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a b s t r a c t

In this review, we show that the structure and behavior of single-walled nanotubes (SWNTs) are
essentially polymeric; in fact, many have referred to SWNTs as ‘‘the ultimate polymer’’. The classification
of SWNTS as polymers is explored by comparing the structure, properties, phase behavior, rheology,
processing, and applications of SWNTs with those of rigid-rod polymers. Special attention is given to
research efforts focusing on the use of SWNTs as molecular composites (also termed nanocomposites)
with SWNTs as the filler and flexible polymer chains as the host. This perspective of ‘‘SWNTs as poly-
mers’’ allows the methods, applications, and theoretical framework of polymer science to be appro-
priated and applied to nanotubes.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Iijima’s identification of multi-walled carbon nanotubes
(MWNTs) in 1991 and single-walled carbon nanotubes (SWNTs) in
1993 (along with Bethune et al.) ignited a firestorm of interest in
these remarkable molecules because of their extraordinary prop-
erties and potential applications [1–3]. Much of the recent interest
in nanotube research stems from their unusual geometry, partic-
ularly the juxtaposition of molecular and macroscopic length scales
in the same ordered structure. This geometry has caused some
disagreement on the classification of nanotubes. Various studies
refer to nanotubes as molecules, particles [4], nanostructures [5],
nano-colloids [6], graphitic cylinders [7], and even fibers [8]. In this
review, we emphasize that considering SWNTs as a type of polymer
is both accurate and useful, and we compare the properties and
applications of SWNTs with those of lyotropic liquid-crystalline
polymers (LCPs). A SWNT meets the definition of a polymer as
a large molecule of repeating, covalently bonded units; beyond this
technical definition, the practical parallels between SWNTs and
conventional polymers make it convenient and helpful for
researchers to mentally categorize SWNTs in the class of polymers.
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The concept of comparing SWNTs to polymers can be found in the
research literature as early as 1999 when Shaffer and Windle
published a short paper entitled ‘‘Analogies between polymer
solutions and carbon nanotube solutions’’ [9]; they noted that
nanotube dispersions exhibit polymeric behavior and can be
characterized by theories developed in the realm of polymer
science. Several other studies have noted the correspondence
between SWNTs and polymers, including Young and Eichhorn’s
discussion of SWNT nanocomposites as identical to traditional
molecular composites [10]. Some have even gone so far as to
declare SWNTs to be ‘‘the ultimate polymer’’ because of the
strength of the perfect carbon lattice structure of SWNTs. Even
though SWNTs have been described as polymers previously, the
correspondence between the two remains uncommon in the way
that SWNTs are analyzed and utilized in the research community.

Such a perspective paves the way for the cross-application of
polymer characterization and processing techniques to SWNT
systems. Many of the obstacles facing the rigid-rod polymer
research community in the early 1980s are the same as those facing
SWNT researchers today (Appendix A). This is particularly true for
the production of SWNT-based macroscopic articles (wires, fibers,
films, membranes) that retain the superior properties of their
constituent nanotubes. The whole SWNT research community will
benefit from the application of theoretical and experimental
frameworks originally developed for conventional polymers.

Some may object to the classification of SWNTs as polymers,
choosing instead to group SWNTs in a special class of novel
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Fig. 1. A schematic of a graphene sheet and 3 SWNTs formed by rolling-up graphene
strips at various angles. The short side of the strip describes the SWNT circumference,
so the circumference must form a repeating, continuous lattice. The repeating units are
the graphene belts (outlined in red for the armchair SWNT). The angle of this
circumference with respect to the graphene honeycomb structure determines the
chirality of the SWNT. Adapted from [6] with permission.
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nanomaterials along with graphene and fullerenes. However, the
linear, repeating nature of SWNTs, the structural parallels with the
molecular structure of LCPs, and the experimentally-observed
parallels between SWNTs and polymers demonstrate that SWNTs
are not so novel that their properties cannot fit into polymeric
categories. In fact, most ‘‘novel’’ aspects of SWNTs are best
considered as extremities on the spectrum of polymer properties.

Also, many may classify SWNTs as colloids; it is interesting to
note that in the early 1900s, polymers were classified as ‘‘linear
colloids,’’ and pioneers such as Emil Fischer and Heinrich Wieland
argued that the apparent high molecular weights associated with
polymers were simply due to aggregation of smaller molecules
rather than covalent bonding between smaller units. In the 1930s,
the work of Hermann Staudinger established that these ‘‘linear
colloids’’ are in fact macromolecules [11]. The gap between colloids
and polymers is not so large that the two classifications must be
considered mutually exclusive, and many of the theories for the
phase behavior and dynamics of rod-shaped entities make no
distinction between rodlike colloidal particles and rodlike poly-
mers [12,13].

Although SWNTs possess a number of properties common to all
polymers, most of their close parallels are with lyotropic LCPs, which
are often classified as follows: (1) ‘‘Rodlike polymers’’ such as poly-p-
phenylene terephthalamide (PPTA) and polyaramide fibers such
as poly(p-benzamide). (2) ‘‘Rigid-rod polymers’’ such as the poly-
benzazoles (PBZ) class, which includes trans-poly-p-phenyl-
enebenzobisthiazole (PBT, sometimes called PBZT) and poly-p-
phenylenebenzobisoxazole (PBO) [14]. Rodlike polymers have a finite
degree of flexibility in the sp3-hybridized carbons in the polymer
backbone, whereas rigid-rod polymers are entirely sp2-hybridized
and can only be rotated axially since they have no points of flexibility
along the backbone. Pristine SWNTs naturally fall into the latter
category due to their internal structural rigidity. These two categories
are contrasted with ‘‘semiflexible’’ polymers such as poly-p-ben-
zimidazole (AB-PBI) and poly(2,5-benzoxazole) (AB-PBO).2

Below we review the properties, processing, and applications of
SWNTs in comparison with analogous polymers; we include
a special section on molecular composites of SWNTs in polymer
matrices and their parallels with the original molecular composites
which used rigid-rod polymers as filler. We restrict our attention to
SWNTs because the nested structure of MWNTs suggests that
MWNTs may behave as supramolecular complexes or filaments
rather than as individual polymer molecules.3

2. SWNT and polymer parallels

2.1. SWNT structure

The molecular structure of polymers is characterized by
a repeating covalently bonded unit that is typically carbon-based.
Similarly, the repeating unit for SWNTs is the hexagonal ‘‘honey-
comb’’ mesh of sp2-hybridized carbons, such that the SWNT
2 The universe of stiff polymer molecules may be summarized as follows, going
from the least stiff to the most stiff with commercial fiber name in braces. (1) Melt
processable: m-phenyl terephthalamide {DuPont Nomex}, Polyimide PI {DuPont
Kapton}. (2) Semiflexible: AB-PBI, AB-PBT, AB-PBO. (3) Rodlike / stiff chain: PPTA
{DuPont Kevlar fiber, Teijin Twaron fiber}. (4) Rigid rods: PBZT, PBO {Toyobo Zylon
fiber}, poly(p-phenylene benzobisimidazole) PDIAB, polydiimidazo pyridinylene
(dihydroxy) phenylene PIPD (similar to PDIAB with hydroxyl groups added)
{Magellan M5 fiber}. (5) ‘‘Extreme’’ rigid rods: ladder polymers such as poly-
(benzimidazobenzophenanthroline (BBL), SWNTs.

3 Note that ‘‘nanotubes’’ are essentially a class of materials as well, ranging from
SWNTs (which behave as polymers) to MWNTs with hundreds of walls (which
behave as large, flexible, non-Brownian particles). Most MWNTs’ properties lie
between these two extremes.
structure is identical to a graphene sheet rolled into a cylinder. The
carbon atoms do show some sp3-character due to the curvature of
the cylinder [15]. The angle a at which the graphene sheet is rolled
determines the chirality (or ‘‘helicity’’) of the SWNT (as illustrated
in Fig. 1), which in turn determines whether the SWNT behaves as
a metal or semiconductor. This angle can also be expressed through
an (n, m) index, which describes the number of repeat units con-
tained in the chiral vector. As shown in Fig. 1, the extremes of this
notation can be seen in metallic ‘‘armchair’’ SWNTs which have
a repeated index (n, n) and semiconducting ‘‘zigzag’’ SWNTs which
have an index of (n, 0). In conventional polymers, the repeat unit is
the monomer itself; for SWNTs, the repeat units are belts of
graphene.

Two thirds of SWNTs behave as semiconductors of variable
bandgap while one third act as a metal. The armchair SWNTs (w8%)
are true metals due to bandgap overlap, while other chiralities
where (m–n) is a multiple of 3 have extremely small bandgap [16].
Unfortunately, all known methods of CNT synthesis produce
a mixture of chiralities, but a number of research efforts are aimed
at identifying procedures for selective growth [17], separation
[18,19], and/or cloning of particular SWNT types and chiralities
[20,21].

Typical SWNT diameters range from w0.4 to>3 nm [16]. SWNTs
with diameters below 0.4 nm are thermodynamically unstable
because of the curvature-induced strain on the covalent carbon–
carbon bonds, and SWNTs with large (>3 nm) diameters tend to
flatten because the van der Waals attraction between opposing
sides overcomes radial stiffness. SWNTs may be capped on their
ends by hemifullerenes; these caps are more reactive due to their
increased curvature [22] and are analogous to polymer end groups.

SWNTs have a relatively low density of 1.4–1.6 g/cm3. The
density of SWNTs is often described as identical to the density of
graphite (w2.1 g/mL). This calculation not only ignores the empty,
inaccessible volume inside the SWNT, it also doesn’t account for



Fig. 2. Schematic illustrating a bundle of perfectly packed SWNTs of diameter d, with
van der Waals spacing dvdW.

