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bstract

A new Galerkin/Least-Squares (GLS) stabilized finite element method is presented for computing viscoelastic flows of complex fluids described
y the conformation tensor; it extends the well-established GLS method for computing flows of incompressible Newtonian fluids. GLS methods
re attractive for large-scale computations because they yield linear systems that can be solved easily with iterative solvers (e.g., the Generalized
inimum Residual method) and because they allow simple combinations of interpolation functions that can be conveniently and efficiently

mplemented on modern distributed-memory cache-based clusters.
Like other state-of-the-art methods for computing viscoelastic flows (e.g., DEVSS-TG/SUPG), the new GLS method introduces a separate variable

o represent the velocity gradient; with the aid of this variable, the conservation equations of mass, momentum, conformation, and the definition
f velocity gradient are converted into a set of first-order partial differential equations in four unknown fields—pressure, velocity, conformation,
nd velocity gradient. The unknown fields are represented by low-order (continuous piecewise linear or bilinear) finite element basis functions.

The method is applied to the Oldroyd-B constitutive equation and is tested in two benchmark problems—flow in a planar channel and flow
ast a cylinder in a channel. Results show that (1) the mesh-convergence rate of GLS is comparable to the DEVSS-TG/SUPG method; (2) the LS
tabilization permits using equal-order basis functions for all fields; (3) GLS handles effectively the advective terms in the evolution equation of

he conformation tensor; and (4) GLS yields accurate results at lower computational costs than DEVSS-type methods.

2006 Elsevier B.V. All rights reserved.

eywords: Stabilized finite element method; Viscoelastic flow; Galerkin/least-squares; Oldroyd-B fluid; Flow past a cylinder in a channel
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. Introduction

In the past decades, extensive research has been done on flows
f liquids with micro–macro structure (also known as complex
uids); these fluids are found in several industrial and biological
pplications, e.g., polymer processing, coating of polymer
olutions, ink-jet printing, microfluidic devices, and human as
ell as artificial organs (blood, synovial fluid). Usually these

iquids display a viscosity dependent on the rate of straining
nd the flow kinematics (shear versus extension); they also
how elasticity on time scales that overlap with the flow time

cales.

Realistic models of flowing complex fluids are crucial for
nderstanding and optimizing flow processes. Two main classes
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f models have been proposed for modeling complex fluids:
ne-grained models [1,2], (e.g., bead-spring or bead-rod models
f polymer solutions), where the microstructure is represented
y micromechanical objects governed by stochastic differential
quations, and coarse-grained ones, where the microstructure
s modeled by means of one or more continuum variables rep-
esenting the expectation value of microscopic features (e.g.,
he conformation tensor in models of polymer solutions) [3–6].
ine-grained models incorporate a richer degree of molecular
etails, but are still limited to fairly simple flows because of
omputational cost [7–9].

Coarse-grained models represent the liquid microstructure
n terms of one or more conformation tensors; currently, these

odels are considered the most appropriate for large-scale sim-
lation of complex flows of complex fluids. Typically, the con-

ormation tensor obeys a hyperbolic partial differential transport
quation. In polymer solutions and melts, this tensor represents
he local expectation value of the polymer stretch and orien-
ation, e.g., gyration or birefringence tensor. The elastic part
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f the stress is related to the conformation tensor through an
lgebraic equation [3–6]. Such models include most “classical”
ate-type stress-based differential models (e.g., Oldroyd-B, PTT,
iesekus, etc.) [3–6].
Simulations of complex flows of complex fluids require

olving simultaneously the hyperbolic transport equation of
onformation (or rate-type equation for the stress) together
ith the momentum and mass conservation equations; this
oses several numerical challenges. In particular, obtaining
esh-converged solutions in simple benchmark flows at high
eissenberg number (Wi, the product of characteristic strain

ate and fluid relaxation time) is still considered an open
roblem.

The Galerkin method is perhaps the most effective method
or flows with free surfaces and deformable boundaries. How-
ver, the Galerkin method is unstable in advection-dominated
roblems, and yields spurious oscillations in the variable
elds. Alternative methods have been developed to handle
dvection-dominated as well as purely hyperbolic equations—
.g., Streamline upwind/Petrov–Galerkin (SUPG) for high
eynolds number Newtonian flows [10] and viscoelastic flows

11], also Discontinuous Galerkin (DG) for viscoelastic flows
12].

