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a b s t r a c t

Fundamental understanding of the formation and pinch-off of viscoelastic filaments is important in appli-
cations involving production of drops (e.g., ink-jet printing, micro-arraying, and atomization). In addition
to delaying pinch-off, in some cases, viscoelasticity is known to cause the so-called beads-on-string struc-
ture, i.e., a number of small droplets interconnected by thin filaments. In a recent publication [H. Matallah,
M.J. Banaai, K.S. Sujatha, M.F. Webster, J. Non-Newtonian Fluid Mech. 134 (2006) 77–104], it was shown
that the simulation of an elongating filament modeled by the Phan-Thien/Tanner (PTT) equation with the
Gordon–Schowalter (GS) convected derivative, which allows non-affine motion of polymer molecules in
the continuum, results in the formation of the beads-on-string structure. On the other hand, such bead
formation is not reported in calculations with other viscoelastic models that are also strain-hardening
like the PTT model but do not have the GS convected derivative (see, e.g., [M. Yao, S.H. Spiegelberg, G.H.
McKinley, J. Non-Newtonian Fluid Mech. 89 (2000) 1–43]). This starkly different behavior of the PTT equa-
tion with the GS convected derivative is investigated here. During the elongation of the filament, regions
of shear form inside the filament due to its initially curved surface. Because of the presence of the GS
convected derivative in the PTT equation – which is known to cause unphysical oscillations in stress in
simple step shear flow – the shear stress within the PTT filament exhibits temporal oscillations. The onset

of these oscillations coincides with the symmetrical migration of the location of the single maximum in
the axial component of the rate-of-strain tensor from the center of the filament to two other locations, one
in each half of the filament. This is followed by a similar movement of the location of the maximum in the
axial elastic stress inside the filament. These two events eventually lead to the formation of a bead-like
structure. The occurrence of the bead is also shown to depend on the extent of the polymer contribution

pared
to the total viscosity com

. Introduction

Formation and breakup of liquid filaments into drops is impor-
ant in widely practiced applications such as ink-jet printing [1] and
tomization [2], and in more recent applications such as micro-
rraying of DNA [3] and printing of biological cells [4]. All these
pplications involve the thinning and the eventual rupture of liquid
laments. Because of the presence of macromolecules such as poly-

ers (as additives in, e.g., inks, or as final products, e.g., DNA in DNA
icro-arraying), liquids used in these applications are viscoelas-

ic in nature. Thus, incorporation of viscoelasticity is important in
he analysis and better design of these processes. The presence of

∗ Corresponding author. Tel.: +1 765 494 4061; fax: +1 765 494 0805.
∗∗ Corresponding author. Tel.: +1 713 348 5830; fax: +1 713 348 5478.

E-mail addresses: pbhat@purdue.edu (P.P. Bhat), mp@rice.edu (M. Pasquali),
basaran@purdue.edu (O.A. Basaran).

377-0257/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.jnnfm.2009.01.004
to that of the solvent.
© 2008 Elsevier B.V. All rights reserved.

polymers, even in small amounts, results in the delayed breakup
of filaments [5], and in some cases, the breakup of filaments is
preceded by the formation of what is called the beads-on-string
structure, i.e., a structure that has a number of droplets intercon-
nected by small filaments [6]. These features are not seen in the
breakup of Newtonian filaments [7].

Thinning of filaments is also exploited in extensional rheome-
try. For example, in the filament stretching extensional rheometer
(FISER), a vertical column of liquid held between two plates or a liq-
uid bridge is stretched by separating the plates [8,9]. The mid-plane
diameter of the thinning filament is recorded, and this data is then
used to calculate the elongational viscosity of the liquid. Because of
the similarity between the filament breakup in such experiments to

that in the formation of drops, the stretching bridge is also used as
a model system to study the dynamics of pinch-off [10–13]. A slight
modification of this system, which consists of deforming bubbles
inside filaments, is used to model the behavior of tacky materials
that are subjected to stretching [14,15].