Fig. 3. Sideview of SWNT ‘‘carpets’’(vertically-aligned arrays) grown under H2 and
C2H2 flow on Fe catalyst particles (reproduced from [267] with permission). Bundles of
vertically-aligned SWNTs are visible.
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packing between the SWNTs [23]. For a perfectly packed bundle
(i.e., perfectly aligned, triangular lattice as seen in Fig. 2), the
density may be calculated as:

rbundle ¼
8
9

Mcarbon

NA

p

ðac�cÞ2
d

dþ dvdW
; (1)

where Mcarbon is the molecular mass of carbon, NA is Avogadro’s
number, ac–c is the natural bond length between sp2-hybridized
carbons (w0.114 nm), dvdW is the distance between SWNT surfaces
in perfect van der Waals contact (w0.34 nm), and d is the SWNT
diameter. This result can be easily derived from the work of Dres-
selhaus et al. [24]. Note that the diameter may be derived from the
(n, m) index as d ¼ ð1=2Þac�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðm2 þmnþ n2Þ

p
. For example,

a (9,4) SWNT will have a diameter of 1.13 nm and density of 1.54 g/
mL. Inaccurate estimates of density propagate to estimations of the
modulus of SWNTs and SWNT-based articles 4. One example of this
problem would be taking a specific property of a macroscopic
SWNT fiber and multiplying this property by the density of graphite
to get a fiber modulus.
2.2. SWNT synthesis

In contrast with polymers, which are typically synthesized in
the liquid phase, SWNTs are produced through a variety of
synthesis techniques that typically involve the reaction of a gaseous
carbon feedstock to form the nanotubes on catalyst particles.
MWNTs were first observed in arc discharge fullerene reactors
[1,26]; this technique was later adapted to produce SWNTs [3].
Similarly, the fullerene production method of laser ablation [27]
was adapted to produce SWNTs (w1.4 nm diameter) in larger
quantities on metal catalyst particles [28–30]. A number of chem-
ical vapor deposition (CVD) processes have been developed to grow
SWNTs and MWNTs, all involving the reaction of a gaseous carbon
compound as feedstock. These processes include fluidized bed [31],
4 On the topic of individual SWNT modulus, this issue is more complicated.
Young’s modulus can be defined as Y¼ (d2E/d32)/V where V is the volume of the
system, E is the free energy of the system, and 3 is strain. However, the volume of
a molecule is ambiguous, so a more useful definition may be Y¼ (d2E/d32)/N where
N is the number of atoms [25]. The first definition may be obtained by multiplying
the second by N/V (also equal to rNAv/MCarbon, where r is the density, MCarbon is the
molecular weight of carbon, and NAv is Avogadro’s number.) The second definition
results in YSWNT¼ Ygraphite. However, in converting to the first definition, the choice
of rSWNT is critical. If rgraphite is used, then the first definition results in
YSWNT¼ Ygraphite. (This is often seen in the literature as ‘‘assuming a thickness
of 0.34 nm’’ for the SWNT.) If the more realistic rbundle is used, then a lower value
of YSWNT will result.
‘‘carpet’’ growth of carbon nanotubes (CNTs) from catalyst particles
embedded in a substrate [32–35] as shown in Fig. 3, and ‘‘catalytic
gas flow CVD’’ [36,37]. One of the most effective, cheap, and scal-
able CVD techniques is the HiPco (high-pressure CO) process, which
does not use pre-formed catalyst particles unlike most other CVD
techniques [38].

Several of these methods (fluidized bed CVD, HiPco, arc
discharge, laser ablation) produce ‘‘short’’ SWNTs with lengths in
the (w0.05–3 mm) range. The ‘‘CoMoCat’’ fluidized bed technique
has the advantage of scalability along with high diameter selec-
tivity [17,39]. Substrate growth and catalytic gas flow CVD reactors
have shown the ability to produce extremely long (centimeter
scale) CNTs from a number of carbon gas sources; however, many of
these techniques produce MWNTs with varying degrees of control
over the number of walls or the defect density. Catalytic gas flow
techniques show more promise for industrial scalability than
substrate growth methods because of the higher CNT yield [40].

The various SWNT synthesis methods typically yield a pop-
ulation of SWNTs with polydisperse diameter, length, chirality, and
defect density, much like the polydisperse molecular weights and
branched structures produced in conventional polymer synthesis.
One of the main challenges in SWNT synthesis is the ability to
control the distribution of these polydisperse SWNT properties. The
chief advances in this regard are seen in the CoMoCat process,
which has some control over SWNT diameter, and substrate CVD-
growth techniques, which produce nanotube arrays of relatively
uniform length.

Many molecular weight distribution-control issues with poly-
mers have been addressed only after decades of study, and the
same difficulties arise for many SWNT production methods.
However, the vertically-aligned SWNT arrays are made with a high
degree of control over the average length of the as-produced
SWNTs. Post-processing chemical techniques such as SWNT cutting
can be used to shorten a SWNT length distribution to yield ultra-
short ‘‘US-SWNTs’’ with a typical length of 60 nm. The current
inability to synthesize SWNTs of a particular chirality is comparable
to the situation in a-olefin synthesis prior to the advent of Ziegler–
Natta catalysts.5
5 Ziegler–Natta catalysts enabled the stereoselective synthesis of polymers of
a-olefins.



Table 1
Comparison of PPTA [260], PBO [261], and SWNT molecular properties
[16,23,262,263]. Note: ‘*’ denotes graphene modulus, whereas ‘^’ denotes simulation
moduli for the two density values. ‘#’ denotes measured values; values for a perfect
pristine SWNT may be higher than 70 GPa. ‘&’ denotes theoretical estimates.

Polymer Modulus (GPa) Tensile strength (GPa) Electrical conductivity

PPTA 195& 12& Insulator
PBO 690& 59& Insulator
SWNT 1080* 700, 1200^ 70# Metallic/semiconductor
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2.2.1. SWNT properties
The properties of SWNTs are compared with PBO and PPTA in

Table 1. Quantum mechanics calculations predict remarkable
mechanical properties for individual SWNTs (Young’s modulus of
0.64–1 TPa, tensile strength of 150–180 GPa, strain-to-failure of 5–
30%) [41–43] while having a relatively low density of 1.4–1.6 g/cm3.
These excellent properties are related to the superior mechanical
properties of graphene sheets [44]. Recent experimental
measurements have confirmed that these estimates are approxi-
mately correct [45–47], although the presence of defects can have
a strong effect on tensile strength [48]. The high values of tensile
strength for SWNTs are particularly promising and are correlated
with high values of strain-to-failure [49]. Also, SWNTs can sustain
large strains under compression [8] and can make sharp bends
without fracturing [50]. Deformability in the radial direction is an
inverse function of SWNT diameter [51].

The reason for SWNTs’ high stiffness and superior mechanical
properties lies in the chemical structure of the repeat unit. The
repeat unit is composed entirely of sp2-hybridized carbons and
contains no points for flexibility or rotation. This lack of flexibility
bears similarity to the bonded phenyl groups in the backbone of
rigid-rod polymers, where the only conformational changes arise
from the axial rotation of bonds connecting phenylene and hetero-
cyclic backbone groups [52]. SWNTs represent an extreme rigid-rod
polymer because the breaking of rigid-rod polymeric chains require
the cleavage of only one covalent carbon–carbon bond (among the
strongest known atomic bonds); this process was simulated by
using molecular dynamics by Farmer et al. [53]. However, the
breaking of a SWNT requires the cleavage of ten or more bonds [7].
For the same reason, SWNTs are able to retain structural integrity
even in the presence of defects in the hexagonal mesh whereas
conventional polymers cannot sustain the presence of defects.

Theoretical analyses estimate that the thermal conductivity of
a defect-free [10, 10] SWNT could be as high as 6000 W/(m K) [54]
although actual measurements have only confirmed values on the
same order of magnitude as that of graphite crystals (2000 W/
(m K)) [16,51].

Much of the interest in metallic SWNTs as electrical conductors
stems from the high conductivity (current density 1000 times that
of copper [6]) and the ballistic transport that occurs in metallic
SWNTs such that electrons can move microns down the SWNT
without scattering [55]. The conductivity is reduced as more scat-
tering sites are introduced, either through chemical functionaliza-
tion or physical defects [56]. These molecular-level properties far
exceed conventional polymers, which tend to be insulating unless
they are doped. However, these high values are difficult to attain in
experimental samples due to polydispersity in chirality, the pres-
ence of defects, and losses due to inter-SWNT contacts. (Defects
compromise SWNTs’ superior electrical transport properties but
can be healed at high temperatures [57–59].) Even so, there is
a great deal of optimism that future research on the spinning of
neat SWNT fibers and the scalable production of all-metallic SWNTs
will enable the production of the ‘‘quantum wire,’’ a highly
conductive, macroscopic power transmission line with high
conductivity and low power losses [60].
We have argued that SWNTs are polymers and their unusual
properties are essentially ‘‘extremes’’ on the spectrum of polymer
properties. Table 2 lists the properties where SWNTs and rigid-rod
polymers differ markedly; these major differences illustrate
SWNTs’ ‘‘extreme’’ polymer characteristics and unusual geometry.

2.3. SWNT dispersion

The solubility of polymers is inversely correlated with molecular
weight and stiffness; long, rigid polymers are difficult to disperse.
The dimensions and stiffness of SWNTs indicate that they should
also behave as rigid rods if dispersed as individuals in solution.
Unfortunately, SWNTs are typically produced in entangled, aggre-
gated masses, and even when such SWNTs are separated and
dispersed, the attractive van der Waals forces cause the SWNTs to
re-bundle. These dispersion problems constitute a major barrier for
SWNT research and applications. Two types of techniques are used
to overcome these problems.

First, SWNTs may be separated and stabilized to form meta-
stable dispersions; this technique bears little similarity to polymer
dispersion techniques. The SWNT bundles may be broken apart
through some external force (usually mechanical mixing and
sonication) and then some polymer or surfactant complex forms
around the separated SWNTs to prevent re-aggregation [61,62] as
discussed further below.

Second, like other rigid-rod polymers, the SWNT material may
be placed in a solvent where the SWNTs spontaneously debundle,
exfoliate, and dissolve to form a true polymer solution. Organic
solvents such as dimethyl formamide or dichlorobenzene are
limited to very low concentration solutions [63]. Recent studies
indicate that pristine SWNTs can spontaneously exfoliate in NMP,
with concentrations on the order of 0.001 wt% (i.e., 10 ppm,
10�2 mg/mL) [64,65]. (Note that NMP was described as an athermal
solvent for nanotubes by Bergin et al. [65]. However, the solubility
of SWNTs in NMP is orders of magnitude below the theoretical
predictions for Brownian rods in an athermal solvent.) Superacids
are able to dissolve SWNTs at much higher concentrations; the use
of superacids as a solvent for SWNTs is discussed in detail below
and compared with similar techniques used to disperse PPTA and
PBO.

This discussion is limited to SWNTs and polymers in solution
because it is not possible to compare SWNTs with polymers in the
melt state due to SWNTs’ high melting temperature of 4800 K (with
premelting around 2600 K according to molecular dynamics
simulations) [66]. Such temperatures are higher than SWNT
degradation temperatures (2000 �C in Ar, 600 �C in air), so that
SWNTs would degrade long before melting. Similarly, PBO
undergoes degradation at temperatures at 700 �C in Ar and 600 �C
in air long before melting. Again, the high melting point computed
for SWNTs is directly connected with the inordinately large
molecular weight of nanotubes.

Here, we briefly discuss the various techniques and solvents
used to disperse SWNTs; we then explore the phase behavior
(including formation of liquid crystals, reviewed recently by Zhang
et al. [67]), rheology, and optical properties of dispersed SWNTs and
the close parallels with rigid-rod polymers in solution.

2.3.1. Dispersion via surfactant stabilization and polymer wrapping
Aqueous surfactant solutions (both ionic and non-ionic) are often

used to disperse SWNTs as individuals at low concentrations
although the nanotubes must often be ultrasonicated in order to
break up bundles [15]. A wide range of surfactants has been used to
successfully disperse SWNTs [68], but the most commonly used are
sodium dodecyl sulfate (SDS), sodium dodecylbenzene sulfonate
(SDBS), and sodium deoxycholate [17]. Although such low
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concentration dispersions do not show liquid-crystalline behavior,
viscoelastic measurements indicate that they do undergo a perco-
lation transition because of persistent attractive interactions
between the surfactant-stabilized SWNTs [69] or due to depletion-
induced attractive interactions [70,71]. (It is important to note the
difference between ‘‘flocculation,’’ where stabilized SWNTs attract
and reversibly percolate due to depletion-induced attraction, and
‘‘bundling,’’ where SWNTs are tightly packed due to van der Waals
forces and cannot be separated without sonication, functionaliza-
tion, or protonation [72].) Surfactant-stabilized SWNT suspensions
often contain a large number of small bundles, even after ultra-
sonication and ultracentrifugation. Moreover, ultrasonication not
only breaks up bundles, it can also break SWNTs along their back-
bone, with longer SWNTs and defect-laden SWNTs showing
a greater likelihood of breakage. Such broken SWNTs do disperse
more easily but may be ragged or defect-laden due to this treatment.

