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a b s t r a c t

Though computational techniques for two-dimensional viscoelastic free surface flows are well developed,
three-dimensional flows continue to present significant computational challenges. Fully coupled free sur-
face flow models lead to nonlinear systems whose steady states can be found via Newton’s method. Each
Newton iteration requires the solution of a large, sparse linear system, for which memory and compu-
tational demands suggest the application of an iterative method, rather than the sparse direct methods
widely used for two dimensional simulations. The Jacobian matrix of this system is often ill-conditioned,
resulting in unacceptably slow convergence of the linear solver; hence preconditioning is essential. We
propose a variant sparse approximate inverse preconditioner for the Jacobian matrix that allows for the
solution of problems involving more than a million degrees of freedom in challenging parameter regimes.
Construction of this preconditioner requires the solution of small least squares problems that can be sim-
ply parallelized on a distributed memory machine. The performance and scalability of this preconditioner
with the GMRES solver are investigated for two- and three-dimensional free surface flows on both struc-
tured and unstructured meshes in the presence and absence of viscoelasticity. The results suggest that
this preconditioner is an extremely promising candidate for solving large-scale steady viscoelastic flows
with free surfaces.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Flows with free surfaces and free boundaries arise in industrial
and biological applications as varied as polymer processing, coat-
ing, ink-jet printing, spraying, deformation of blood cells, blood
flow in arteries and capillaries, and flow in the deep pulmonary
alveoli. Most of these flows exhibit two distinguishing features:
(1) the fluid is complex, i.e., it has microstructural features, and
thus the Cauchy stress is not merely composed of viscous and pres-
sure forces, but includes a viscoelastic term that is important and
sometimes controlling; (2) the surface forces are comparable to or
dominate the viscous and elastic forces due to the flow of the liquid
and the subsequent deformation of the microstructure. Examples
include coating and ink-jet flows of polymer solutions, where the
flow-induced deformation of the polymer molecules can generate
steep layers of elastic stress.

Because surface and viscoelastic forces are often more important
than viscous ones, there are large non-diagonal contributions in the
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momentum equations that arise from the deformation of the free
surfaces or elastic boundaries, and from the microstructural elastic
stress. Thus, fully coupled algorithms for solving the flow equa-
tions are desirable. To solve for the moving boundaries together
with velocity, pressure, and stress, an equation to describe the mesh
must be incorporated into the model. Several methods for the free
surface problem have been developed, chiefly elliptic mesh gener-
ation and the domain deformation method. These methods have
been successful in describing 2D Newtonian free surface problems
[1,2,3,4,5,6], and have been extended effectively to 2D viscoelastic
flows [7,8,9,10,11]. Three-dimensional free surface flow computa-
tions still present challenges [12,13,14], owing in large part to the
scale of the computation.

A domain deformation method is used in this study to solve both
2D and 3D free surface flows. The continuous model is discretized
to a set of nonlinear algebraic equations via the DEVSS-TG/SUPG
mixed finite element method [15,8,16], which has proved to be an
effective and flexible way of studying systems where viscoelasticity
and surface forces are important and the physical domains are
complex.

The nonlinear algebraic equations are solved by Newton’s
method. At each Newton iteration a linear system Ax = b needs

0377-0257/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
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to be solved with the Jacobian as the coefficient matrix. Direct
frontal solvers (see, e.g. [17]) have been widely applied to solve
2D free surface flows [2,4,7]; however, for 3D flows direct solvers
are impractical due to the system’s dimension (frequently over one
million unknowns) and sparsity pattern. Alternatively an iterative
method, such as the GMRES algorithm [18], can be applied [12,19].
In the free surface problems considered here, the Jacobian matri-
ces are highly ill-conditioned, with small or zero diagonal entries
due to the coupling of the free surface and elastic stresses with
the flow equations. Consequently GMRES converges very slowly
when applied to this poorly conditioned system, and an effective
preconditioner is essential.

The most commonly used general-purpose preconditioners are
based on incomplete factorizations of A, such as the ILU precon-
ditioners, which perform an incomplete LU factorization of A (see,
e.g. [20]). However, the success of an ILU preconditioner depends
on its ability to handle several potential problems, including zero
pivots, instability of the LU factors, and the challenge of parallel
implementation. The latter issue is decisive for our application.
Approximate inverse preconditioners can avoid some of these chal-
lenges. Instead of factoring A, one seeks a sparse approximation to

A
−1

, and replaces the forward and backward solves of ILU precon-
ditioning with a low-cost sparse matrix–vector product.

One typical approach for constructing an approximate inverse
preconditioner is based on optimization. The idea, introduced by
Benson and Frederickson [21], is to build a sparse preconditioner
M that minimizes ‖I − AM‖F (or ‖I − MA‖F for left preconditioning),
subject to sparsity constraints on M. The use of the Frobenius norm
‖ · ‖F provides inherent parallelism because the constrained mini-
mization problem decouples into independent linear least squares
problems, one for each column (row) of M for right (left) precondi-
tioning.

