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A model of semiflexible bead-rod chain with anisotropic friction can mimic closely the
hydrodynamics of a slender filament. We present an efficient algorithm for Brownian dynamics
simulations of this model with configuration dependent anisotropic bead friction coefficients. The
algorithm is an extension of that given previously for the case of configuration independent isotropic
friction coefficients by Grassia and HinchfJ. Fluid Mech.308, 255 s1996dg. We confirm that the
algorithm yields predicted values for various equilibrium properties. We also present a stochastic
algorithm for evaluation of the stress tensor, and we show that in the limit of stiff chains the
algorithm recovers the results of Kirkwood and PlockfJ. Chem. Phys.24, 665s1956dg for rigid rods
with hydrodynamic interactions. ©2005 American Institute of Physics. fDOI: 10.1063/1.1848511g

I. INTRODUCTION

The dynamics of polymers in solution are often well
described by Brownian dynamics simulations of models with
geometrical constraints. Constraints may be introduced either
in atomistic models, to represent fixed bond lengths or dihe-
dral angles, or in more mesoscopic models of polymers as
rigid rods, freely jointed bead-rod chains, or—considered
here—longitudinally inextensible wormlike chains.

The design of a correct Brownian dynamics simulation
of a model with constraints is not entirely trivial.1 There are
some subtle aspects of the equilibrium statistical mechanics
of constrained models, which have been discussed for many
years.2–4 Additional, separate subtleties arise in the formula-
tion of either stochastic differential equations or simulation
algorithms for the Brownian motion of constrained
systems,1,5–9 most of which are common to any model of
Brownian motion in which the diffusivity tensor depends
upon the system configuration. Grassia and Hinch10 have
given an algorithm for the simulation of free-draining bead-
rod polymers with constrained rod lengths and isotropic bead
friction coefficients, which uses a midstep algorithm and a
corrective pseudoforce that were both proposed by Fixman.5

The simple case of a free-draining model with isotropic bead
friction coefficients lends itself to mathematical simplifica-
tions that are not valid for models in which the friction tensor
or diffusivity depends upon the polymer conformation, in-
cluding the case considered here.

Accurate description of the dynamics of flexible poly-
mers in dilute solution requires the use of a model with hy-
drodynamic interactions. In the limit of nearly straight, slen-

der filaments, however, the effect of hydrodynamic screening
may be accurately mimicked by a free draining model with
an anisotropic effective friction coefficient tensor, in which
the coefficient of friction for motion parallel to the polymer
backbone is half of the coefficient for transverse motion.11,12

The dynamics of many stiff polymers and filaments in dilute
and semidilute solutions, including biopolymersssuch as
short DNA, collagen fibrils, rodlike viruses, F-actin, and
xanthand, synthetic polymers fsuch as Polys-benzyl-L-
glutamated sPBLGd and Polys-p-phenylene-benzobisthiazoled
sPBZTd, used in the production of fibersg, and single-walled
carbon nanotubes, can be well described using the resulting
slender body hydrodynamic approximation. Moreover, aniso-
tropic friction has been used in some attempts to mimic the
snakelike motion of a polymer in an entangled fluid,4 and is
needed to describe motion of a molecule in a liquid crystal-
line phase. In this paper, we consider a discretized model of
semiflexible polymers with a local but anisotropic bead fric-
tion, with arbitrary perpendicular and parallel friction coeffi-
cients, which reduces to the slender body hydrodynamic ap-
proximation as a special case.

II. GENERIC MIDSTEP ALGORITHM

We use a midstep algorithm for constrained systems that
was originally proposed by Fixman,5 whose analysis has
since been clarified and generalized by Hinch and Grassia8–10

and Morse;1 the prescription for simulating the Brownian
motion of a generic constrained system of point particles is
summarized here.

