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a b s t r a c t

Though computational techniques for two-dimensional viscoelastic free surface flows are well developed,
three-dimensional flows continue to present significant computational challenges. Fully coupled free sur-
face flow models lead to nonlinear systems whose steady states can be found via Newton’s method. Each
Newton iteration requires the solution of a large, sparse linear system, for which memory and compu-
tational demands suggest the application of an iterative method, rather than the sparse direct methods
widely used for two dimensional simulations. The Jacobian matrix of this system is often ill-conditioned,
resulting in unacceptably slow convergence of the linear solver; hence preconditioning is essential. We
propose a variant sparse approximate inverse preconditioner for the Jacobian matrix that allows for the
PAI
pproximate inverse preconditioner

solution of problems involving more than a million degrees of freedom in challenging parameter regimes.
Construction of this preconditioner requires the solution of small least squares problems that can be sim-
ply parallelized on a distributed memory machine. The performance and scalability of this preconditioner
with the GMRES solver are investigated for two- and three-dimensional free surface flows on both struc-
tured and unstructured meshes in the presence and absence of viscoelasticity. The results suggest that
this preconditioner is an extremely promising candidate for solving large-scale steady viscoelastic flows
with free surfaces.
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. Introduction

Flows with free surfaces and free boundaries arise in industrial
nd biological applications as varied as polymer processing, coat-
ng, ink-jet printing, spraying, deformation of blood cells, blood
ow in arteries and capillaries, and flow in the deep pulmonary
lveoli. Most of these flows exhibit two distinguishing features:
1) the fluid is complex, i.e., it has microstructural features, and
hus the Cauchy stress is not merely composed of viscous and pres-
ure forces, but includes a viscoelastic term that is important and
ometimes controlling; (2) the surface forces are comparable to or
ominate the viscous and elastic forces due to the flow of the liquid
Please cite this article in press as: Z. Castillo, et al., Parallel solution of larg
preconditioning, J. Non-Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm

nd the subsequent deformation of the microstructure. Examples
nclude coating and ink-jet flows of polymer solutions, where the
ow-induced deformation of the polymer molecules can generate
teep layers of elastic stress.
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Because surface and viscoelastic forces are often more important
han viscous ones, there are large non-diagonal contributions in the

omentum equations that arise from the deformation of the free
urfaces or elastic boundaries, and from the microstructural elastic
tress. Thus, fully coupled algorithms for solving the flow equa-
ions are desirable. To solve for the moving boundaries together
ith velocity, pressure, and stress, an equation to describe the mesh
ust be incorporated into the model. Several methods for the free

urface problem have been developed, chiefly elliptic mesh gener-
tion and the domain deformation method. These methods have
een successful in describing 2D Newtonian free surface problems
1,2,3,4,5,6], and have been extended effectively to 2D viscoelastic
ows [7,8,9,10,11]. Three-dimensional free surface flow computa-
ions still present challenges [12,13,14], owing in large part to the
cale of the computation.
e-scale free surface viscoelastic flows via sparse approximate inverse
.2008.09.005

A domain deformation method is used in this study to solve both
D and 3D free surface flows. The continuous model is discretized
o a set of nonlinear algebraic equations via the DEVSS-TG/SUPG

ixed finite element method [15,8,16], which has proved to be an
ffective and flexible way of studying systems where viscoelasticity

dx.doi.org/10.1016/j.jnnfm.2008.09.005
http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
mailto:embree@rice.edu
mailto:mp@rice.edu
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nd surface forces are important and the physical domains are
omplex.

The nonlinear algebraic equations are solved by Newton’s
ethod. At each Newton iteration a linear system Ax = b needs

o be solved with the Jacobian as the coefficient matrix. Direct
rontal solvers (see, e.g. [17]) have been widely applied to solve
D free surface flows [2,4,7]; however, for 3D flows direct solvers
re impractical due to the system’s dimension (frequently over one
illion unknowns) and sparsity pattern. Alternatively an iterative
ethod, such as the GMRES algorithm [18], can be applied [12,19].

n the free surface problems considered here, the Jacobian matri-
es are highly ill-conditioned, with small or zero diagonal entries
ue to the coupling of the free surface and elastic stresses with
he flow equations. Consequently GMRES converges very slowly
hen applied to this poorly conditioned system, and an effective
reconditioner is essential.

The most commonly used general-purpose preconditioners are
ased on incomplete factorizations of A, such as the ILU precon-
itioners, which perform an incomplete LU factorization of A (see,
.g. [20]). However, the success of an ILU preconditioner depends
n its ability to handle several potential problems, including zero
ivots, instability of the LU factors, and the challenge of parallel

mplementation. The latter issue is decisive for our application.
pproximate inverse preconditioners can avoid some of these chal-

enges. Instead of factoring A, one seeks a sparse approximation to
−1

, and replaces the forward and backward solves of ILU precon-
itioning with a low-cost sparse matrix–vector product.

One typical approach for constructing an approximate inverse
reconditioner is based on optimization. The idea, introduced by
enson and Frederickson [21], is to build a sparse preconditioner
that minimizes ‖I − AM‖F (or ‖I − MA‖F for left preconditioning),

ubject to sparsity constraints on M. The use of the Frobenius norm
· ‖F provides inherent parallelism because the constrained mini-
ization problem decouples into independent linear least squares

roblems, one for each column (row) of M for right (left) precondi-
ioning.

