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A model of semiflexible bead-rod chain with anisotropic friction can mimic closely the
hydrodynamics of a slender filament. We present an efficient algorithm for Brownian dynamics
simulations of this model with configuration dependent anisotropic bead friction coefficients. The
algorithm is an extension of that given previously for the case of configuration independent isotropic
friction coefficients by Grassia and Hin¢h. Fluid Mech.308 255(1996]. We confirm that the
algorithm yields predicted values for various equilibrium properties. We also present a stochastic
algorithm for evaluation of the stress tensor, and we show that in the limit of stiff chains the
algorithm recovers the results of Kirkwood and PlpdkChem. Phys24, 665(1956] for rigid rods

with hydrodynamic interactions. @005 American Institute of Physid©OI: 10.1063/1.184851]1

I. INTRODUCTION der filaments, however, the effect of hydrodynamic screening
may be accurately mimicked by a free draining model with

The dynamics of polymers in solution are often well an anisotropic effective friction coefficient tensor, in which
described by Brownian dynamics simulations of models withthe coefficient of friction for motion parallel to the polymer
geometrical constraints. Constraints may be introduced eithdsackbone is half of the coefficient for transverse motibtf.
in atomistic models, to represent fixed bond lengths or diheThe dynamics of many stiff polymers and filaments in dilute
dral angles, or in more mesoscopic models of polymers aand semidilute solutions, including biopolymefsuch as
rigid rods, freely jointed bead-rod chains, or—consideredshort DNA, collagen fibrils, rodlike viruses, F-actin, and
here—longitudinally inextensible wormlike chains. xanthan, synthetic polymers[such as Polftbenzyl-L-

The design of a correct Brownian dynamics simulationglutamatg (PBLG) and Poly-p-phenylene-benzobisthiazple
of a model with constraints is not entirely trivialThere are  (PBZT), used in the production of fibefsand single-walled
some subtle aspects of the equilibrium statistical mechanicsarbon nanotubes, can be well described using the resulting
of constrained models, which have been discussed for marsiender body hydrodynamic approximation. Moreover, aniso-
yearsz.“‘AdditionaI, separate subtleties arise in the formula-tropic friction has been used in some attempts to mimic the
tion of either stochastic differential equations or simulationsnakelike motion of a polymer in an entangled fifiidnd is
algorithms for the Brownian motion of constrained needed to describe motion of a molecule in a liquid crystal-
system&,'s‘9 most of which are common to any model of line phase. In this paper, we consider a discretized model of
Brownian motion in which the diffusivity tensor depends semiflexible polymers with a local but anisotropic bead fric-
upon the system configuration. Grassia and Hifidave  tion, with arbitrary perpendicular and parallel friction coeffi-
given an algorithm for the simulation of free-draining bead-cients, which reduces to the slender body hydrodynamic ap-
rod polymers with constrained rod lengths and isotropic beagroximation as a special case.
friction coefficients, which uses a midstep algorithm and a
corrective pseudoforce that were both proposed by Fixtnan.
T.he. simple case ofa free—dralnlng model Wlth |sotr_op|q _beaql_ GENERIC MIDSTEP ALGORITHM
friction coefficients lends itself to mathematical simplifica-

tions that are not valid for models in which the friction tensor e yse a midstep algorithm for constrained systems that
or d_iffusivity depends_upon the polymer conformation, in-ygg originally proposed by Fixmahwhose analysis has
cluding the case considered here. since been clarified and generalized by Hinch and Grégéia
Accurate description of the dynamics of flexible poly- ang Morse! the prescription for simulating the Brownian
mers in dilute solution requires the use of a model with hy-motion of a generic constrained system of point particles is
drodynamic interactions. In the limit of nearly straight, slen-g,mmarized here.
Consider a molecule ofN beads with positions
dElectronic mail: mp@rice.edu R, ...,Ry that satisfyK constraints
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Cu(Ry, ..., Ry =const foru=1,... K. (1) forces are generated at the beginning of each time step of

length At by first generating unprojected random forces
The polymer is described by an inertialess Langevin equa;. ! ..., with a variance

