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bstract

The log-conformation formulation has alleviated the long-standing high Weissenberg number problem associated with the viscoelastic fluid
ows [R. Fattal, R. Kupferman, Constitutive laws for the matrix-logarithm of the conformation tensor, J. Non-Newtonian Fluid Mech. 123 (2004)
81–285]. This formulation ensures that solutions of viscoelastic flow problems are physically admissible, and it is able to capture sharp elastic
tress layers. However, the implementations presented in literature thus far require changing the evolution equation for the conformation tensor
nto an equation for its logarithm, and are based on loosely coupled (partitioned) solution procedures [M.A. Hulsen, et al., Flow of viscoelastic
uids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms, J. Non-Newtonian Fluid Mech. 127 (2005)
7–39]. A simple alternate form of the log-conformation formulation is presented in this article, and an implementation is demonstrated in the
EVSS-TG/SUPG finite element method. Besides its straightforward implementation, the new log-conformation formulation can be used to solve
ll the governing equations (continuity, conservation of momentum and constitutive equation) in a strongly coupled way by Newton’s method. The
ethod can be applied to any conformation tensor model. The flows of Oldroyd-B and Larson-type fluids are tested in the benchmark problem of
flow past a cylinder in a channel. The accuracy of the method is assessed by comparing solutions with published results. The benefits of this new

mplementation and the pending issues are discussed.
2007 Elsevier B.V. All rights reserved.
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. Introduction

In the past two decades, considerable effort has been given
o the development of robust and stable numerical methods for
imulating complex flows of complex fluids, which pose several
umerical challenges. Such extensive research is motivated by
any industrial applications and scientific importance of com-

lex fluids (fluids with inherent micro–macro structure such as
olymer solutions and melts, inks, paints, or blood).

Like for Newtonian fluids, the flow of complex fluids is gover-
ed by the conservation of mass and momentum equations; for
ost-effective simulations, coarse-grained constitutive models

re used to relate the fluid stresses with the rate-of-strain. The
ost commonly used constitutive models involve a hyperbolic

artial differential equation that represents the transport of the
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lastic stress or conformation tensor, a physical quantity which
epresents the local state of the fluid [1]. The conformation must
e positive-definite at all stages of the simulation, because its
igenvalues and eigenvectors represent the local straining and
rientation of the microconstituents.

The ratio of the relaxation time and the time associated
ith the local rate of deformation—the Weissenberg number
i—is the key dimensionless number in these simulations.

n all early efforts of viscoelastic fluid flow simulations, the
umerical methods yielded mesh-converged results only up to a
ritical value of Wi; this is referred to as the high Weissenberg
umber problem (HWNP), where the smoothness of viscoe-
astic stresses should be expected to deteriorate [2]. In flows
ith smooth boundaries, the HWNP is related to the develop-
ent of steep internal layers of conformation, and their poor
epresentation by interpolation functions based on low-order
olynomial [3]. Recently, a logarithmic representation of the
onformation tensor (log-conformation formulation) was propo-
ed by Fattal and Kupferman [3,4]; this representation ensures

mailto:mp@rice.edu
dx.doi.org/10.1016/j.jnnfm.2007.08.005
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he positive definiteness of the conformation tensor, and cap-
ures well steep layers which are exponential in nature. Hulsen
t al. [5] showed that the log-conformation formulation improves
he stability of numerical methods by applying the DEVSS/DG

ethod to simulate the flow of Oldroyd-B fluid and Giese-
us fluid past a cylinder in a channel. Similar results were
hown by Kwon [6] in the flow of a Leonov fluid through

4:1 contraction. In both cases, physically realistic results
ould be computed at considerably higher Wi than previously
eported.

In this work, a simpler, yet comparably effective, method to
mplement the log-conformation formulation in the finite ele-

ent context is presented. The DEVSS-TG/SUPG method [7]
s used to demonstrate its performance and easy implementation.
he principal advantage of this method is that the original code

emains unchanged; the chief difference is that the conformation
ensor M is substituted by exp S, where S ≡ log M becomes the
ew unknown of the problem. The method is tested using the
enchmark problem of an Oldroyd-B fluid flow past a cylinder
n a rectangular channel, obtaining an increase of 40% in the

aximum Wi with respect to the original DEVSS-TG/SUPG
ethod.
The generality of the proposed log-conformation formula-

ion is demonstrated by using the Larson-1 and Larson-2 models
18], obtaining an increase in the maximum Wi of a factor of 3
nd 24%, respectively. Although the proposed method gives an
ncreased stability range of Wi, the accuracy cannot be demons-
rated beyond a critical Wi, which in the case of Oldroyd-B fluid
s ∼ 0.7 (also observed in Refs. [5,12]).