. Mathematical formulation

We begin by describing a mathematical model for viscoelastic
ree surface flows.1 The fully-coupled system includes equations
or the domain, interpolated velocity gradient, and transport of
he mass, momentum, and conformation tensor—22 coupled scalar
artial differential equations in three dimensions. These equa-
ions are solved simultaneously to obtain the unknown position,
ressure, velocity, conformation tensor, and velocity gradient. The
ollowing system represents a steady and incompressible viscoelas-
ic flow [8]:

= ∇ · Te, (1)

= ∇ · v, (2)

= �v · ∇v − ∇ · T − ∇�, (3)

= L − ∇v + 1
tr (I)

(∇ · v)I, (4)

( )
Please cite this article in press as: Z. Castillo, et al., Parallel solution of larg
preconditioning, J. Non-Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm

0 = v · ∇M − 2�
D : M
I : M

M − � M · D + D · M − 2
D : M
I : M

M ,

−M · W − WT · M − 1
�

(g0I + g1M + g2M2),
(5)

1 Throughout, boldface roman denotes physical vectors and tensors, while sans-
erif represents algebraic vectors and tensors. Gibbs’ notation [22] is used for
perations between physical vectors and tensors; standard linear algebra notation
s used elsewhere.
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here tr (I) is the trace of the identity I, which is of order two if the
ow is two-dimensional and of order three for a three-dimensional
ow, D : M = ∑

i

∑
jDijMji = tr (D · M), and ∇ is the gradient vector

n space; Te is the stress tensor of the elastic pseudo-solid for the
omain, v is the velocity vector, � is the material density, T is the
otal stress tensor, � is the potential body force per unit volume, L
s the interpolated velocity gradient, M is the conformation tensor,

and � are the polymer resistance to stretching and orientation,
≡ (1/2)(L + LT ) is the rate of strain, W ≡ (1/2)(L − LT ) is the vor-

icity, � is the characteristic relaxation time, and g0, g1 and g2 are
elaxation functions.

Notice that for Newtonian free surface flows, only the first three
qs. (1)–(3) are needed.

Appropriate boundary conditions must be imposed in Eqs.
1)–(5). The mesh generation equation (1) has second-order deriva-
ives of position (as Te is related to position derivatives); thus,
oundary conditions must be imposed on all boundaries. The
omentum equation (3) is elliptic and hence momentum boundary

onditions must also be specified on all boundaries. The transport
quation (5) of the conformation tensor is a hyperbolic equation,
hich requires boundary conditions only at the inflow boundaries,

.e., where n · v < 0, with n a unit outward normal vector [23]. The
ontinuity Eq. (2) and the velocity gradient Eq. (4) do not require
oundary conditions.

In this study we use the following boundary conditions for the
esh generation equation:

Fixed node: x = x0, where x0 is the fixed position.
Free surface: n · v = 0 and tn : Te = (n · Te) · t = 0, where t is the
unit tangent vector and (n · Te) is a row vector.

The momentum boundary conditions used in this study are:

Fixed velocity: v = v0 where v0 is a constant velocity.
Velocity profile: v(x) = f (Q, x) where Q is a known flow rate and f
is a function.
Symmetric boundary: n · v = 0 and tn : T = 0.
Free surface condition: n · T = ∇ II · (�(I − nn)), where � is the sur-
face tension and ∇ II = (I − nn) · ∇ is the surface gradient.

The boundary condition imposed on the transport equation for
he conformation tensor is v · ∇M = 0.

In addition to the above boundary conditions, some related
imensionless parameters are implicitly defined in Eqs. (1)–(5):

The Reynolds number, Re ≡ �vd/�, characterizes the balance
between inertial and combined viscous and viscoelastic forces,
where � is the total viscosity.
The capillary number, Ca ≡ �v/� , measures the relative impor-
tance of the combined viscous and viscoelastic forces to surface
tension forces.

Here, v and d are the characteristic velocity and length of a flow,
nd � is the surface tension of this flow. For a viscoelastic flow, two
ore dimensionless numbers are defined:

The Weissenberg number, We ≡ ��̇c , represents the intensity of
the flow on the scale of the relaxation time of the polymer con-
formation, where �̇c is a characteristic shear rate.
The solvent viscosity ratio, ˇ ≡ �s/(�s + �p) ≡ �s/�, character-
izes the relative importance of viscous and viscoelastic stresses,
where �s is the solvent viscosity and �p is the polymer viscosity.
e-scale free surface viscoelastic flows via sparse approximate inverse
.2008.09.005

For a detailed description of these parameters and Eqs. (1)–(5),
ee Xie and Pasquali [14,24].

We discretize Eqs. (1)–(5) by the DEVSS-TG/SUPG mixed finite
lement method [15,16]; for details, see [7,8]. Structured quadri-
ateral elements are used for the 2D problems. The position and

dx.doi.org/10.1016/j.jnnfm.2008.09.005
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We wish to identify those elements in J̃ whose contribution to
mk would cause the greatest reduction in the residual norm. Sup-
pose we keep mk the same except for allowing mk(j) to fill in for
some j ∈ J̃. The optimal value for mk(j) is given by

�j = argmin
�

‖rk − �Aej‖2 = r
T
k Aej

‖Aej‖2
2

,
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elocity basis functions are biquadratic and continuous, the veloc-
ty gradient and conformation basis functions are bilinear and
ontinuous, and the pressure basis functions are linear and dis-
ontinuous. Unstructured tetrahedral elements are used for the
D problems. The basis functions for position and velocity are
uadratic and continuous, those for pressure, velocity gradient and
onformation are linear and continuous. The unknowns associated
ith each node are ordered consecutively, so that the Jacobian
atrix has banded structure with entries near the diagonal cor-

esponding to intra-element coupling and nonzero entries farther
rom the diagonal describing inter-element effects. The fully cou-
led set of nonlinear algebraic equations is solved by Newton’s
ethod with the analytical Jacobian, requiring at each step the

olution of a large scale system of linear algebraic equations,
	x = −r, where J is the Jacobian matrix, 	x is the Newton
pdate, and r is the Newton residual. Here our main concern is the
onstruction of a preconditioner to facilitate the solution of this
ystem.

. The preconditioner

In this section we describe the preconditioner we propose in
erms of the generic linear system Ax = b with n unknowns. Given
he sparsity structure of the free-surface flow problems we aim to
olve, the fill-in and organization of conventional incomplete LU
actorization preconditioners inhibits overall parallel scalability.
or this reason we turned our attention to sparse approximate
nverses.