Consider a molecule ofN beads with positions
R1, . . . ,RN that satisfyK constraintsadElectronic mail: mp@rice.edu
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CmsR1, . . . ,RNd = const form = 1, . . . ,K. s1d

The polymer is described by an inertialess Langevin equa-
tion for motion in a flow with a uniform velocity gradient
k=s=vdT,

zi j · sṘi − k ·Rid = −
]U

]R j
− n jmlm + h j , s2d

whereUsR1, . . . ,RNd is a potential energy,h j is a random
Langevin force,zi j is a friction tensor, which may depend on
all bead positions,lm is a constraint force conjugate to con-
straintm, and

n jm ;
]Cm

]R j
. s3d

Summation over repeated indices is impliedonly throughout
this section. Defining a mobility tensorH i j , such that
H ik ·zkj= Idi j , leads to the equivalent form

Ṙi = H i j · fF j
uc − n jmlmg, s4d

where

F j
uc = −

]U

]R j
+ F j

f + h j s5d

is the unconstrained force on beadj , andF j
f =zi j ·k ·R j is a

“flow” force arising from the macroscopic velocity gradient.
If we treat the Langevin equation as an ordinary differ-

ential equationsignoring for the moment any subtleties that
arise because the resulting particle trajectories are actually
not differentiable functions of timed, the instantaneous values
of the constraint forcesl1, . . . ,lK can be determined by re-
quiring that

0 = Ċm = nim · Ṙi for m = 1, . . . ,K s6d

at each instant of time. This yields the set of linear equations

Ĥmnln = nim ·H i j ·F j
uc, s7d

where

Ĥmn ; nim ·H i j ·n jn. s8d

Substituting the resulting constraint forces into Eq.s4d yields
the equation of motion

Ṙi = Pi j ·H jk ·Fk
uc, s9d

where

Pi j ; Idi j − H ik ·nkmĤmn
−1n jn s10d

is termed a dynamical projection operator by Morse.1

The algorithm proposed by Hinch and co-workers,8–10

which we follow here, requires that the random forces in the
equation of motion be what Morse1 terms geometrically pro-
jected random forces. These forces must satisfy

0 = hi ·nim for m = 1, . . . ,K, s11d

so that the 3N dimensional vectorhi of random forces is
locally tangent to the 3N−K dimensional hypersurface to
which the system is confined. In the algorithm of interest,

forces are generated at the beginning of each time step of
length Dt by first generating unprojected random forces
h18 , . . . ,hN8 , with a variance

khi8h j8l =
2kT

Dt
zi j s12d

and then by taking

h j = h j8 − n jmĥm, s13d

whereĥm is a “hard” component of the 3N dimensional un-
projected random force vector along directionn jm. The hard
components of the random forces are given by the solution
of a set of linear equations

Ĝmnĥn = n jm · h j8, s14d

where

Ĝmn ; nim ·nin. s15d

This construction is equivalent to takinghi =P̃i j ·h j8, where

P̃i j ; Idi j − nimĜmn
−1n jn s16d

is termed geometrical projection operator.1

Both Hinch8 and Morse1 found that a corrective pseudo-
force

F j
ps= kT

]

]R j
ln detsĜd s17d

must be added to the forceF j on the right-hand side of Eqs.
s4d or s9d in the midstep algorithm with geometrically pro-
jected random forces in order to obtain the correct equilib-
rium distribution. Fixman5 originally found the same pseudo-
force without explicitly introducing the notion of a
geometrically projected random forces, a discrepancy that
Morse traced to an ambiguity in Fixman’s use of differential
geometry. In fact, an algorithm that uses unprojected random
forces can be devised, but would require a pseudoforce given
by a different and generally more complicated expression.1

A single time step of the proposed midstep algorithm
involves the following substeps.

sid Construct unprojected random forces that satisfy Eq.
s12d, using the friction tensorzi jsR1

s0d , . . . ,RN
s0dd obtained at a

set of initial bead positionsR1
s0d , . . . ,RN

s0d.
sii d Use Eqs.s13d–s15d to construct geometrically pro-

jected random forces, using values ofn jm andĜin obtained at
the initial bead positions.

siii d Calculate midstep positionsR1
s1/2d , . . . ,RN

s1/2d given
by

Ri
s1/2d = Ri

s0d + V i
s0dDt/2, s18d

whereV i
s0d is the initial velocity of beadi calculated by using

values of the forces, mobility, and normal vectors at the ini-
tial bead positions in Eqs.s4d, s7d, ands8d, while adding the
metric pseudoforcefEq. s17dg to F j.

sivd Calculate updated bead positionsR1
s1d , . . . ,RN

s1d,
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Ri
s1d = Ri

s0d + V i
s1/2dDt, s19d

whereV i
s1/2d is calculated using the deterministic forces, mo-

bility tensor, and normal vectors at the midstep positions in
Eqs. s4d–s8d, but using the same projected random forces
used in stepsiii d.