http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
mailto:pbhat@purdue.edu
mailto:mp@rice.edu
mailto:obasaran@purdue.edu
dx.doi.org/10.1016/j.jnnfm.2009.01.004
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2.3. Problem setup

Fig. 1 shows a schematic of an axisymmetric liquid bridge being
stretched between moving top and bottom plates with equal radii
P.P. Bhat et al. / J. Non-Newto

It has always been of interest to see if the occurrence of beads-
n-string feature seen in filament thinning experiments [16] can
e captured using numerical calculations. However, numerical
nalyses of elongating filaments reported in [11,17–19] do not
how formation of such beads. In these papers, strain-hardening
odels such as the Giesekus [20], the FENE-P [21], the FENE-CR

22], and the Phan-Thien/Tanner (PTT) [23] model without the
ordon–Schowalter (GS) convected derivative [24] have been used.
xceptions to this observation were published recently by Matallah
t al. [19,25]. These authors have shown the occurrence of bead-
ike structures in simulations with the PTT equation that has the
S derivative. This characteristically different behavior of the PTT
odel is closely examined in this paper. First, a brief description of

he GS convected derivative and its criticism are given.
Some viscoelastic constitutive models with non-affine motion

f polymer molecules, such as the Johnson–Segalman equation [26]
nd the PTT equation, use the GS convected derivative of the elastic
tress tensor �, which is

˚ = ∂�

∂t
+ v · ∇� − (∇v)T · � − � · ∇v + �(D · � + � · D) (1)

here v is velocity, ∇ ≡ ∂/∂x is the usual spatial gradient, ∂/∂t is
he partial time derivative, D = [∇v + (∇v)T ]/2 is the rate-of-strain
ensor, and � is an empirical coefficient that is associated with the
slippage” of polymer strands in the continuum. In the absence of
ny slippage, � = 0 and the motion of the polymer molecules is said
o be affine. The motion is non-affine otherwise (i.e., for � /= 0).

hen � = 0, the above equation reduces to the upper-convected
erivative of �. Constitutive equations that have the GS derivative
re known to (1) disobey the Lodge-Meissner relationship [27] and
2) show unphysical oscillations in step and start-up steady shear
ows [28]. With this background, it is interesting to note that Matal-

ah et al. [19] report formation of bead-like structures in simulations
f stretching PTT filaments for non-zero values of �. Investigation of
his striking feature of the PTT model is the main goal of this paper.

The present paper is organized in the following manner. Section
presents the governing equations and the numerical method used.
detailed discussion of the results is taken up in Section 3, and key

bservations of the present analysis are summarized in Section 4.

. Equations and numerical analysis

.1. Transport equations

In an incompressible and isothermal system, in the absence of
ody forces, the dynamics of filament pinch-off is governed by the
ontinuity equation ∇ · v = 0 and the momentum balance equation
(∂v/∂t) + �v · ∇v − ∇ · T = 0, where � is the density of the liquid,
nd T is the Cauchy stress tensor. The stress tensor T is split into an
sotropic part, a viscous part, and an elastic part as T = −pI + � + �,

here p is the pressure, I is the identity tensor, and � is the viscous
tress tensor. The viscous stress tensor � is defined by the Newton’s
aw of viscosity � = 2�sD, where �s is the solvent viscosity.

The polymer contribution to the Cauchy stress in a PTT fluid is
odeled by the conformation tensor based constitutive equation

29], where the microstructural features of polymer solutions is
epresented by a single variable, the conformation tensor (for more
etails, see [30–33]). The transport equation for the dimensionless
onformation tensor M in an isothermal flow neglecting diffusion
s

∂M
∂t

= −v · ∇M + (1 − �)(M · D + D · M) + M · W + WT · M

− 1
�

[1 + �(tr M − 3)](M − I) (2)
luid Mech. 159 (2009) 64–71 65

where W = [∇v − (∇v)T ]/2 is the vorticity tensor, � is the charac-
teristic relaxation time of the polymer, tr M is the trace of M, and �
and � are the parameters of the PTT model. Here, the function in the
PTT model that depends on the trace of the elastic stress (function
Y in Eq. 13 of Phan-Thien [34]) is linear in that quantity (same as in
[19]).