A considerable variety of such preconditioners have been pro-
osed, including factored versions proposed by Kolotilina and
eremin [25] and Benzi and Tůma [26], and unfactored precondi-
ioners proposed by Cosgrove et al. [27], Grote and Simon [28], and
how and Saad [29]. In preliminary experiments (using the global

acobian matrix on a 2D free-surface viscoelastic flow problem) we
ound that the Benzi–Tůma preconditioner suffered from an unac-
eptable loss of sparsity, and thus we focused our attention on the
nfactored preconditioner of Grote and Huckle [30].

Because the inverse of a sparse matrix is generally dense, the

uality of the sparse approximation M to A
−1

depends critically on
he sparsity pattern chosen for M. This choice can be influenced
y the sparsity pattern of A and knowledge accumulated from
xperience with a particular application, or determined through
dynamic algorithm. As the sparsity of M decreases, the accuracy
f the preconditioner improves, yet M becomes more expensive to
ompute, store, and apply. Thus, to construct an effective precon-
itioner one must balance the virtues of sparsity with the need for

good approximation to A
−1

. See, for example, the discussions of
how [31] and Tang [32].

One convenient method for constructing a sparse approximate
nverse seeks the matrix M of a given sparsity pattern that mini-

izes ‖I − AM‖F . The choice of the Frobenius norm ‖ · ‖F leads to
nherent parallelism, since

in ‖I − AM‖2
F ≡ min

n∑
k=1

‖ek − Amk‖2
2, (6)

here ek and mk represent the kth columns of I and M. The solution
f Eq. (6) decouples into

in‖e − Am ‖ , k = 1, . . . , n, (7)
Please cite this article in press as: Z. Castillo, et al., Parallel solution of larg
preconditioning, J. Non-Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm

mk

k k 2

ach of which can be solved independently.
With no restriction imposed on mk, problem (7) is uniquely

olved by the kth column of A
−1

, so that one would solve n lin-
d
A
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ar systems with A to construct a preconditioner for the solution of
he single system Ax = b. Thus a sparsity constraint is imposed on

k, with zero entries in mk preventing the corresponding columns
f A from contributing to the objective function in (7). Hence we
xpect many rows of ek − Amk to be zero for all mk having the
pecified sparsity pattern. The challenge, of course, is to determine
satisfactory sparsity structure for M that produces an effective

reconditioner at a minimum cost to construct and apply. Here
ur approach is a variant of the algorithm of Grote and Huckle
30], which constructs an unfactored approximate inverse based
n a preliminary sparsity pattern for M. This preconditioner is then
mproved through refinement steps that increase the number of
onzero entries in each column of M.

Throughout we focus on construction of a right preconditioner
or our matrix A, with which the linear system Ax = b is trans-
ormed into AMy = b with x = My. Right preconditioning has the
irtue that the residual norm used in the stopping criterion for
reconditioned GMRES is also the residual for the original linear
ystem. Once GMRES has determined a suitable approximation to y,
he desired solution x is recovered through a simple matrix–vector

ultiplication with M.

.1. The Grote–Huckle SPAI algorithm

We now recapitulate the basic algorithm of Grote and Huckle
30], focusing on the construction of mk, the kth column of M. Let
he set J comprise the indices of entries of mk that are initially
ermitted to be nonzero. Since A is sparse, many entries in the
roduct Amk will also be zero, and we wish to avoid computing
hem. Toward this end define the set I such that A(i, j) /= 0 if and
nly if i ∈ I and j ∈J.2 With this notation, the original large opti-
ization problem (7) constrained by the sparsity of mk reduces to

he small unconstrained problem

in
m̂k

‖êk − Âm̂k‖2,

here êk = ek(I), Â = A(I,J), and m̂k = mk(J) denote the reduced
ectors and coefficient matrix. This standard least squares problem

an be readily solved for m̂k via the QR factorization of Â, and one

an then easily expand m̂k to obtain mk.
Typically the set J is insufficient to yield a column residual rk ≡

k − Amk with small norm, and thus one seeks an automatic way of
omplementing this index set to most effectively reduce ‖rk‖. Grote
nd Huckle proposed the following heuristic. Let the set L consist
f the indices of all elements 
 of rk such that |rk(
)| > tol for some
ser-specified tolerance tol. Then the new entries of mk that will be
ermitted to fill-in will be drawn from the set

˜ = {j ∈ {1, . . . , n} : j /∈ J and A(
, j) /= 0 for some 
 ∈L}.
e-scale free surface viscoelastic flows via sparse approximate inverse
.2008.09.005

2 Here we use MATLAB notation to specify the entries of a matrix; e.g., A(i, j)
enotes the (i, j) entry of A; A(I,J) denotes all entries A(i, j) with i ∈ I and j ∈J; and
(:,L) denotes all entries A(i, 
) for i = 1, . . . , n and 
 ∈L.

dx.doi.org/10.1016/j.jnnfm.2008.09.005
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rom which follows a measure of the improved residual norm:

j = ‖rk − �jAej‖
2
2 = ‖rk‖2

2 − (r
T
k Aej)

2

‖Aej‖2
2

.

The indices j that reduce the residual the most are those for
hich �j has the smallest value. Since A is invertible, A(L, :) has

ull row rank, and thus for any nonzero rk and nontrivial L and J̃,

k(L)T A(L, J̃) /= 0,

hich guarantees that at least one j ∈ J̃ will yield some improve-
ent in the residual norm. Often many entries in J̃ will yield

mprovement, and it may prove best to restrict the new nonzero
ntries to be those j ∈ J̃ that yield the greatest improvement. One
an make multiple passes through this refinement algorithm until
rk‖ is acceptably small or mk contains some maximum number
axcfill of nonzero entries.