When the Galerkin (or SUPG) method is applied to cou-
led partial differential equations, the selection of the interpo-
ating functions for the various unknowns can be restricted by
ompatibility conditions—e.g., the Babuška-Brezzi condition in
ows of incompressible Newtonian fluids [13,14]. Some com-
atibility conditions between the basis functions of velocity,
ressure, velocity gradient, and conformation (or stress) must
till be satisfied [15,16] by current Galerkin-type methods for
imulating viscoelastic flows—e.g., the state-of-the-art DEVSS-
G/SUPG, which evolved from successive modifications of the
VSS method [17–22] (see also reviews by Baaijens [23] and
wens and Phillips [24]).
These two key hurdles (handling advection-dominated prob-

em and satisfying compatibility conditions) have been over-
ome in Newtonian flows by using Galerkin/Least-Squares
GLS) methods [25–27]. Work on GLS methods applied to New-
onian flows has shown that Streamline-upwind terms appear
aturally in the GLS form, that equal-order basis functions can
e used for all fields (because the Least-Squares (LS) terms re-
ove the compatibility condition), and that the resulting nonlin-

ar algebraic equations yield a Jacobian matrix that can be solved
ore easily with preconditioned Generalized Minimum Resid-

al method (GMRES) (because the LS terms yield a positive-
efinite Jacobian component). Moreover, using equal-order ba-
is functions for all fields allows “nodal” (rather than “elemen-
al”) accounting, which speeds up greatly matrix operations on
istributed memory parallel machines [28].

Weakly consistent forms of GLS method have been applied to
iscoelastic flows. Behr [25] introduced a three-field (velocity–
ressure–elastic stress) GLS method and studied the flow of

n Oldroyd-B liquid in a 4-to-1 contraction. However, a detailed
omparison between this method and other published results was
ot performed, and the effect of the expression of the LS stabi-
ization coefficient for the constitutive equation was not exam-

t
g

∇
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ned. This method has been refined and extended more recently
o improve consistency by recovery of the velocity gradient as
ell as a more appropriate expression of the LS stabilization

oefficient [29].
Fan et al. [30] independently introduced an incomplete GLS

ethod for viscoelastic flow and tested its performance in a flow
etween eccentric cylinders, flow around a sphere in a pipe, and
ow around a cylinder in a channel. This method did not include

erms due to the LS form of the momentum equation (because
t degraded performance) and of the constitutive equation;
herefore, the method of Fan et al. [30] is better characterized as
pressure-stabilized SUPG method—see [31] for a description
f pressure-stabilized methods for incompressible Newtonian
ows.

This article presents a complete GLS method for computing
ows of incompressible viscoelastic liquids modeled by con-
ormation tensor or rate-type equations. The flow equations are
onverted to a set of four first-order partial differential equa-
ions by representing explicitly the velocity gradient tensor (as
n DEVSS-G). The GLS weighted residual equations include
aturally the consistent streamline upwinding for the advective
erms in the conformation evolution equation (and in the mo-

entum equation, although the presentation below is restricted
o inertialess flows). The choice of basis functions for the four
nknown fields (velocity, pressure, velocity gradient, and con-
ormation) is not restricted by compatibility conditions; here,
he unknown fields are represented by the simplest possible fi-
ite element basis functions—continuous piecewise bilinear on
uadrilateral elements. The method is termed GLS4 to distin-
uish it from the previous GLS3 [25,29] method, in which the
elocity gradient was not represented explicitly. The accuracy
nd stability of the method is demonstrated by using two bench-
ark problems — the flow in a planar channel and the flow past
cylinder in a channel — for an Oldroyd-B fluid.

It is worth noting that recent work [32–34] identified another
ource of instability in low-order finite difference and finite el-
ment methods for computing viscoelastic flows—namely, the
nability of low-order methods to capture exponentially grow-
ng profiles of conformation or elastic stress in regions of strong
ow. Such instability can be avoided by using the logarithm of

he conformation tensor as field variable [32], which has the
dditional benefit of ensuring that the conformation tensor is
utomatically positive definite everywhere in the flow. The pro-
osed GLS4 method does not address this source of instability
xplicitly. However, as discussed in Ref. [32], the logarithmic
hange of variable is generally applicable to any finite element
ethod (see, e.g. [34]); thus, it should be possible to combine the

urrent GLS4 formulation with the log-conformation method to
mprove the method further.