2. Mathematical formulation

We begin by describing a mathematical model for viscoelastic
free surface flows.1 The fully-coupled system includes equations
for the domain, interpolated velocity gradient, and transport of
the mass, momentum, and conformation tensor—22 coupled scalar
partial differential equations in three dimensions. These equa-
tions are solved simultaneously to obtain the unknown position,
pressure, velocity, conformation tensor, and velocity gradient. The
following system represents a steady and incompressible viscoelas-
tic flow [8]:

0 = ∇ · Te, (1)

0 = ∇ · v, (2)

0 = �v · ∇v − ∇ · T − ∇�, (3)

0 = L − ∇v + 1
tr (I)

(∇ · v)I, (4)

0 = v · ∇M − 2�
D : M
I : M

M − �
(

M · D + D · M − 2
D : M
I : M

M
)

,

−M · W − WT · M − 1
�

(g0I + g1M + g2M2),
(5)

where tr (I) is the trace of the identity I, which is of order two if the
flow is two-dimensional and of order three for a three-dimensional
flow, D : M = ∑

i

∑
jDijMji = tr (D · M), and ∇ is the gradient vector

1 Throughout, boldface roman denotes physical vectors and tensors, while sans-
serif represents algebraic vectors and tensors. Gibbs’ notation [22] is used for
operations between physical vectors and tensors; standard linear algebra notation
is used elsewhere.

in space; Te is the stress tensor of the elastic pseudo-solid for the
domain, v is the velocity vector, � is the material density, T is the
total stress tensor, � is the potential body force per unit volume, L
is the interpolated velocity gradient, M is the conformation tensor,
� and � are the polymer resistance to stretching and orientation,
D ≡ (1/2)(L + LT ) is the rate of strain, W ≡ (1/2)(L − LT ) is the vor-
ticity, � is the characteristic relaxation time, and g0, g1 and g2 are
relaxation functions.

Notice that for Newtonian free surface flows, only the first three
Eqs. (1)–(3) are needed.

Appropriate boundary conditions must be imposed in Eqs.
(1)–(5). The mesh generation equation (1) has second-order deriva-
tives of position (as Te is related to position derivatives); thus,
boundary conditions must be imposed on all boundaries. The
momentum equation (3) is elliptic and hence momentum boundary
conditions must also be specified on all boundaries. The transport
equation (5) of the conformation tensor is a hyperbolic equation,
which requires boundary conditions only at the inflow boundaries,
i.e., where n · v < 0, with n a unit outward normal vector [23]. The
continuity Eq. (2) and the velocity gradient Eq. (4) do not require
boundary conditions.

In this study we use the following boundary conditions for the
mesh generation equation:

• Fixed node: x = x0, where x0 is the fixed position.
• Free surface: n · v = 0 and tn : Te = (n · Te) · t = 0, where t is the

unit tangent vector and (n · Te) is a row vector.

The momentum boundary conditions used in this study are:

• Fixed velocity: v = v0 where v0 is a constant velocity.
• Velocity profile: v(x) = f (Q, x) where Q is a known flow rate and f

is a function.
• Symmetric boundary: n · v = 0 and tn : T = 0.
• Free surface condition: n · T = ∇ II · (�(I − nn)), where � is the sur-

face tension and ∇ II = (I − nn) · ∇ is the surface gradient.

The boundary condition imposed on the transport equation for
the conformation tensor is v · ∇M = 0.

In addition to the above boundary conditions, some related
dimensionless parameters are implicitly defined in Eqs. (1)–(5):

• The Reynolds number, Re ≡ �vd/�, characterizes the balance
between inertial and combined viscous and viscoelastic forces,
where � is the total viscosity.

• The capillary number, Ca ≡ �v/� , measures the relative impor-
tance of the combined viscous and viscoelastic forces to surface
tension forces.

Here, v and d are the characteristic velocity and length of a flow,
and � is the surface tension of this flow. For a viscoelastic flow, two
more dimensionless numbers are defined:

• The Weissenberg number, We ≡ ��̇c , represents the intensity of
the flow on the scale of the relaxation time of the polymer con-
formation, where �̇c is a characteristic shear rate.

• The solvent viscosity ratio, ˇ ≡ 	s/(	s + 	p) ≡ 	s/�, character-
izes the relative importance of viscous and viscoelastic stresses,
where 	s is the solvent viscosity and 	p is the polymer viscosity.

For a detailed description of these parameters and Eqs. (1)–(5),
see Xie and Pasquali [14,24].

We discretize Eqs. (1)–(5) by the DEVSS-TG/SUPG mixed finite
element method [15,16]; for details, see [7,8]. Structured quadri-
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lateral elements are used for the 2D problems. The position and
velocity basis functions are biquadratic and continuous, the velocity
gradient and conformation basis functions are bilinear and contin-
uous, and the pressure basis functions are linear and discontinuous.
Unstructured tetrahedral elements are used for the 3D problems.
The basis functions for position and velocity are quadratic and con-
tinuous, those for pressure, velocity gradient and conformation are
linear and continuous. The unknowns associated with each node
are ordered consecutively, so that the Jacobian matrix has banded
structure with entries near the diagonal corresponding to intra-
element coupling and nonzero entries farther from the diagonal
describing inter-element effects. The fully coupled set of nonlinear
algebraic equations is solved by Newton’s method with the ana-
lytical Jacobian, requiring at each step the solution of a large scale
system of linear algebraic equations, J
x = −r, where J is the Jaco-
bian matrix, 
x is the Newton update, and r is the Newton residual.
Here our main concern is the construction of a preconditioner to
facilitate the solution of this system.

3. The preconditioner

In this section we describe the preconditioner we propose in
terms of the generic linear system Ax = b with n unknowns. Given
the sparsity structure of the free-surface flow problems we aim to
solve, the fill-in and organization of conventional incomplete LU
factorization preconditioners inhibits overall parallel scalability.
For this reason we turned our attention to sparse approximate
inverses.

A considerable variety of such preconditioners have been pro-
posed, including factored versions proposed by Kolotilina and
Yeremin [25] and Benzi and Tůma [26], and unfactored precondi-
tioners proposed by Cosgrove et al. [27], Grote and Simon [28], and
Chow and Saad [29]. In preliminary experiments (using the global
Jacobian matrix on a 2D free-surface viscoelastic flow problem) we
found that the Benzi–Tůma preconditioner suffered from an unac-
ceptable loss of sparsity, and thus we focused our attention on the
unfactored preconditioner of Grote and Huckle [30].