Grote and Huckle [30] show that the SPAI process is convergent
s tol → 0 and maxcfill → n. Various bounds on the accuracy of the
reconditioner exist; for example, if ‖rk‖2 = ‖ek − Amk‖2 < tol for
ll k = 1, . . . , n, then ‖I − AM‖2 ≤ tol

√
n.

.2. Modification of the SPAI algorithm for free surface flows

Our primary goal is the solution of linear systems involving
he Jacobian matrices arising in free surface flow applications, sys-
ems that arise at each step of a Newton iteration. Fig. 1 shows
he sparsity pattern for a typical Jacobian arising from a 3D rod
oater, Problem 2 described below. Though this matrix has a dis-
inct band structure, that bandwidth is a significant proportion of
he matrix dimension. Assembly of this Jacobian from the elemen-
al matrices used in the finite element discretization code would
e prohibitively expensive for large problems, particularly given
he distribution of such elemental matrices over processors in a
arallel machine. (In 3D problems, the elemental Jacobian matri-
es alone are of dimension 124.) For this reason, the conventional
Please cite this article in press as: Z. Castillo, et al., Parallel solution of larg
preconditioning, J. Non-Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm

PAI algorithm is unappealing for very large problems.
We obtain a more satisfactory preconditioner by applying the

PAI algorithm to a matrix Ã comprising the central bands of A, a
parsification of A (see [31], in particular regarding [33] for related
deas for symmetric matrices). This variant of SPAI requires the def-

ig. 1. Sparsity pattern of a Jacobian matrix (with reverse Cuthill–McKee reordering)
rising from a 3D rod coating free surface flow (Problem 2, Mesh 2). The matrix is
f dimension 45,146 and contains 8,185,273 nonzero entries.
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ig. 2. Sparsity pattern of a sparse approximation inverse preconditioner for the
acobian matrix shown in Fig. 1. Though an approximation of an inverse of dimen-
ion 45,146, this matrix has a bandwidth of 101 and roughly half as many nonzeros
4,916,681) as the matrix it preconditions.

nition of the parameters band, nc, tol, and maxcfill. The parameter
and specifies the number of diagonal bands of the Jacobian used
or the construction of the preconditioner, so that

˜ (j, k) =
{

A(j, k), |j − k| ≤ band;
0, otherwise.

The parameter nc restricts the number of passes of residual
mprovement allowed for each column of M, and tol flags those
ntries in each column that are eligible for improvement; maxcfill
enotes the maximum number of entries that are allowed to fill
ithin each column of M. Intuitively, by basing M on the inte-

ior band of A we construct a preconditioner that emphasizes
he intra-element coupling in Eqs. (1)–(5), while exerting less
ffort to capture the coupling between elements. The experiments
escribed in the next section demonstrate that this strategy is
ighly effective for our applications. Fig. 2 shows the sparsity pat-
ern for a preconditioner for the matrix shown in Fig. 1; indeed, this
parse approximate inverse has fewer nonzeros than the matrix
hose inverse it approximates.

For the 3D problem, we preprocess the finite elements with the
everse Cuthill–McKee reordering (to help reduce the Jacobian’s
and-width) before computing the approximate inverse precondi-
ioner [17]; for the 2D problem we use a Gibbs–Poole–Stockmeyer
rdering [34]. The effectiveness of the preconditioner could poten-
ially be improved through a more sophisticated reordering scheme
hat seeks to place large entries on the diagonal [35,36], which has
roved effective in other fluid computations [37].

. Test problems and computational experiments

In this section we test the effectiveness of our preconditioner
n a variety of flows in a 2D slot coater and a 3D rod coater, both
ith free surface boundaries. The results include the solution of a

D Oldroyd-B fluid with Weissenberg number We = 0.5 on a grid
e-scale free surface viscoelastic flows via sparse approximate inverse
.2008.09.005

ith more than a million degrees of freedom. In both problems, the
eynolds number is set to zero; counterintuitively, this is a partic-
larly challenging case for viscoelastic flows, since Re /= 0 leads to
dditional contributions to the diagonal entries in the momentum
quation.

dx.doi.org/10.1016/j.jnnfm.2008.09.005
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Table 1
Definition of the 10 meshes used in the tests. Mesh 1 is used for Problem 1 (2D slot
coating flow); the rest are used for Problem 2 (3D rod coating flow).

Mesh Elements Nodes Unknowns, n

1 180 779 3,656
2 2,939 5,271 45,146
3 3,598 6,458 55,292
4 5,368 9,323 79,218
5 8,235 13,906 117,516
6 11,876 19,700 165,800
7
8
9
1
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ig. 3. Schematic of Problem 1: flow downstream of 2D slot coater with free surface.

roblem 1. A Newtonian free surface flow in a 2D slot coater.
his problem comes from a Newtonian 2D slot coater flow with free
urface boundary as shown in Fig. 3. The potential body force is � =
, the flow rate per unit width is Q = 0.5hv, the Reynolds number

s Re ≡ �vh/� = 0, and the capillary number is Ca ≡ �v/� = 0.1,
here h is the gap and v is the velocity of the bottom wall. Because

his is a Newtonian flow, only Eqs. (1)–(3) are required.

roblem 2. A viscoelastic free surface flow in a 3D rod coater.
his example is a free surface flow with an Oldroyd-B fluid in
3D rod coater. An Oldroyd-B liquid is a very simple model for
viscoelastic fluid that is commonly used for numerical experi-
entation. Because the 3D rod coating is axisymmetric, only one

uarter of the channel is needed to fully characterize the flow,
s shown in Fig. 4. The flow conditions are set as follows: vol-
me flow rate Q = 0.754, Re ≡ �U0R1/� = 0, the solvent viscosity
atio ˇ� ≡ �s/� = 0.59, and the capillary number Ca ≡ �U0/� = 1,
here U0 = 1 is the velocity of the rod, �s is solvent viscosity, and �

s the relaxation time of the Oldroyd-B fluid. Our experiments take
he Weissenberg number We ≡ �U0/(R2 − R1) equal to 0.5 or 1.