Similarly, SWNTs can be wrapped in a number of adsorbing
polymers [73], including semi-conjugated polymers [74], block co-
polymers [75], and biopolymers such as DNA [76].

2.3.2. Functionalization and dispersion
Acid oxidation of SWNTs in a mixture of sulfuric and nitric acid

allows SWNT sidewalls to be functionalized but also causes the
SWNTs to be cut into shorter pieces. These oxygenated side groups on
the SWNTs induce electrostatic repulsion and cause SWNTs to
debundle [77]. Liquid-crystalline domains have been observed for
these oxidized nanotubes in solution, but the only phase diagram
reported was a series of MWNT solutions qualitatively analyzed via
optical microscopy [78,79] and analyzed for length fractionation [80].

Similarly, sidewall functionalization of SWNTs by reductive
alkylation using lithium and alkyl halides in liquid ammonia [81]
can render SWNTs soluble in common organic solvents, and dia-
zonium functionalization yields water-soluble SWNTs [82,83]. Fig. 4
depicts a TEM image of a functionalized SWNT, with functional
‘‘bumps’’ on the surface of the SWNT. Beyond these two examples,
a wide range of similar functionalization and solubilization tech-
niques has been reported. However, liquid-crystalline phases have
not been observed for such dispersions; furthermore, functionali-
zation is often avoided for SWNTs because the introduction of sp3-
hybridization disrupts SWNT electrical properties and limits the
ordering of SWNTs in fibers and films [84].

2.3.3. SWNTs in superacids
Rigid-rod polymers, i.e., PBO, PBT and ladder polymers such as

BBL, are insoluble in virtually every common solvent. Bonner and co-
workers studied the solubility of PBO in dozens of common solvents
and found that nothing was effective other than Lewis acids and
strong acids such as sulfuric acid and methanesulfonic acid [85].
Such strong acids protonate the polymer backbone, induce polymer–
polymer repulsion, and allow the polymer to dissolve [86–90].
(Other solvents can induce electrostatic repulsion without chemical
modification on polymer chains, but not with the same solubilization
effects as superacids [91].) The use of such acids is essential to the
industrial processing of rigid-rod polymers into fibers. Likewise, only
Fig. 4. TEM of functionalized, surfactant–free SWNT deposited from chloroform
solution. Reproduced from [83] with permission.
strong acids are capable of dissolving pristine SWNTs at high
concentrations without stabilizing agents or surface modification.
While surfactant-stabilized dispersions are typically limited to low
concentrations in an isotropic phase, superacids such as fuming
sulfuric acid and chlorosulfonic acid have shown the ability to
disperse SWNTs at high concentrations [92,93]. Superacids
protonate the SWNT sidewall and induce electrostatic repulsion [94].
One difference between rigid-rod polymers and SWNTs is that
specific sites on rigid-rod polymers are protonated [95], whereas
positive charges on SWNTs are delocalized due to the non-specificity
of the SWNT repeat unit. For PBO in methanesulfonic acid, spectro-
scopic measurements suggested two protons per repeat unit [96];
for SWNTs, the positive charge per carbon can be measured through
the shift of the Raman G-peak after dispersing the SWNTs in
superacid [94]. The charge per carbon typically varies between 0.053
for 102% H2SO4 and 0.078 for ClSO3H and correlates with Hammett
acidity [97]. (Note that these values for PBO and SWNTs yield similar
order of magnitude estimates for charge per molecular weight, with
0.00442 e/amu for SWNTs in 102% H2SO4 and 0.0139 e/amu for PBO
in methanesulfonic acid.) Although some have argued that super-
acids would invariably cut or functionalize the SWNTs [91], Raman
spectroscopic data shows that protonation of SWNT sidewalls by
superacids is fully reversible upon quenching [94].

Several lines of evidence indicate that superacids disperse
SWNTs as individual rigid rods. At low concentrations, the rheology
of SWNT/superacid solutions accords with theoretical predictions
for the rheology of isotropic, dilute Brownian rods. At high
concentrations, the solutions show a birefringent, polydomain
liquid-crystalline structure, similar to solutions of liquid-crystalline
polymers [92]. The optical appearance of SWNT/superacid liquid
crystals closely mirrors those of other liquid-crystalline solutions
including PPTA dispersed in sulfuric acid as shown in cross-polar-
ized microscopy images in Fig. 5.

The introduction of water into the liquid-crystalline phase
causes the SWNTs to precipitate into a crystal solvate in the form of
needle-shaped strands, termed ‘‘alewives’’ [92,94,98]. These
alewives bear similarity to the aligned tactoids formed by rodlike
polymers in acids (such as PBO in PPA) upon exposure to atmo-
spheric moisture [99,100]. Also, both rigid-rod polymers (PBO,
PBZT) and SWNTs sometimes display low solubility in superacids.
Some authors have suggested that this is caused by a degree of
cross-linking, but this suggestion has never been fully corroborated
[52]. More research is needed to explore this issue.

At intermediate concentrations, the isotropic and liquid-crystal-
line phases coexist in a biphasic regime; centrifugation of solutions in
the biphasic regime causes phase separation. The isotropic–biphasic
and nematic-biphasic boundaries have been experimentally deter-
mined as a function of concentration and acid strength [93].
(Isotropic-biphasic boundaries were determined via centrifugation,
phase separation, and absorbance measurement [97]. Nematic-
biphasic boundaries were determined by a combination of rheology,
DSC, and optical microscopy [93].) The biphasic region observed in
SWNT/superacid systems is unique because the liquid-crystalline
phase forms long strand-like domains, termed ‘‘spaghetti,’’ where
the SWNTs are mobile along the length of the domain [92].

One key difference between dispersion of SWNTs in superacids
and dispersion via surfactants is the fact that acids actually dissolve
the nanotubes as individuals, whereas surfactants essentially act as
‘‘stabilizers’’ for the SWNT dispersion; that is, the SWNTs become
separated from each other by homogenization and ultrasonication,
but their re-aggregation is arrested by the surfactant. In contrast,
SWNTs spontaneously debundle and dissolve in superacids. A
particularly striking example of this process is the immediate and
complete dissolution of a neat SWNT fiber in ClSO3H within
minutes of immersion [93].



Fig. 5. (Left) Cross-polarized microscopy images of 14 wt% PPTA in 98% H2SO4 [268] (Reproduced with permission). (Right) Cross-polarized microscopy images of 8 wt% SWNT in
120% H2SO4. Scale bar¼ 50 mm. Isotropic regions appear black, while aligned regions, aligned at� 45� , allow light through.

6 Some features of the phase diagram are similar to the theoretical phase
diagram of Somoza et al. [122], who used density-functional theory to compute the
biphasic region of capped nanorods which interact via screened van der Waals
forces and hard-rod interactions as a function of temperature. In particular, the
widening of the biphasic region on the isotropic-biphasic boundary without
a Flory-like transition to a near-solid on the biphasic-liquid crystalline boundary
was observed for decreasing temperature. (Note that these transition temperatures
are on the order of 2000 K.)
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2.4. Phase transitions of rigid rods

2.4.1. Theory
The phase behavior of SWNTs dispersed in acids is analogous to

the Onsager and Flory classical theories for the thermodynamics of
idealized Brownian rigid rods [101,102]. Both of these theories
describe the transition from a dilute, isotropic solution of rods to an
aligned, liquid-crystalline nematic phase as rod concentration is
increased; between these two, a biphasic region exists where the
isotropic and nematic phases coexist.

Onsager’s theory assumes an athermal solvent and excluded-
volume interactions between rods. The theory predicts biphasic
boundaries of fI¼ 3.29(d/L) and fN¼ 4.19(d/L), where fI and fN are
the volume fractions for the isotropic–biphasic and biphasic–
nematic transitions and d and L are the diameter and length of the
rods [103,104]. Onsager’s analysis was later extended to include
simple attractive interactions [105]; Onsager’s framework was also
used to capture the phase behavior of solutions of rods with
polydispersity in length [106–108]. Polydispersity in length widens
the biphasic region, and length fractionation occurs during
isotropic–nematic phase separation, with longer rods preferentially
entering the aligned phase. It is even possible to observe two
nematic phases composed of short rods and long rods given
a sufficiently bidisperse population of rods. Recent studies have
also analyzed the surface tension associated with the interface
between the two phases [106,109–111].

Flory’s lattice-based theory accounts for excluded-volume inter-
actions via packing effects and allows for attractive inter-particle
interactions. For athermal solvents, Flory found higher values for the
biphasic boundaries: fI y 7.89(d/L) and fN y 11.57(d/L) [102,112].
Flory ascribes the difference between these results and Onsager’s to
the discrete nature of the lattice. As the attractions increase, the
value of fN markedly increases and the biphasic region widens.
Flory’s approach suffers from a number of numerical approximations
and from the discretization of the rod segments into a discrete
lattice.

2.4.2. Applications to SWNT phase behavior
The Onsager and Flory theories have been widely applied to

rodlike liquid-crystalline polymers. Onsager’s theory has also found
particular application in the behavior of rigid-rod entities such as
biological (viral) rod particles or inorganic nanorods. Flory’s theory
has been more widely applied to polymers that display varying
degrees of flexibility. This is partly due to the versatility of Flory’s
theory which has been extended to more complex systems such as
ternary systems (i.e., mixtures of rods and flexible coils in a solvent
[113]), rods connected by flexible linkers [114,115], rods with flex-
ible side chains [116], semiflexible rods [117], and polydisperse
systems [118,119]. Comparison of the phase behavior of poly-g-
benzyl-L-glutamate (PBLG), polyparabenzamide (PBA), and PPTA
with Flory’s theory in the athermal limit shows that the simple
form of the theory has the ability to qualitatively predict experi-
mental trends. Deviations from the theory stem from poly-
dispersity in rod length and flexibility and from the ‘‘discrete
solvent’’ assumptions inherent in Flory’s theory [115]. The phase
behavior of polymer-wrapped systems was modeled by Surve et al.,
who used a modified Flory theory to capture the effect of polymer
depletion-induced attraction as a function of adsorption length
[120].