Because the inverse of a sparse matrix is generally dense, the

quality of the sparse approximation M to A
−1

depends critically on
the sparsity pattern chosen for M. This choice can be influenced
by the sparsity pattern of A and knowledge accumulated from
experience with a particular application, or determined through
a dynamic algorithm. As the sparsity of M decreases, the accuracy
of the preconditioner improves, yet M becomes more expensive to
compute, store, and apply. Thus, to construct an effective precon-
ditioner one must balance the virtues of sparsity with the need for

a good approximation to A
−1

. See, for example, the discussions of
Chow [31] and Tang [32].

One convenient method for constructing a sparse approximate
inverse seeks the matrix M of a given sparsity pattern that mini-
mizes ‖I − AM‖F . The choice of the Frobenius norm ‖ · ‖F leads to
inherent parallelism, since

min ‖I − AM‖2
F ≡ min

n∑
k=1

‖ek − Amk‖2
2, (6)

where ek and mk represent the k th columns of I and M. The solution
of Eq. (6) decouples into

min
mk

‖ek − Amk‖2, k = 1, . . . , n, (7)

each of which can be solved independently.
With no restriction imposed on mk, problem (7) is uniquely

solved by the kth column of A
−1

, so that one would solve n
linear systems with A to construct a preconditioner for the solu-

tion of the single system Ax = b. Thus a sparsity constraint is
imposed on mk, with zero entries in mk preventing the corre-
sponding columns of A from contributing to the objective function
in (7). Hence we expect many rows of ek − Amk to be zero for
all mk having the specified sparsity pattern. The challenge, of
course, is to determine a satisfactory sparsity structure for M
that produces an effective preconditioner at a minimum cost to
construct and apply. Here our approach is a variant of the algo-
rithm of Grote and Huckle [30], which constructs an unfactored
approximate inverse based on a preliminary sparsity pattern for
M. This preconditioner is then improved through refinement steps
that increase the number of nonzero entries in each column of
M.

Throughout we focus on construction of a right preconditioner
for our matrix A, with which the linear system Ax = b is trans-
formed into AMy = b with x = My. Right preconditioning has the
virtue that the residual norm used in the stopping criterion for
preconditioned GMRES is also the residual for the original linear
system. Once GMRES has determined a suitable approximation to y,
the desired solution x is recovered through a simple matrix–vector
multiplication with M.

3.1. The Grote–Huckle SPAI algorithm

We now recapitulate the basic algorithm of Grote and Huckle
[30], focusing on the construction of mk, the kth column of M. Let
the set J comprise the indices of entries of mk that are initially
permitted to be nonzero. Since A is sparse, many entries in the
product Amk will also be zero, and we wish to avoid computing
them. Toward this end define the set I such that A(i, j) /= 0 if and
only if i ∈ I and j ∈J.2 With this notation, the original large opti-
mization problem (7) constrained by the sparsity of mk reduces to
the small unconstrained problem

min
m̂k

‖êk − Âm̂k‖2,

where êk = ek(I), Â = A(I,J), and m̂k = mk(J) denote the reduced
vectors and coefficient matrix. This standard least squares problem

can be readily solved for m̂k via the QR factorization of Â, and one

can then easily expand m̂k to obtain mk.
Typically the set J is insufficient to yield a column residual rk ≡

ek − Amk with small norm, and thus one seeks an automatic way of
complementing this index set to most effectively reduce ‖rk‖. Grote
and Huckle proposed the following heuristic. Let the set L consist
of the indices of all elements � of rk such that |rk(�)| > tol for some
user-specified tolerance tol. Then the new entries of mk that will be
permitted to fill-in will be drawn from the set

J̃ = {j ∈ {1, . . . , n} : j /∈ J and A(�, j) /= 0 for some � ∈L}.

We wish to identify those elements in J̃ whose contribution to
mk would cause the greatest reduction in the residual norm. Sup-
pose we keep mk the same except for allowing mk(j) to fill in for
some j ∈ J̃. The optimal value for mk(j) is given by

�j = argmin
�

‖rk − �Aej‖2 = r
T
k Aej

‖Aej‖2
2

,

2 Here we use MATLAB notation to specify the entries of a matrix; e.g., A(i, j)
denotes the (i, j) entry of A; A(I,J) denotes all entries A(i, j) with i ∈ I and j ∈J; and
A(:,L) denotes all entries A(i, �) for i = 1, . . . , n and � ∈L.
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from which follows a measure of the improved residual norm:

�j = ‖rk − �jAej‖
2
2 = ‖rk‖2

2 − (r
T
k Aej)

2

‖Aej‖2
2

.

The indices j that reduce the residual the most are those for
which �j has the smallest value. Since A is invertible, A(L, :) has
full row rank, and thus for any nonzero rk and nontrivial L and J̃,

rk(L)T A(L, J̃) /= 0,

which guarantees that at least one j ∈ J̃ will yield some improve-
ment in the residual norm. Often many entries in J̃ will yield
improvement, and it may prove best to restrict the new nonzero
entries to be those j ∈ J̃ that yield the greatest improvement. One
can make multiple passes through this refinement algorithm until
‖rk‖ is acceptably small or mk contains some maximum number
maxcfill of nonzero entries.