The parameters in the conformation transport equation (5) for
he Oldroyd-B fluid are � = 1, � = 1, g0 = −1, g1 = 1, g2 = 0, and
a/∂M = (G/2�)I, where G = �p/� is the polymer modulus and �p

s polymer viscosity with �p + �s = �.

.1. Experimental environment

This set of experiments first compares the behavior of three
pproaches for solving the linear systems arising in our free sur-
ace flow problems, and then provides a more detailed analysis of
he performance of SPAI-GMRES. The three approaches are:

FS: A direct frontal solver, based on the ideas presented in [17].
The original implementation, due to de Almeida [2], has proved
to be highly efficient and reliable in years of testing on a variety
of 2D flow problems.
ILUT-GMRES: An iterative solver implemented by Saad in the
SPARSKIT library [38]. The incomplete LU preconditioner requires
Please cite this article in press as: Z. Castillo, et al., Parallel solution of larg
preconditioning, J. Non-Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm

the parameters L-fill (the level of fill-in allowed in the factors L
and U) and drop-tol (the drop-tolerance). The SPARSKIT GMRES
solver requires the Krylov subspace size, Krylov-size (the maxi-
mum Krylov subspace size) and restart (the number of restarts
allowed).

ig. 4. Schematic of Problem 2: 3D rod coating flow and boundary conditions, R1 = 1,
2 = 2R1, L1 = 2R1, and L2 = 6R1.
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SPAI-GMRES(p): A GMRES solver (a parallel adaptation of the
serial SPARSKIT implementation) preconditioned by the sparse
approximate inverse described in Section 3; here p denotes the
number of processors used. The preconditioner is specified by
the parameters band, nc, maxcfill, and tol. For all experiments
described here we use maxcfill = 2 × (band − 1) and tol = 0.01,
and set nc such that no more than two passes of residual improve-
ments are performed for each column. The parameter band is
varied; see, e.g., the experiments reported in Table 6. The initial
sparsity pattern J for column mj of M corresponds to the nonzero
pattern of the banded portion of the Jacobian. At each pass of
residual refinement for mj , we limit the number of new nonzero
entries to 	 1

2 (maxcfill − |J|)
, where |J| denotes the number of
entries in the initial sparsity pattern for mj .

We seek steady state solutions for Problems 1 and 2 by solving
qs. (1)–(5) with Newton’s method. At each Newton iteration, the
inear algebraic equations will be solved by the frontal solver (FS),
LUT preconditioned GMRES (ILUT-GMRES), and sparse approx-
mate inverse preconditioned GMRES (SPAI-GMRES(p)). Table 1
ontains data describing the 10 meshes used on these two prob-
ems; Mesh 1 is used for Problem 1 and Meshes 2–10 are used for
roblem 2.

Based on practical experience and the recommendations given
y Kelley [39], unless otherwise noted we require the GMRES
esidual norm reach 10−3 in the first Newton iteration and
in{10−7, ˇ‖rk−1‖2/‖rk−2‖2} in the kth Newton iteration (k =

, 3, . . .), where ˇ is a constant set to 0.9 for this study and ‖rk‖
s the kth Newton iteration residual norm. The Newton iterations
re halted when the Newton update norm plus the residual norm
s less than 10−6.

The computations were performed on the Rice Terascale Clus-
er (RTC), a 1 TeraFLOP Linux cluster based on 900 MHz Intel
tanium2 processors. This distributed memory architecture has
24 nodes with 2 GB memory and 2 processors per node, with

additional nodes having 16 GB memory and 4 processors
ach. Additional information about this machine can be found at
ttp://www.citi.rice.edu/rtc.

.2. SPAI-GMRES(p) implementation with MPI

The time consuming parts of the computation include: (1) com-
utation of the Jacobian matrix; (2) construction of the inverse
reconditioner; (3) GMRES iterations. The memory-intensive stor-
ge consists primarily of: (1) elementary Jacobian matrices; (2)
rylov subspace vectors; (3) the preconditioner M. The three time
e-scale free surface viscoelastic flows via sparse approximate inverse
.2008.09.005

onsuming parts are parallelized using the Message Passing Inter-
ace (MPI) [40]. The entries of the elementary Jacobian matrices,
ows of the Krylov subspace, and columns of the preconditioner
re uniformly distributed over the processors. The parallel compu-
ation proceeds as follows:

dx.doi.org/10.1016/j.jnnfm.2008.09.005
http://www.citi.rice.edu/rtc
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Table 2
Parameter settings for Test 1.
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Fig. 5. Mesh 1 for the 2D slot coater problem used in Test 1.

Table 4
Parameter settings for Test 2.
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1) Each processor computes the elementary Jacobian of its dis-
tributed elements, which is the number of total elements
divided by the number of processors.

2) Each processor assembles its corresponding part of the banded
Jacobian matrix from the elementary Jacobian matrices com-
puted in the first step.

3) Components of the Jacobian matrix have overlap between the
neighboring processors, so the banded Jacobian matrices com-
puted on different processors have to sum up the overlapping
part. Each processor sends its banded Jacobian to its neighbors
and receives the banded Jacobian from its neighbors, as required
for computing preconditioner columns in the next step.

4) Each processor computes its distributed columns of the precon-
ditioner (the number of columns is the total number of columns
divided by the number of processors).

5) During the GMRES iterations, when the algorithm requires the
product of the Jacobian matrix and a vector, or the product
of the preconditioner and a vector, each processor performs
its distributed elementary Jacobian matrix–vector product or
its distributed columns of preconditioner-vector product. Each
processor communicates with its neighboring processors for
the overlapping part of the vector.

6) In the Gram–Schmidt orthogonalization procedure, each pro-
cessor computes the inner product of its corresponding
components, which are then summed via the MPI allreduce
command.