. Governing equations

The steady flow of an inertialess incompressible viscoelas-

ic fluid, occupying a spatial domain Ω, with boundary Γ is
overned by the momentum and continuity equations:

· T = 0, on Ω, (1)
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∇ · v = 0, on Ω, (2)

where v is the liquid velocity and T is the stress tensor, which
can be decomposed into a constitutively undetermined isotropic
contribution related to incompressibility, and viscous and elastic
contributions:

T = −pI + τ + σ, (3)

respectively, where p is the pressure, I the identity tensor, τ =
2ηs D the viscous stress (usually due to solvent contribution), ηs
the solvent viscosity, and D is the rate-of-strain tensor, i.e., the
symmetric part of the velocity gradient. In order to transform the
equations of motion into a set of first-order partial differential
equations (necessary for developing a consistent LS formulation
for low-order elements), an additional variable L is introduced
to represent the velocity gradient:

L = ∇v − 1

tr I
(∇ · v)I, (4)

where tr denotes trace.
The last term in Eq. (4) ensures that L remains traceless even

in the finite-precision solution [22]; with this definition, D ≡
(L + LT)/2. In the Oldroyd-B model, the elastic stress is related
to the dimensionless conformation tensor M through a simple
linear relationshipσ = G(M − I), whereG = ηp/λ is the elastic
modulus, ηp the polymer contribution to the viscosity, and λ is
the relaxation time. The conformation tensor obeys a hyperbolic
evolution equation:

λ
∇
M + (M − I) = 0, (5)

where
∇
M denotes an upper-convected derivative:

∇
M = v · ∇M − LT · M − M · L. (6)

The equations governing the flow can be recast in dimensionless
form as:

∇∗ · T∗ = 0, (7)

∇∗ · v∗ = 0, (8)

L∗ − ∇∗v∗ + 1

tr I
(∇∗ · v∗)I = 0, (9)

Wi
∇
M + (M − I) = 0, (10)

where v∗ = v/vc, p∗ = p/(ηvc/lc) and L∗ = L/(vc/lc) are di-
mensionless velocity, pressure and interpolated traceless veloc-
ity gradient tensor, respectively. ∇∗ = ∇lc is the dimension-
less gradient operator, vc is a characteristic velocity, and lc is
a characteristic length. The dimensionless Weissenberg number
is Wi = λ(vc/lc). The dimensionless stress tensor T∗ is

T∗ = −p∗I + β(L∗ + L∗T) + 1 − β

Wi
(M − I), (11)

where β = ηs
ηs+ηp

is the viscosity ratio. Hereafter, all variables
are dimensionless and the (∗) is omitted for clarity.
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Boundary conditions on the momentum equation are needed
n the entire boundary Γ = Γg ∪ Γh. The essential and natural
oundary conditions are represented as

= g on Γg, (12)

· T = h on Γh, (13)

here g and h are given functions, and n is the outward unit
ector normal to the boundary. Because the equation of trans-
ort of conformation is hyperbolic, boundary conditions on the
onformation tensor, represented by the tensor G, are imposed
t inflow boundaries ΓG where v · n < 0,

= G on ΓG. (14)

. Four-field Galerkin/least-squares formulation (GLS4)

In this section, the GLS formulation of the governing equa-
ions (7)–(10) is presented. The method is termed GLS4 because
he equation set has four basic unknown fields—v, p, L and M.
he basis (interpolation) and weighting function spaces are:
h
v = {vh|vh ∈ [H1h(Ω)]nsd , vh ≡ gh on Γg}, (15)

h
v = {vh|vh ∈ [H1h(Ω)]nsd , vh ≡ 0 on Γg}, (16)

h
p = Vh

p = {ph|ph ∈ H1h(Ω)}, (17)

h
L = Vh

L = {Lh|Lh ∈ [H1h(Ω)]n
2
sd}, (18)

h
M = {Mh|Mh ∈ [H1h(Ω)]ntc , Mh ≡ G on ΓG}, (19)

h
M = {Mh|Mh ∈ [H1h(Ω)]ntc , Mh ≡ 0 on ΓG}, (20)

here H1h represents functions with square integrable first-
rder derivatives, nsd the number of spatial dimensions and
tc = nsd(nsd + 1)/2 is the number of independent conforma-

ion tensor components. Bilinear piecewise continuous func-
ions are used hereafter. The GLS4 formulation is: Find vh ∈ Sh

v ,
h ∈ Sh

p, Lh ∈ Sh
L and Mh ∈ Sh

M such that:

Ω

∇wh : Th dΩ +
∫

Γh

wh · hh dΓ

+
∫

Ω

τmom

⎡
⎢⎢⎣∇qh − β∇ · (Eh + (Eh)T) − 1 − β

Wi
∇ · Sh︸ ︷︷ ︸

A

⎤
⎥⎥⎦ ·

[−∇ · Th] dΩ +
∫

Ω

qh(∇ · vh) dΩ

+
∫

Ω

τcont(∇ · wh)(∇ · vh) dΩ

+
∫

Ω

Eh :

[
Lh − ∇vh + 1

tr I
(∇ · vh)I

]
dΩ

+
∫

Ω

τgradv

[
Eh − ∇wh + 1

tr I
(∇ · wh)I

]
:
[
Lh − ∇vh
+ 1

tr I
(∇ · vh)I

]
dΩ +

∫
Ω

Sh :
[
Wi (vh · ∇Mh − (Lh)T · Mh

− Mh · Lh) + (Mh − I)
]

dΩ +
∫

Ω

τcons

[
Wi (vh · ∇Sh
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Fig. 2. Mesh-convergence rate for a planar channel flow at different Wi. The
slope of the curves gives the rate of convergence with mesh refinement.