tion for motion in a flow with a uniform velocity gradient
Kk=(VV)T, o 2KT
" (m, nj>=E§ij (12)
gij'(Ri_K'Ri):_E_njp)\p."'nj: 2
j and then by taking
whereU(Ry, ... ,Ry) is a potential energyyp, is a random RN (13
Langevin force;; is a friction tensor, which may depend on 7= N )

all bead positions) , is a constraint force conjugate to con- \yhere 7, is a *hard” component of theN8 dimensional un-

straintu, and projected random force vector along directiop). The hard
i, components of the random forces are given by the solution

Niu="R " (3 of a set of linear equations

Summation over repeated indices is impli@ay throughout éw;]yz Ny 7, (14)

thls section. Defining a mobility tensoH;;, such that

Hi-&;=18;, leads to the equivalent form where

Ry =Hj - [F{“=nj\ .l 4) G,y =i, Niy. (15)

where This construction is equivalent to taking=|3ij -, where
FPC:_£+|:T+,7. (5) ~

TR, T Py =18;-n,Gn;, (16)

is the unconstrained force on begdand F]fzgj ‘,-Rjis a s termed geometrical projection opera]tor.

“flow” force arising from the macroscopic velocity gradient. Both Hinctf and Morsé found that a corrective pseudo-
If we treat the Langevin equation as an ordinary differ-force

ential equationiignoring for the moment any subtleties that

arise because the resulting particle trajectories are actually Fps KT 9 In del(é) (17)

not differentiable functions of timethe instantaneous values OR;

of the constraint force&, ... ,Ax can be determined by re-

quiring that must be added to the fordg on the right-hand side of Egs.

_ _ (4) or (9) in the midstep algorithm with geometrically pro-
0=C,=nj, Ry foru=1,...K (6) jected random forces in order to obtain the correct equilib-

rium distribution. Fixmanoriginally found the same pseudo-
at each instant of time. This yields the set of linear equatlon%rCe without explicitly introducing the notion of a

B A =n -H..E4 @) geometrically projected random forces, a discrepancy that
Morse traced to an ambiguity in Fixman’s use of differential
where geometry. In fact, an algorithm that uses unprojected random

forces can be devised, but would require a pseudoforce given

Ho =iy - Hij - nj,. (8) by a different and generally more complicated expres%ion.
Substituting the resulting constraint forces into B).yields A single time step of the proposed midstep algorithm
the equation of motion involves the following substeps.

] (i) Construct unprojected random forces that satisfy Eq.

Ri=Pj -Hj - F{, (99 (12), using the friction tenso{iJ(R(o), ,R(,\?)) obtained at a
where set of initial bead positiong}”, ... ,R\Y.

(i) Use EQs.(13)<15) to construct geometrically pro-

Pj=16; —Hy- nkMH;lvnjV (100  jected random forces, using valuesnpf andG;, obtained at

the initial bead positions.

is termed a dynamical projection operator by Motse. - o (1/2) 1/2)
4 ; . iii) Calculate midstep positionR;"“, ... iven
The algorithm proposed by Hinch and co-work&rs, by (i) PP 1 g
which we follow here, requires that the random forces in the
equation of motion be what Morséerms geometrically pro- R =RO +vOA2, (18)
jected random forces. These forces must satisfy o
0=, for w=1, ... K, (11) whereV,™ is the initial velocity of bead calculated by using

values of the forces, mobility, and normal vectors at the ini-
so that the Bl dimensional vectory; of random forces is tial bead positions in Eqs4), (7), and(8), while adding the
locally tangent to the S—K dimensional hypersurface to metric pseudoforcgEq. (17)] to F;.

which the system is confined. In the algorithm of interest,  (iv) Calculate updated bead posmoR§1 l),
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RW = RO 4+ 12, 19 0T+ (1 -
i i i 19 &= 0T+ (1 -TTy), (29
_(1/2) g

whereV;™“ is calculated using the deterministic forces, mo- I gt

bility tensor, and normal vectors at the midstep positions inwhere{,=a{; and{, =a{, are bead friction coefficients and