The elastic stress tensor � is obtained from the conforma-
tion tensor M as [35] � = 2�(M − I) · (∂a/∂M), where a(M) is the
Helmholtz free energy per unit volume and � is a function that rep-
resents the resistance of the polymer molecules to rotation. For the
PTT model, � = (1 − �) and a(M) = (G/2�) tr M, where G = �p/� is
the elastic modulus and �p is the polymer contribution to the total
viscosity �0 (= �s + �p).

As the transport equations are solved simultaneously with the
equations governing the mesh used in the numerical analysis and
the equations that arise due to the type of discretization chosen (see
below), the governing boundary and initial conditions are given in
Section 2.3.

2.2. Numerical method

The numerical method used here is the same as in Bhat et al.
[11]. Only a brief account of the method is presented here; for more
details, see [11].

Elliptic mapping method of de Santos [36] is used to determine
the location of the mesh points. It involves the solution of the elliptic
differential equation ∇ · (D · ∇ς) = 0 where ς is the mapping of
the position in the computational domain to that in the physical
domain and the dyadic D controls the spacing of the coordinate
lines. The position in the physical domain, x, is obtained from the
inverse mapping function x = x(ς).

The DEVSS-TG/SUPG finite element method [29,37,38] is used to
discretize the mapping and transport equations. It involves inter-
polation of the velocity gradient and the new variable so obtained,
the interpolated velocity gradient, is then introduced into the trans-
port equations by modifying them accordingly. (See [29] for more
details.)

Finally, a fully implicit predictor-corrector scheme with adaptive
stepping is used for time integration [39]. The resulting algebraic
equations are solved using Newton’s method with an analytical
Jacobian matrix. The linear algebra solver is based on the frontal
algorithm of Duff et al. [40].
Fig. 1. Left: a schematic of a liquid bridge between moving top and bottom plates. L
is the length of the bridge, R is the radius of the plates, � is the density of the liquid,
�0 is its viscosity, and 	 is the surface tension. Right: computational flow domain
and its boundaries.
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. The plates are separated exponentially with a constant stretch
ate ε̇. The resulting Hencky strain is ε = ε̇t.

The boundary conditions on the transport equations and the
esh equation are as follows.

Along the top and the bottom plate, ∂�t and ∂�b: No slip and
no penetration, i.e., vz = vz(t), and vr = 0, where vz is the axial (z)
and vr is the radial (r) component of the velocity in a cylindrical
coordinate system (r, z) with its origin located along the axis of
symmetry half way between the two plates. vz(t) = ±ε̇(L0/2)eε̇t

(positive sign at the top plate; negative, at the bottom plate),
where L0 is the initial length of the filament. The axial positions
of the mesh points are given the same translation as the plates
and their radial positions are held fixed. This also ensures that
the contact lines at the edges of the two plates are held fixed.
Along the axis of symmetry, ∂�s: No penetration, i.e., n · v = 0,
and vanishing shear stress, i.e., tn : T = 0, where n is the unit nor-
mal, and t is the unit tangent to the boundary. The radial positions
of the mesh points are held fixed (r = 0) and the axial positions
are adjusted such that the coordinate lines are orthogonal to one
another.
Along the free surface, ∂�f: The force balance across the interface
is applied through the traction boundary condition [41,42], n · T =
−pa n + (2H	)n, where pa is the ambient pressure (i.e., in the gas
phase), 	 is the surface tension of the liquid–gas interface, and
H is the mean curvature. The component of the mesh equation
that aligns with the normal to the free surface is subjected to
the kinematic boundary condition n · (v − vs) = 0 [42], where vs

is the velocity of the nodes at the free surface; the component
that aligns with the tangent to the free surface is subjected to a
boundary condition that is given by a function which makes the
spacing of the nodes uniform.

