (19)—(21)] described in this ar-
ticle. The tensions were computed by solving by fakt

G;*;; with the recursion relationl5), (16), and Eq.(14),
and then by computing the bending and metric forces to

gether, as - factorization without pivoting' of the symmetric, diagonally
oot , cmet_ L 3 e (Ui~ Ui—1) dominant matrixG; uniformly distributed random numbers
Pt RcT=3 & < R, (19 \ere generated with a Tausworthe long-period genefator.

The algorithm was programmed in Fortran 90, compiled and
optimized with IBM’s XL Fortran 7.1, and run on an IBM SP
off P with Power3-11 375 MHz processors running IBM AIX 4.3.

ki =k+kTam "Gy (20 The optimized code performed 10000 time steps for 100
for the joint connecting bondsandi —1 at bead, In afreely  Kramers chains of 128 beads in 119 s. Computing the metric
jointed chain, of courses=0. The derivative with respect to forces required additional 20 s, i.e., 17% more CPU time.
Ry in Eqg. (19 can be evaluated with the identity When bending forces were added, the simulation time was
123 and 139 s without and with metric forces, respectively,
i.e., the metric forces required 13% extra computational ef-
fort.

by replacing the true bending rigidity with a conformation-
dependent effective rigidity

d 1
(?_Rkuiza(5k,i+1_5ki)(|_uiui)a (21
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