The sequential and parallel execution times for the entire pro-
ess are denoted by Ts and Tp. Then the parallel speed-up for the
ntire process, Sp, is calculated by Sp = Ts/Tp and the parallel effi-
iency, Ep, by Ep = Sp/p. Similarly, let PTs and PTp denote the sequen-
ial and parallel execution times for the preconditioner. The parallel
peed-up for computing the preconditioner, PSp, is then given by
Sp = PTs/PTp, and the parallel efficiency, PEp, by PEp = PSp/p.

.3. Tests and results

We now describe the results of seven tests of our preconditioner,
he first two of which compare the performance of SPAI-GMRES(p),
frontal solver, and ILUT-GMRES, and the remaining five of which

ocus on SPAI-GMRES(p).
Test 1: The first experiment compares memory and CPU require-

ents of the three solution methods applied to Problem 1. The
omputation is performed on Mesh 1, with 180 elements and 779
odes, which produces a problem with 3656 unknowns. Fig. 5
Please cite this article in press as: Z. Castillo, et al., Parallel solution of larg
preconditioning, J. Non-Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm

hows Mesh 1 under the defined flow conditions; Table 2 contains
he settings of the parameters used for ILUT-GMRES and SPAI-
MRES(p). The Newton iteration was started from the steady state
ow for a fixed domain with a slip wall boundary condition on the

ree surface section.

p
t
C

t

able 3
omparison of frontal solver, ILUT-GMRES, and SPAI-GMRES(p) for 2D slot coater (Problem

olver Memory required Total time SP

rontal solver 16 MB 11 s n/
LUT-GMRES 23 MB 23 s n/
PAI-GMRES(1) 23 MB 124 s 10
PAI-GMRES(2) 13 MB 75 s 63
PAI-GMRES(4) 8 MB 46 s 34
PAI-GMRES(8) 6 MB 31 s 17
rylov-size Restart L-fill drop-tol band

50 10 150 10−4 101

Test 1 results: The memory, CPU time to compute the precondi-
ioner, and total CPU time (including all Newton iterations) required
y each method are listed in Table 3. GMRES converges with both
LUT and sparse approximate inverse preconditioning. However,
ecause the problem is fairly small the frontal solver has a distinct
dvantage; the SPAI-based solver only becomes competitive when
pplied in parallel.

The time spent computing the preconditioner for SPAI-
MRES(1) is 105 s, a considerable proportion of the total 124 s
eeded to solve the system. Fortunately, the computation of the
reconditioner is perfectly parallel, and is thus easily distributed to
arious processors. Table 3 also shows that for this small case, the
arallel speed-up and efficiency are high for the SPAI process and
easonably good for the overall solution.

It is worth mentioning that for this problem, restarted GMRES
oes not converge without preconditioning (for a variety of restart
arameters ranging from 10 to 500) and converges very slowly with

LUT preconditioning for many different values of L-fill and drop-tol.
The data reported in Table 3 represent the most favorable combi-
ation of parameters we discovered after numerous attempts.)

Test 2: The next test compares the performance of the frontal
olver, ILUT, and SPAI preconditioning applied to Problem 2 as the
omputational mesh is refined. The calculations are performed
n Mesh 2 and Mesh 3 at We = 1; the other flow conditions
ere defined in Section 3.2. The initial starting point for Newton’s
ethod is the result of a viscoelastic free surface flow at We = 0.5
ith all the other conditions the same. Table 4 describes the solver
arameters used for this test.

Test 2 results: Table 5 summarizes the memory usage and exe-
ution time for this example. One can see that when the number
f unknowns is large, GMRES with the SPAI preconditioner shows a
ubstantial advantage over the frontal solver (FS); here ILUT-GMRES
ails to converge. SPAI-GMRES has a much lower memory require-

ent than the frontal solver and finds the solution much more
uickly. When the size of the problem (n) increases, both the mem-
ry requirements and CPU time increase much more rapidly for the
rontal solver than for SPAI-GMRES. The parallel speed-up and the
e-scale free surface viscoelastic flows via sparse approximate inverse
.2008.09.005

arallel efficiency are high for computing the SPAI preconditioner;
hey remain high for the entire process provided the number of
PUs is low.

Test 3: The construction of the SPAI preconditioner depends on
he number of diagonals extracted from the Jacobian matrix. This

1) on Mesh 1.

AI time Sp Ep PSp PEp

a n/a n/a n/a n/a
a n/a n/a n/a n/a
5 s n/a n/a n/a n/a
s 1.65 0.83 1.67 0.83
s 2.70 0.68 3.09 0.77
s 4.00 0.5 6.18 0.77

dx.doi.org/10.1016/j.jnnfm.2008.09.005
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Table 5
Comparison of frontal solver, ILUT-GMRES, and SPAI-GMRES(p) for 3D rod coating flow problem (Problem 2) with We = 1 and Ca = 1: frontal solver performance degrades;
ILUT-GMRES fails to converge (×); SPAI-GMRES(p) performs well.

Mesh Solver Memory required Total time SPAI time Sp Ep PSp PEp

Mesh 2 n = 45, 146 FS 1966 MB 6381 s n/a n/a n/a n/a n/a
ILUT-GMRES 831 MB × n/a n/a n/a n/a n/a
SPAI-GMRES(1) 573 MB 1773 s 570 s n/a n/a n/a n/a

Mesh 3 n = 55, 292 FS 2692 MB 9435 s n/a n/a n/a n/a n/a
ILUT-GMRES 1016 MB × n/a n/a n/a n/a n/a

2370 s 633 s n/a n/a n/a n/a
1315 s 347 s 1.80 0.90 1.82 0.91
770 s 176 s 3.08 0.77 3.60 0.90
526 s 89 s 4.51 0.56 7.11 0.89
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Fig. 9 shows that the memory requirement for SPAI increases lin-
early with the problem size.