Egs. (4)(8), but using the same projected random forcesy; and ¢, are the friction coefficients for motion, respec-

used in stegiii). tively, parallel and perpendicular to a local tangent vegtor
Previous applications of this algorithm have all been re-A slender filament in a viscous Newtonian liquid has

stricted to free draining models in which each bead has an

isotropic friction coefficientz.X%*® Such models yield l = 47-,%6(%E

H,,=G,,/{, a mobility tensoH;;= ;1 /{ proportional to the 1-1.1%

3N dimensional identity tensor, an~d identical dynamical andyhere e=In(L/r) and r is the filament hydrodynamic

geometric projection operatoR; = P;. In this special case, radius"'" With this (local) choice of friction tensor, the ve-

the contribution of the random forces to the velocity can bdocity of each bead is related to the force on that bead alone,

calculated using unprojected random forces and the pseudwsich yields an equation of motion

force of Eq.(17) without changing the the result. To see why, . 1 ue

note that the random forces generally make a contribution to Ri =& (R Nui— AqUiy). (27)

the velocity Pj;-Hjc-Pq-#n/, which simplifies to The tangeni; at bead of a discretized chain is
Pij-Pji-m 1{=Py-n/{ becauseP is idempotent, making

geometrical projection of the random forces redundant. In
the case of anisotropic drag considered here, the analysfsr 2<i<N-1, andti,=u,; andTiy=uy_, at the chain ends.
requires that the random forces be geometrically projected in
a separate step prior to the calculation of constraint forces

+ 1.659&2), (26)

T = (U + Ui/ Ui + Uiy, (28)

The tensions can be obtained by requiring thgto for
-all bonds, i.e., by solving a system of linear equations
N-1
2 HLA =, (G Fll - R =Q (29)
lll. BEAD-ROD CHAIN WITH ANISOTROPIC P oKL L B

FRICTION
whereu=1,... N-1 and

The general algorithm described above is applied here to N
a bead-rod model of a wormlike chain with an anisotropic |3|W: > ni, - &tong,, (30)
local friction. We consider a chain of length=(N-1)a rep- i=1

resented byN beads connected dy—1 rods of constrained . .
or, in matrix form,

lengtha,

C,=|R1-R,/=a foru=1,...N-1. (20) HA=Q, (31
DifferentiatingC,, with respect to bead positio yields a ~ whereH is symmetric, positive definite, and tridiagonal
vector b, a 0

Niy=U, (8 41— 6, (21) a, b, ag 0 .
in whichu,=(R,.;—R,)/ais a unit vector parallel to bond 0= 0 a . - 0 (32)
. Equation(4) yields an equation of motion of the form . 0 . bys ay, O

R, = H; .|:}°t (22) o 0 ay by ana

. . . . _ 0 an-1 byt
in which H;; is the mobility of bead in response to a force - -

on beadj (for which a simple local approximation is intro- With diagonal elements

duced below, and 2 (1 1 ) , ,
b,=—+|—--— [T, u)+@,q-u 33
St 4\ U~ n 23 T Vg LT PR C IR B
is the total force on beaj] including the contribution of the and off-diagonal elements
tensions in neighboring bonds, whexe is the tension in 1 1 1
bondj. The unconstrained force is a sum a,=- g—ulﬁl U, — <Z - g_)[(u” “U,)(@,-uy)]. (34
L I 1
F=- IR +FPo+ Ff t (24) BecauseH is tridiagonal, the constraint forces can be calcu-

lated in O(N) operations. Equation sdR9) satisfies the
that includes the metric, flow, and geometrically projectediength constraints to an accuracy of ordef, as the original
random forces. In the wormlike chain mod#l,is a bending algorithm of Grassia and Hinclf;when the rod lengths de-

potential, as discussed below. viate by more than a given toleran@gsually 10°), they are
The (anisotropi¢ mobility is H;; :5”-@71, where(i1 isan  restored taa through a simple rescaling procedure. An accu-
inverse bead friction tensor racy of orderAt or higher for the average displacement of a
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bead(AR;) is required to obtain the correct drift term in the 7= 1 + Palis — U (43)
Fokker—Planck equation for the evolution of the probability

distribution in the limit ofAt—0," so that the ordeAt? error  In summary, the four steps outlined at the end of Sec. Il are
in the constraints does not affect the limiting behavior of theas follows.