Grote and Huckle [30] show that the SPAI process is convergent
as tol → 0 and maxcfill → n. Various bounds on the accuracy of the
preconditioner exist; for example, if ‖rk‖2 = ‖ek − Amk‖2 < tol for
all k = 1, . . . , n, then ‖I − AM‖2 ≤ tol

√
n.

3.2. Modification of the SPAI algorithm for free surface flows

Our primary goal is the solution of linear systems involving
the Jacobian matrices arising in free surface flow applications, sys-
tems that arise at each step of a Newton iteration. Fig. 1 shows
the sparsity pattern for a typical Jacobian arising from a 3D rod
coater, Problem 2 described below. Though this matrix has a dis-
tinct band structure, that bandwidth is a significant proportion of
the matrix dimension. Assembly of this Jacobian from the elemen-
tal matrices used in the finite element discretization code would
be prohibitively expensive for large problems, particularly given
the distribution of such elemental matrices over processors in a
parallel machine. (In 3D problems, the elemental Jacobian matri-
ces alone are of dimension 124.) For this reason, the conventional
SPAI algorithm is unappealing for very large problems.

We obtain a more satisfactory preconditioner by applying the
SPAI algorithm to a matrix Ã comprising the central bands of A, a
sparsification of A (see [31], in particular regarding [33] for related
ideas for symmetric matrices). This variant of SPAI requires the def-

Fig. 1. Sparsity pattern of a Jacobian matrix (with reverse Cuthill–McKee reordering)
arising from a 3D rod coating free surface flow (Problem 2, Mesh 2). The matrix is
of dimension 45,146 and contains 8,185,273 nonzero entries.

Fig. 2. Sparsity pattern of a sparse approximation inverse preconditioner for the
Jacobian matrix shown in Fig. 1. Though an approximation of an inverse of dimen-
sion 45,146, this matrix has a bandwidth of 101 and roughly half as many nonzeros
(4,916,681) as the matrix it preconditions.

inition of the parameters band, nc, tol, and maxcfill. The parameter
band specifies the number of diagonal bands of the Jacobian used
for the construction of the preconditioner, so that

Ã(j, k) =
{

A(j, k), |j − k| ≤ band;
0, otherwise.

The parameter nc restricts the number of passes of residual
improvement allowed for each column of M, and tol flags those
entries in each column that are eligible for improvement; maxcfill
denotes the maximum number of entries that are allowed to fill
within each column of M. Intuitively, by basing M on the inte-
rior band of A we construct a preconditioner that emphasizes
the intra-element coupling in Eqs. (1)–(5), while exerting less
effort to capture the coupling between elements. The experiments
described in the next section demonstrate that this strategy is
highly effective for our applications. Fig. 2 shows the sparsity pat-
tern for a preconditioner for the matrix shown in Fig. 1; indeed, this
sparse approximate inverse has fewer nonzeros than the matrix
whose inverse it approximates.

For the 3D problem, we preprocess the finite elements with the
Reverse Cuthill–McKee reordering (to help reduce the Jacobian’s
band-width) before computing the approximate inverse precondi-
tioner [17]; for the 2D problem we use a Gibbs–Poole–Stockmeyer
ordering [34]. The effectiveness of the preconditioner could poten-
tially be improved through a more sophisticated reordering scheme
that seeks to place large entries on the diagonal [35,36], which has
proved effective in other fluid computations [37].

4. Test problems and computational experiments

In this section we test the effectiveness of our preconditioner
on a variety of flows in a 2D slot coater and a 3D rod coater, both
with free surface boundaries. The results include the solution of a
3D Oldroyd-B fluid with Weissenberg number We = 0.5 on a grid
with more than a million degrees of freedom. In both problems, the
Reynolds number is set to zero; counterintuitively, this is a partic-
ularly challenging case for viscoelastic flows, since Re /= 0 leads to
additional contributions to the diagonal entries in the momentum
equation.
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Fig. 3. Schematic of Problem 1: flow downstream of 2D slot coater with free surface.

Problem 1. A Newtonian free surface flow in a 2D slot coater.
This problem comes from a Newtonian 2D slot coater flow with free
surface boundary as shown in Fig. 3. The potential body force is � =
0, the flow rate per unit width is Q = 0.5hv, the Reynolds number
is Re ≡ �vh/� = 0, and the capillary number is Ca ≡ �v/� = 0.1,
where h is the gap and v is the velocity of the bottom wall. Because
this is a Newtonian flow, only Eqs. (1)–(3) are required.

Problem 2. A viscoelastic free surface flow in a 3D rod coater.
This example is a free surface flow with an Oldroyd-B fluid in
a 3D rod coater. An Oldroyd-B liquid is a very simple model for
a viscoelastic fluid that is commonly used for numerical experi-
mentation. Because the 3D rod coating is axisymmetric, only one
quarter of the channel is needed to fully characterize the flow,
as shown in Fig. 4. The flow conditions are set as follows: vol-
ume flow rate Q = 0.754, Re ≡ �U0R1/� = 0, the solvent viscosity
ratio ˇ� ≡ 	s/� = 0.59, and the capillary number Ca ≡ �U0/� = 1,
where U0 = 1 is the velocity of the rod, 	s is solvent viscosity, and �
is the relaxation time of the Oldroyd-B fluid. Our experiments take
the Weissenberg number We ≡ �U0/(R2 − R1) equal to 0.5 or 1.

The parameters in the conformation transport equation (5) for
the Oldroyd-B fluid are � = 1, � = 1, g0 = −1, g1 = 1, g2 = 0, and
∂a/∂M = (G/2�)I, where G = 	p/� is the polymer modulus and 	p

is polymer viscosity with 	p + 	s = �.