This article is organized as follows. The governing equa-
ions are presented in Section 2 followed by a review of the
xisting log-conformation formulations in Section 3. The pro-
osed DEVSS-TG/SUPG log-conformation formulation and the
umerical issues associated with its implementation are presen-
ed in Section 4. The numerical results for the problem of an
ldroyd-B fluid past a cylinder in a rectangular channel are
resented in Section 5, followed by a 1-D analysis to study
he differences observed between different log-conformation
ormulations in Section 6. The generality of the proposed log-
onformation formulation is demonstrated for the Larson-1 and
arson-2 models in Section 7, and finally, the conclusions and
iscussions are presented in Section 8.

. Equations governing the flow of viscoelastic fluids

The steady inertialess flow of an incompressible viscoelastic
uid occupying a spatial domain � with boundary � is governed
y the conservation of momentum and continuity equations,

· T = 0 on �, (1)

· v = 0 on �, (2)
here T = −pI + τ + σ is the stress tensor, v the fluid velocity,
the pressure, I the identity tensor, τ = 2ηs D the viscous stress,
s the solvent viscosity, D ≡ (L + LT )/2 the rate-of-strain ten-
or, and σ is the elastic stress. The variable L represents the

p
e
o
e
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raceless velocity gradient [7],

= ∇v − 1

tr I
(∇ · v)I, (3)

here tr denotes trace.
Eqs. (1)–(3) reach a closed form when a suitable constitutive

odel is used to relate σ to the flow variables. Pasquali and
criven [8] presented a generalized constitutive model in terms
f the conformation tensor M,

−v · ∇M + 2ξ
D : M
I : M

M + ζ

(
M · D + D · M − 2

D : M
I : M

M
)

+M · W + WT · M−(1/λ)(g0I + g1M + g2M2)︸ ︷︷ ︸
FM

= 0, (4)

here ξ(M) and ζ(M) are the polymer compliance to stretching
nd orientations, respectively; W ≡ (L − LT )/2 is the vorticity
ensor; g0(M), g1(M) and g2(M) are relaxation functions and λ

s the characteristic relaxation time.
The elastic stress σ is related to M as

= 2ξ
M

I : M
M :

∂a

∂M
+ 2ζ

(
− M

I : M
M :

∂a

∂M
+ M · ∂a

∂M

)
,

(5)

here a(M) is the Helmholtz free energy per unit volume of the
omplex fluid. Different constitutive models are given by the
roper selection of the constitutive functions ξ, ζ, g0, g1, g2 and
(a detailed description can be found in Ref. [8]).
Boundary conditions on the momentum equation are needed

n the entire boundary � = �g ∪ �h. Boundary conditions on
elocity and momentum flux (traction) are given by

v = g on �g, (6)

· T = h on �h, (7)

here g and h are given functions, and n is the outward unit
ector normal to the boundary.

. The log-conformation formulation

The log-conformation formulation was recently proposed by
attal and Kupferman [3]; in this method, the constitutive equa-

ion is written in terms of the logarithm of the conformation
ensor S ≡ log M. This change of variable ensures the positive-
efiniteness of M, and it is able to capture better sharp layers at
igh Wi due to the exponential nature of the transformation. Flow
roblems are solved by discretizing the governing equations,
.g., with the finite difference method [4].

The log-conformation formulation was first implemented in
nite element context by Hulsen et al. [5]. The constitutive equa-

ion was written in terms of S, and DEVSS/DG was applied to
olve the benchmark flow of an Oldroyd-B and Giesekus fluid

ast a cylinder in a channel. The logarithm of M can be computed
asily in its principal co-ordinate system, where the eigenvalues
f M give the stretches mi in the principal directions and its
igenvectors give the principal directions ni, i = 1, 2, 3, thus
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= log M =
3∑

i=1

log(mi)nini =
3∑

i=1

sinini, where si = log mi

re the principal values of S, and whose existence is always
uaranteed because the mi are always positive.