τ

τ

τ

eration is dominant, whereas τcons3 is important in advection-
dominated regions. These three contributions can be combined
O.M. Coronado et al. / J. Non-New

− (Lh)T · Sh − Sh · Lh) + Sh
]

:
[
Wi (vh · ∇Mh−(Lh)T · Mh

− Mh · Lh) + (Mh − I)
]

dΩ = 0,

∀qh ∈ Vh
p, ∀wh ∈ Vh

v, ∀Eh ∈ Vh
L, ∀Sh ∈ Vh

M, (21

here τmom, τcont, τgradv and τcons are the LS stabilization pa-
ameters for the momentum, continuity, interpolated traceless
elocity gradient and constitutive equations, respectively. The
nderbraced term A is neglected at low Wi because the (1/Wi)
erm grows large as Wi → 0, causing numerical problems.

.1. Design of the stabilization coefficients

The appropriate design of the four stabilization parameters —
mom, τcont, τgradv and τcons — in Eq. (21) plays a crucial role in
he performance of the method.

The τmom-term stabilizes the Galerkin form in advection-
ominated flows, and also removes the compatibility condition
etween velocity and pressure spaces. The parameter designed
pecifically for use with bilinear interpolations [31] is adapted
ere for the dimensionless system:

mom = h2

4
. (22)

here h is the dimensionless element length.
The τcont-term improves the convergence of non-linear

olvers in advection-dominated problems. Hereafter, τcont = 0
ecause inertia is neglected.

The τgradv-term stabilizes Eq. (4); although the associated
tabilization term is not strictly necessary, τgradv is taken here as
gradv = 1.

The τcons-term is introduced to stabilize the Galerkin form
t high Wi, and to bypass the compatibility conditions be-
ween velocity and conformation spaces. No systematic deriva-
ion for τcons is available in the literature. However, the trans-
ort equation of conformation can be viewed as an advection–
eneration equation, and considerable research has been done
n stabilization parameters for a simple advection–diffusion–
eneration equation [35–39]. Applying the definition proposed
y Franca et al. [38], based on the convergence and stability anal-

sis of advection-diffusion-generation equation, and extended
y Hauke [39], yields

cons1 = 1, (23)

ig. 1. Schematic of a flow in a planar channel with w/L = 1/4. The top wall
s kept fixed, the bottom wall is moving from right to left at v0 and a differential
ressure is applied between the left and right walls.

F
(

Fig. 3. Geometry of a flow past a cylinder in a half channel.

cons2 = 1

Wi‖Lh‖ , (24)

cons3 = h

2Wi‖vh‖ . (25)

cons1 and τcons2 are important in regions of the flow where gen-
ig. 4. Flow past a cylinder in a channel, w/Rc = 2: Finite element mesh M0
a) complete domain (b) detail of the mesh from x = −2 to x = 2.
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Fig. 5. (Color online) Flow past a cylinder in a channel, w/Rc = 2: drag force
on the cylinder versus Wi. The GLS4 results for the four meshes (M1, M2, M3
a
e
o
1

a

τ

R

τ

4

n
s

F
t

Fig. 7. Flow past a cylinder in a channel, w/Rc = 2: σxx on the cylinder and on
the symmetry line in the wake at Wi = 0.7. © from Hulsen et al. [34].
nd M4) are compared with the results presented by Sun et al. [21] and Hulsen
t al. [34]. Inset: detail of the drag force at high Wi. � represents the drag force
n M4 at Wi = 0.6. At Wi = 0.6, the extrapolated value of the drag force is
17.979, which is within 0.2% of the values reported in Refs. [30,34,40].

s:

cons =
(

1

τr
cons1

+ 1

τr
cons2

+ 1

τr
cons3

)−1/r

, (26)

Hereafter, the switching parameter is set to r = 2 (see also
ef. [29]):

cons =
⎡
⎣1 + (Wi‖Lh‖)2 +

(
2Wi‖vh‖

h

)2
⎤
⎦−1/2

. (27)

. Numerical results
The proposed GLS4 formulation is tested in flow in a pla-
ar channel and flow past a cylinder in a channel. An analytical
olution can be obtained in the former case; in the latter, the

ig. 6. Flow past a cylinder in a channel, w/Rc = 2: σxx on the cylinder and on
he symmetry line in the wake at Wi = 0.6. © from Hulsen et al. [34].