4.1. Experimental environment

This set of experiments first compares the behavior of three
approaches for solving the linear systems arising in our free sur-
face flow problems, and then provides a more detailed analysis of
the performance of SPAI-GMRES. The three approaches are:

• FS: A direct frontal solver, based on the ideas presented in [17].
The original implementation, due to de Almeida [2], has proved
to be highly efficient and reliable in years of testing on a variety
of 2D flow problems.

• ILUT-GMRES: An iterative solver implemented by Saad in the
SPARSKIT library [38]. The incomplete LU preconditioner requires
the parameters L-fill (the level of fill-in allowed in the factors L
and U) and drop-tol (the drop-tolerance). The SPARSKIT GMRES
solver requires the Krylov subspace size, Krylov-size (the maxi-
mum Krylov subspace size) and restart (the number of restarts
allowed).

Fig. 4. Schematic of Problem 2: 3D rod coating flow and boundary conditions, R1 = 1,
R2 = 2R1, L1 = 2R1, and L2 = 6R1.

Table 1
Definition of the 10 meshes used in the tests. Mesh 1 is used for Problem 1 (2D slot
coating flow); the rest are used for Problem 2 (3D rod coating flow).

Mesh Elements Nodes Unknowns, n
1 180 779 3,656
2 2,939 5,271 45,146
3 3,598 6,458 55,292
4 5,368 9,323 79,218
5 8,235 13,906 117,516
6 11,876 19,700 165,800
7 21,059 33,838 282,868
8 29,713 47,402 395,596
9 50,641 79,601 662,006
10 89,133 135,672 1,152,702

• SPAI-GMRES(p): A GMRES solver (a parallel adaptation of the
serial SPARSKIT implementation) preconditioned by the sparse
approximate inverse described in Section 3; here p denotes the
number of processors used. The preconditioner is specified by
the parameters band, nc, maxcfill, and tol. For all experiments
described here we use maxcfill = 2 × (band − 1) and tol = 0.01,
and set nc such that no more than two passes of residual improve-
ments are performed for each column. The parameter band is
varied; see, e.g., the experiments reported in Table 6. The initial
sparsity pattern J for column mj of M corresponds to the nonzero
pattern of the banded portion of the Jacobian. At each pass of
residual refinement for mj , we limit the number of new nonzero
entries to 
 1

2 (maxcfill − |J|)�, where |J| denotes the number of
entries in the initial sparsity pattern for mj .

We seek steady state solutions for Problems 1 and 2 by solving
Eqs. (1)–(5) with Newton’s method. At each Newton iteration, the
linear algebraic equations will be solved by the frontal solver (FS),
ILUT preconditioned GMRES (ILUT-GMRES), and sparse approx-
imate inverse preconditioned GMRES (SPAI-GMRES(p)). Table 1
contains data describing the 10 meshes used on these two prob-
lems; Mesh 1 is used for Problem 1 and Meshes 2–10 are used for
Problem 2.

Based on practical experience and the recommendations given
by Kelley [39], unless otherwise noted we require the GMRES
residual norm reach 10−3 in the first Newton iteration and
min{10−7, ˇ‖rk−1‖2/‖rk−2‖2} in the kth Newton iteration (k =
2, 3, . . .), where ˇ is a constant set to 0.9 for this study and ‖rk‖
is the kth Newton iteration residual norm. The Newton iterations
are halted when the Newton update norm plus the residual norm
is less than 10−6.

The computations were performed on the Rice Terascale Clus-
ter (RTC), a 1 TeraFLOP Linux cluster based on 900 MHz Intel
Itanium2 processors. This distributed memory architecture has
124 nodes with 2 GB memory and 2 processors per node, with
4 additional nodes having 16 GB memory and 4 processors
each. Additional information about this machine can be found at
http://www.citi.rice.edu/rtc.

4.2. SPAI-GMRES(p) implementation with MPI

The time consuming parts of the computation include: (1) com-
putation of the Jacobian matrix; (2) construction of the inverse
preconditioner; (3) GMRES iterations. The memory-intensive stor-
age consists primarily of: (1) elementary Jacobian matrices; (2)
Krylov subspace vectors; (3) the preconditioner M. The three time
consuming parts are parallelized using the Message Passing Inter-
face (MPI) [40]. The entries of the elementary Jacobian matrices,
rows of the Krylov subspace, and columns of the preconditioner
are uniformly distributed over the processors. The parallel compu-
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Table 2
Parameter settings for Test 1.

Krylov-size Restart L-fill drop-tol band
100 15 45 10−4 101

tation proceeds as follows:

(1) Each processor computes the elementary Jacobian of its dis-
tributed elements, which is the number of total elements
divided by the number of processors.

(2) Each processor assembles its corresponding part of the banded
Jacobian matrix from the elementary Jacobian matrices com-
puted in the first step.

(3) Components of the Jacobian matrix have overlap between the
neighboring processors, so the banded Jacobian matrices com-
puted on different processors have to sum up the overlapping
part. Each processor sends its banded Jacobian to its neighbors
and receives the banded Jacobian from its neighbors, as required
for computing preconditioner columns in the next step.

(4) Each processor computes its distributed columns of the precon-
ditioner (the number of columns is the total number of columns
divided by the number of processors).

(5) During the GMRES iterations, when the algorithm requires the
product of the Jacobian matrix and a vector, or the product
of the preconditioner and a vector, each processor performs
its distributed elementary Jacobian matrix–vector product or
its distributed columns of preconditioner-vector product. Each
processor communicates with its neighboring processors for
the overlapping part of the vector.

(6) In the Gram–Schmidt orthogonalization procedure, each pro-
cessor computes the inner product of its corresponding
components, which are then summed via the MPI allreduce
command.