Because of SWNTs’ high stiffness, the Onsager theory for rigid
rods should fit dispersions of SWNTs quite well. However, the
experimental phase behavior of SWNTs in superacids differs from
the established theories of Flory and Onsager; as attractive inter-
actions increase, the broadening of the biphasic chimney occurs
only on the isotropic side rather than on both isotropic and nematic
side. For the strongest acid, chlorosulfonic acid, SWNT protonation
and repulsion are strongest; for this acid, the experimentally-
measured phase transitions match the predictions from Onsager-
like theories for systems of polydisperse rods [107,108]. These
results indicate that chlorosulfonic acid essentially acts as an
athermal solvent for SWNTs. As acid strength is weakened, fI

decreases by several orders of magnitude while fN is nearly
unchanged. This unusual behavior can be modeled through the
introduction of an attractive square well potential describing
attraction between rods in the liquid-crystalline phase as a function
of protonation. Thus, the classical rigid-rod theories developed
with liquid crystal theories are successful in describing SWNTs once
these theories are modified to reflect the strong long-range
attractive forces observed in SWNTs [93,121].6

In addition, the isotropic–nematic phase transition of DNA-
stabilized SWNTs was experimentally investigated by Badaire et al.
[76] and compared against Onsager theory; the increased width of
the biphasic region relative to theory was attributed to aspect ratio



Fig. 6. Fluorescence microscopy images of individual SWNTs tagged with PKH26 dye
and stabilized by sodium dodecyl sulfate (SDS) surfactant (reproduced from [125] with
permission). Scale bar is 10 mm.
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polydispersity effects. Similarly, the behavior of liquid-crystalline
phases formed by aqueous suspensions of acid-oxidized MWNTs
[79] has been qualitatively compared to Onsager and Flory theory
[78]; again, the wider biphasic region was attributed to poly-
dispersity. Similar to the SWNT/superacid results, phase separation
caused length fractionation of the MWNTs in this system as sug-
gested by theory [80].

2.5. Conformational properties in solution

Although the mechanical properties of individual SWNTs were
calculated in the mid 1990s, quantities such as persistence length
and diffusivity were difficult to measure because of polydispersity
in bulk samples; also high concentration dispersions were difficult
to attain. Direct visualization of individual SWNTs dispersed in
a liquid was invaluable to measure these quantities. (This is similar
to the situation in the 1990s where fluorescence visualization of
DNA was used to answer long-standing questions about polymer
diffusion in dilute solutions and polymer reptation in concentrated
solutions [123,124].) Fluorescence visualization of individual
SWNTs (seen in Fig. 6) in aqueous suspensions indicate that the
persistence length of SWNTs ranges from 32 to 174 mm [4,125], even
higher than theoretical estimates of w26 mm based on in-plane
rigidity [126]; since the SWNT sample in [4] had an average length
of 250 nm, these measurements indicate that these SWNTs act as
rigid rods. Fakhri et al. found that the persistence length varies with
d3, where d is the SWNT diameter [127]. This persistence length is
extremely long compared with polymers, ranging from flexible
polymers (polyethylene terephthalate, PET, 5 nm) to lyotropic LCPs
Table 2
Key differences between SWNTs and rigid-rod polymers.

Major differences SWNTs

Rotational degrees of freedom None
Chirality Hundreds, non-specific synthesi
Diameter Variable, 0.4–5 nm
Length 30 nm–1 cm, can be polydispers
Length control Controlled cutting, reaction time
End groups Capped vs. open, defined by syn
Acid protonation No site specificity
Defects Many types of defects, defects n

can be healed
Degradation temperature (in argon/air) 2000/600 �C
(PPTA, 30 nm; PBO, 60–120 nm) as seen in Table 3 [87,128].
However, note that some SWNTs, particularly ‘‘carpet’’-grown
SWNTs, can reach lengths on the order of hundreds of microns or
more. Such SWNTs would behave as semiflexible rods since their
length outreaches their persistence length. These fluorescence
visualization experiments also confirmed that the rotational
diffusivity of SWNTs agrees with theoretical estimates for rods in
a confined space [4,129].

Also, these thermal fluctuations observed in SWNTs are similar
to those seen in polymer networks. Stress relaxation and photo-
mechanical actuator experiments suggest that the thermal fluctu-
ations of SWNT networks display entropic behavior, similar to
cross-linked polymer networks, in contrast with MWNT networks
which are similar to a ‘‘sticky’’ granular system [130].
2.6. Rheology

For decades, rheological measurements have been used to study
polymer solutions with various concentrations to probe both the
properties of the individual polymer molecules at dilute concen-
trations as well as the ordered phases and networks formed at
higher concentrations. Similarly, SWNT solution rheology is a crit-
ical tool for probing the properties of individual SWNTs and the
ordered phases they form.

The rheology of rodlike molecules such as rodlike polymers and
SWNTs are typically described by the Doi theory for idealized rigid
rods. This theory describes the tumbling motion of rods at dilute
concentrations and their contribution to the zero-shear viscosity of
the solution [13]; this theory has frequently been applied to liquid
crystal polymers. The rheology of dilute, micelle-stabilized SWNT/
surfactant dispersions matches this theory quite well [131].
Because of this close match, the zero-shear viscosity can be corre-
lated with average SWNT length [92,131] such that rheological
measurements can be an alternative to AFM as a means of assessing
SWNT length.

In the semidilute regime, the SWNTs are close enough that their
rotational diffusion is restricted. Doi’s theoretical description of this
regime is modified by scaling the rotational diffusivity to decrease
with rod concentration and length. Viscoelastic measurements
indicate that polymer-wrapped nanotubes in the semidilute regime
behave as non-Brownian, ‘‘sticky’’ rods and form a percolating
elastic network [70,132]. Hobbie and Fry’s experiments on polymer-
wrapped MWNTs spanned the transition from semidilute to
concentrated. Again, such nanotubes are ‘‘sticky’’ and form an elastic
network at rest, but weak shear causes the formation of aggregates
[133]. The authors also reported a nonequilibrium phase diagram for
such suspensions as either isotropic or liquid-crystalline as a func-
tion of shear rate and aggregate size [134]. Ma et al. measured the
shear-thinning of MWNTs suspended in an epoxy resin [135].
Because aggregation rates are a function of shear rate, they modeled
the shear thinning behavior using a modified Fokker–Planck
Rigid-rod polymers

1 (axial)
s Cis vs. Trans, defined by synthesis

Fixed
e or monodisperse 200–300 nm, polydisperse
; formed in gas phase Reaction time; polymerized as liquid crystal
thesis Terminating groups

Specific locations
ot catastrophic, Results in chain termination

700/600 �C



Table 3
Structure, persistence length, and ability to form liquid crystalline solutions for various polymers, including SWNTs.

SWNT Rigid rod, PBX Rodlike polyaramide Semi-flexible, ABPBX

Conformation in dilute solution Intrinsic rigid rod, Lp w 175,000 nm Intrinsic rigid rod, Lp w 60–120 nm Rodlike, Lp w 30 nm Expanded coil, Lp w 5 nm

Formation of LC solution Nematic Nematic Nematic No, up to solubility limit
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approach (similar to the Doi theory) that accounts for both aggre-
gation and the tumbling motions of the aggregates. Rod motion and
rheological responses in concentrated rod solutions are very
complex and difficult to evaluate experimentally. Marrucci and
Maffettone (and later Larson and Doi) simulated the Doi theory
in planar shear flow and computed a sequence of dynamic rod mo-
tionsdlogrolling, kayaking, tumbling, wagging, flow aligningdthat
occur as a function of increasing shear rate [136–139]. This rheo-
logical phase diagram of states was later extended for nonhomo-
geneous systems [140–142]. Some of these states (notably tumbling
and flow aligning) were experimentally-observed [133,134] and
flow aligning was observed in Ma et al.’s simulations [135]. Also, the
Fokker–Planck approach can be used to model SWNTs in a magnetic
field [143].

In concentrated solutions of SWNT/superacid dispersions, the
isotropic-liquid-crystalline phase transition is apparent in the
variation of viscosity. Fig. 7 shows the viscosity vs. concentration
behavior of a SWNT/superacid system; the viscosity goes through
a maximum and then decreases due to the formation of a liquid-
crystalline phase [92,144–146]. This pattern is quite similar to those
of rigid-rod polymers such as PBO in 100% H2SO4 [147]. Also, dilute
SWNT/superacid dispersions display a low-shear rate plateau
coupled with shear-thinning at intermediate shear rates, similar to
other liquid crystal forming substances [112]. For concentrated
solutions, the viscosity of SWNTs in fuming H2SO4 shows a shear-
thinning exponent very similar to PPTA in 100% H2SO4 [92].

Although most polymer melts and polymer solutions show
enhanced die swell, rodlike polymers display the opposite behavior
through negative first normal stress differences, including both
liquid-crystalline polymers (PPTA, PBO) and SWNTs [148–150]. The
origins of this effect have not been adequately explored. This effect
may aid in the processing of SWNT fibers, particularly in avoiding
the processing instabilities associated with conventional polymer
fiber spinning.
Fig. 7. (Left) Viscosity vs. concentration for PBO in 100% H2SO4 (reproduced with
permission from Choe and Kim [144]). (Right)Viscosity vs. volume fraction for SWNTs
in 102% H2SO4 at a shear rate of _g ¼ 0:1 s�1. Adapted from [269] with permission.
2.7. Neat SWNT fibers

In the 1930s, Staudinger predicted that the ultimate fiber would
be a continuous crystal composed of elongated macromolecules;
such a fiber would be characterized by perfect orientation, perfect
lateral order, and few chain end defects (correlated with high
molecular weight) [151]; Staudinger’s original diagram of this
‘‘continuous crystal’’ is shown in Fig. 8. Staudinger did not address
the final piece of the puzzle; once all these characteristics are in
place, the ultimate tensile properties of such a continuous crystal
fiber would be determined by the ultimate molecular mechanical
properties of the constituent macromolecules. Thus, the promise of
creating such an aligned structure composed of SWNTs has
attracted much attention because of the superior properties of
individual SWNTs. Here we briefly describe a few examples of
‘‘neat’’ SWNT fiber applications, in contrast to SWNT/polymer
composites.

Fibers composed primarily of SWNTs show extraordinary
promise for multifunctional fibers that combine excellent
mechanical, thermal and electrical properties. In fact, based on
SWNTs’ molecular structure, fibers composed solely of SWNTs
should have better tensile strength, better thermal and electrical
conductivity, and similar modulus compared with carbon fibers.
Also, SWNT single molecule properties (Table 1) indicate that neat
SWNT fibers have the potential to outperform other LCP-based
fibers such as Kevlar (PPTA) and Zylon (PBO). SWNT fibers already
have electrical properties that are better than LCP-based fibers and
comparable to those of commercial carbon fibers.

Many SWNT processing techniques and applications have been
inspired by similar processes for polymers, particularly LCPs,
because of the strong parallels in the phase behavior and rheology.
There are two general techniques for spinning a neat SWNT fiber:
(1) solution-spinning from either surfactant [152,153] or acid
[93,154], and (2) solid state drawing from either vertical arrays of
CNTs [32,155–157] or directly from a furnace reactor [36,158,159].7

In the solution-spinning of polymer fibers, the polymer is
dispersed in a solvent (often a strong protic acid [147]), and the
polymer/solvent dope is extruded from a spinneret through
a narrow air gap into a non-solvent coagulant where the solvent is
removed and the dope forms a fiber; this process is termed dry-jet
wet-spinning. The fiber is often stretched via drawing during the
spinning process, and a variety of post-processing treatments such
as drying and annealing are used to improve properties. Note that
the air gap is not strictly necessary to form a fiber, but it aids in both
solvent removal and elongation of the fiber as it forms.