Fig. 8. Flow past a cylinder in a channel, w/Rc = 2: Drag force at Wi = 0.6 for
GLS4 and DEVSS-TG/SUPG for all meshes; dashed line represents the drag
force reported by Hulsen et al. [34] on their finest mesh.

Fig. 9. Flow past a cylinder in a channel, w/Rc = 2: Mesh-convergence rate of
the drag force at Wi = 0.6.



6 O.M. Coronado et al. / J. Non-Newtonian

F
o

n
f
c
a
c
l

4

u
w
n
a
c
s
r
o
2
f
s
t
e
v

v

M

w
a
1
l
t
r
o
3

c
a
s
a
F
t
r
b
g
r
m

4

l
t
p
h
t
l
c

f
a

v

M

M

w
b
a
a
l
u

f

w
v

4

β

c
a
t
t
r

ig. 10. Flow past a cylinder in a channel, w/Rc = 2: Mesh-convergence rate
f Mxx at a point in the wake flow (x = 2; y = 0) at Wi = 0.6.

umerical results from other state-of-the-art methods are used
or validation [20–22,29,34,40]. The flow past a cylinder in a
hannel is a standard benchmark problem with desirable char-
cteristics of smooth boundaries, and poses several numerical
hallenges at high Wi due to the formation of sharp boundary
ayers on the cylinder and in the wake.

.1. Flow in a planar channel

Fig. 1 shows a combination of Poiseuille flow (pushing liq-
id from left to right) and Couette flow (induced by the bottom
all dragging liquid from right to left with velocity v0) in a pla-
ar channel of width w = 1 and length L = 4w. The flow of
n Oldroyd-B fluid (β = 0.59) is simulated, and the results are
ompared with the known analytical solution. The figure also
hows velocity profiles at the two open flow boundaries; both
ight and left ends of the channel have respective inflow and
utflow sections. A region ‘A’ (dotted area in Fig. 1), which is
w in length and centrally placed in the channel, is monitored
or comparing numerical results with analytical solution; this
ufficiently eliminates the influences due to the boundary condi-
ions. The problem setup closely follows the numerical example
mployed by Xie and Pasquali [41]; the analytical solution for
elocity and conformation fields are

x =
[
−�p

2

w

L

[( y

w

)2 − y

w

]
+ y

w
− 1

]
v0, vy = 0, (28)

xx = 1 + 2

(
λ

dvx

dy

)2

, Mxy = λ
dvx

dy
, Myy = 1, (29)

here �p = 50 is the differential pressure between the left
nd right boundaries. Consequently, Wi = λ[�pw/(2L) +
](v0/w). The Dirichlet conditions are imposed for ve-
ocity components on all boundaries, and the conforma-

ion tensor components are only specified at the cor-
esponding inflows. The numerical results are obtained
n four different uniform meshes — 16 × 16, 24 × 24,
2 × 32 and 64 × 64 — followed by a node-by-node

b
n
t
a

Fluid Mech. xxx (2006) xxx–xxx

omputation of the relative errors e = |(numerical value −
nalytical value)/(analytical value)| × 100% in region A. Fig. 2
hows the maximum e in Myy (which has the highest e among
ll unknown fields) versus the element size for Wi = 3, 5 and 7.
rom the three curves the rate of mesh convergence is estimated

o be 1.73, 1.63 and 1.59, respectively. Because increase in Wi

esults in increased generation, subsequently forming steeper
oundary layer close to the channel walls, the rate of conver-
ence is found to decrease. At Wi = 3, Xie and Pasquali [41]
eported a rate of convergence of 1.89 using DEVSS-TG/SUPG
ethod with bi-quadratic interpolation for velocity.

.2. Flow past a cylinder in a channel

The flow of an Oldroyd-B fluid past a cylinder in a rectangu-
ar channel has been used as a standard benchmark problem to
est several computational methods [20–22,29,34,40]. For com-
utational ease, the symmetry of the problem is used and only
alf of the channel is simulated. Fig. 3 shows the schematic of
he problem, where Lu, Ld, Rc and w represent the upstream
ength, the downstream length, the cylinder radius, and the half
hannel width, respectively.

A no-slip boundary condition is imposed on the cylinder sur-
ace and channel walls, and fully developed flow conditions are
ssumed at the inflow and outflow boundaries. Consequently:

x = 1.5
Q

w

(
1 − y2

w2

)
, vy = 0, (30)

xx = −3
Q

w
λ

y

w2 , Mxy = Myx = 1 − 2

(
−3Qλy

w3

)2

,

yy = 1, (31)

here Q is the flow rate. Whereas the velocity is imposed at
oth inflow and outflow, the conformation tensor components
re specified at the inflow only. At the symmetry line, n · T = 0
nd vy = 0, where n is the unit vector normal to the symmetry
ine. The computed drag on the cylinder fd has been traditionally
sed to compare numerical methods:

d = −2
∫

S

e1n : T dS, (32)

here S represents the surface of the cylinder, n the unit normal
ector, and e1 is the unit vector in the x-direction.