The initial condition for computations is that of a cylindrical
iquid column at rest with no extra stresses, i.e., v = 0, p = 0, and

= 0.

The dynamics of stretching viscoelastic filaments is governed

y the following dimensionless numbers: Reynolds number, Re =
ε̇R2/�0; capillary number, Ca = �0ε̇R/	; viscosity ratio, ˇ =
s/�0; Deborah number, De = �ε̇; and the initial aspect ratio of the
lament, �0 = L0/R. Re represents the ratio of inertial to viscous

ig. 2. Variation of the mid-filament radius Rmid/R with Hencky strain ε for different
odels. Here, �0 = 0.54, Re = 0, Ca = 18.26, De = 1.89, ˇ = 0.262, � = 0.035 (PTT),

nd ˛ = 0.32 (Giesekus).
the variation of the axial component of the rate-of-strain tensor Dzz normalized
with ε̇ and that of the conformation tensor Mzz along the axis of symmetry (r = 0) at
Hencky strain ε = 3.6. The viscoelastic model is the PTT model and the parameters
are �0 = 0.54, Re = 0, Ca = 18.26, De = 1.89, ˇ = 0.262, � = 0.035, and � = 0.13.

forces, Ca represents the ratio of viscous to surface tension forces,
ˇ gives the solvent contribution to the total viscosity, De represents
the ratio of polymer relaxation time to the characteristic flow time,
and �0 represents the initial slenderness of the filament (the higher
the �0, the slender the filament). In addition to these dimension-
less numbers, the PTT model parameters, � and �, also affect the
dynamics.

3. Dynamics of PTT filaments
First, we report results of simulations for a PTT filament with
parameters whose values are the same as in [19] and at which these
authors observed formation of a bead-like structure on the fila-
ment. The parameters are �0 = 0.54, Re = 0, Ca = 18.26, De = 1.89,

Fig. 4. Variation of the mid-filament radius Rmid/R with Hencky strain ε at different
�0. Here, Re = 0, Ca = 9.86, De = 1.89, ˇ = 0.262, and � = 0.035. The insets show
filament profiles at different strains.
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= 0.262, � = 0.035, and � = 0.13. Fig. 2 shows the comparison
f the mid-filament radius, Rmid/R, obtained from our calculations
ith those from [19]. Our results are mesh and time-step converged.

See Bhat et al. [11] for a detailed study of the mesh and time-step
onvergence characteristics of the numerical method used here.)
he data from [19] were obtained by tracing the plot of Rmid/R vs. ε
n Fig. 4 of [19] using the datathief (NIKHEF-K) tracing program.
t can be inferred from the two results that a bead-like structure
as formed at the center of the filament at higher strains – evi-
ent from the fact that Rmid increases with ε at these values of
he strain. Although bead formation is evinced in both calculations,
he results do not match. We see the onset of bead formation at
strain higher than what is reported in [19], and there are differ-

nces in the Rmid values from the two calculations at intermediate

trains as well. These differences between the results are explained
ater in this section. It is important to note that bead formation
ccurs only for non-zero values of �, and it is absent when � = 0.
ig. 2 also shows Rmid results for the PTT model with � = 0 and
he Giesekus model – another strain-hardening model like the PTT

ig. 5. Variation of the axial component of the rate-of-strain tensor Dzz normalized
ith ε̇ (top) and that of the conformation tensor Mzz (bottom) along the free surface

t different strains. Here, �0 = 0.334, Re = 0, Ca = 9.86, De = 1.89, ˇ = 0.262, � =
.26, and � = 0.035.

Fig. 6. Top: variation of the mid-filament radius Rmid/R with Hencky strain ε at dif-

ferent ˇ. The insets show filament profiles at different strains for ˇ = 0.262 and 0.75.
Bottom: variation of the axial component of the rate-of-strain tensor Dzz normalized
with ε̇ along the free surface at ˇ = 0.75 and different strains. Here, �0 = 0.334,
Re = 0, Ca = 9.86, De = 1.89, � = 0.26, and � = 0.035.

model but without the GS convected derivative (see Appendix A) –
for a particular value of the mobility parameter ˛. The figure makes
it plain that bead formation is not seen in the case of these two
models.