Previous applications of this algorithm have all been re-
stricted to free draining models in which each bead has an
isotropic friction coefficientz.10,13–16 Such models yield

Ĥmn=Ĝmn /z, a mobility tensorH i j =di j I /z proportional to the
3N dimensional identity tensor, and identical dynamical and

geometric projection operatorsPi j ; P̃i j . In this special case,
the contribution of the random forces to the velocity can be
calculated using unprojected random forces and the pseudo-
force of Eq.s17d without changing the the result. To see why,
note that the random forces generally make a contribution to

the velocity Pi j ·H jk ·P̃kl ·hl8, which simplifies to
Pi j ·Pjl ·hl8 /z=Pil ·hl8 /z becauseP is idempotent, making
geometrical projection of the random forces redundant. In
the case of anisotropic drag considered here, the analysis
requires that the random forces be geometrically projected in
a separate step prior to the calculation of constraint forces.

III. BEAD-ROD CHAIN WITH ANISOTROPIC
FRICTION

The general algorithm described above is applied here to
a bead-rod model of a wormlike chain with an anisotropic
local friction. We consider a chain of lengthL=sN−1da rep-
resented byN beads connected byN−1 rods of constrained
lengtha,

Cm = uRm+1 − Rmu = a for m = 1, . . . ,N − 1. s20d

DifferentiatingCm with respect to bead positionsRi yields a
vector

nim = umsdi,m+1 − di,md s21d

in which um=sRm+1−Rmd /a is a unit vector parallel to bond
m. Equations4d yields an equation of motion of the form

Ṙi = H i j ·F j
tot s22d

in which H i j is the mobility of beadi in response to a force
on beadj sfor which a simple local approximation is intro-
duced belowd, and

F j
tot = F j

uc + l ju j − l j−1u j−1 s23d

is the total force on beadj , including the contribution of the
tensions in neighboring bonds, wherel j is the tension in
bond j . The unconstrained force is a sum

Fi
uc = −

]U

]Ri
+ Fi

ps+ Fi
f + hi s24d

that includes the metric, flow, and geometrically projected
random forces. In the wormlike chain model,U is a bending
potential, as discussed below.

The sanisotropicd mobility is H i j =di jzi
−1, wherezi

−1 is an
inverse bead friction tensor

zi
−1 =

1

zi

ũiũi +
1

z'

sI − ũiũid, s25d

wherezi=azi
* andz'=az'

* are bead friction coefficients and
zi

* and z'
* are the friction coefficients for motion, respec-

tively, parallel and perpendicular to a local tangent vectorũi.
A slender filament in a viscous Newtonian liquid has

z'
* = 4phseS1 + 0.64e

1 − 1.15e
+ 1.659e2D , s26d

where e; lnsL / rd and r is the filament hydrodynamic
radius.11,17 With this slocald choice of friction tensor, the ve-
locity of each bead is related to the force on that bead alone,
which yields an equation of motion

Ṙi = zi
−1 · sFi

uc + liui − li−1ui−1d. s27d

The tangentũi at beadi of a discretized chain is

ũi = sui + ui−1d/uui + ui−1u, s28d

for 2ø i øN−1, andũ1=u1 and ũN=uN−1 at the chain ends.

The tensions can be obtained by requiring thatĊm=0 for
all bonds, i.e., by solving a system of linear equations

o
n=1

N−1

Ĥmnln = um · szm+1
−1 ·Fm+1

uc − zm
−1 ·Fm

ucd ; Qm s29d

wherem=1, . . . ,N−1 and

Ĥmn = o
i=1

N

nim · zi
−1 ·nin, s30d

or, in matrix form,

Ĥl = Q, s31d

whereĤ is symmetric, positive definite, and tridiagonal

Ĥ = 3
b1 a2 0 �

a2 b2 a3 0 �

0 a3 � � 0 ¯

� 0 � bN−3 aN−2 0

� 0 aN−2 bN−2 aN−1

� 0 aN−1 bN−1

4 s32d

with diagonal elements

bm =
2

z'

+ S 1

zi

−
1

z'

Dfsũm ·umd2 + sũm+1 ·umd2g s33d

and off-diagonal elements

am = −
1

z'

um+1 ·um − S 1

zi

−
1

z'

Dfsũm ·um+1dsũm ·umdg. s34d

BecauseĤ is tridiagonal, the constraint forces can be calcu-
lated in OsNd operations. Equation sets29d satisfies the
length constraints to an accuracy of orderDt2, as the original
algorithm of Grassia and Hinch;10 when the rod lengths de-
viate by more than a given tolerancesusually 10−3d, they are
restored toa through a simple rescaling procedure. An accu-
racy of orderDt or higher for the average displacement of a
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beadkDRil is required to obtain the correct drift term in the
Fokker–Planck equation for the evolution of the probability
distribution in the limit ofDt→0,1 so that the orderDt2 error
in the constraints does not affect the limiting behavior of the
algorithm ssee Sec. VI for an estimate of the weak order of
convergence of the complete algorithmd.