Hulsen et al. [5] presented results for Oldroyd-B and Giese-
us models for which ξ = ζ = 1 (the molecules undergo affine
eformations); a generalized form applicable to any conforma-
ion tensor model [8] is presented here, following the derivation
n Ref. [5],

· ∇S =
3∑

i=1

⎡
⎢⎢⎢⎢⎢⎣

2(ξ − ζ)
3∑

j=1

mj

3∑
j=1

djjmj + 2(ζdii + wii) + fi

mi

⎤
⎥⎥⎥⎥⎥⎦ nini

+
3∑

i=1

3∑
j=1

i�=j

si − sj

mi − mj

[ζ(mi − mj)dij

+miwij + mjwji]ninj, (8)

here dij and wij are respectively the components of the rate-of-
train and vorticity tensors in the basis defined by the principal
irections ni. The molecular relaxation contribution F(M), given
y the last term in Eq. (4), is an isotropic function; therefore, its
omponents fi in the principal directions ni are

i = −1

λ
(g0 + g1mi + g2m

2
i ). (9)

ollowing the approach of Ref. [5], the implementation of the
eneralized log-conformation formulation requires:

1) Solution of the continuity and momentum equations in the
laboratory co-ordinate system at fixed σ;

2) Transformation of D and W from the laboratory co-ordinate
system to the co-ordinate system identified by the eigenvec-
tors of M;

3) Solution of Eq. (8) in the co-ordinate system of the eigen-
values of M;

4) Back-transformation of M to the laboratory co-ordinate sys-
tem; and

5) Computation of σ from M in the laboratory co-ordinate
system.

The log-conformation formulation improves the stability
f the numerical method at high Wi [3,5,6]. Presumably, the
terative procedure outlined above will become increasingly
nefficient in problems with large “non-diagonal” coupling, e.g.,
ree surface flows at low capillary number and viscoelastic flows
t low value of the solvent viscosity. In these cases, fully coupled
rocedures are more robust and efficient [7,9]. Coupled solution

echniques require casting and discretizing all the differential
quations in the same co-ordinate system, and solving the resul-
ing coupled algebraic equations with a non-linear solver, e.g.,
ewton’s method.

c
t

t

Fluid Mech. 147 (2007) 189–199 191

Such a method is proposed below. It casts and solves in
coupled way the viscoelastic flow equations in generalized

onformation tensor form by applying the log-conformation
hange of variable.

. The DEVSS-TG/SUPG log-conformation
ormulation and the numerical issues associated with its
mplementation

In the present work, a simpler implementation of the
og-conformation formulation in a finite element context is pre-
ented. Although its application is only demonstrated in the
EVSS-TG/SUPG method [7], it can be easily applied to any
ther method as well, e.g., GLS4 [10]. The variable S is intro-
uced by replacing M with exp S in Eq. (4). The transformed
q. (4) is

−v · ∇(exp S) + 2ξ
D : (exp S)

I : (exp S)
(exp S) + ζ

[
(exp S) · D

+D · (exp S) − 2
D : (exp S)

I : (exp S)
(exp S)

]
+ (exp S) · W

+WT · (exp S)−1

λ
(g0I+g1(exp S)+g2(exp S)2)=0. (10)

.1. The DEVSS-TG/SUPG log-conformation formulation

The DEVSS-TG/SUPG log-conformation formulation,
hich has v, p, L and S as unknowns, is obtained by solving
q. (10) coupled with Eqs. (1)–(3) (as in DEVSS-TG/SUPG) in

he laboratory frame. The weighted residual equations are given
y

�

∇w : T d� +
∫

�

w · h d� = 0, (11)

�

q(∇ · v) d� = 0, (12)

�

E :

[
L − ∇v + 1

tr I
(∇ · v)I

]
d� = 0, (13)

∫
�

[
R + huv · ∇R

]
:

[
−v · ∇(exp S) + 2ξ

D : (exp S)

I : (exp S)
(exp S)

+ζ

(
(exp S) · D + D · (exp S) − 2

D : (exp S)

I : (exp S)
(exp S)

)

+(exp S) · W + WT · (exp S) − 1

λ
(g0I + g1(exp S)

+g2(exp S)2)

]
d� = 0, (14)

here w, q, E and R are the weighting functions multiplying
he conservation of momentum, continuity, traceless velocity
radient and constitutive equations, respectively, and hu is the

haracteristic element length used by the SUPG stabilization of
he constitutive equation.

The Galerkin method is used to discretize the governing equa-
ions; therefore, the weighting functions are considered to be the
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ame as the test functions used to approximate the variables
except for the conformation equation, which uses stream-
pwind Petrov-Galerkin as in Ref. [7]). Bilinear piecewise
ontinuous functions are used for p, L and S, whereas biquadratic
unctions for v. In this case, the variable S grows roughly linearly
r sub-linearly in regions of strong flow, removing problems
ssociated with the poor representation by low-order polyno-
ial interpolation functions of M, which has an exponential

ehavior in strong flow regions.