Matallah et al. [19] report the development of asymmetry in the
computed values of the physical variables about the z = 0 plane.
(See, e.g., Fig. 5 of [19].) This is counter-intuitive, because, in the
calculations, both plates are being separated at the same speed and
gravity is absent. In our computations, however, we do not see any
asymmetry developing in the field variables about the z = 0 plane.
Fig. 3 shows the variation of the height of the free surface, i.e., the
local value of the bridge radius, h, normalized with the plate radius

R along the length of the filament at the strain of 3.6. Although a
bead can be seen at the center of the filament, the filament profile
is symmetric about z = 0. The figure also shows the variation of the
axial component of the rate-of-strain tensor, Dzz , and that of the
conformation tensor, Mzz , along the axis of symmetry (r = 0) at the
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train of ε = 3.6. It can be seen that the profiles show two identical
eaks resembling “double humps” but with no asymmetry about
he z = 0 plane. The two maxima, one each in the two halves of
he filament, have equal values. We do not see asymmetry at other
adial locations as well (not shown).

The results shown earlier make it plain that a bead-like structure
ppears only in the presence of the GS convected derivative in the
TT equation (� /= 0). The effect of changing � on bead formation
s studied next. The evolution of the mid-filament radius Rmid with
train ε at � = 0.13 and 0.26 for �0 = 0.54 and Ca = 9.86 is shown
n Fig. 4. It can be seen that increasing � to 0.26 still results in the
ormation of a bead, but the onset of bead formation occurs early, at
lower strain, when compared to that in the case of � = 0.13. � is set
s 0.26 and Ca as 9.86 in all the subsequent calculations presented
n this paper.

The development of radial gradients in physical variables inside
he filament is affected by its initial aspect ratio [43]. Filaments
hat are shorter initially give rise to more inhomogeneous profiles
ith regions of shear inside the filament. The effect of the initial

spect ratio, �0, on the dynamics of bead formation is analyzed
ext. Fig. 4 also shows results for initial aspect ratios of 1 and 0.334.
ilaments with smaller initial aspect ratios show earlier onset of
ead formation. With an initial aspect ratio of 0.334, a bead forms
t a strain of about 2.5. In all our subsequent analyses, we set �0 =
.334.

Fig. 5 shows the variation of the axial component of the rate-of-
train tensor, Dzz , along the free surface at strains of 1.16, 1.84, 2.02,
nd 2.58. The double hump feature appears at a strain of 1.84 and
recedes the onset of bead formation which occurs around a strain
f 2.5 (see Fig. 4). The double hump feature becomes more and more
rominent at higher strains. The figure also shows the variation of
he axial component of the conformation tensor, Mzz , along the free
urface at different values of strain. A split in the maximum is also
een in the Mzz profiles but at a higher value of strain than that for
zz . The double hump feature in the Mzz profile does not develop
ntil a strain of 2.02, after the split in the maximum in the Dzz

rofile has already occurred. Thus, the split in the maximum of Dzz

recedes the split in the maximum of Mzz and the formation of the

ead.

The viscosity ratio, ˇ, determines the coupling of the Cauchy
omentum equation with the transport equation for the conforma-

ion tensor. The higher the value of ˇ, the weaker is the coupling. As

ig. 7. Variation of the mid-filament radius Rmid/R and that of the transient Trouton
atio, Tr, with Hencky strain ε at ˇ = 0.262 and 0.39. Here, �0 = 0.334, Re = 0, Ca =
.86, De = 1.89, � = 0.26, and � = 0.035.