The sequential and parallel execution times for the entire pro-
cess are denoted by Ts and Tp. Then the parallel speed-up for
the entire process, Sp, is calculated by Sp = Ts/Tp and the paral-
lel efficiency, Ep, by Ep = Sp/p. Similarly, let PTs and PTp denote
the sequential and parallel execution times for the preconditioner.
The parallel speed-up for computing the preconditioner, PSp, is
then given by PSp = PTs/PTp, and the parallel efficiency, PEp, by
PEp = PSp/p.

4.3. Tests and results

We now describe the results of seven tests of our preconditioner,
the first two of which compare the performance of SPAI-GMRES(p),
a frontal solver, and ILUT-GMRES, and the remaining five of which
focus on SPAI-GMRES(p).

Test 1: The first experiment compares memory and CPU require-
ments of the three solution methods applied to Problem 1. The
computation is performed on Mesh 1, with 180 elements and 779
nodes, which produces a problem with 3656 unknowns. Fig. 5
shows Mesh 1 under the defined flow conditions; Table 2 contains
the settings of the parameters used for ILUT-GMRES and SPAI-
GMRES(p). The Newton iteration was started from the steady state

Fig. 5. Mesh 1 for the 2D slot coater problem used in Test 1.

Table 4
Parameter settings for Test 2.

Krylov-size Restart L-fill drop-tol band
350 10 150 10−4 101

flow for a fixed domain with a slip wall boundary condition on the
free surface section.

Test 1 results: The memory, CPU time to compute the precondi-
tioner, and total CPU time (including all Newton iterations) required
by each method are listed in Table 3. GMRES converges with both
ILUT and sparse approximate inverse preconditioning. However,
because the problem is fairly small the frontal solver has a distinct
advantage; the SPAI-based solver only becomes competitive when
applied in parallel.

The time spent computing the preconditioner for SPAI-
GMRES(1) is 105 s, a considerable proportion of the total 124 s
needed to solve the system. Fortunately, the computation of the
preconditioner is perfectly parallel, and is thus easily distributed to
various processors. Table 3 also shows that for this small case, the
parallel speed-up and efficiency are high for the SPAI process and
reasonably good for the overall solution.

It is worth mentioning that for this problem, restarted GMRES
does not converge without preconditioning (for a variety of restart
parameters ranging from 10 to 500) and converges very slowly with
ILUT preconditioning for many different values of L-fill and drop-tol.
(The data reported in Table 3 represent the most favorable combi-
nation of parameters we discovered after numerous attempts.)

Test 2: The next test compares the performance of the frontal
solver, ILUT, and SPAI preconditioning applied to Problem 2 as the
computational mesh is refined. The calculations are performed
on Mesh 2 and Mesh 3 at We = 1; the other flow conditions
were defined in Section 3.2. The initial starting point for Newton’s
method is the result of a viscoelastic free surface flow at We = 0.5
with all the other conditions the same. Table 4 describes the solver
parameters used for this test.

Test 2 results: Table 5 summarizes the memory usage and exe-
cution time for this example. One can see that when the number
of unknowns is large, GMRES with the SPAI preconditioner shows a
substantial advantage over the frontal solver (FS); here ILUT-GMRES
fails to converge. SPAI-GMRES has a much lower memory require-
ment than the frontal solver and finds the solution much more
quickly. When the size of the problem (n) increases, both the mem-
ory requirements and CPU time increase much more rapidly for the
frontal solver than for SPAI-GMRES. The parallel speed-up and the
parallel efficiency are high for computing the SPAI preconditioner;
they remain high for the entire process provided the number of
CPUs is low.

Table 3
Comparison of frontal solver, ILUT-GMRES, and SPAI-GMRES(p) for 2D slot coater (Problem 1) on Mesh 1.

Solver Memory required Total time SPAI time Sp Ep PSp PEp

Frontal solver 16 MB 11 s n/a n/a n/a n/a n/a
ILUT-GMRES 23 MB 23 s n/a n/a n/a n/a n/a
SPAI-GMRES(1) 23 MB 124 s 105 s n/a n/a n/a n/a
SPAI-GMRES(2) 13 MB 75 s 63 s 1.65 0.83 1.67 0.83
SPAI-GMRES(4) 8 MB 46 s 34 s 2.70 0.68 3.09 0.77
SPAI-GMRES(8) 6 MB 31 s 17 s 4.00 0.5 6.18 0.77



Author's personal copy

50 Z. Castillo et al. / J. Non-Newtonian Fluid Mech. 157 (2009) 44–54

Table 5
Comparison of frontal solver, ILUT-GMRES, and SPAI-GMRES(p) for 3D rod coating flow problem (Problem 2) with We = 1 and Ca = 1: frontal solver performance degrades;
ILUT-GMRES fails to converge (×); SPAI-GMRES(p) performs well.

Mesh Solver Memory required Total time SPAI time Sp Ep PSp PEp

Mesh 2 n = 45, 146 FS 1966 MB 6381 s n/a n/a n/a n/a n/a
ILUT-GMRES 831 MB × n/a n/a n/a n/a n/a
SPAI-GMRES(1) 573 MB 1773 s 570 s n/a n/a n/a n/a

Mesh 3 n = 55, 292 FS 2692 MB 9435 s n/a n/a n/a n/a n/a
ILUT-GMRES 1016 MB × n/a n/a n/a n/a n/a
SPAI-GMRES(1) 696 MB 2370 s 633 s n/a n/a n/a n/a
SPAI-GMRES(2) 349 MB 1315 s 347 s 1.80 0.90 1.82 0.91
SPAI-GMRES(4) 175 MB 770 s 176 s 3.08 0.77 3.60 0.90
SPAI-GMRES(8) 91 MB 526 s 89 s 4.51 0.56 7.11 0.89

Test 3: The construction of the SPAI preconditioner depends on
the number of diagonals extracted from the Jacobian matrix. This
test investigates the effect of this bandwidth (band) on the solution
of Problem 2 on Mesh 3; the experimental conditions are the same
as in Test 2, except that band is varied here.