.2. Numerical issues associated with the implementation
f the log-conformation formulation

.2.1. Computation of exp S and ∇(exp S)
The transformation in Eq. (14) is not done explicitly; rather,
= exp S is computed at each Gauss point where the weighted

esidual must be evaluated. The exp S is calculated by using
pectral decomposition,

= V�V−1, (15)

here each column of V is an eigenvector of S, and � is a diago-
al matrix whose elements are the eigenvalues of S; therefore,

xp S = V(exp �)V−1, (16)

here exp � is obtained by taking the exponential of each ele-
ent of the diagonal matrix �. The eigenvalues and eigenvectors

f S are found analytically in 2-D.
Whereas exp S can be obtained straightforwardly, ∇(exp S)

n Eq. (10) cannot be computed easily; thus, an approximation
s used. Three different ways to do so are presented here:

1) By computing Mα = exp Sα at every node, and multiplying
by the derivative of the basis function ϕS used to approxi-
mate S ≡

∑
α

Sαϕα
S ,

∇(exp S) = ∇M ≈
∑
α

(∇ϕα
S)Mα, (17)

where α is a dummy index from 1 to the number of basis
functions for approximating S;

2) By using finite differences. In this case, S(ξ, η) ≡∑
α

Sαϕα
S(ξ, η) is computed at the points (ξ + ε, η), (ξ −

ε, η), (ξ, η + ε), and (ξ, η − ε) in the local co-ordinate sys-
tem (ξ, η) and then M(ξ, η) = exp S(ξ, η) is calculated at
every point. Therefore, the components of ∇(exp S) = ∇M
are obtained from:

∂Mij

∂ξ
≈ Mij(ξ + ε, η) − Mij(ξ − ε, η)

2ε
, (18)

∂Mij ≈ Mij(ξ, η + ε) − Mij(ξ, η − ε)
, (19)
∂η 2ε

where ε = 10−6;
3) By expressing the convective term by means of the gradient

of S rather than the gradient of M, for a better convective

5

ξ

Fluid Mech. 147 (2007) 189–199

stability,

−v · ∇(exp S) = lim
h∗→0

exp(S − h∗v · ∇S) − exp(S)

h∗ , (20)

where h∗ is a numerical parameter. Hereafter, we use h∗=
10−6hu to balance transition versus finite precision error
(here hu is the length of an element).

Unless otherwise stated, the first approximation is used in
ost of the simulations. After computing the basic variables—v,

, L and S—the conformation field M is obtained from S at every
ode by Eq. (16).

.2.2. Imposing boundary conditions on S
Whereas imposing boundary conditions on v and p is straight-

orward, imposing boundary conditions on S is not trivial
ecause it requires solving the fully developed flow condition of
q. (10) analytically. This could be tedious for complex constitu-

ive equations for which a simple expression cannot be derived.
owever, a remedy for this problem was presented by Xie and
asquali [11], where the constitutive equation, given by Eq.
10), is also solved numerically at all the inflow boundaries;
n this case, the fully developed boundary condition is imposed
y setting v · ∇(exp S) = 0.

.2.3. Mixed Jacobian matrix
Newton’s method is used to solve the nonlinear algebraic

quation set arising from the discretization of the governing
quations. The analytical derivatives of the problem equations
ith respect to S are not known. Thus, a mixed Jacobian matrix

s used; analytical for the derivatives with respect to v, p and L,
nd numerical for the derivatives with respect to S. The latter is
btained by central finite difference,

(:, j) = r(xj + ε) − r(xj − ε)

2ε
, (21)

here J is the Jacobian matrix, r the residual vector, xj the
nknowns (in this case only the components of S) and ε is the
mposed perturbation. Computationally, the numerical Jacobian
s more expensive than the analytical one; therefore, a complete
nalytical Jacobian would be preferable.