algorithm (see Sec. VI for an estimate of the weak order of (i) Construct unprojected random forceldse Eq.(40),

convergence of the complete algorithm using bead friction tensors evaluated in the initial conforma-
The bending energy of a discrete wormlike chain with ~ tion.
bending rigidity « is (i) Geometrically project random forcesSolve Egs.
N-1 (42) and(43), usingl; andG evaluated in the initial confor-
K mation.
U==—2, U Uq. 35
agz ko Tkt (39 (iii) Calculate midstep position#®\dd the deterministic

bending, metric and flow forces to the geometrically pro-
Pasquali and Mors& have shown that the bending and met- jected random forces to obtain @#'°©); use Eq.(31) to

ric forces can be obtained simultaneously, as a sum calculate the corresponding tensiong), and evaluate the
2 Uy~ Uy o) midstep bead positions
k" Yk-1
RS R 39 At
k=2 i Ri(l/Z) — RI(O) + Eé_l’(O) . F}Ot’(o), (44)

where
o . whereFP O =fFre@ )0 49 -\ Oy ©,
ki = k+tkgTaGy; (37) (iv) Calculate updated positionRecalculate the uncon-

is a configuration-dependent effective rigidity, and that theStrained deterministic forces and total tensions at the midstep

. ~ : . conformation to obtain the updated positions
matrix elementssi}l’i fori=2,... N-1 can be calculated in P P
O(N) operations by a fast recursion relation. The flow force  RY =R + Atz 112 plot1/2), (45)
is

Fl=¢c R+ (4 - )T k- R) (38
for any model with the anisotropic bead mobility of Eg5). V. EVALUATION OF STRESS

Unprojected random forces are constructed by taking
To evaluate the stress tensor, we start from Kramers for-

7 = \24kgT i1/2 & (39 mula
N
=\24kg TLZYE + (g% - £ - &1, (40 o=-3 (REM, (46)
i=1

where &=(&4,&2,&3) are uncorrelated random vectors

whose components;, are uniformly distributed random where

numbers between -0.5 and 0.5 with vanishing mean and _ . .

variance(£2)=1/12. Fr=F"-F (47)

_ The algorithm for a chain with anisotropic friction re- ;s the total nonhydrodynamic forcéincluding the metric
quires that the unprojected random forces should be prosseqoforcpacting on the bead which excludes the flow
jected geometrically in a separate calculation. The projecteghce £ but includes contributions to the tension that are
mobility tensorH,,, (which involves the anisotropic friction induced byF!. It has been showrthat the correct stress for
tensor$ and the projected metric tens@,, (which is a  the midstep algorithm used here is obtained by interpreting
purely geometrical objeptmust be distinguished. Equation Eg. (46) as an average
(13) for the hard components of the unprojected random N
forces can be expressed for a bead-rod chain as a 9¢t of o= _%2 <R§°)Fi”h'(°> + Ri(l)':inh’(l)>

-1 linear equations: t (48)
< f the virial beginni d end of the ti
Aoa ' _ the virial tensor at beginning and end of the time step.
G, = -75,)-u,=P 4y orthe w ;
,;1 oy = (s = 7, U= Py “D It is advantageous to divide the stress into components

_ _ _ arising from smooth and random contributions to the uncon-
or, In matrix notation, strained forceFYS, and to treat these contributions somewhat
differently.10 FUY¢is expressed as the sum of the random force

Gy=P, (42) 7; and a smooth component

where G is a symmetric, positive definite, and tridiagonal Fomh= b4 FM 4 F (49)
matrix with diagonal terms5,,=2, and off-diagonal terms