The bending energyU of a discrete wormlike chain with
bending rigidityk is

U = −
k

a
o
k=2

N−1

uk ·uk−1. s35d

Pasquali and Morse15 have shown that the bending and met-
ric forces can be obtained simultaneously, as a sum

Fi
b + Fi

ps=
1

a
o
k=2

N−1

kk
eff]suk ·uk−1d

]Ri
, s36d

where

ki
eff ; k + kBTaĜi−1,i

−1 s37d

is a configuration-dependent effective rigidity, and that the

matrix elementsĜi−1,i
−1 for i =2, . . . ,N−1 can be calculated in

OsNd operations by a fast recursion relation. The flow force
is

Fi
f = z'k ·Ri + szi − z'dũisũi · k ·Rid s38d

for any model with the anisotropic bead mobility of Eq.s25d.
Unprojected random forces are constructed by taking

hi8 = Î24kBTzi
1/2 · ji s39d

=Î24kBTfz'
1/2j + szi

1/2 − z'
1/2dũiũi · jig, s40d

where ji =sji1,ji2,ji3d are uncorrelated random vectors
whose componentsjia are uniformly distributed random
numbers between −0.5 and 0.5 with vanishing mean and
variancekjia

2 l=1/12.
The algorithm for a chain with anisotropic friction re-

quires that the unprojected random forces should be pro-
jected geometrically in a separate calculation. The projected

mobility tensorĤmn swhich involves the anisotropic friction

tensorsd and the projected metric tensorĜmn swhich is a
purely geometrical objectd must be distinguished. Equation
s13d for the hard components of the unprojected random
forces can be expressed for a bead-rod chain as a set ofN
−1 linear equations:

o
n=1

N−1

Ĝmnĥn = shm+18 − hm8 d ·um = Pm s41d

or, in matrix notation,

Ĝĥ = P, s42d

where Ĝ is a symmetric, positive definite, and tridiagonal
matrix with diagonal termsGmm=2, and off-diagonal terms
Gm,m−1=−um ·um−1. Therefore, the geometrically projected
random forces are

hi = hi8 + ĥi+1ui+1 − ĥiui . s43d

In summary, the four steps outlined at the end of Sec. II are
as follows.

sid Construct unprojected random forces: Use Eq.s40d,
using bead friction tensors evaluated in the initial conforma-
tion.

sii d Geometrically project random forces: Solve Eqs.

s42d ands43d, usingũi andĜ evaluated in the initial confor-
mation.

siii d Calculate midstep positions: Add the deterministic
bending, metric and flow forces to the geometrically pro-
jected random forces to obtain anFuc,s0d; use Eq.s31d to
calculate the corresponding tensionslm

s0d, and evaluate the
midstep bead positions

Ri
s1/2d = Ri

s0d +
Dt

2
zi

−1,s0d ·Fi
tot,s0d, s44d

whereFi
tot,s0d=Fi

uc,s0d+li+1
s0d ui+1

s0d −li
s0dui

s0d.
sivd Calculate updated positions: Recalculate the uncon-

strained deterministic forces and total tensions at the midstep
conformation to obtain the updated positions

Ri
s1d = Ri

s0d + Dtzi
−1,s1/2d ·Fi

tot,s1/2d. s45d

IV. EVALUATION OF STRESS

To evaluate the stress tensor, we start from Kramers for-
mula

s = − o
i=1

N

kRiFi
nhl, s46d

where

Fi
nh = Fi

tot − Fi
f s47d

is the total nonhydrodynamic forcesincluding the metric
pseudoforced acting on the beadi, which excludes the flow
force Fi

f, but includes contributions to the tension that are
induced byFi

f. It has been shown1 that the correct stress for
the midstep algorithm used here is obtained by interpreting
Eq. s46d as an average

s = −
1

2o
i=1

N

kRi
s0dFi

nh,s0d + Ri
s1dFi

nh,s1dl s48d

of the virial tensor at beginning and end of the time step.
It is advantageous to divide the stress into components

arising from smooth and random contributions to the uncon-
strained forceFuc, and to treat these contributions somewhat
differently.10 Fuc is expressed as the sum of the random force
hi and a smooth component