. Numerical results

The effectiveness of the DEVSS-TG/SUPG log-
onformation formulation is demonstrated for the Oldroyd-B
odel in the complex problem of flow past a cylinder in a

ectangular channel in the case where the ratio of half channel
idth to the cylinder radius is 2:1. Details of the geometry,
oundary conditions, finite element meshes, and more complete
eferences are reported in Ref. [10].
.1. Oldroyd-B model

The Oldroyd-B model is given by the constitutive parameters
= 1, ζ = 1,g0 = −1,g1 = 1, and g2 = 0, and the elastic stress
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Table 1
Flow past a cylinder in a channel of an Oldroyd-B fluid: finite element meshes
and drag forces at different Wi

Mesh Elements Drag force at different Wi

0.6 0.7 0.8 0.9 1.0

M1 4,788 117.97 177.56 177.62 118.06 118.81
M
M

i

σ

w
m
η

o

f

w
v
t
v
o

i
d
i
(
s

R

s
o
R

F
t
t
H

Fig. 2. Flow past a cylinder in a channel of an Oldroyd-B fluid: σxx on the
cylinder and on the symmetry line in the wake. (◦) From Hulsen et al. [5].
Wi = 0.6.
2 8,512 117.88 117.44 117.47 117.86 118.54
3 13,300 117.84 117.39 117.41 117.78 118.43

s related to the conformation tensor as

= GM, (22)

here G = ηp/λ is the elastic modulus, and ηp is the poly-
er contribution to the viscosity. A viscosity ratio of β =

s/(ηs + ηp) = 0.59 is used in all our simulations. The drag
n the cylinder fd is calculated as,

d = −2
∫
S

e1n : T dS, (23)

here S represents the surface of the cylinder, n is the unit normal
ector, and e1 is the unit vector in the x-direction. Table 1 shows
he values of the drag force at different Wi, and Fig. 1 plots these
alues with the values reported in Ref. [5]; good agreement is
bserved.

Although mesh-converged solution for the drag force—an
ntegral quantity over the cylinder—is observed in Fig. 1, this
oes not guarantee the accuracy and convergence of the solution
n the entire domain. Figs. 2–4 show the elastic stress σxx =
ηp/λ)Mxx versus s (0 < s < πRc on the cylinder and πRc <

< πRc + Ld − Rc in the wake along the symmetry line, where

c is the cylinder radius and Ld the downstream length). Fig. 2

hows the results for the three meshes at Wi = 0.6; a complete
verlap is observed. The results are also in good agreement with
ef. [5].

ig. 1. Flow past a cylinder in a channel of an Oldroyd-B fluid: drag force on
he cylinder versus Wi. The DEVSS-TG/SUPG log-conformation results for the
hree meshes (M1, M2 and M3) are compared with the results presented by
ulsen et al. [5]. Inset: detail of the drag force at high Wi.

Fig. 3. Flow past a cylinder in a channel of an Oldroyd-B fluid: (a) σxx on the
cylinder and on the symmetry line in the wake; (b) σxx on the symmetry line in
the wake. (◦) From Hulsen et al. [5] and (�) From Fan et al. [12] for P6 (using
polynomial interpolation functions of order 6). Wi = 0.7.
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Fig. 4. Flow past a cylinder in a channel of an Oldroyd-B fluid: (a) σxx on the
cylinder and on the symmetry line in the wake; (b) σxx on the symmetry line
in the wake. (◦) From Fan et al. [12] for P5 and (�) from Fan et al. [12] for
P6 (using polynomial interpolation functions of order 5 and 6, respectively).
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5

control on Wi is applied to compute the flow states; the conti-
nuation terminates when the residual norm cannot be decreased
i = 0.9.

At Wi = 0.7, the results agree well on the cylinder, but dif-
erences are observed in the wake flow; Fig. 3(a) shows σxx for
he different meshes, and Fig. 3(b) compares the result on the
ne mesh (M3) with published results by Hulsen et al. [5] and
an et al. [12] (for a polynomial interpolation function of order
(P6)).
Fig. 4(a) shows the results at Wi = 0.9 where no sign of

esh convergence is observed as already reported in the litera-
ure [5,12], and Fig. 4(b) compares the result on the fine mesh
M3) with published results by Fan et al. [12] using polynomial
nterpolation functions of order 5 and 6 (P5 and P6, respecti-
ely); the numerical values of σxx continue to grow with mesh
efinement. Whereas, the simulations remain stable at high Wi,
ccuracy is lost after a critical Wi ∼ 0.7 (as also observed in
efs. [5,12]).