G, -1=-U, U, 1. Therefore, the geometrically projected To simplify notati_on, it is coqvenient to define, for any force
random forces are F,;, a corresponding constrained force
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N 1.5
Fi=2 Fj-Pj = Fi+ migUing = 7, (50)
i=1
where 7 is the tension induced bly, computed by solving
N-1 1
2 HLT =, (G Fa =5 F). (51) b
v=1 8
Using this notation, the total stress can be expressed asasum o
of smooth and random components 05}
N
o*M= = 3 (ROFE™-F)), (52)
i=1 12 =~ 48\
correct algorithm
N 0 : : :
1 -1 -0.5 0 0.5 1
o_rand: _ 52 <(Ri(0)7’i(0)) + (Ri(l)7_7i(l))>‘ (53) cos 0
i=1

In the above, we have used the fact that the Stratonovich-like
interpretation of the time average used in ) is neces-

6,,and 0
sary only for random stress componehgs)d that the correct 1243 &
wrong algorithm 0000

value of e*™"is obtained in the limitA\t— 0 by using values
obtained at either the beginnirigs abovg or the end of a
time step.

To evaluate the random stress, we use a technique intro-
duced independently by Grassia and Hif¥dmd (in the con-
text of a slightly different algorithonby Doyle et al’® to
filter out large but temporally uncorrelated fluctuations. Fol-
lowing these authors, we note that the stress contribution at
the beginning of the time st_eEi'\iﬁRi(o)Tyfo)) has zero mean
but fluctuations of order 1JAt. This term can be subtracted
from the contribution at the end of the time step, without
modifying the mean stress, while reducing its variance to

order 1. The resulting filtered expression for the randonFIG. 1. Distribution of cosine of angles between rods 1 ari®pand rods
stress is 4 and 5(¢) in a chain of nine beads with anisotropic frictign=2¢, for
«/(akT)=1 or L,/L=0.125(top) and relative error with respect to the the-

correct algorithm

T -05 0 0.5 1
cos 6

1 N oretical distribution(bottom). The solid line denotes the normalized theoret-
o"and= _ —E <Ri(1)77i(1) - Ri(o)Tyi(O)). (54) ical predictionP(cosf)=exd «x cosd/(akT)]. Solid symbols represent the
2 i=1 correct algorithm and empty symbols represent the incorrect algorithm with
unprojected noise. The symbols were computed by averaging the configu-
The total stress is then the sum of E¢s2) and (54). ration of 400 molecules for ten times the rotational diffusion time of a rod of

equal length. Initial configurations of the molecules were generated by sam-
pling the theoretical distribution, then letting the system equilibrate for three
V. VALIDATION rotational diffusion times before collecting data.

The above algorithm has been used to perform simula- _ _ _
tions of semiflexible chains in equilibrium and in steadyWith unprojected forces clearly does not. The relative maxi-
shear flow. The anisotropy of the friction tensor affects themum error in the cosines distribution using the incorrect al-
dynamics of the molecules, but chains with isotropic anddorithm is about 15% fok/(akT)=1[or L,/L=0.125, where
anisotropic friction must satisfy the same theoretical Boltz-Lp= /(KT) is the persistence length of the chand 10%

mann distribution of conformations at equilibrium for the for x/(akT)=4 (or L,/L=0.5. Of course, the relative error
cosine of the angle between neighboring bond @os In the cosines distribution obtained with the incorrect algo-

=U;-Ui_q rithm vanishes in the isotropic limit and increases with in-
_ creasing anisotropy. In simulations with =10¢,, the maxi-
. « COs 6;/(akT) . f
P(cos§) = & ' ' (59 mum relative error is about 30% fai/ (akT)=1 and 12% for

Results for this distribution are shown in Figs. 1 anddp),  «/(akT)=4. The relative error also diminishes for stiffer
for two different values of chain stiffness and a raip  chains, becausd — G/{, asu;-u;,;— 1.