Test 3 results: Table 6 summarizes the memory usage, total CPU
time, and CPU time required to compute the SPAI preconditioner.
When too few diagonals are extracted from the Jacobian (e.g., band =
41), the resulting SPAI preconditioner fails to provide an adequate
approximation to the inverse of the Jacobian and GMRES does not
converge.

On the other hand, for values as small as band = 61 the SPAI pre-
conditioner is sufficiently effective to provide GMRES convergence.
Memory requirements do not change much with the growing band-
width, as the elementary Jacobian and Krylov space dominate the
memory usage; the total memory required for the preconditioner
and the banded approximation to the Jacobian from which it is
derived, is low due to sparsity. However, the CPU time required to
compute the preconditioner increases rapidly with band, degrad-
ing the overall performance. Although we have no precise rule for
predicting the optimal bandwidth, the tentative choice roughly
depends on the number of the unknowns in one element and
may be affected by the dimensionless numbers controlling the off-
diagonal coupling (We, Ca, and ˇ).

Fig. 6 compares the CPU times for construction of the SPAI pre-
conditioner and the total overall computation as functions of the
bandwidth of the approximate Jacobian. Observe that the former
increases linearly with band, while the latter increases slower than
linearly, a result of the decreasing number of GMRES iterations
required as the quality of the preconditioner improves with increas-
ing band. Fig. 7 shows that the memory requirements of the total
computation grow at a modest linear rate as the bandwidth of the
approximate Jacobian grows.

Test 4: The previous test fixed the problem size but varied band.
Now we analyze the behavior of SPAI-GMRES(1) as the computa-
tional mesh is refined, i.e., as the size of the problem increases.
Problem 2 is solved with the same conditions established in Test
2 (using Mesh 2). The mesh is then refined three times in order to
produce problems of gradually increasing size. Refer to Table 1 for
statistics on Meshes 2–5 used in this experiment.

Test 4 results: Figs. 8 and 9 show the CPU time spent comput-
ing the preconditioner, CPU time spent on GMRES, the total CPU
time for all Newton iterations, and the memory requirement for
the preconditioners versus the problem size.

Table 6
The effect of band on the performance of SPAI-GMRES(1) for Problem 2 on Mesh 3.
(When band = 41, GMRES does not converge.)

band 41 61 81 101 121
Memory for SPAI 32 MB 50 MB 72 MB 87 MB 104 MB
Total memory 621 MB 647 MB 675 MB 696 MB 717 MB
Time for SPAI 60 s 213 s 424 s 633 s 926 s
Total time × 2180 s 2210 s 2370 s 2688 s

Fig. 6. Time for constructing the SPAI preconditioner and the total run time versus
band for Test 3.

Fig. 8 shows that the CPU time spent computing the SPAI pre-
conditioner increases linearly with the problem size, while the CPU
time spent on GMRES and the total CPU time appear to increase
faster than linear but slower than quadratic. On the other hand,
Fig. 9 shows that the memory requirement for SPAI increases lin-
early with the problem size.

Test 5: We next investigate the behavior of SPAI-GMRES(p) on
p = 16 processors as the problem size increases. Problem 2 is solved
under the same flow conditions as in Test 2 except that We = 0.5,

Fig. 7. Total memory versus band: memory increases at a modest linear rate for a
fixed problem size in Test 3.
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Fig. 8. CPU time versus problem size for SPAI-GMRES(1) applied to Problem 2 on
Meshes 2–5.

Krylov-size = 700, and band = 201. (This value of Krylov-size was suf-
ficient to give convergence for all meshes; smaller values of this
parameter would be sufficient for the two smallest meshes.) The
initial iterate for Newton’s method is the solution for a Newto-
nian free surface flow with other conditions identical. Meshes 6–10,
described in Table 1, were used for this experiment; the number of
unknowns ranged from 165,800 to 1,152,702.

Test 5 results: The CPU time required to compute the precondi-
tioner and the total CPU time for all Newton iterations are plotted
against the problem size in Fig. 10. This figure shows a roughly linear
increase in both quantities.

Test 6: We now examine the parallel performance SPAI-
GMRES(p) applied to our finest discretization, Mesh 10 with
1,152,702 unknowns. We use the same flow conditions as in Test 2,
except that now We = 0.5, Krylov-size = 1000, and band = 201. We
start Newton’s method with the steady state flow for a Newtonian
free surface with the other flow conditions identical.

Test 6 results: Table 7 shows that memory usage and CPU time
decrease almost linearly as the number of CPUs increases. The
actual parallel speed-up and efficiency cannot be obtained because

Fig. 9. Memory requirements for SPAI versus problem size for SPAI-GMRES(1)
applied to Problem 2 on Meshes 2–5.

Fig. 10. CPU time versus problem size for SPAI-GMRES(16) on Problem 2.

Fig. 11. CPU time for SPAI-GMRES(p) and the total computation as a function of the
number of CPUs for Problem 2 on Mesh 10: n = 1, 152, 702, Krylov-size = 1000, and
band = 201.
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Table 7
Test 6. Parallel speed-up and efficiency for Problem 2 on Mesh 10: n = 1, 152, 702,
Krylov-size = 1000, and band = 201.