We study convergence further by examining the conver-
ence of M at x = 2(s = π + 1), y = 0; this location is chosen
xx

ecause it is the place where the largest differences are observed.
ichardson extrapolation is used to analyze the convergence of

b
m

ig. 5. Flow past a cylinder in a channel of an Oldroyd-B fluid: mesh-
onvergence rate of Mxx (x = 2, y = 0) at Wi = 0.6, 0.65 and 0.7. (�) From the
ata provided by Hulsen et al. [5] at Wi = 0.7 (top axis).

xx with mesh refinement,

xx(0) = Mxx(h) + αhn, (24)

here Mxx(0) is Mxx for an infinitely refined mesh, h the element
ength, n the rate of mesh convergence and α is a constant. After
tting the data using Eq. (24), Mxx(0) is used to calculate the
elative errors

=
∣∣∣∣Mxx(h) − Mxx(0)

Mxx(0)

∣∣∣∣ × 100%. (25)

The relative errors at Wi = 0.6, 0.65 and 0.7 against h
re plotted in Fig. 5 using a log–log scale, where the slopes
re given by n. At Wi = 0.6, a rate of mesh convergence of
= 1.29 is attained. Even though n < 1 for Wi > 0.6, the rela-

ive errors are still decreasing with mesh refinement but very
lowly (n = 0.59 and 0.39 for Wi = 0.65 and 0.7, respecti-
ely), which means that with the meshes used in this work, we
re still not in the terminal mesh convergence range; therefore,
ore refined meshes are required to come to any conclusion.
he same analysis is performed with the data provided by
ulsen et al. [5] (also plotted in Fig. 5) obtaining a rate of
esh convergence of n = 0.26 at Wi = 0.7 (using more refined
eshes), which is slightly lower than the one obtained in this
ork.
Fig. 6 shows the contour plots of the components of M at

i = 1.0 on M3. Clearly, although the solution in the wake is
ot mesh converged, the contour lines are more regular than
hose obtained in Ref. [10] at lower Wi = 0.7 on a similar mesh.

.2. Results at high Wi

First-order arc-length continuation with automatic step
elow 10−5 (10−4 for Wi > 1). The simulation on the three
eshes stop at Wi ∼ 1.05; in comparison to the traditional
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ig. 6. Flow past a cylinder in a channel of an Oldroyd-B fluid: (a) Mxx; (b)

xy; (c) Myy contours at Wi = 1.0 on mesh M3.

EVSS-TG/SUPG [7], it represents an increase of about 40% in
he maximum Wi. If the alternative approximations of ∇(exp S)
nd v · ∇(exp S), given in Section 4.2.1 are used, an increase
f about 20% in the maximum Wi is observed. Although the
hird way to approximate the convective term should have better
tability, it performs as the second one.

Fig. 7 plots the residual norm against the number of iterations

t Wi = 0.83, 0.92, 1.05, and 1.07 (near to the maximum Wi).

quadratic rate of reduction of the residual norm is expected
y the Newton’s method; in this case, the rate of convergence

ig. 7. Residual norm versus number of Newton iterations at high Wi (close to
he maximum Wi). A slope of two (expected for Newton’s method) is drawn to
uide the eye.
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rops and the minimum attainable residual norm grows larger as
i increases above Wi ≈ 0.9; Newton’s method breaks down

ltogether at Wi = 1.07.
The maximum Wi obtained by Hulsen et al. [5] with a dif-

erent log-conformation formulation in finite element context
as Wi = 1.8 (maximum Wi obtained here is Wi ≈ 1.05). This
ifference and the issues discussed in the previous paragraphs
re considered in the next section, where the performance of
hese two formulations are studied in a simple 1-D problem.

. 1-D analysis

We analyze the performance of the log-conformation formu-
ations presented in Ref. [5] (method 1) against the one proposed
n this work (method 2). For this, we study the prototypical 1-D
onvection-generation equation

dm

dx
− αm = 0, (26)

here m(x) (x ∈ [0, 1]) is the unknown and α > 0 is parameter
ontrolling the rate of exponential growth of the solution. The
oundary condition of the problem is m(0) = 1, and it has the
xact solution ma = exp(αx). Both methods are solved using the
UPG formulation.

.1. Method 1

This method mimics the approach followed by Hulsen et al.
5] (also reviewed in Section 3). Here, Eq. (26) is transformed
y using the variable s = log m as

ds

dx
− α = 0, (27)

here the variable s is approximated by using linear basis func-
ions φi. The residual vector is

i =
1∫
0

wi

[
ds

dx
− α

]
dx, (28)

here i varies from 1 to the number of basis functions, and wi

s the weight function, which for the case of the SUPG method,
s given by

i = φi + h
dφi

dx
, (29)

here h is the element length. This discretization gives a linear
roblem; therefore, it is solved in one iteration with Newton’s
ethod.