.2.1. Flow past a cylinder in a channel: w/Rc = 2
In this case, w = 2, Rc = 1, Lu = −20, Ld = 20, Q = 2 and

= 0.59. Fig. 4 shows the mesh M0 from which four systemati-
ally refined meshes are obtained; in these meshes, the elements
re concentrated on the cylinder surface and in the wake along
he symmetry line. The M1, M2, M3 and M4 meshes are ob-
ained by dividing every element side of M0 by 3, 4, 5 and 6,
espectively. The number of elements and corresponding num-

er of unknowns are listed in Table 1. This flow problem poses
umerical challenges at high Wi; therefore, the maximum Wi up
o which the numerical schemes converge has been employed
s a measure of robustness (but not necessarily accuracy). For
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Fig. 11. (Color online) Flow past a cylinder in a channel, w/Rc = 2: (a) Mxx, (b) Mxy and (c) Myy contours at Wi = 0.7 on mesh M2.

example, using DEVSS-G/SUPG, Sun et al. [21] reported solu-
tions up to Wi = 1.85, Fan et al. [30] using an incomplete GLS
up to Wi = 1.05 and Hulsen et al. [34] using the log conforma-
tion up to Wi = 2.0; however, the accuracy of the solutions at
Wi > 0.6 was not confirmed in these works.

Fig. 12. Flow past a cylinder in a channel, w/Rc = 2: Mxx along line x = 2 on
mesh M3. Inset: detail of Mxx near the centerline (y = 0).

Here, a sequence of flow states is computed by first-order
arc-length continuation on Wi with automatic step control; the
continuation terminates when the conformation tensor loses its
positive-definiteness, which occurs at Wi ∼ 0.7. The positive-
definiteness of M was not usually considered in past stud-

Fig. 13. Flow past a cylinder in a channel, w/Rc = 2: Mxy along line x = 2 on
mesh M3. Inset: detail of Mxy near the centerline (y = 0).
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Fig. 16. (Color online) Direct comparison of GLS4 and DEVSS-TG/SUPG with
respect to the number of elements (bottom axis) and to the number of degrees of
freedom for conformation (top axis). The left and right axes represent the time
per Newton iteration (s) and memory usage (MB), respectively. A frontal solver
is used in both simulations.
ig. 14. Flow past a cylinder in a channel, w/Rc = 2: Myy along line x = 2 for
3. Inset: detail of Myy near the centerline (y = 0).

es, with exception of the recent work of Hulsen et al. [34].
ig. 5 shows the drag forces on the meshes M1, M2 and
3; a good agreement is found up to Wi = 0.4 with the re-

ults reported by Hulsen et al. [34] and Sun et al. [21]. Be-
ond that, the three methods show slight differences in the
rag predictions, while following the same trend. Figs. 6 and
show σxx versus s at Wi = 0.6 and 0.7, respectively, where

xx = (ηp/λ)Mxx and s is defined as: 0 < s < πRc on the cylin-
er and πRc < s < πRc + Ld − Rc in the wake along the sym-
etry line. At Wi < 0.6, a complete overlap is observed among

he results on the meshes M1, M2 and M3. In Fig. 6, σxx pro-
les computed with M1, M2 and M3 are overlapping in the
ake; however, the result from M1 shows underprediction on

he cylinder, implying that refinement of M1 is not sufficient to
apture the steep boundary layer on the cylinder. On the other

and, in Fig. 7, differences are observed not only on the cylin-
er but also in the wake flow. The figures also show the re-
ults reported by Hulsen et al. [34] at the corresponding Wi,

ig. 15. Flow past a cylinder in a channel, w/Rc = 2: σxx on the cylinder and
n the symmetry line at Wi = 0.6. The GLS4 and DEVSS-TG/SUPG results are
btained for M2. © from Hulsen et al. [34].

Fig. 17. Flow past a cylinder in a channel, w/Rc = 8: Finite element mesh M0
(a) complete domain (b) detail of the mesh from x = −4 to x = 4.

Fig. 18. Flow past a cylinder in a channel, w/Rc = 8: Drag force on the three
meshes. The dotted curve is obtained from Sun et al. [21]. Inset: detail of the
drag force at high Wi.
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Fig. 19. (Color online) Flow past a cylinder in a channel, w/Rc = 8: (a) Mxx, (b) Mxy and (c) Myy contours at Wi = 2.0 on mesh M2.

