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ABSTRACT 

 
A micro-macro approach based on combining the Brownian configuration fields (BCF)[1] method with an 
Arbitrary Lagrangian-Eulerian (ALE) Galerkin finite element method is implemented to study the flow 
characteristics of dilute polymer solutions in coating flows.  A distinct advantage of the BCF method is its ability to 
treat models for which no exact closed-form constitutive equations exist, such as FENE dumbbells or models with 
hydrodynamic and excluded volume interactions.  The equations for the BCF are discretized using streamline 
upwinding and are coupled to the Navier-Stokes equation through the stress term.  To validate the method, the 
results for Hookean dumbbell model are compared with those obtained from an exact closed-form macroscopic 
equivalent model (the Oldroyd-B liquid in the conformation tensor formulation). The conformation tensor based 
model is solved using the DEVSS-TG/SUPG method [2]. We find excellent agreement between the results for the 
BCF and the conformation tensor based model.   
 

INTRODUCTION 
 
Free surface flows occur when a layer of liquid 
meets a gas at an interface.  Such flows arise in a 
variety of commercial applications, such as coating, 
ink-jet printing, fiber spinning, and micropipetting.  
Frequently, these applications involve liquids that 
are viscoelastic, because of the presence of polymer 
as final product (as in coating) or as rheology 
modifier (as in ink-jet printing). Many of these flows 
are time dependent; their dynamics are controlled by 
the elasticity and capillarity of liquid.  Modeling 
such flows requires computational methods which 
can describe and predict the molecular conformation 
of polymers, while simultaneously capturing 
accurately the shape of free surfaces.  The Brownian 
configuration fields method [1], which is an 
extension of the CONNFFESSIT algorithm [3], can 
be used to incorporate into computational models 
detailed information on the microstructural feature, 
such as stretch and orientation, of the flowing 
polymer molecules.  The BCF method has a distinct 
advantage over models based on closed-form 
constitutive equations for the conformation tensor or 
the viscoelastic stress because it is able to handle 
directly more realistic models of the dynamics of 
polymer solutions. 
Few time dependent calculations of viscoelastic 
flows with capillarity have been reported in the 
literature; steady calculations have been published 
only recently [2,4].  Here, the time-dependent flow 
under the downstream section of a slot coater is 
studied as a benchmark. The mathematical modeling 
of free surface flows involves solving free boundary 
problems in which the location of the boundary is 
unknown apriori and it must be a part of the solution 
of the problem. Several methods for handling free 

boundary problems have been discussed in detail in 
literature [5-8]. 
In this paper, we compute slot coating flows of 
viscoelastic liquids by using elliptic mesh generation 
equations [2,5] coupled with time dependent 
conservation and BCF equations.  To validate this 
approach we present results obtained with an exact 
closed-form macroscopic equivalent model in 
conformation tensor based formulation [2]. 
 

GOVERNING EQUATIONS 
 
Mesh generation, continuity and momentum balance 
equations, respectively, are:  
 

 
 
where v is the liquid velocity, ρ is the liquid density, 
ξ is the position in the computational domain, ∇ 
denotes the standard gradient operator in physical 
space x, and Θ is the body force per unit volume.  
The dyadic controls the spacing of the coordinate 
lines [8]. T is the total stress tensor, which is 
expanded as T = -pI + τ + σ where p is the pressure, I 
is the identity tensor, τ is the viscous stress tensor 
and  σ is the elastic stress tensor.  Further details on 
conformation tensor based constitutive equations are 
explained in Ref. [2]. 
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The viscous stress is given by the Newton’s law τ = 
2µD where D = 1/2 (∇v +∇vT) and µ is the 
Newtonian viscosity.  The elastic stress is calculated 
by using the BCF method.  The polymer molecules 
are modeled as Hookean dumbbells.  In this 
simplistic model, the polymer solution is considered 
to be a suspension of non-interacting dumbbells with 
two Brownian beads connected by a linear spring.  
The configuration field of a dumbbell Q(x,t) is 
governed by the following stochastic differential 
equation [1]:   
 

 
  
where 

ζ
kT4 r(t) is a time-uncorrelated, spatially 

homogeneous Brownian force which accounts for 
the random displacement of the beads due to the 
thermal motion (r has zero mean and unit variance), 
H is the Hookean spring constant, and ζ is the bead 
friction coefficient. The elastic stress field is related 
to the configuration of the dumbbells,   
 

 
where n is the number density of the dumbbells and 
the angular brackets denote a configuration 
ensemble average.  The microscopic Hookean 
dumbbell model is equivalent to the macroscopic 
Oldroyd-B model [9]. 
 