Fi
smth; Fi

b + Fi
m + Fi

f . s49d

To simplify notation, it is convenient to define, for any force
Fi, a corresponding constrained force
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F̄i ; o
j=1

N

F j ·Pji = Fi + ti+1ui+1 − tiui , s50d

whereti is the tension induced byF, computed by solving

o
n=1

N−1

Ĥmntn = um · szm+1
−1 ·Fm+1 − zm

−1 ·Fmd. s51d

Using this notation, the total stress can be expressed as a sum
of smooth and random components

ssmth= − o
i=1

N

kRi
s0dsF̄i

smth− Fi
fds0dl, s52d

srand= −
1

2o
i=1

N

ksRi
s0dh̄i

s0dd + sRi
s1dh̄i

s1ddl. s53d

In the above, we have used the fact that the Stratonovich-like
interpretation of the time average used in Eq.s48d is neces-
sary only for random stress components,1 and that the correct
value ofssmth is obtained in the limitDt→0 by using values
obtained at either the beginningsas aboved or the end of a
time step.

To evaluate the random stress, we use a technique intro-
duced independently by Grassia and Hinch10 andsin the con-
text of a slightly different algorithmd by Doyle et al.18 to
filter out large but temporally uncorrelated fluctuations. Fol-
lowing these authors, we note that the stress contribution at
the beginning of the time step,oi=1

N kRi
s0dh̄i

s0dl has zero mean
but fluctuations of order 1/ÎDt. This term can be subtracted
from the contribution at the end of the time step, without
modifying the mean stress, while reducing its variance to
order 1. The resulting filtered expression for the random
stress is

srand= −
1

2o
i=1

N

kRi
s1dh̄i

s1d − Ri
s0dh̄i

s0dl. s54d

The total stress is then the sum of Eqs.s52d and s54d.

V. VALIDATION

The above algorithm has been used to perform simula-
tions of semiflexible chains in equilibrium and in steady
shear flow. The anisotropy of the friction tensor affects the
dynamics of the molecules, but chains with isotropic and
anisotropic friction must satisfy the same theoretical Boltz-
mann distribution of conformations at equilibrium for the
cosine of the angle between neighboring bond cosui

=ui ·ui−1:

Pscosuid ~ ek cosui/sakTd. s55d

Results for this distribution are shown in Figs. 1 and 2stopd,
for two different values of chain stiffness and a ratioz'

=2zi. The results of the present algorithm, with geometri-
cally projected random forces and a metric pseudoforce are
compared with those of an incorrect algorithm that uses the
same pseudo force but unprojected random forces. The cor-
rect algorithm yields results that agree with the predicted
distribution to within statistical error, whereas the algorithm

with unprojected forces clearly does not. The relative maxi-
mum error in the cosines distribution using the incorrect al-
gorithm is about 15% fork / sakTd=1 for Lp/L=0.125, where
Lp;k / skTd is the persistence length of the chaing and 10%
for k / sakTd=4 sor Lp/L=0.5d. Of course, the relative error
in the cosines distribution obtained with the incorrect algo-
rithm vanishes in the isotropic limit and increases with in-
creasing anisotropy. In simulations withz'=10zi, the maxi-
mum relative error is about 30% fork / sakTd=1 and 12% for
k / sakTd=4. The relative error also diminishes for stiffer

chains, becauseĤ→Ĝ /zi asui ·ui+1→1.
Results for the average stress tensor obtained in equilib-

rium simulations also agree with theoretical prediction. The
stress tensor has zero off-diagonal termssas a consequence
of rotational isotropyd and diagonal terms of −kT per poly-
mer, corresponding to the ideal solution osmotic pressure of
kT per polymer per unit volume.