Table 1
Flow past a cylinder in a channel, w/Rc = 2: Characteristics of the finite element meshes

Mesh Elements Unknowns Time per Newton iteration (s) Memory usage (MB)

GLS4 DEVSS GLS4 DEVSS εd GLS4 DEVSS εd

M0 532 − − − − − − − −
M1 4788 49960 79102 220 322 31.7 608 1140 46.7
M2 8512 87890 139514 648 934 30.6 1410 2647 46.7
M3 13300 136460 216950 1460 2144 31.9 2720 5122 46.9
M4 19152 195670 311410 2914 − − 4650 − −
εd is the % relative difference in the respective values from DEVSS and GLS4.

Table 2
Flow past a cylinder in a channel, w/Rc = 8: Characteristics of the finite element meshes

Mesh Elements Unknowns Time per Newton iteration (s) Memory usage (MB)

M0 250 − − −
M1 4000 41690 198 396
M2 6250 64610 440 863
M3 12250 125450 1505 1859
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Figs. 20 and 21 show Mxx versus s (defined in Section 4.2.1)
at Wi = 1.5 and 2.0, respectively. At Wi = 2.0, the streamwise
normal conformation component Mxx has not yet converged in
0 O.M. Coronado et al. / J. Non-New

nd good agreement is found with results on M3. In previous
orks, the convergence of the stresses has been shown by com-
aring stress profiles obtained on systematically refined meshes
sing p- and h-refinement [30,34]. While overlap of the results
emonstrates qualitatively mesh convergence, here, accuracy is
easured more precisely by Richardson extrapolation:

d(h) = fd(0) + αhn, (33)

here fd(0) is the drag for an infinitely refined mesh, n the rate of
esh convergence and α is a constant. fd(0) is used to compute

he relative errors e = |(fd(h) − fd(0))/fd(0)| × 100% in fd(h).
ig. 8 shows fd predictions from GLS4 and DEVSS-TG/SUPG
long with the results presented by Hulsen et al. [34] atWi = 0.6.
he extrapolated values of fd for an infinitely refined mesh
re 117.979 and 117.778 for GSL4 and DEVSS-TG/SUPG,
espectively. Thus, the GLS4 extrapolated results are within
.2% of the values computed by high resolution finite volume
fd = 117.79 [40]), by pressure-stabilized finite elements (fd =
17.78 [30]), by DEVSS-DG-Log conformation finite elements
fd = 117.77 [34]), and by DEVSS-TG/SUPG calculations.
ig. 9 shows e versus h, and a mesh convergence rate of 2.39 is
bserved.

Similarly, Richardson extrapolation analysis is also per-
ormed for Mxx at a point in the wake flow (x = 2; y = 0).
he extrapolated value of Mxx is 26.05 and the rate of mesh
onvergence is 1.74. Fig. 10 shows e versus h for Mxx. In
ll cases, results on M4 are also employed to obtain the ex-
rapolated values. Fig. 11 shows the conformation contours at
i = 0.7, in which, the formation of sharp boundary layers on

he cylinder and along the symmetry line in the wake flow are
bserved. These boundary layers are difficult to resolve numer-
cally, and the onset of oscillations in the conformation fields is
bserved as the boundary layers grow at high Wi. The influence
f the sharp boundary layer at high Wi is shown in Figs. 12–
4, which plot M components along line x = 2. At Wi = 0.5
nd 0.6 a smooth profile for the M components is observed,
hereas at Wi = 0.7 oscillations appear towards the symme-

ry line (y → 0). The maximum Wi attained in these simula-
ions is slightly above 0.7; beyond this, M loses its positive-
efiniteness.

A direct comparison of computational cost between GLS4
nd DEVSS-TG/SUPG is performed, while keeping the same
umber of degrees of freedom for conformation; the latter em-
loys biquadratic interpolation functions for velocity, whereas
ilinear for pressure, velocity gradient and conformation. The
esults at Wi = 0.6 on M2 are obtained from both methods and
omparable accuracy is observed. Fig. 15 shows σxx versus s
long with the results of Hulsen et al. [34]. The GLS4 and
EVSS-TG/SUPG characteristics (number of unknowns, time
er Newton iteration and memory usage) are listed in Table 1.

Fig. 16 shows a direct comparison of GLS4 and DEVSS-
G/SUPG with respect to the number of degrees of freedom
or conformation, and it can be observed that GLS4 is ∼ 30%
omputationally faster and uses only 45% of the memory com-
ared to DEVSS-TG/SUPG (for the same number of degrees of
reedom for conformation).

F
a

ig. 20. Flow past a cylinder in a channel, w/Rc = 8: Mxx on the cylinder and
long the symmetry line in the wake at Wi = 1.5.