.2. Method 2
This method mimics the approach presented in Section 4.
ere, Eq. (26) is unchanged; however, whenever the variable m

s present, it is replaced by exp(s), and s is approximated with
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inear basis functions. The residual vector is

i =
1∫
0

wi

[
exp(s)

ds

dx
− exp(s)α

]
dx. (30)

his is a non-linear problem; therefore, a good initial guess is
equired for Newton’s method in order to converge to a solution.

.3. Results of the 1-D analysis

The results for α = 24 are shown in Fig. 8. Fig. 8(a) plots the
nalytical results along with the numerical results obtained by
ethods 1 and 2 against x and Fig. 8(b) plots the relative errors

of the two methods against x, where

=
∣∣∣∣m

a − m

ma

∣∣∣∣ 100%. (31)

ig. 8. 1-D analysis, α = 24: (a) numerical results obtained by the methods 1
nd 2 compared with the analytical ones; (b) relative errors with respect to the
nalytical solution.
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ig. 9. Residual 2-norm and maximum relative error against α for the
ethod 2.

As can be seen in Fig. 8, there is no apparent difference in
he results obtained by the two methods and this trend continues
or even higher α. As expected, the maximum relative error is
btained at x = 1.

However, the minimum 2-norm residual that can be obtained
y method 2 depends on α, which keeps oscillating after certain
alue no matter the number of Newton’s iterations allowed. For
nstance, this minimum is between 10−7 and 10−6, 10−5 and
0−4, and 10−1 and 100 for α = 24, 29, and 39, respectively.
s can be noticed, the minimum norm increases considerably

s α is increased; therefore, in order to accept a solution, the
aximum error allowed by the Newton’s method is increased

ccordingly. In all cases, quadratic convergence is observed until
he minimum norm is attained.

It can be noticed from Fig. 9 that even though the resi-
ual norms are high for high values of α, the relative errors
re small and increase very slowly with α. The same trend is
lso observed in our simulations using the DEVSS-TG/SUPG
og-conformation formulation at high Wi, as previously des-
ribed in Section 5.2. This behavior can be explained by
onsidering Eq. (30), where the residual vector is multiplied
y the factor exp(s) (exp S in Eq. (14)), which grows expo-
entially as α (Wi) increases. At high α (Wi), the numerical
recision of the calculations approach the machine precision
imit; therefore, accurate numerical solutions after a critical
alue of α (Wi) are difficult to obtain. This may explain why
he residual norm cannot be decreased any further in simula-
ions close to this critical value, as also observed in our 2-D
imulations.

. Demonstration of the generality of the
EVSS-TG/SUPG log-conformation formulation

The advantages of the log-conformation formulation pre-

ented in this paper are its generality and straight forward
mplementation. It can be easily applied to solve for any consti-
utive model in terms of the conformation tensor Eq. (4), without
equiring code modifications. Its generality is demonstrated by
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Fig. 10. Flow past a cylinder in a channel of a Larson-1 fluid (Eq. (54b) of Ref.
[18]) with ζ̄ = 0.05/3, β = 0.59: drag force on the cylinder versus Wi for the
three meshes (M1, M2 and M3) using the DEVSS-TG/SUPG log-conformation
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ormulation, and compared with the results obtained by the original DEVSS-
G/SUPG formulation on M2.

sing models with affine and non-affine deformation. Consti-
utive models of affinely deforming fluids are obtained when
= ζ = 1, e.g., Oldroyd-B [13], Giesekus [14], Leonov [15],
ENE-type [16,17], and Larson-1 [18] models, whereas fluids
ith non-affine microstructure deformations are obtained when

< 1 or ζ < 1, e.g., PTT-type [19,20], Johnson-Segalman [21],

nd Larson-2 to Larson-4 [18] models.

ig. 11. Flow past a cylinder in a channel of a Larson-1 fluid: (a) Mxx; (b) Mxy;
c) Myy contours at Wi = 11.4 on mesh M3.
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.1. Larson-1 model

For the case of constitutive models considering affine defor-
ations, the flow of a Larson-1 fluid (Eq. (54b) of Ref. [18]) past
cylinder in a rectangular channel is considered. This model is

elected because the relaxation functions are not constant as in
he case of the Oldroyd-B model. The constitutive parameters
f the Larson-1 model are ξ = 1, ζ = 1, g0 = −1 − ζ̄(IM − 3),
1 = 1 + ζ̄(IM − 3), and g2 = 0, where ζ̄ is a constant, and
M = tr(M) is the first invariant of M. The elastic stress is related
o the conformation tensor as

= G

1 + ζ̄(IM − 3)
M. (32)

Fig. 10 plots the drag force against Wi in the case for
¯ = 0.05/3 and β = 0.59. The highest Wi attained in these simu-
ations are 6.4, 12.3, and 11.4 on M1, M2 and M3, respectively;

complete overlap is observed. Because no published results
re available for this problem, the results are compared with the
olutions obtained by the original DEVSS-TG/SUPG formula-
ion on M2, also plotted in Fig. 10. In this case, the simulations
topped at Wi ≈ 4.49, which indicates that an increase of nearly
factor of 3 in the maximum Wi can be obtained by using the
EVSS-TG/SUPG log-conformation formulation on the same
esh.
Fig. 11 shows the contour plots of the components of M at

he maximum Wi = 11.4 on M3.