FIG. 1. Distribution of cosine of angles between rods 1 and 2ssd and rods
4 and 5sLd in a chain of nine beads with anisotropic frictionzi=2z' for
k / sakTd=1 or Lp/L=0.125stopd and relative error with respect to the the-
oretical distributionsbottomd. The solid line denotes the normalized theoret-
ical prediction Pscosud=expfk cosu / sakTdg. Solid symbols represent the
correct algorithm and empty symbols represent the incorrect algorithm with
unprojected noise. The symbols were computed by averaging the configu-
ration of 400 molecules for ten times the rotational diffusion time of a rod of
equal length. Initial configurations of the molecules were generated by sam-
pling the theoretical distribution, then letting the system equilibrate for three
rotational diffusion times before collecting data.
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To validate the algorithm in presence of an external flow,
simulations of very stiff wormlike chains with bothz'=2zi

and z'=zi under steady shear have been conducted over a
range of values of the shear ratek12= ġ, and compared to
previous results for the steady shear viscosity of rigid rods
with and without hydrodynamic interactions.

Although a closed-form expression for the viscosity as a
function of the shear rate is not known, Kirkwood and
Plock19 calculated the shear viscosity of a dilute solution of
rods, modeled as a line of Stokeslets with hydrodynamic
interactions, by numerically solving the Smoluchowski equa-
tion for the distribution of rod orientations. In the limit of
very large number of Stokeslets, i.e., for a rigid rod with
hydrodynamic interactions, Kirkwood and Plock obtained a
zero shear viscosity:

h0
rod = 4

5kTtrodn, s56d

wheretrod;z'
* L3/ s72 kTd=tr is the rotational diffusion time

of a rod andn is the number of rods per unit volume. Kirk-
wood and Plock also found that the reduced shear viscosity
h /h0, whereh;s12/ ġ, decreases for values of the Weissen-
berg number Wi; ġtr *0.1, because the rods orient in the

flow direction and therefore provide less viscous resistance;
the slope of the shear thinning curve in presence of hydro-
dynamic interactions is equal to −1/2.19

To reproduce these results with our algorithm, we used
semiflexible chains withLp/L=250, which are nearly
straight, rodlike in equilibrium, and do not deform at the
shear rates investigated here. Semiflexible chains can in fact
deform in shear flow, undergoing a flow induced buckling
instability;20–23 such buckling however does not occur for
small elasticity number, i.e., for El; ġtb!1, where tb

=z'
* sL /4.73d4/k. In our simulations, 5310−5øElø5

310−2.
Figure 3 comparesh /h0 as a function of Wi from our

simulations of stiff semiflexible chains with anisotropic fric-
tion to Kirkwood and Plock’s results for rigid rods with hy-
drodynamic interactions. To compare the data, we take the
rotational diffusion time for our model to betr =z'a2sN
−1d3/ s72 kTd; the results of our simulations agree with those
of Kirkwood and Plock to within our statistical accuracy,
thus validating both the simulation algorithm and the use of
local anisotropic friction to mimic the hydrodynamics of
rigid rods.

In Fig. 3 we also show the results obtained for the same
stiff chains with isotropic friction. This results are compared
with those of Stewart and Sorensen,24 who have calculated
the viscosity of a dilute solution of rigid dumbbells without
hydrodynamic interactions, by numerically solving the cor-
responding diffusion equation in shear flow. Their results are
also valid for multibead-rod models when the rigid dumbbell
rotational diffusion time is replaced with the diffusion time
for the multibead rod4

FIG. 2. Distribution of cosine of angles between rods 1 and 2ssd and rods
4 and 5sLd in a chain of nine beads with anisotropic frictionzi=2z' for
k / sakTd=4 or Lp/L=0.5 stopd and relative error with respect to the theoret-
ical distributionsbottomd.

FIG. 3. Relative steady-shear viscositysh /h0d vs Weissenberg number Wi
= ġtr reported by Kirkwood and PlocksRef. 19d for rigid rods with hydro-
dynamics interactionsscontinuous lined and by Stewart and SorensensRef.
24d for multibead rods without hydrodynamic interactionssdashed lined,
compared with the results of BD simulations for semiflexible rods with
Lp/L=250 andz' /zi=2 srescaled withh0=h0

rod, tr =trod, jd and z' /zi=1
srescaled withh0=h0

mb, tr =tmb, Ld.
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tmb ;
zL2NsN + 1d
72sN − 1dkT

=
za2sN − 1dNsN + 1d

72kT
= tr. s57d

For this model, Wi=ġtmb andh0
mb=kTtmbn. The agreement

between our simulations and their numerical results is excel-
lent.