.2.2. Flow past a cylinder in a channel: w/Rc = 8
In this case, w = 8, Rc = 1, Lu = −40, Ld = 40, Q = 8 and

= 0.59. Following the same procedure as in the previous case,
he M1, M2 and M3 meshes are obtained by dividing every
lement side of the mesh M0 by 4, 5 and 7, respectively. Fig.
7 shows the mesh M0, and details of the subsequent meshes
re listed in Table 2. The drag on the cylinder from the three
eshes are compared with the results reported by Sun et al. [21]

n Fig. 18. For this case, a complete overlap of drag predictions
rom the three meshes is observed, and a good agreement with
esults of Sun et al. [21] is found up to Wi = 2.0. Moreover, the
aximum Wi achieved in this simulation is ∼2.7. In Fig. 19,

he contour plots for the M components are shown at Wi = 2.0.
ig. 21. Flow past a cylinder in a channel, w/Rc = 8. Mxx on the cylinder and
long the symmetry line in the wake at Wi = 2.0.
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Fig. 22. Flow past a cylinder in a channel, w/Rc = 8: Mxx along line x = 4 on
mesh M3.

Fig. 23. Flow past a cylinder in a channel, w/Rc = 8: Mxy along line x = 4 on
mesh M3.

Fig. 24. Flow past a cylinder in a channel, w/Rc = 8: Myy along line x = 4 on
mesh M3.
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he wake. Figs. 22–24 show the M components along the line
= 4 at Wi = 1.0, 1.5 and 2.0, respectively. It can be seen that

ignificant oscillations appear towards the symmetry line (y →
) at Wi = 2.0.

. Conclusions

A complete four-field Galerkin/Least-Squares (GLS4)
ormulation to simulate the flow of viscoelastic fluids is pre-
ented. The method successfully circumvents the compatibility
onditions associated with the multiple discrete unknown fields,
hereby allowing equal-order polynomial interpolations for all
ariables.

The formulation is presented for the equations governing
he inertialess flow of an Oldroyd-B (β = 0.59) fluid. The
onstitutive equation is written in terms of the conformation
ensor, and can be easily extend to other constitutive models
e.g., Giesekus, FENE-P, FENE-CR, etc.). The set of governing
quations—conservation of mass, momentum and the constitu-
ive equation—are reduced to first-order by employing an inter-
olated traceless velocity gradient. The equations are solved in a
oupled way by using Newton’s method with analytical Jacobian
nd a direct solver; the positive-definiteness of the conformation
ensor is checked in all simulations. The method is evaluated
or obtaining mesh-converged solutions in two benchmark
roblems.

The flow in a planar channel is computed on four meshes
f increasing resolution. The results are compared with the
nown analytical solution, and it is observed that the GLS4
ethod is able to preserve the positive-definiteness of M at

igh Wi. The mesh-convergence rate is also computed and
ound to be comparable to the state-of-the-art methods such as
EVSS.
The flow past a cylinder in a channel is computed on system-

tically refined meshes. Two different ratios of channel width to
ylinder radius are used—2:1 and 8:1. In both cases, at moderate
i, the drag on the cylinder matches well with the state-of-the-

rt methods, and at high Wi, the results follow the same trends.
t is well known that in these problems, sharp boundary layers
f M are formed on the cylinder and along the symmetry line in
he wake, therefore mesh convergence for all components of M
s analyzed. The onset of the oscillations in the computed values
f conformation are observed at high Wi; this may be due to the
on-optimal definition of the stabilization parameters, or to the
ailure of the low order basis functions to capture exponentially
rowing stress (conformation) profiles along streamlines in
ones of strong flow (see, e.g., Refs. [33,34]). On single proces-
or machines, GLS4 proves about 30% faster and 50% cheaper
memory-wise) than DEVSS while providing results of compa-
able accuracy. However, GLS4 is expected to scale better on dis-
ributed memory clusters because of nodal accounting of degrees
f freedom and easier preconditioning of the GMRES solver
28].
In summary, this work demonstrates that GLS4 is on par with
he state-of-the-art methods for solving viscoelastic fluid flows.
he method is easy to implement, because equal order polyno-
ial interpolations can be used for all variables. The method can
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urther benefit from the latest developments in this field, e.g.,
rom the logarithmic representation of the conformation tensor
34], which imposes the constraint of positive-definiteness.
ther possibilities to improve the performance of GLS4
ay also be considered, including adjoint of GLS or vari-

tional multiscale (VMS) [42] variant, and discontinuity
apturing.
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ülich.

eferences

[1] R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of Poly-
meric Liquids, vol. 2, 2nd ed., John Wiley & Sons, New York, 1987.
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