The solution-spinning technique for SWNTs is quite similar to
those used for rigid-rod polymers and other LCPs (Technique (1)).
In SWNT/surfactant spinning, the SWNT concentration is typically
7 Note that neither SWNTs nor lyotropic LCPs can be spun into fibers in the melt
state, so liquid state processing of both SWNTs and lyotropic LCPs is restricted to
solution spinning.



Fig. 8. Staudinger’s original schematic for a macromolecular continuous crystal from his 1932 work ‘‘Hochmolekulare Vergindungen’’ [roughly, ‘‘Macromolecular Links’’] [151]. The
captions roughly translate to ‘‘Molecular lattice for oct-oxymethylene-diacetate’’ and ‘‘Macromolecular lattice for high molecular weight polyoxymethylene.’’
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low (<1 wt%), and the dispersion is extruded into a poly-vinyl
alcohol/water coagulant. The fibers are elongated during formation
either through the rotation of the coagulation bath [152] or through
a ‘‘co-flow’’ coagulation process, where the flow of coagulant draws
and stretches the developing fiber to create extremely tough, non-
brittle fibers with an energy-to-break over 600 J/g [160–162]. These
are composite fibers because they are coagulated in a PVA solution
and the PVA intercalates into the SWNT fiber; however, the tensile
strength and modulus are not substantially higher than those of
pure PVA fibers even though they have a high SWNT fraction
(w60%). (Similarly, flexible polymers have been used to infiltrate
PBO or PPTA fibers to improve fiber compressive properties, with
only moderate success [163,164].)

The SWNT/superacid fiber spinning process described by Eric-
son et al. [154] closely parallels the rigid-rod fiber spinning
strategy. These fibers (Fig. 9D) typically have a microstructure
dominated by fibrillar ‘‘super-ropes’’ with diameters of 200–
500 nm [154] (Fig. 9E). Fibrillar structures of varying length scales
have also been observed in the interior of PBO based fibers [146]
(Fig. 9B–C). The nature of this fiber substructure is unclear; some
have claimed that thermotropic LCPs naturally form a hierarchical
substructure [165–167]. Future studies are necessary for fibers
formed from SWNTs, PBO, and LCPs in general to uncover what
aspects of the fiber substructure are caused by the physics of the
constituent macromolecules and what aspects are due to the
spinning and coagulation processes, the sample preparation, and
the imaging process. It may be that the structure of the smallest
fibrils is due to molecular properties, while larger morphological
features are caused by processing and characterization conditions.
Much like the spinning of low molecular weight PBO with meth-
anesulfonic acid [144], the drawing and stretching of SWNT fibers
during the spinning process has proven to be difficult.

For spinning of PBO fibers (Zylon), this problem was solved by
spinning higher molecular weight polymers (40,000 g/mol, length
w200 nm) directly from the poly-phosphoric acid (PPA) solution
used in polymerization [168]; PBT can be processed in the same
way [169]. The presence of oligomeric PPA provides cohesion and
enables elongation of the dope. PBO chains like SWNTs and unlike
PPTA chains, have no molecular kinks that may be ‘‘pulled out’’ via
elongation, so the presence of a drawable solvent such as PPA is
critical for the formation of PBO fibers and may prove to be useful
for SWNT fiber spinning. The technique of spinning directly from
the polymerization reaction solution allows the concentration of
polymer in the dope to approach 10–15 wt% [170]. Typical spinning
temperatures for PBO range from 100 �C to 170 �C since the solution
is a crystal solvate at ambient temperature [171].

Technora, a wholly aromatic co-polyamide of PPTA introduced
by Teijin, is spun directly from the polymerization reaction solution,
similar to PBO. However, Kevlar is spun by dissolving PPTA in 98–
100% sulfuric acid at a polymer concentration of w18%. Again,
spinning temperatures are usually higher than 80 �C to avoid
crystal solvates. This temperature dependence of the phase
behavior is not observed for the case of SWNT/superacid disper-
sions. Typical PPTA molecular weights (20,000 g/mol, length
w100 nm) are half those of PBO [172] and much less than those of
HiPco SWNTs. Although PBO and PPTA are shorter molecules, the
fibers have excellent mechanical properties; for PPTA, this is partly
due to the hydrogen bonds between the polymer chains. (For PBO,
the strength may result in part from the molecular shape and
perfection of the packing and orientation of the molecules.)
Unfortunately, hydrogen bonding does not occur with pristine
CNTs; hence, much like fibers produced from UHMW polyethylene
(molecular weight 3,000,000 g/mol, length w20 mm), molecular
length is a key requirement for improving fiber properties. Fortu-
nately for SWNT-based fibers, SWNTs can be grown on the order of
centimeters, but their solubilization becomes more difficult with
increasing molecular weight.

Technique (2) avoids this problem by directly spinning from the
solid-state without dispersion; such a technique has no clear
analogy with conventional polymeric fiber spinning. The constitu-
tive CNTs in these fibers are usually very long (hundreds of microns
to millimeters) which allow solid-state fibers to have mechanical
properties comparable to commercially available high performance
polymer fiber [32,157,158]. However, even with such long SWNTs,
the properties are far from what is theoretically achievable because
of imperfections in orientation, morphology, and packing. Solution-
state spinning can take advantage of the nanotube alignment
resulting from liquid crystallinity of the high concentration solution
and from elongational flow effects. For a proper comparison of fiber
tensile strengths resulting from techniques (1) and (2), fiber tensile
strength must be plotted as a function of the aspect ratio of the
constituent nanotubes since solution-spun fibers are predomi-
nantly composed of SWNTs with lengths under 1 mm, while solid-
state spun fibers are typically composed of MWNTs with aspect
ratios over two orders of magnitude larger. Yakobson et al. predict
that tensile strength should increase linearly with CNT aspect ratio
for fibers of constant morphology (degree of alignment, nanotube
contact, void fraction) [173,174], so a length-normalized comparison
indicates that solution-spun fibers have a superior morphology. This
analysis also indicates that solution-spun fibers will outperform
solid-state spun fibers if techniques are developed to solution-spin
very long CNTs [84].

A comparison of Kevlar, Zylon, and neat CNT-based fibers is
given in Table 4. The properties reported for CNT fibers are the best
properties reported in the literature. Results thus far are promising,
especially in light of the fact that CNT fiber processing is still in its
infancy.

Fibers formed from other rodlike polymers have attained
a significant fraction of their theoretical modulus, so it is reasonable
to expect that advances in processing of SWNTs will allow SWNT-
based fibers to also attain moduli on the same order as their
theoretical possibilities [174–176].



Fig. 9. (A) SEM micrograph of a KM2 Kevlar fiber; reproduced from [270] with permission. (B–C) SEM micrograph of a Zylon fiber, reproduced from [271] with permission. The
arrow in (C) shows the area where (B) is imaged. (D–E) Neat SWNT fibers reproduced from [154] with permission.

Table 4
Comparison of Kevlar, PBO [264–266],16 and neat SWNT fibers properties [84].17

Fiber Modulus
(Gpa)

Tensile
strength
(Gpa)

Toughness
(J/g)

Thermal
conductivity
(W/(m K))

Electrical
conductivity
(S/cm)

Kevlar 70–112 3 36 0.04
Zylon 180–270 5.8 66 1 10�12

Neat CNT 330 5.9 600 50 5000

8 Of course, nanocomposites involving carbon black and similar fillers have been

M.J. Green et al. / Polymer 50 (2009) 4979–49974988
3. SWNTs and molecular composites

We now turn our attention to the use of SWNTs as reinforcing
‘‘fillers’’ in molecular composites, which is analogous to the use of
rigid-rod polymers as fillers during the development of molecular
composites in the late 1970s.

The ubiquitous use of composites is chiefly due to the improved
mechanical properties that result from filling a host material with
some reinforcing particle or fiber. These particles or fibers are typi-
cally macroscopic glass fibers, carbon fibers, or even carbon black.
Also, if the reinforcing component is electrically conductive and
forms a percolating network within the matrix, the conductivity of
the composite markedly increases. (In fact, measurements of elec-
trical conductivity are important not only for the electrical properties
of the composite but also as a measure of dispersion quality.)

Molecular composites are composites where individual mole-
cules such as polymer chains are used as reinforcement rather than
macroscopic fibers [14]. Typically, the filler molecule is a rigid-rod
polymer such as PBO, and the polymer matrix (or ‘‘host’’) is a flex-
ible polymer chain such as nylon or AB-PBO [86]. The concept of
molecular composites originated with the development of rigid-
rod polymers [177–180] in the context of models advanced by
16 Mechanical properties of Kevlar as reported by www.dupont.com.
17 Note that these properties are the best attained for CNT-based fibers and are

not found all in the same fiber.
Takayanagi et al. [181,182] and Helminiak et al. [183] in order to
overcome the limitations of conventional composites. In the same
era, Porter and co-workers advanced the concept of one-polymer
composites, which are essentially molecular composites where the
filler is a crystalline form of the polymer matrix, as exemplified in
semicrystalline polyethylene [184]. Molecular scale fillers of high
aspect ratio have a much higher number density and surface area
density than conventional fillers at the same volume fraction.
Moreover, with molecular-scale fillers of high aspect ratio, more of
the polymer matrix is associated with the filler and less weight is
associated with the non-reinforced polymer matrix [185,186].
Simple models for the scaling of composite modulus with filler
aspect ratio, volume fraction, and alignment include the rule of
mixtures [187,188] and Halpin–Tsai theories [189], which are
reviewed by Coleman et al. [190]. One critical difference described
by these models is the distinction between composite failure by
filler breakage and composite failure by filler pullout. It is also
noteworthy that a composite with isotropic filler arrangement has
1/5 the modulus of a composite with perfectly aligned filler in the
direction of stress application.

The concept of nanocomposites arose in the 1990s with the
increased use of nanosized fillers such as nanoparticles, silicas,
clays, and nanofibers [15].8 In the case of SWNTs, the terms
‘‘nanocomposite’’ and ‘‘molecular composite’’ are roughly equiva-
lent since the nano-filler consists of individual SWNT molecules.
Nanotubes (both SWNTs and MWNTs) show substantial promise as
fillers for molecular composites and have been incorporated into
a wide range of experimental studies of polymer composites.9
in use for decades without being identified as such because the nanoscale nature of
the fillers was unknown.

9 Note that most experimental studies of nanotube–polymer composites
feature MWNTs because of MWNTs’ wider availability. The fundamental prob-
lems of dispersion and interfacial stress transfer are similar for both types of
nanotube.

http://www.dupont.com


10 Also note the extremely large number of papers in the literature that describe
new techniques but report no improvements in properties or morphology.
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Below we discuss methods of dispersing and processing of
SWNTs in polymer matrices, the phase behavior of such mixtures,
the engineering of optimal SWNT/polymer interfaces, and the
outlook for nanotube-based molecular composites in industrial
applications. We also show that each of these issues parallels the
field of rigid-rod polymer molecular composites because SWNTs
represent the extreme case of rigid-rod polymers.