VI. CONVERGENCE

We have investigated the convergence of our results with
decreasing time stepDt by monitoring the dependence onDt
of the relative error for the average end-to-end distancekRl,
and for the distribution of values of the cosines of angles
between consecutive bonds. Simulations have been per-
formed with chains of nine beads with anisotropic friction
zi=2z' and k / sakTd=1sLp/L=0.125d, and k / sakTd
=4sLp/L=0.5d. The errors have been computed by equili-
brating 5000 chains for three times the rotational diffusion
times for rods of equal length, then accumulating data for an
additional ten rotational diffusion times.

The error on the distributionPscosud of values cosu of
the angleu between any two neighboring rods, which for this
purpose is averaged over all seven pairs of neighboring rods,
is defined as

ecos=E
−1

1

uPscosud − PeqscosuduPeqscosud, s58d

wherePeqscosud=A expsk cosu / sakTdd is the predicted dis-
tribution, andA is a normalization constant chosen such that
e−1

1 dscosudPeqscosud=1. The distributionPscosud is calcu-
lated numerically by dividing the intervalf−1,1g into 100
equal subintervals, and the errorecos is obtained by approxi-
mating the above integral as a sum, and subtracting the inte-
gral of Peqscosud over each subinterval from the simulated
result forPscosud.

The error on the average end to end distance ise
= ukRlu−Req, where Req is determined by an independent
Monte Carlo simulation of 23106 molecules.

Figure 4 presents the results of this convergence study.
Both quantities show a linear convergence rate, i.e.,e~Dt.
This is the same order of global weak convergencesi.e.,
convergence of the probability distributiond as that found for
a simple explicit Euler algorithm.25

VII. EFFICIENCY

The computational cost per molecule for this algorithm
scales linearly withN, with a prefactor only modestly larger
than that found for the corresponding free-draining model
with isotropic friction. In our implementation, tensions are
computed by solving by fast LU factorization without
pivoting26 of the tridiagonal, symmetric, diagonally domi-

nant matricesĜ and Ĥ; uniformly distributed random num-
bers are generated with a Tausworthe long-period
generator.27 The algorithm was implemented in Fortran 90,
compiled with Intel Compiler 8.0 and IBM XLF 7.1.0, and
run on an Intel Pentium 4 2.8 GHz and an IBM Regatta with
1.3 GHz Power4 processors. A benchmark simulation of
10 000 steps for 100 semiflexible chains with 128 beads took

167.7 s on the Pentium and 151.7 s on the Regatta. On both
machines, these times were<35% longer than the corre-
sponding timess119.6 s and 113.7 sd for the same bench-
mark of an analogous code for semiflexible chains with iso-
tropic friction. Most of the additional computational cost is
due to the extra step of geometrically projecting the random
forces in the case of anisotropic friction, which entails the
solution of an additional tridiagonal system ofN−1 linear
equations once per time step.

VIII. DISCUSSION

The main result of this work is the design and implemen-
tation of a correct algorithm for Brownian dynamics simula-
tions of constrained, semiflexible chains for which the fric-
tion coefficientzi of each bead is anisotropic and dependent

FIG. 4. Relative error vsDt ssymbolsd and linear fitslinesd for the end to
end distancestopd and for the cosine distributionsbottomd for chains with
nine beads with anisotropic frictionzi=2z', k / sakTd=1 ssd, andk / sakTd
=4 sld. The errors were computed averaging the configurations of 5000
chains for ten timestrod. Note that the error bars forecos are smaller than the
symbols.
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on the local chain conformation. A wormlike chain model
with a ratio of friction coefficientsz'=2zi may be used to
closely mimic the hydrodynamics of slender filaments.

The model studied here is perhaps the simplest physi-
cally relevant polymer model in which the friction tensorzi j

depends upon the polymer conformation, as would also be
true in any model with full hydrodynamic interactions. The
midstep algorithm proposed by Fixman5 has been found to
require generally the use of geometrically projected random
forces,1,8,10 except in the case of free-draining chains with
isotropic friction, in whichzi j = Idi jz is independent of chain
conformation. Here, we confirm numerically that the use of
geometrically projected random forces is necessary to obtain
the desired equilibrium distribution in the case of interest.

The computational cost of the algorithm for semiflexible
bead-rod chains with anisotropic friction coefficient is only
slightly si.e., about 35%d higher than of a corresponding
model with isotropic friction, and much less than that ex-
pected for chains with full hydrodynamic interactions.
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