=2¢,. The results of the present algorithm, with geometri-  Results for the average stress tensor obtained in equilib-
cally projected random forces and a metric pseudoforce ardum simulations also agree with theoretical prediction. The
compared with those of an incorrect algorithm that uses thetress tensor has zero off-diagonal terfas a consequence
same pseudo force but unprojected random forces. The coof rotational isotropy and diagonal terms of kT per poly-

rect algorithm yields results that agree with the predictedner, corresponding to the ideal solution osmotic pressure of
distribution to within statistical error, whereas the algorithmkT per polymer per unit volume.
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FIG. 3. Relative steady-shear viscosity/ 7,) vs Weissenberg number Wi
=y7, reported by Kirkwood and PlociRef. 19 for rigid rods with hydro-
dynamics interactiongcontinuous ling and by Stewart and SorenséRef.

24) for multibead rods without hydrodynamic interactiofdashed ling
compared with the results of BD simulations for semiflexible rods with
L,/L=250 and{, /=2 (rescaled withy= 7", 7,=70, W) and{, /{=1
(rescaled withyg= 7", 7= 7 ©).

*
K
lo]

0 flow direction and therefore provide less viscous resistance;
'0'15_1 ' 05 0 05 1 the slope of the shear thinning curve in presence of hydro-
cos 6 dynamic interactions is equal to —112.
FIG. 2. Distribution of cosine of angles between rods 1 ari®2and rods To reproduce these results with our algorithm, we used
4 and 5(¢) in a chain of nine beads with anisotropic frictigi=2¢, for ~ semiflexible chains withL,/L=250, which are nearly
_K/(ak_'l‘)=_4 o_er/L=O.5(top) and relative error with respect to the theoret- straight, rodlike in equiIibrium, and do not deform at the
ical distribution(bottom. . . . . . .
shear rates investigated here. Semiflexible chains can in fact
deform in shear flow, undergoing a flow induced buckling
To validate the algorithm in presence of an external flow,instability?°~* such buckling however does not occur for
simulations of very stiff wormlike chains with bot, =2,  small elasticity number, i.e., for El yn,<1, where 7,
and ¢, =¢; under steady shear have been conducted over ﬁg’l(L/4.734/K. In our simulations, X105<El<5
range of values of the shear rakg,=7y, and compared to 102,
previous results for the steady shear viscosity of rigid rods Figure 3 compares)/ 7, as a function of Wi from our
with and without hydrodynamic mte_ractlons. ) _ simulations of stiff semiflexible chains with anisotropic fric-
Although a closed-form expression for the viscosity as &ion to Kirkwood and Plock’s results for rigid rods with hy-

function of the shear rate is not known, Kirkwood and drodynamic interactions. To compare the data, we take the
Plock”® calculated the shear viscosity of a dilute solution of® %Y : P ’

X e ) s
rods, modeled as a line of Stokeslets with hydrodynami(fc’t""t'on"jII diffusion time for our model to be;=¢,a‘(N

. . . ) ) * 1\3 . . . )
interactions, by numerically solving the Smoluchowski equa-~ 1)/ (72KT); the results of our simulations agree with those
tion for the distribution of rod orientations. In the limit of Of Kirkwood and Plock to within our statistical accuracy,

very large number of Stokeslets, i.e., for a rigid rod with thus validating both the simulation algorithm and the use of
hydrodynamic interactions, Kirkwood and Plock obtained alocal anisotropic friction to mimic the hydrodynamics of
zero shear viscosity: rigid rods.
In Fig. 3 we also show the results obtained for the same
stiff chains with isotropic friction. This results are compared
od = 27 4w (56) i 4
Mo = 55! Trod?s with those of Stewart and Sorensényho have calculated
the viscosity of a dilute solution of rigid dumbbells without

WhererrodE§1L3/(72 kT)=17, is the rotational diffusion time hydrodynamic interactions, by numerically solving the cor-
of a rod andv is the number of rods per unit volume. Kirk- responding diffusion equation in shear flow. Their results are
wood and Plock also found that the reduced shear viscosit§lso valid for multibead-rod models when the rigid dumbbell
7l 99, Wheren= o,/ v, decreases for values of the Weissen-rotational diffusion time is replaced with the diffusion time
berg number Wi y7,=0.1, because the rods orient in the for the multibead roti
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CUPN(N+1)  @((N-DN(N+1) 57 0.3
Tmb = 22N = KT 7T -
For this model, WiZyz,, and 7°=kTry,v. The agreement 0.25¢ end to end distance
between our simulations and their numerical results is excel-
lent. 02t