3.1. SWNT dispersion in polymer matrices

3.1.1. Dispersion techniques
One of the chief methods for producing SWNT/polymer

composites is solution blending, where the SWNTs are dispersed in
a solvent and mixed with the polymer through energetic agitation
[191]; the composite is then formed by precipitating or casting
a film [15] and evaporating the solvent. This method suffers from
most of the problems associated with SWNT dispersion discussed
previously; the SWNTs must be separated from one another,
uniformly dispersed (typically through the use of ultrasonication
[192]), and stabilized within the solvent to prevent re-aggregation.
As noted above, ultrasonication can cause SWNTs to break
[193,194], and similar effects are observed for ball-milling and
grinding [195]. Other carbon nanomaterials such as carbon black
suffer from many of these same difficulties, particularly as surface
area becomes large [61,195].

A number of solvents including chloroform, toluene, and NMP
have been used for nanotubes, with limited dispersion induced by
ultrasonication. The use of surfactants in aqueous solutions
described above is the most common technique used to disperse
SWNTs as individuals and small bundles. However, the use of
surfactant–SWNT dispersions in composites is problematic because
the surfactant will then remain in the composite and affect the
transport properties [196].

Sidewall functionalization of the SWNTs allows them to be
dispersed in more conventional solvents and may improve inter-
facial properties in the polymer matrix; however, this technique
may compromise the superior electronic properties of metallic
SWNTs. Some functionalization techniques may cut SWNTs and/or
introduce defects while disrupting p conjugation and decreasing
electrical properties [15]. Functionalization can improve SWNT
miscibility with both the solvent and the polymer host; for
example, SWNTs functionalized via organic diazonium chemistry
were able to percolate at much lower loading values in polystyrene
composites than pristine SWNTs [197].

Another dispersion technique is the mixing of SWNTs with
monomer and synthesizing the polymer matrix around the SWNTs.
This technique of in-situ polymerization is particularly effective for
functionalized CNTs and is necessary in cases where the polymer in
question is insoluble or thermally unstable such that solution
blending or melt blending are impractical. This technique can be
used to form both covalently bonded and non-covalently bonded
interfaces between the SWNT and matrix. An example of non-
covalently bonded composite interfaces is seen in the in-situ
polycondensation of poly(butylene terephthalate), with 0.01–
0.2 wt% of SWNTs, and subsequent injection molding of the
composite [198]. Covalent functionalization of SWNTs with the
surrounding polymer is discussed below in the context of func-
tionalization and interfaces.

A number of industrial techniques commonly used to produce
conventional composites have also been used to forcefully mix
nanotubes into a polymer melt. Melt blending utilizes high
temperatures and strong shear forces to mix SWNTs into a polymer
matrix. This technique is frequently used in industrial settings for
the formation of similar composites when the host polymer is
insoluble [199]. For example, Sennett et al. used a twin-screw
extruder to disperse and align nanotubes in thermoplastic poly-
mers such as polycarbonate [200]. However, this technique is
limited to low concentrations of SWNTs because of processing
difficulties due to viscosity increases and possible polymer degra-
dation [8,201]; these viscosity increases are substantially higher
than those observed for conventional composites or carbon black-
based composites [199]. Similar problems plague melt-spinning of
SWNT composite fibers [202]. One difficulty with these ‘‘brute
force’’ techniques is the lack of theoretical understanding of the
molecular-scale forces affecting the nanotubes’ dispersion. Also,
there are few objective ways to assess dispersion aside from
conductivity measurements. Much of the research on these topics
is limited to a simple approach of: (1) Use an experimental tech-
nique, and (2) assess the technique by simply measuring final
product properties (i.e., viscosity, conductivity). This approach lacks
any modeling or visualization of molecular phase behavior,
kinetics, aggregation, or network formation.10 Vaia and Maguire
comment on this problem by noting the vast number of ‘‘uncon-
trolled’’ nanocomposite processing techniques that yield ‘‘isotropic
nanofilled systems, not necessarily spatially ‘engineered, designed
and tailored’ materials’’ [203]. Ultimately, these problems are partly
due to the lack of available experimental techniques that can
accurately monitor dispersion quality [194].

In summary, the most successful methods for dispersion involve
chemical modification of SWNT sidewalls, but these techniques
disrupt SWNTs’ superior properties, so much work remains to be
done to improve dispersion as individuals with a minimum
disruption of SWNT structure. Such studies will require a thorough
understanding of the molecular forces at play in dispersion and
aggregation.

3.1.2. Phase behavior of SWNT/polymer/solvent systems
The solution blending of molecular composites must take into

account the ternary phase behavior of rigid-rod/polymer coil/
solvent systems [177]. Above a critical concentration of the rod
component, phase separation occurs, the rods aggregate into
a nematic phase, and processing becomes very difficult [14,113].
This critical concentration is typically on the order of 3–5 wt%. For
fiber spinning of molecular composites, this phase separation will
become thermodynamically favorable during the coagulation
process as the solvent is removed. The thermodynamic driving force
for phase separation is intensified as the filler becomes more rigid
and the matrix more flexible [204]. The coagulation process must be
carried out rapidly in order to immobilize the rod and flexible
components and ‘‘freeze’’ the dispersed phase; the phase separation
kinetics is typically fast (on the order of minutes) [205–207]. A
number of studies of PBT/nylon composites indicate that this phase
separation does occur as seen in the composite fiber morphology,
which showed distinct and separate nylon phase and PBT fibrils
[164,208]. (Studies on phase separation indicate similar difficulties.)
Experimental studies of PBT/AB-PBI blends reveal the formation of
football-shaped domains of PBT as the solution passed through the
critical concentration during vacuum casting [14], and the proper-
ties of the resulting blend were far lower than the expectations for
a true molecular composite. A true PBT/AB-PBI molecular composite
was later processed through a rapid coagulation process by Hwang
et al. [177,179] and verified by Krause et al. [209].

This process of coagulation and phase separation was modeled
for PBO in methanesulfonic acid by Nelson and Soane; they then
compared the morphology of fast coagulation and slow coagulation
using both simulations and experimental data [86].



Fig. 10. Schematic of polymers (red) grafted to SWNTs (purple) to promote stress
transfer and improve interfacial properties with the bulk (gray).
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In LCP solution blending, the miscibility of the LCP with an
amorphous polymer increases with increasing intermolecular
hydrogen bonding [204], which is absent in pristine SWNTs;
hydrogen bonding functional groups on both LCPs and SWNTs
improves miscibility with the matrix.

Researchers have attempted to avoid phase separation in solu-
tion-blended SWNT/polymer composites mainly by reducing the
evaporation time. Such techniques such as spin-casting, drop-
casting, and rapid coagulation in a coagulation bath have been used
as well [210–212]. Note that few ‘‘true’’ molecular composites have
been produced commercially in the sense that the filler is seldom
truly molecular. Examples of molecular composites developed by
industry include thermoset molecular composites developed by
researchers at GenCorp [213] and Dow [214]. Zyvex currently
markets a thermally conductive polyurethane/CNT composite with
the commercial name Kentera.

3.1.3. SWNT–polymer matrix interfaces
One difficulty with the use of nanofillers like nanotubes is that

they have high aspect ratio molecular dimensions and a large
specific surface area, such that it is difficult to establish good contact
with effective load transfer between the polymeric matrix and this
surface area [215]; this also means that a large portion of the matrix
may be involved in bonding to the filler. In fact, Shaffer et al. esti-
mate that in a solution of dispersed individual SWNTs with f¼ 0.01,
every polymer chain is within 5 nm of a SWNT, which is the
approximate size of the radius of gyration for typical coiled poly-
mers [190,216,217], and this value of f may be taken as an upper
bound for dispersions of individual SWNTs. Note that this estimate
is low because the estimate requires the assumptions that the coiled
polymer is both impenetrable and unstretchable, neither of which is
true. In fact, PBO molecular composites have already shown filler
separations on the order of 3 nm [209]. Coleman et al. argue that this
small f max value of 0.01 for individual SWNTs suggests that SWNTs
are less valuable than MWNTs for molecular composites since
MWNTs can be dispersed at higher volume fractions [190] and result
in higher modulus, based on the macroscopic rule of mixtures for
sufficiently long fibers. However, if the goal is to minimize the
amount of unsupported matrix, a better parameter is ‘‘filler surface
area per unit volume of composite’’ [185,186]. This goal is better
attained by a high filler number density with high aspect ratio and
surface area (as in the case of SWNTs) [217].11 In fact, this advantage
of SWNTs over MWNTs relates to the root motivation for nano-
composites: equal property enhancement at lower volume fraction
due to increases in filler surface area per volume [217]. This shows
that the argument advanced by Coleman et al. is problematic; i.e., if
this argument was valid, no nanocomposite would be valuable over
conventional composites. Also, unless MWNTs have some sort of
linkage between concentric layers, it is unlikely that they will have
high modulus or tensile strength [23].

Very recent results from Cui et al. indicate that stress transfer
between walls in DWNTs and MWNTs is poor, which indicates that
SWNTs offer the best specific reinforcements for nanocomposites
[218]. The authors were able to measure the stress of the inner and
outer walls by measuring the shift in the G0 peak in the Raman
spectra for both walls [219].

Additional problems include the fact that SWNTs tend to bundle
(which means that higher values of f may be observed). SWNT
11 Another way to analyze the system is to note that for non-percolating, dispersed,
individual rods that contribute to a medium via the typical transport equations
(momentum, energy), the characteristic parameter (viscosity, conductivity) varies
with aspect ratio as (L/d)2/ln(L/d) and varies linearly with number density [131].
Again, SWNTs seem to fulfill this role more aptly than large diameter MWNTs.
bundles or aggregates cannot bear load the way that individuals do.
Finally, even when nanotubes are individually dispersed using the
techniques described above, they are ‘‘atomically smooth’’ such
that the interface is weak, with little bonding or friction between
polymer and nanotube [8]; this is not surprising, given the lubri-
cating nature of graphite and graphene. A number of techniques
have been studied to overcome these problems.

Covalent functionalization of SWNTs with the matrix can be
used to attain effective load transfer; this technique has even been
used to functionalize the external surface of carbon fibers (called
‘‘sizing’’ the fiber) in polymeric composites for the same reason.
SWNT sidewall functionalization can proceed in two ways. One is
a simple functionalization designed to increase dispersibility in
practical solvents by adding functional groups to the SWNT side-
wall (as described above). The second is the technique of actually
creating covalent bonds between the polymer matrix and the
nanotube sidewalls as shown in Fig. 10. Qin et al. [220] categorize
the covalent functionalization of nanotubes with polymers as
‘‘grafting from’’ SWNTs, i.e., functionalizing initiators on the side-
wall followed by polymerization of monomers to form polymers
covalently bound to the SWNT [220–222], and ‘‘grafting to,’’ i.e.,
pre-formed polymer molecules reacting via functional end groups
to connect to SWNTs [223]. As one might expect, the chief difficulty
with the ‘‘grafting to’’ approach is polymer mobility while the chief
difficulty with the ‘‘grafting from’’ approach involves reaction
control [190]. Even so, these techniques have proven to be quite
effective in improving dispersion and interfacial stress transfer
between nanotubes and the polymer matrix.12 Molecular simula-
tions predict that a SWNT surface grafting density on the order of
0.3% can strengthen the interface by an order of magnitude [225].
These grafting techniques bear similarity to the bonding of PBT and
poly(ether ether ketone) (PEEK) used to prevent phase separation
in PBT/PEEK molecular composites; the critical parameter in this
PBT/PEEK grafting study was the frequency of graft sites along the
PBT backbone [226–228].