Test 5: We next investigate the behavior of SPAI-GMRES(p) on
p = 16 processors as the problem size increases. Problem 2 is solved
SPAI-GMRES(1) 696 MB
SPAI-GMRES(2) 349 MB
SPAI-GMRES(4) 175 MB
SPAI-GMRES(8) 91 MB

est investigates the effect of this bandwidth (band) on the solution
f Problem 2 on Mesh 3; the experimental conditions are the same
s in Test 2, except that band is varied here.

Test 3 results: Table 6 summarizes the memory usage, total CPU
ime, and CPU time required to compute the SPAI preconditioner.

hen too few diagonals are extracted from the Jacobian (e.g., band =
1), the resulting SPAI preconditioner fails to provide an adequate
pproximation to the inverse of the Jacobian and GMRES does not
onverge.

On the other hand, for values as small as band = 61 the SPAI pre-
onditioner is sufficiently effective to provide GMRES convergence.
emory requirements do not change much with the growing band-
idth, as the elementary Jacobian and Krylov space dominate the
emory usage; the total memory required for the preconditioner

nd the banded approximation to the Jacobian from which it is
erived, is low due to sparsity. However, the CPU time required to
ompute the preconditioner increases rapidly with band, degrad-
ng the overall performance. Although we have no precise rule for
redicting the optimal bandwidth, the tentative choice roughly
epends on the number of the unknowns in one element and
ay be affected by the dimensionless numbers controlling the off-

iagonal coupling (We, Ca, and ˇ).
Fig. 6 compares the CPU times for construction of the SPAI pre-

onditioner and the total overall computation as functions of the
andwidth of the approximate Jacobian. Observe that the former

ncreases linearly with band, while the latter increases slower than
inearly, a result of the decreasing number of GMRES iterations
equired as the quality of the preconditioner improves with increas-
ng band. Fig. 7 shows that the memory requirements of the total
omputation grow at a modest linear rate as the bandwidth of the
pproximate Jacobian grows.

Test 4: The previous test fixed the problem size but varied band.
ow we analyze the behavior of SPAI-GMRES(1) as the computa-

ional mesh is refined, i.e., as the size of the problem increases.
roblem 2 is solved with the same conditions established in Test
(using Mesh 2). The mesh is then refined three times in order to
roduce problems of gradually increasing size. Refer to Table 1 for
tatistics on Meshes 2–5 used in this experiment.
Please cite this article in press as: Z. Castillo, et al., Parallel solution of larg
preconditioning, J. Non-Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm

Test 4 results: Figs. 8 and 9 show the CPU time spent comput-
ng the preconditioner, CPU time spent on GMRES, the total CPU
ime for all Newton iterations, and the memory requirement for
he preconditioners versus the problem size.

able 6
he effect of band on the performance of SPAI-GMRES(1) for Problem 2 on Mesh 3.
When band = 41, GMRES does not converge.)

and 41 61 81 101 121

emory for SPAI 32 MB 50 MB 72 MB 87 MB 104 MB
otal memory 621 MB 647 MB 675 MB 696 MB 717 MB
ime for SPAI 60 s 213 s 424 s 633 s 926 s
otal time × 2180 s 2210 s 2370 s 2688 s

F
fi

ig. 6. Time for constructing the SPAI preconditioner and the total run time versus
and for Test 3.

Fig. 8 shows that the CPU time spent computing the SPAI pre-
onditioner increases linearly with the problem size, while the CPU
ime spent on GMRES and the total CPU time appear to increase
aster than linear but slower than quadratic. On the other hand,
e-scale free surface viscoelastic flows via sparse approximate inverse
.2008.09.005

ig. 7. Total memory versus band: memory increases at a modest linear rate for a
xed problem size in Test 3.

dx.doi.org/10.1016/j.jnnfm.2008.09.005
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Fig. 10. CPU time versus problem size for SPAI-GMRES(16) on Problem 2.

ig. 8. CPU time versus problem size for SPAI-GMRES(1) applied to Problem 2 on
eshes 2–5.

nder the same flow conditions as in Test 2 except that We = 0.5,
rylov-size = 700, and band = 201. (This value of Krylov-size was suf-
cient to give convergence for all meshes; smaller values of this
arameter would be sufficient for the two smallest meshes.) The

nitial iterate for Newton’s method is the solution for a Newto-
ian free surface flow with other conditions identical. Meshes 6–10,
escribed in Table 1, were used for this experiment; the number of
nknowns ranged from 165,800 to 1,152,702.

Test 5 results: The CPU time required to compute the precondi-
ioner and the total CPU time for all Newton iterations are plotted
gainst the problem size in Fig. 10. This figure shows a roughly linear
ncrease in both quantities.

Test 6: We now examine the parallel performance SPAI-
MRES(p) applied to our finest discretization, Mesh 10 with
,152,702 unknowns. We use the same flow conditions as in Test 2,
xcept that now We = 0.5, Krylov-size = 1000, and band = 201. We
Please cite this article in press as: Z. Castillo, et al., Parallel solution of large-scale free surface viscoelastic flows via sparse approximate inverse
preconditioning, J. Non-Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm.2008.09.005

tart Newton’s method with the steady state flow for a Newtonian
ree surface with the other flow conditions identical.

Test 6 results: Table 7 shows that memory usage and CPU time
ecrease almost linearly as the number of CPUs increases. The
ctual parallel speed-up and efficiency cannot be obtained because

ig. 9. Memory requirements for SPAI versus problem size for SPAI-GMRES(1)
pplied to Problem 2 on Meshes 2–5.

Fig. 11. CPU time for SPAI-GMRES(p) and the total computation as a function of the
number of CPUs for Problem 2 on Mesh 10: n = 1, 152, 702, Krylov-size = 1000, and
band = 201.

dx.doi.org/10.1016/j.jnnfm.2008.09.005


ARTICLE ING Model
JNNFM-2886; No. of Pages 11

Z. Castillo et al. / J. Non-Newtonian Fl

Table 7
Test 6. Parallel speed-up and efficiency for Problem 2 on Mesh 10: n = 1, 152, 702,
Krylov-size = 1000, and band = 201.