VI. CONVERGENCE
w 0151

We have investigated the convergence of our results with
decreasing time stefst by monitoring the dependence i
of the relative error for the average end-to-end distaiRye
and for the distribution of values of the cosines of angles
between consecutive bonds. Simulations have been per- 45l
formed with chains of nine beads with anisotropic friction
§=2¢, and «/(akT)=1(L,/L=0.125, and «/(akT)
=4(L,/L=0.5. The errors have been computed by equili- 0

0.1}

0 0.002 0.004 0.0086 0.008 0.01

brating 5000 chains for three times the rotational diffusion Atx (KT/ag)
times for rods of equal length, then accumulating data for an
additional ten rotational diffusion times. 0.35
The error on the distributio®(cos ) of values cog of
the angled between any two neighboring rods, which for this 03}
purpose is averaged over all seven pairs of neighboring rods, L=
is defined as 0251
1
€cos= f |P(cos€) - Peq(COSH)|Peq(COSH), (58 ool cosine distribution
_1 -

wherePgq(cos ) =A exp(«x cosd/ (akT)) is the predicted dis-

- g o 0.15}
tribution, andA is a normalization constant chosen such that
ffld(cosa)Peq(cosa):l. The distributionP(cos#) is calcu-
lated numerically by dividing the intervdk1,1] into 100 o1r
equal subintervals, and the errgy, is obtained by approxi-
mating the above integral as a sum, and subtracting the inte- 0.05¢
gral of P¢{cos6) over each subinterval from the simulated
result for P(cosé). 0 - - - -

The error on the average end to end distancee is 0 0002 0004 0006 0008 001
Atx (kT/ag)

=[(R)|~Req Where Ry, is determined by an independent

Mont? Carlo simulation of X 10° mO'eCP'es- FIG. 4. Relative error vat (symbolg and linear fit(lines) for the end to
Figure 4 presents the results of this convergence studgnd distancetop) and for the cosine distributiofbottom for chains with

Both quantities show a linear convergence rate, ee.At. nine beads with anisotropic frictiof}=2¢,, «/(akT)=1 (O), and «/(akT)

This is the same order of global weak convergel(ioe., =4 _(0). The errors were computed averaging the configurations of 5000
L . chains for ten times;,y. Note that the error bars fag,sare smaller than the
convergence of the probability distributipas that found for 01

a simple explicit Euler algorithrﬁs.

167.7 s on the Pentium and 151.7 s on the Regatta. On both
VII. EFFICIENCY machines, these times were35% longer than the corre-
sponding timeg119.6 s and 113.7)sor the same bench-
mark of an analogous code for semiflexible chains with iso-
Fropic friction. Most of the additional computational cost is
due to the extra step of geometrically projecting the random
forces in the case of anisotropic friction, which entails the
solution of an additional tridiagonal system N1 linear
equations once per time step.

The computational cost per molecule for this algorithm
scales linearly withN, with a prefactor only modestly larger
than that found for the corresponding free-draining mode
with isotropic friction. In our implementation, tensions are
computed by solving by fast LU factorization without
pivoting®® of the tridiagonal, symmetric, diagonally domi-
nant matricess andH; uniformly distributed random num-
bers are generated with a Tausworthe long-perio
generato?.7 The algorithm was implemented in Fortran 90,({””' DISCUSSION
compiled with Intel Compiler 8.0 and IBM XLF 7.1.0, and The main result of this work is the design and implemen-
run on an Intel Pentium 4 2.8 GHz and an IBM Regatta withtation of a correct algorithm for Brownian dynamics simula-
1.3 GHz Power4 processors. A benchmark simulation ofions of constrained, semiflexible chains for which the fric-
10 000 steps for 100 semiflexible chains with 128 beads tookion coefficient{; of each bead is anisotropic and dependent
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