A similar technique for improving dispersion and interfacial
strength is the formation of block-co-polymers with nanotubes, as
shown by PBO–SWNT co-polymers [229] and novel UV-initiated
polyacrylamide-nanotube (PAM–CNT) co-polymer thin films
12 Interestingly, simulations by Lordi et al. indicate that one of the key charac-
teristics of polymers that create strong interfaces with SWNTs is the ability to form
a helical wrapping structure around the SWNT; this factor plays a larger role than
binding energies and frictional forces [224].



Fig. 11. A plot of composite conductivity as a function of SWNT concentration shows
that electrical percolation in a SWNT-epoxy composite occurs at 0.062 wt% SWNT in
epoxy. Inset shows a log–log plot of conductivity vs. concentration. (Reproduced from
[246] with permission.)

13 This lack of hydrogen bonding in SWNTs can also be a problem for inter-SWNT
cohesion in neat SWNT fibers when the constituent nanotubes are short.
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synthesized by Li et al. [230]; the properties of these films indicate
that the nanotubes markedly improve load-bearing. This is analo-
gous to the efforts of Tsai et al. to form PBO/AB-PBI block co-poly-
mer molecular composites, which show improved mechanical
properties over similar composites prepared using conventional
mixing techniques [231]. A number of other functionalization
techniques have been attempted for rigid-rod polymers in molec-
ular composites which have not yet been applied to CNTs; such
techniques may prove to be useful in future research efforts.

The strength of the interface can be quantified by the interfacial
shear strength, which is the measure of the critical interfacial shear
stress at which matrix–nanotube connection fails (and thus, the
maximum stress that can be transferred to the filler). Coleman et al.
estimate that this maximum is on the order of 50–100 MPa for most
SWNT/polymer systems on the basis of a wide number of experi-
mental and theoretical studies [190], while much higher values
(such as 500 MPa measured by Wagner et al. [232]) are expected for
nanocomposites with covalent bonds between matrix and filler. In
non-covalently bonded interfaces, the adhesion between the SWNT
and matrix chiefly stems from electrostatic interactions, van der
Waals interactions, and deformation due to differences in coeffi-
cient of thermal expansion [233].

A number of experimental studies indicate that the properties of
the polymer near the interface differ from the bulk, particularly in
showing a very high shear strength [234]. This unusual behavior has
not been observed in conventional rodlike polymer molecular
composites and may be due to local crystallization of the polymer
matrix in the vicinity of the nanotube [235]; this is analogous to self-
reinforcing transcrystallinity observed in polyethylene systems. (This
is somewhat unexpected because polymers are typically depleted in
the vicinity of surfaces due to entropic effects [6].) It is possible that
composite failure may occur at the interface between the bulk
polymer and interfacial polymer region, and the rule of mixtures has
been extended to estimate the strength in this case [190,236].

Interfacial contact between filler and matrix is problematic for
rigid-rod polymer fillers as well since they are typically immiscible
in other polymers and tend to phase separate as described above;
the interface between the filler and matrix is often marked by
a weak biphasic region. However, the presence of attractive
hydrogen bonding between the filler backbone and the matrix
changes the free energy of mixing and leads to excellent dispersion
and interfacial contact [6,204], just as the addition of functional
groups to SWNTs can promote hydrogen bonding with the matrix.
A number of factors influence the degree of hydrogen bonding,
including steric accessibility, spacing of hydrogen bonding func-
tional groups and the ability of the rigid-rod polymer to hydrogen
bond with its neighbors. One key difference between SWNTs and
many rigid-rod polymer fillers (such as PPTA and PIPD but not PBO)
is the fact that conventional rigid-rod polymers can be hydrogen
bonded or functionalized without necessarily disrupting the main
backbone structure [237], whereas SWNTs’ all-carbon structure
necessarily require the introduction of sp3-hybridization in order to
form hydrogen bonds with the polymer matrix. This difference in
the degree of hydrogen bonding is a critical difference between
SWNTs and conventional polymers in regard to dispersion and
interfacial strength in composites.13

3.1.4. Enhanced polymer crystallization
When nanotubes are melt-mixed in a polymer matrix, they act

as effective nucleating agents and cause heterogeneous polymer
crystallization [238,239]. Differential scanning calorimetry studies
indicate that the presence of nanotubes causes accelerates the
crystallization of the polymer [240]; this enhancement is possibly
due to strong physical absorption of the polymer onto the nanotube
surface, particularly if the nanotubes are functionalized [239]. The
nanotubes are also known to enhance thermal stability of the
composite [241]. However, there remains disagreement between
various studies on CNT composites as to whether the presence of
nanotubes alters the mechanism of crystal growth (fibrillar vs.
spherulitic) or the overall degree of crystallinity [240,241].

3.1.5. Percolation
The conductivity of a nanotube-based composite increases

markedly once the CNT concentration becomes high enough to
percolate, i.e., form a connected network that acts as a conductive
pathway through the non-conductive polymer matrix (Fig. 11).
Nanotubes have been effective in their role as conductive fillers in
polymer matrices due to their high aspect ratio, particularly
compared with traditional conductive fillers such as carbon black
[198,242]. The percolation threshold concentration (<0.1 wt%) is
approximately two orders of magnitude lower than that of carbon
black [243] although percolation thresholds reported for SWNT/
polymer systems vary from 0.005 vol% to 11 vol% [244,245]. This
wide variation is likely due to differences in alignment and
dispersion quality. The percolation threshold significantly
increases when processing methods cause the nanotubes to align,
as shown in experimental data on SWNTs dispersed in an epoxy
matrix [246]. It is encouraging to note that much progress has
been made in increasing composite conductivity through the use
of percolating SWNTs even when using mixed metallic/semi-
conducting SWNT samples. A number of electrically conductive
nanotube/polymer composites have been produced industrially
since the mid 1990s that take advantage of these effects [55].
Although rigid-rod polymers may also form percolating networks,
they are not intrinsically conductive and do not improve
composite electrical properties.

Note also the concept of ‘‘mechanical percolation,’’ where radical
changes in viscosity are associated with the formation of a static gel
network although no uniform answer has emerged for this perco-
lation threshold; the reason for the lack of agreement on this point
is likely due to the differences in degree of aggregation [194].



14 Rice University hosts a biennial conference on Nucleation and Growth in
partnership with NASA and the Air Force Research Lab for precisely this reason.

15 Also, in the research community, it appears that many of the critical studies on
rodlike and rigid-rod polymers from the 1970s and 1980s are being forgotten and
reinvented; a renewed interest in these materials offers immediate application to
important problems in the development of SWNT applications.

M.J. Green et al. / Polymer 50 (2009) 4979–49974992
3.2. Composite fibers and other applications

In composites where isotropic mechanical properties are
desired, the optimum morphology results from the highest ratio of
filler to matrix without inducing nematic ordering [191]; ideally,
the nanotubes form a percolating network without alignment. On
the other hand, in certain composites, alignment is beneficial,
particularly in composite fibers. In such cases, alignment is natu-
rally induced during the elongational flow that occurs during fiber
spinning. Also, injection molding is known to induce alignment in
nanotube/polypropylene samples [199]. It was recently demon-
strated that as-grown, highly-aligned CNT arrays could be used in
nanocomposite fibers without losing their alignment [247].

Andrews et al. pioneered the use of SWNTs in composite fibers by
dispersing and sonicating SWNTs in petroleum pitch (a carbon fiber
precursor). The high SWNT concentration (8–10 wt%) produced poor
fibers, but the 5 wt% SWNT fibers showed a 90% increase in strength
and 150% increase in modulus [248]. Other early composite fibers
included melt spinning of fibers based on poly(methyl methacrylate)
(PMMA) [249], polycarbonate [200], and polypropylene (PP) [250].
High concentrations were difficult to process because of high
viscosities, and the mixing time increased by an order of magnitude.
PP/SWNT fibers showed a high degree of alignment but no
substantial improvement in mechanical properties.

Many carbon fibers are produced from polyacrylonitrile (PAN)-
based precursors, and SWNTs have been incorporated into these
PAN fibers as well. The resulting fibers had a modulus and strength
of 22.5 and 0.89 N/tex (compared with the SWNT-free values of 17.8
and 0.72 N/tex) [251,252]. The addition of SWNTs also improved the
fiber mechanical stability at high temperature [253].

One of the most intriguing SWNT/composite fibers is the combi-
nation of SWNTs with another rigid-rod polymer, PBO. PBO is typi-
cally synthesized inpolyphosphoric acid and immediately dry-jet wet
spun into a water coagulation bath. Kumar et al. carried out this
synthesis in the presence of 10 wt% SWNTs; the resulting fibers had
a modulus and strength of 167 and 4.2 GPa respectively (compared
with their control SWNT-free values of 138 and 2.6 GPa) [254].

Many of the nanotube-based molecular composites currently on
the market are in applications where the nanotubes are not the
primary load-bearing component; instead, they act as matrix
enhancers or as reinforcement in the direction normal to the main
load-bearing fibers in the composite [8,255]. These applications
include superior sporting goods, including the high-profile example
of the bicycle manufactured by BMC that was used in the 2005 Tour
de France; this bicycle frame used a carbon fiber composite with
a matrix embedded with nanotubes. Another example in the arena of
sporting goods is Zyvex’s partnership with Easton Sports to produce
a high-performance nanocomposite ‘‘Stealth’’ bat [61]. One area
where the slip between nanotube and matrix is helpful is vibrational
damping. Even 1–2 wt% of SWNTs in polymer matrices have been
shown to increase the loss modulus by three orders of magnitude [8].
Also, nanotubes have improved composite properties by adding
toughness and fatigue resistance, particularly by bridging micro-
cracks in the composite and preventing fatigue failure [256,257].

Finally, we should mention that both conventional rigid-rod
polymers such as PBO and SWNTs display useful nonlinear optical
properties, the scope of which is beyond this paper. The interested
reader is referred to [258] and [259].

4. Conclusions

SWNTs have natural parallels with polymers, particularly rigid-
rod polymers, in their molecular structure, phase behavior,
rheology, and use in fiber applications and molecular composites.
SWNT research is still in its infancy, in some sense, since the
research community has only focused on SWNTs since the early
1990s. In this time, there have been major advances in SWNT
synthesis, chemistry, and dispersion. However, many of the hoped-
for applications are still in the developmental stages, chiefly
because of difficulties in nanoscale engineering and control. In the
coming years, a number of challenges will need to be addressed for
high-performance neat fibers and molecular composites:
improvements in SWNT dispersion as individuals for use in
molecular composites, tight control over the drawing and coagu-
lation process for neat SWNT fibers, and the ability to disperse long
(>50 mm) SWNTs in the liquid state. In parallel with research efforts
on processing, more studies are needed on growth of controlled-
chirality SWNTs.14 Even so, there remains much optimism about
the use of SWNTs particularly in ultra light weight (ULW), high-
strength applications because of SWNTs’ low density.