NUMERICAL METHOD 
 
The partial differential equations are translated into a 
set of coupled, time-dependent differential algebraic 
equations by using finite element basis functions and 
Galerkin’s method for the mesh, momentum, and 
continuity equations (1, 2, 3) and Streamline 
Upwind Petrov Galerkin for the configuration fields 
(Eq. 4) or conformation equation. Biquadratic 
continuous basis functions are used for velocity and 
position, linear discontinuous basis functions for 
pressure, and bilinear continuous basis functions for 
the configuration fields . 
The time-dependent equations in the conformation 
tensor formulations are solved with a fully implicit 
second order predictor-corrector scheme for the 
coupled equation set [10]. In the BCF method, the 
evolution of the system is computed at each time 
step first by fixing the elastic stress and solving the 
continuity, momentum, and mesh equations with an 
implicit scheme and Newton’s method; then, the 
velocity field is fixed and the BCF equations are 
updated with an explicit Euler scheme using fixed 
flow kinematics; finally, a new elastic stress field is 
computed from the updated configuration fields.  
Because the physical mesh is changing with time, 
the time derivatives of any time-dependent quantity   
∂Φ/∂t in Equations 3 and 4 are transformed to time 
derivatives at fixed iso-parametric coordinates  
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gure 1:  Flow domain and boundary conditions used in analyzing tFi he 
flow of viscoelastic liquid in the downstream section of slot coater. 

 

enoted by(d  
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Φ ) with the transformation   
 

 

where,  x is the mesh velocity. In the case of free 
surface flows, the mass matrix in the BCF equation 4 
is time-dep

o

endent and must be factorized at each 
me step. 

 
RESULTS AND DISCUSSION 
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mulation and 0.0075 in 

ulate the flow field at a subsequent time 
step [10].   
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Here,  the evolution of the molecular conformation 
in the downstream section of a slot coater is studied 
as the flow evolves from one steady state to another 
after a gradual change of dimensionless flow rate. 
Figure 1 shows the flow domain and boundary 
conditions used for the slot coating flow problem. 
The relevant dimensionless parameters for this flow 
are: the Reynolds number, Re = ρvL/(µ+ηp), the 
Capillary number, Ca = (µ+ηp)v/ς, the Weissenberg 
number, Wi = λv/L and the viscosity ratio, β = µ/ 
(µ+ηp) where ηp is the polymer viscosity, v is the 
web speed, L is the height of the gap between the  

eb and the die, λ is the polymer relaxation time and 
ς is the surface tension. The dimensionless number 
are set to Re = 0.05, Ca = 0.1, Wi = 1.0 and β = 0.75.  
The finite element mesh has 550 elements with 
10894 degrees of freedom for velocity and position 
and 1818 for each Brownian Configuration Fields. 
The same mesh is used in the simulation of the 
conformation tensor based model and the total 
number of degrees of freedom is 15742 in this case. 
3200 dumbbell fields are used in the microscopic 
simulations to obtain a reasonable variance.  The 
dimensionless time step used in the time integration 
is 0.02 in the macroscopic si
the microscopic simulation. 
The initial condition for the transient simulations is 
Newtonian creeping flow with a dimensionless flow 
rate of  0.27.  A new steady state with Re = 0.05 and 
Wi = 1.0 is obtained from the initial condition by 
integrating the equations of motion  (in 
conformation or BCF form) from time, t = 0 to 14. 
The flow rate is then gradually changed from 0.27 to 
0.3 over the period t = 14 to 20 while keeping all 
other parameters fixed. The flow rate is changed 
gradually so as to have a divergence-free velocity 
field to calc
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Figure 2:  Eigenvalues of the conformation dyadic as a function of time.  
BCF results are depicted in black color. 
 

 
Figure 3:  Steady state contour lines of the largest eigenvalue of 
conformation dyadic.  BCF results are depicted in gray color. 
 
The eigenvalues of the conformation dyadic can be 
used to represent the microstructural state of an 
ensemble of polymer molecules in a flow field [2]. 
Figure 2 shows the largest and the smallest 
eigenvalues of the conformation dyadic in the flow 
plane computed using both the BCF and the 
macroscopic Oldroyd-B models.  Figures 3 and 4 
show the steady state contour plots of these 
eigenvalues. Steady state contour lines were 
obtained by doing a time and ensemble-average over 
all Brownian Configuration Fields after the system 
reached a stochastic steady state (this is justified by 
ergodicity). Both transient and steady results 
computed with the closed-form model and BCF 
method agree well. 
A typical transient simulation of the slot coater 
requires roughly 115 CPU hours on a single 900 
MHz Itanium 2 processor using 3200 configuration 
fields, for 3000 time steps.  The same simulation 
takes about 12 CPU hours for the macroscopic 
conformation tensor based method.  However, the 
BCF method can be easily parallelized and the clock 
time drops to about 24 hours on 8 processors in a 
distributed memory configuration.  This scalability 
on Beowulf-class parallel clusters makes the BCF 
method viable for computation of industrially 
relevant flows. 
 

CONCLUSIONS 
 

We have developed a micro-macro numerical 
algorithm to simulate viscoelastic free surface flows 
using the BCF method.  To the best of our 
knowledge this is the first extension to complex free 
surface flows of the BCF method.  We have 
validated this method by showing that the BCF 
results agree with those computed with the 
equivalent macroscopic conformation tensor based  
model in a sample slot coating flow problem.  The  
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Figure 4:  Steady state contour lines of the smallest eigenvalue of 
conformation dyadic.  BCF results are depicted in gray color. 

 
BCF method can be used to solve flow problems 
with more realistic polymer models; moreover, the 
BCF method may circumvent the high Weissenberg 
number limit in flow domains with singularities such 
as contact lines [2] because  the BCF method  
preserves the inherent positive definiteness of the 
conformation tensor [1].  
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