Number of CPUs 16 24 32 40 48
Memory for SPAI 237 MB 159 MB 120 MB 96 MB 79 MB
Total memory 1553 MB 1053 MB 780 MB 631 MB 526 MB
Time for SPAI 2.68 h 1.81 h 1.38 h 1.13 h 0.92 h
Total time 10.14 h 7.42 h 6.29 h 5.55 h 4.86 h

P̃Sp 16 23.69 31.07 37.95 46.61

P̃Ep 1 0.987 0.971 0.952 0.971
S̃p 16 21.87 25.79 29.23 33.38
Ẽp 1 0.911 0.806 0.731 0.695

this large case cannot run on 1 CPU due to memory limitations.
Hence we measure the corresponding speed-up based on our
results for 16 CPUs as S̃p = 16 × T16/Tp and P̃Sp = 16 × PT16/PTp and

efficiency as Ẽp = S̃p/p and P̃Ep = P̃Sp/p. These values are presented
in Table 7; they reflect a high parallel efficiency for SPAI (>0.95), a
rate sustained over the entire process. Fig. 11 reports the CPU time
spent computing the preconditioner and the total CPU time for all
Newton iterations versus the number of CPUs. The per-processor
memory requirements for the preconditioner and the entire pro-
cess are plotted against the number of CPUs in Fig. 12.

Fig. 12. Memory requirements per CPU for the SPAI preconditioner and total com-
putation, as a function of the number of CPUs for SPAI-GMRES(p) for Problem 2 on
Mesh 10: n = 1, 152, 702, Krylov-size = 1000, and band = 201.

Test 7: Finally, since our main objective is to provide a scal-
able linear solver for Newton’s method, we investigate in detail
the performance of the SPAI-GMRES preconditioner over all New-
ton iterations. In particular, we consider the GMRES residual norms
for Problem 2 on Mesh 5 (117,516 unknowns) under the same flow
conditions as in Test 2 except that full GMRES (i.e., no restarting,
Krylov-size = n) is used here. We perform the same test with two dif-
ferent stopping rules for GMRES: the first requires the norm of the
residual to reach 10−10; the second uses a convergence criterion of
10−3 for the first Newton iteration and min(10−7, ˇ‖rk−1‖2/‖rk−2‖2)
for the kth Newton iteration (k = 2, 3, . . .). (Recall that this latter
scheme was used for all the previous test cases described in this
section.)

Test 7 results: Fig. 13 shows the convergence history for our two
different stopping criteria. In the top figure, where the first stop-
ping criterion is applied, full GMRES requires 1693 Krylov vectors
to reduce the residual norm eleven orders of magnitude for the first
Newton iteration; 1553 Krylov vectors to reduce the residual norm
nine orders of magnitude in the second Newton iteration; 1294
Krylov vectors to reduce the residual norm six orders of magnitude
in the third Newton iteration, and 771 Krylov vectors to reduce the
residual norm two orders of magnitude. In the bottom figure, using
the second stopping criterion, GMRES requires 563 Krylov vectors

Fig. 13. Convergence history of GMRES for 3D rod coating flow on Mesh 5. Top: using
the first stopping criterion (10−10). Bottom: using the second (variable) stopping
criterion.
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to reduce the residual norm four orders of magnitude in the first
Newton iteration, 1159 Krylov vectors to reduce the residual norm
six orders of magnitude in the second Newton iteration, and 759
Krylov vectors to reduce the residual norm three orders of magni-
tude in the third Newton iteration. At the fourth iteration the initial
residual nearly satisfies the convergence criterion; 30 Krylov vec-
tors are sufficient to improve that residual the small amount needed
to achieve convergence.

For both stopping criteria, a total of four Newton iterations are
required to obtain residual convergence. When the first stopping
criterion is used, the residual norm after each Newton iteration is:
3.08 × 101, 1.61 × 10−1, 1.28 × 10−4, and 1.53 × 10−8. We observed
similar behavior for all the previous experiments, indicating that
quadratic convergence in Newton’s method is preserved.

This experiment demonstrates that the second stopping crite-
rion allows for a significant overall reduction in the number of
GMRES iterations while preserving the convergence behavior of
Newton’s method. In the above case, SPAI-GMRES(16) spent 2207 s
on GMRES iterations for the first stopping criterion, but only 764 s
for the second criterion.

5. Summary of results

The experiments detailed in the last section demonstrate that
the variant of the sparse approximate inverse preconditioner
described in Section 3 enables the scalable solution of large 3D free
surface flow problems. From these experiments we conclude that
(1) for small problems a frontal solver provides the best perfor-
mance, followed by ILUT-GMRES, since for these small problems
the computation of the SPAI preconditioner is expensive; (2) for
problems of larger size (e.g., problems in three dimensions), the
performance of both the frontal solver and ILUT-GMRES is not
acceptable, as the size of the factors is prohibitive. Indeed, when the
size of the problem exceeds (roughly) 50,000, the memory required
for the frontal solver can hardly be accommodated. For these larger
problems, the SPAI-GMRES implementation displays its advantage,
especially when executed in parallel. The efficacy and efficiency
of this preconditioner depends on both its initial sparsity pattern
and the number of diagonals of the Jacobian used in the SPAI algo-
rithm. Thus the initial bandwidth should be sufficient to contain
the largest entries of the Jacobian, while maintaining a high level of
sparsity. The algorithm demonstrates high parallel scalability: CPU
time and memory increase almost linearly as the size of the prob-
lem increases. Finally, we note that the same preconditioner can be
used at each step of the Newton iteration.
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