The identification of SWNTs as polymers is accurate, beneficial,
and necessary for research progress for SWNT applications,
particularly those that take advantage of SWNTs’ rigidity and
excellent mechanical properties. A number of experimental studies
have been published in recent years where nanotubes are simply
considered to be an unknown, unique, novel material. In many of
these studies, nanotubes are simply mixed or dispersed using some
established polymer processing technique without any analysis,
theory, model, or characterization of the relevant interactions of
individual nanotubes [203], chiefly because these studies lack the
conceptual framework for asking such questions.15 Considering
nanotubes as polymers opens these questions up to a wide range of
prior analysis and models that address these issues.
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Appendix A

An Air Force Research Laboratory memo from the early 1980s
lists ‘‘Rigid-Rod Polymer Scientific Issues’’ as follows: Phase
diagram; solubility limits and enhancements; liquid crystal (LC)
theory; microfibrils – origin, size, control; morphology of LC solutions –
fractionation, bundling, fibrils, dynamics; stiffness vs. rigidity; struc-
ture/transport properties – electrical, thermal, diffusion; nonlinear
optical properties; quantitative description of axial disorder; causes of
nonlinearity – modulus vs. temperature, stress; reasons for modulus
and strength limitations – processing; reasons for low compressive
strength – microfibril buckling, intermolecular interactions. Many of
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these same issues are critical for SWNT processing, particularly in
regard to the production of SWNT fibers and films.
References

[1] Iijima S. Helical microtubules of graphitic carbon. Nature 1991;354:56–8.
[2] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature

1993;363:603–5.
[3] Bethune DS, Kiang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, et al.

Cobalt catalysed growth of carbon nanotubes with single atomic layer walls.
Nature 1993;363:605–7.

[4] Duggal R, Pasquali M. Dynamics of individual single-walled carbon nano-
tubes in water by real-time visualization. Phys Rev Lett 2006;96:246104.

[5] Arroyo M, Belytschko T. Continuum mechanics modeling and simulation of
carbon nanotubes. Meccanica 2005;40:455–69.

[6] Szleifer, Yerushalmi-Rozen R. Polymers and carbon nanotubes – dimen-
sionality, interactions, and nanotechnology. Polymer 2005;46:7803–18.

[7] Ajayan PM, Tour JM. Nanotube composites. Nature 2007;447:1066–8.
[8] Endo M, Strano MS, Ajayan PM. Potential applications of carbon nanotubes.

Topics Appl Phys 2008;111:13–61.
[9] Shaffer MSP, Windle AH. Analogies between polymer solutions and carbon

nanotube dispersions. Macromolecules 1999;32:6864–6.
[10] Young RJ, Eichhorn SJ. Deformation mechanisms in polymer fibres and

nanocomposites. Polymer 2007;48:2–18.
[11] Mulhaupt R. Hermann Staudinger and the origin of macromolecular chem-

istry. Angew Chem Int Ed 2004;43:1054–63.
[12] Larson RG. The structure and rheology of complex fluids. New York: Oxford

University Press; 1999.
[13] Doi M, Edwards SF. The theory of polymer dynamics. New York: Oxford; 1986.
[14] Hwang W-F. Processing and properties of rigid rod polymers and their

molecular composites. New York. In: Acierno D, Collyer AA, editors. Rheology
and processing of liquid crystal polymers; 1996.

[15] Moniruzzaman M, Winey KI. Polymer nanocomposites containing carbon
nanotubes. Macromolecules 2006;39:5194–205.

[16] Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes – the route
toward applications. Science 2002;297:787–92.

[17] Tan Y, Resasco DE. Dispersion of single-walled carbon nanotubes of narrow
diameter distribution. J Phys Chem B 2005;109:14454–60.

[18] Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC. Sorting carbon
nanotubes by electronic structure via density differentiation. Nat Nano-
technol 2006;1:60.

[19] Arnold MS, Stupp SI, Hersam MC. Enrichment of single-walled carbon
nanotubes by diameter in density gradients. Nano Lett 2005;5:713.

[20] Ren ZF. Nanotube synthesis – cloning carbon. Nat Nanotechnol 2007;2(1):17–8.
[21] Wang Y, Kim MJ, Shan H, Kittrell C, Fan H, Ericson LM, et al. Continued growth

of single-walled carbon nanotubes. Nano Lett 2005;5:997–1002.
[22] Tchoul MN, Ford WT, Lolli G, Resasco DE, Arepalli S. Effect of mild nitric acid

oxidation on dispersibility, size, and structure of single-walled carbon
nanotubes. Chem Mater 2002;19:5765–72.

[23] Ruoff RS, Lorents DC. Mechanical and thermal properties of carbon nano-
tubes. Carbon 1995;33:925–30.

[24] Dresselhaus MS, Dresselhaus G, Eklund PC. Science of fullerenes and carbon
nanotubes. San Diego: Academic Press; 1996.

[25] Robertson DH, Brenner DW, Mintmire JW. Energetics of nanoscale graphitic
tubules. Phys Rev B 1992;45(21):12595.

[26] Ebbesen TW, Ajayan PM. Large-scale synthesis of carbon nanotubes. Nature
1992;358(6383):220–2.

[27] Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE. C-60-buckminsterful-
lerene. Nature 1985;318(6042):162–3.

[28] Guo T, Nikolaev P, Thess A, Colbert D, Smalley RE. Catalytic growth of single-
walled nanotubes by laser vaporization. Chem Phys Lett 1995;243(1–2):49–54.

[29] Thess R, Lee P, Nikolaev HJ, Dai P, Petit J, Robert CH, et al. Crystalline ropes of
metallic carbon nanotubes. Science 1996;273(5274):483–7.

[30] Arepalli S. Laser ablation process for single-walled carbon nanotube
production. J Nanosci Nanotechnol 2004;4(4):317–25.

[31] See CH, Harris AT. A review of carbon nanotube synthesis via fluidized-bed
chemical vapor deposition. Indus Eng Chem Res 2007;46(4):997–1012.

[32] Zhang M, Atkinson KR, Baughman RH. Multifunctional carbon nanotube
yarns by downsizing an ancient technology. Science 2004;306:1358–61.

[33] Fan SS, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai HJ. Self-
oriented regular arrays of carbon nanotubes and their field emission prop-
erties. Science 1999;283(5401):512–4.

[34] Li QW, Zhang XF, DePaula RF, Zheng LX, Zhao YH, Stan L, et al. Sustained
growth of ultralong carbon nanotube arrays for fiber spinning. Adv Mater
2006;18(23):3160–3.

[35] Xu YQ, Flor E, Kim MJ, Hamadani B, Schmidt H, Smalley RE, et al. Vertical
array growth of small diameter single-walled carbon nanotubes. J Am Chem
Soc 2006;128:6560–1.

[36] Li YL, Kinloch IA, Windle AH. Direct spinning of carbon nanotube fibers from
chemical vapor deposition synthesis. Science 2004;304:276–8.

[37] Li YL, Zhang LH, Zhong XH, Windle AH. Synthesis of high purity single-walled
carbon nanotubes from ethanol by catalytic gas flow cvd reactions. Nano-
technology 2007;18(22).
[38] Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE. Gas-phase
production of carbon single walled nanotubes from carbon monoxide via the
hipco process: a parametric study. J Vac Sci Technol A 2001;19(4):1800–5.

[39] Resasco DE, Alvarez WE, Pompeo F, Balzano L, Herrera JE, Kitiyanan B, et al. A
scalable process for production of single-walled carbon nanotubes (swnts) by
catalytic disproportionation of co on a solid catalyst. J Nanoparticle Res
2002;4(1–2):131–6.

[40] Nishino H, Yasuda S, Namai T, Futaba DN, Yamada T, Yumura M, et al.
Water-assisted highly efficient synthesis of single-walled carbon nano-
tubes forests from colloidal nanoparticle catalysts. J Phys Chem C 2007;
111:17961–5.

[41] Uchida T, Kumar S. Single wall carbon nanotube dispersion and exfoliation in
polymers. J Appl Polym Sci 2005;98:985–9.

[42] De Heer WA. Nanotubes and the pursuit of applications. MRS Bull
2004;29:281–5.

[43] Nardelli MB, Yakobson BI, Bernholc J. Brittle and ductile behavior in carbon
nanotubes. Phys Rev Lett 1998;81:4656–9.

[44] Booth TJ, Blake P, Nair R, Jiang D, Hill EW, Bangert U, et al. Macroscopic
graphene membranes and their extraordinary stiffness. Nano Lett 2008;8:
2442–6.

[45] Peng B, Locascio M, Zapol P, Shuyou L, Mielke SL, Schatz GC, et al.
Measurements of near-ultimate strength for multiwalled carbon nanotubes
and irradiation-induced crosslinking improvements. Nat Nanotechnol
2008;3:626–31.

[46] Yu MF, Files BS, Arepalli S, Ruoff RS. Tensile loading of ropes of single wall
carbon nanotubes and their mechanical properties. Phys Rev Lett
2000;84(24):5552–5.

[47] Yu M-F, Louri O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking
mechanism of multiwalled carbon nanotubes under tensile load. Science
2000;287:637–40.

[48] Ruoff RS. Time, temperature, and load: the flaws of carbon nanotubes. Proc
Natl Acad Sci 2006;103:6779–80.

[49] Yakobson BI, Brabec CJ, Bernholc J. Nanomechanics of carbon tubes: insta-
bilities beyond linear response. Phys Rev Lett 1996;76:2511–4.

[50] Eklund PC. Introduction. In: Eklund PC, editor. International assessment of
research and development on carbon nanotubes: manufacturing and appli-
cations. World Technology Evaluation Center, Inc., www.wtec.org/cnm; 2007.

[51] Sinnott SB, Andrews R. Carbon nanotubes: synthesis, properties, and appli-
cations. Crit Rev Solid State Mater Sci 2001;26:145–249.

[52] Hu X-D, Jenkins SE, Min BG, Polk MB, Kumar S. Rigid-rod polymers:
synthesis, processing, simulation, structure, and properties. Macromol Mater
Eng 2003;288:823–43.

[53] Farmer BL, Chapman BR, Dudis DS, Adams WW. Molecular dynamics of rigid
rod polymers. Polymer 1993;34(8):1588–601.

[54] Berber S, Kwon Y-K, Tomanek D. Unusually high thermal conductivity of
carbon nanotubes. Phys Rev Lett 2000;84:4613–6.

[55] Hart J, Rinzler AG, Kong J. Electronic, optical, and optoelectronic applications
of carbon nanotubes. In: Eklund PC, editor. International assessment of
research and development on carbon nanotubes: manufacturing and appli-
cations. World Technology Evaluation Center, Inc., www.wtec.org/cnm; 2007.

[56] Saito R, Dresselhaus G, Dresselhaus MS. Physical properties of carbon
nanotubes. London: Imperial College Press; 1998.
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