.2. Larson-2 model

For the case of constitutive models with non-affine deforma-

ion, the flow of a Larson-2 fluid (Eq. (54a) of Ref. [18]) past
cylinder in a rectangular channel is considered. The Larson-
model is given by the constitutive parameters ξ = ξ̄, ζ = 1,

0 = −1, g1 = 1, and g2 = 0, where ξ̄ is a constant, and the

ig. 12. Flow past a cylinder in a channel of a Larson-2 fluid (Eq. (54a) of Ref.
18]) with ξ = 0.9: drag force on the cylinder versus Wi for the three meshes
M1, M2 and M3) using the DEVSS-TG/SUPG log-conformation formula-
ion, and compared with the results obtained by the original DEVSS-TG/SUPG
ormulation on M2.
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[5] M.A. Hulsen, R. Fattal, R. Kupferman, Flow of viscoelastic fluids past a
ig. 13. Flow past a cylinder in a channel of a Larson-2 fluid: (a) Mxx; (b) Mxy;
c) Myy contours at Wi = 1.32 on mesh M3.

elation between σ and M is given by Eq. (22) (same as for the
ldroyd-B model).
Fig. 12 plots the drag force against Wi in the case ξ = 0.9 and

= 0.59. The highest Wi obtained in our simulation are 1.56,
.41 and 1.32 on M1, M2 and M3, respectively. The results on
1 are slightly above the results obtained on M2 and M3, which

re in good agreement. As in the previous case, no published
esults are available in the literature; they are compared with the
esults obtained by the DEVSS-TG/SUPG formulation on M2,
hown in Fig. 12. An increase of the maximum Wi of about 24%
s obtained by using the DEVSS-TG/SUPG log-conformation
ormulation on the same mesh.

Fig. 13 shows the contour plots of the components of M at
he maximum Wi = 1.32 on M3.

. Conclusions and discussions

A simple alternate implementation for the log-conformation
ormulation is presented in this article. The implementation
s demonstrated in the finite element context, and a DEVSS-
G/SUPG log-conformation method is proposed. In comparison

o the previous works on log-conformation formulation [3,5,6],
he new implementation requires even fewer code modifications,
nd has the advantage of solving all governing equations in
coupled way in a laboratory co-ordinate frame. Effectively,

his new implementation retains the set of governing equa-

ions, and uses the matrix-logarithm as a basis function for the
onformation field which evolve exponentially near the boun-
aries. Additionally, in order to try to understand the difference
bserved between the different ways of implementing the log-
Fluid Mech. 147 (2007) 189–199

onformation formulation, a 1-D analysis is presented.
The method is used to simulate flow of several viscoelas-

ic fluids modeled by generalized constitutive model in the
enchmark problem of flow past a cylinder in channel. The
ldroyd-B and Larson-1 models consider affine deformation

or the polymer constituents, whereas the Larson-2 model consi-
ers non-affine deformation. It is demonstrated that the method
orks well for the generalized constitutive model, and improves

he numerical stability at high Wi. In the flow past a cylinder in a
hannel of an Oldroyd-B fluid problem, the maximum Wi limit
as extended to 1.05 as compared to 0.75 obtained with the
riginal DEVSS-TG/SUPG method, although mesh-converged
olutions were not demonstrated for Wi > 0.6. For the Larson-1
odel was extended from 4.49 to 12.30 and for the Larson-2
odel from 1.13 to 1.41, both on M2.
The results from the DEVSS-TG/SUPG log-conformation

re found to be promising, although there are still two issues
ssociated with the implementation that must be resolved in
uture work. First, a more accurate approximation for ∇(exp S)
hould be obtained; this will improve the limit up to which the
ewton’s method will remain convergent. Second, a complete

nalytical Jacobian for the Newton’s method should be derived;
his will reduce the high computational cost associated with the
umerical Jacobian.
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