Number of CPUs 16 24 32 40 48

Memory for SPAI 237 MB 159 MB 120 MB 96 MB 79 MB
Total memory 1553 MB 1053 MB 780 MB 631 MB 526 MB
Time for SPAI 2.68 h 1.81 h 1.38 h 1.13 h 0.92 h
Total time 10.14 h 7.42 h 6.29 h 5.55 h 4.86 h
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S̃p 16 23.69 31.07 37.95 46.61

Ẽp 1 0.987 0.971 0.952 0.971
˜p 16 21.87 25.79 29.23 33.38
˜p 1 0.911 0.806 0.731 0.695

his large case cannot run on 1 CPU due to memory limitations.
ence we measure the corresponding speed-up based on our

esults for 16 CPUs as S̃p = 16 × T16/Tp and P̃Sp = 16 × PT16/PTp and

fficiency as Ẽp = S̃p/p and P̃Ep = P̃Sp/p. These values are presented
n Table 7; they reflect a high parallel efficiency for SPAI (>0.95), a
Please cite this article in press as: Z. Castillo, et al., Parallel solution of larg
preconditioning, J. Non-Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm

ate sustained over the entire process. Fig. 11 reports the CPU time
pent computing the preconditioner and the total CPU time for all
ewton iterations versus the number of CPUs. The per-processor
emory requirements for the preconditioner and the entire pro-

ess are plotted against the number of CPUs in Fig. 12.

ig. 12. Memory requirements per CPU for the SPAI preconditioner and total com-
utation, as a function of the number of CPUs for SPAI-GMRES(p) for Problem 2 on
esh 10: n = 1, 152, 702, Krylov-size = 1000, and band = 201.
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Test 7: Finally, since our main objective is to provide a scal-
ble linear solver for Newton’s method, we investigate in detail
he performance of the SPAI-GMRES preconditioner over all New-
on iterations. In particular, we consider the GMRES residual norms
or Problem 2 on Mesh 5 (117,516 unknowns) under the same flow
onditions as in Test 2 except that full GMRES (i.e., no restarting,
rylov-size = n) is used here. We perform the same test with two dif-

erent stopping rules for GMRES: the first requires the norm of the
esidual to reach 10−10; the second uses a convergence criterion of
0−3 for the first Newton iteration and min(10−7, ˇ‖rk−1‖2/‖rk−2‖2)
or the kth Newton iteration (k = 2, 3, . . .). (Recall that this latter
cheme was used for all the previous test cases described in this
ection.)

Test 7 results: Fig. 13 shows the convergence history for our two
ifferent stopping criteria. In the top figure, where the first stop-
ing criterion is applied, full GMRES requires 1693 Krylov vectors
o reduce the residual norm eleven orders of magnitude for the first
ewton iteration; 1553 Krylov vectors to reduce the residual norm
e-scale free surface viscoelastic flows via sparse approximate inverse
.2008.09.005

ine orders of magnitude in the second Newton iteration; 1294
rylov vectors to reduce the residual norm six orders of magnitude

n the third Newton iteration, and 771 Krylov vectors to reduce the
esidual norm two orders of magnitude. In the bottom figure, using
he second stopping criterion, GMRES requires 563 Krylov vectors

ig. 13. Convergence history of GMRES for 3D rod coating flow on Mesh 5. Top: using
he first stopping criterion (10−10). Bottom: using the second (variable) stopping
riterion.

dx.doi.org/10.1016/j.jnnfm.2008.09.005
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o reduce the residual norm four orders of magnitude in the first
ewton iteration, 1159 Krylov vectors to reduce the residual norm

ix orders of magnitude in the second Newton iteration, and 759
rylov vectors to reduce the residual norm three orders of magni-

ude in the third Newton iteration. At the fourth iteration the initial
esidual nearly satisfies the convergence criterion; 30 Krylov vec-
ors are sufficient to improve that residual the small amount needed
o achieve convergence.

For both stopping criteria, a total of four Newton iterations are
equired to obtain residual convergence. When the first stopping
riterion is used, the residual norm after each Newton iteration is:
.08 × 101, 1.61 × 10−1, 1.28 × 10−4, and 1.53 × 10−8. We observed
imilar behavior for all the previous experiments, indicating that
uadratic convergence in Newton’s method is preserved.

This experiment demonstrates that the second stopping crite-
ion allows for a significant overall reduction in the number of
MRES iterations while preserving the convergence behavior of
ewton’s method. In the above case, SPAI-GMRES(16) spent 2207 s
n GMRES iterations for the first stopping criterion, but only 764 s
or the second criterion.

. Summary of results

The experiments detailed in the last section demonstrate that
he variant of the sparse approximate inverse preconditioner
escribed in Section 3 enables the scalable solution of large 3D free
urface flow problems. From these experiments we conclude that
1) for small problems a frontal solver provides the best perfor-

ance, followed by ILUT-GMRES, since for these small problems
he computation of the SPAI preconditioner is expensive; (2) for
roblems of larger size (e.g., problems in three dimensions), the
erformance of both the frontal solver and ILUT-GMRES is not
cceptable, as the size of the factors is prohibitive. Indeed, when
he size of the problem exceeds (roughly) 50,000, the memory
equired for the frontal solver can hardly be accommodated. For
hese larger problems, the SPAI-GMRES implementation displays
ts advantage, especially when executed in parallel. The efficacy
nd efficiency of this preconditioner depends on both its ini-
ial sparsity pattern and the number of diagonals of the Jacobian
sed in the SPAI algorithm. Thus the initial bandwidth should be
ufficient to contain the largest entries of the Jacobian, while main-
aining a high level of sparsity. The algorithm demonstrates high
arallel scalability: CPU time and memory increase almost lin-
arly as the size of the problem increases. Finally, we note that
he same preconditioner can be used at each step of the Newton
teration.
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