Fig. 8. Radial variation of the axial velocity vz normalized with its value at the axis

of symmetry (r = 0) for different strains at z/L = 0.05 (top) and z/L = 0.1 (bottom).
h is the height of the free surface at these axial locations. Here, �0 = 0.334, Re = 0,
Ca = 9.86, De = 1.89, ˇ = 0.262, � = 0.035, and � = 0.26.

demonstrated earlier, the split in the maximum of Dzz is followed
by the formation of a bead. Because the computation of velocity
(and hence D) is affected by the coupling of the momentum and
the conformation transport equations, the effect of increasing ˇ
on the dynamics of PTT filaments is studied next. Fig. 6 shows the
evolution of the mid-filament radius for ˇ = 0.262, 0.39, 0.5, and
0.75. As with the case of varying �, varying ˇ results in chang-
ing the onset of bead formation. As ˇ increases and the coupling
between the momentum and the conformation transport equa-
tion becomes weak, the onset of bead formation is delayed. For
example, while bead formation starts around a strain of 2.5 when
ˇ = 0.262, a bead does not form until after a strain of 3.4 in the case
of ˇ = 0.5. No bead is observed to form for ˇ = 0.75 at all strains
until ε = 4.13, which is the limit of our calculations for this par-

ticular case. Fig. 6 also shows the variation of Dzz along the free
surface for ˇ = 0.75 at different strains. Clearly, the double hump
feature seen in the case of ˇ = 0.262 (see Fig. 5) is absent when
ˇ = 0.75.
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The resistance to the thinning of filaments is quantified by the
routon ratio Tr = (Tzz − Trr)/�0ε̇. In the case of PTT filaments with
non-zero �, the transient Trouton ratio shows a maximum around

he strain value at which a bulge appears at the center of the fil-
ment. This can be seen in Fig. 7 which shows the variation of Tr
ith Hencky strain ε at ˇ = 0.262 and 0.39. Here, Tr is computed
sing the Type IB formula of Yao et al. [44]. The maximum in Tr
ppears, however, after the split in the maximum of Dzz occurs. For
xample, when ˇ = 0.262, the split in the maximum of Dzz occurs
t a strain of 1.84 (see Fig. 5) whereas the maximum in Tr occurs at
> 2. This suggests that the maximum in Tr is an effect of, rather

han a cause for, the formation of the bulge at the center which dis-
upts the extensional flow inside the filament and thus lowers the
routon ratio.
Fig. 8 shows the variation of the axial velocity, vz , across axial
ross-sections at z/L = 0.1 and 0.05 near the mid-filament region
or strains of 1.16, 1.84, 2.02, and 2.58. Clearly, the axial velocity
aries in the radial direction at these locations (i.e., ∂vz/∂r /= 0). In

ig. 9. Variation of the shear stress Trz/G along the free surface in one half of the fil-
ment (0 ≤ z/L ≤ 0.5) for ˇ = 0.262 (top) and ˇ = 0.75 (bottom) at different strains.
he inset in the top figure shows the variation of the shear stress with strain ε at
/L = 0.1. Here, �0 = 0.334, Re = 0, Ca = 9.86, De = 1.89, � = 0.035, and � = 0.26.

Fig. 10. Variation of the derivative of the shear stress Trz/G with respect to z/L along

the free surface in one half of the filament (0 ≤ z/L ≤ 0.5) for ˇ = 0.262 (top) and ˇ =
0.75 (bottom) at different strains. Here, �0 = 0.334, Re = 0, Ca = 9.86, De = 1.89,
� = 0.035, and � = 0.26.

other words, the flow at these locations has a shear component in
it. In step and transient shear flows, equations with the GS con-
vected derivative are known to exhibit oscillations in stress (for an
illustration, see Appendix B). Fig. 9 shows the variation of the shear
stress Trz/G along the free surface at different strains for ˇ = 0.262
and 0.75. The results are plotted for only one half of the filament
(0 ≤ z/L ≤ 0.5); the results for the other half are the same in abso-
lute value but have the opposite sign as the shear stress is an odd
function of z/L. Whereas the shear stress when ˇ = 0.75 increases
monotonically with z/L until the end-effects are seen (due to the
curved interface near the rigid plates) at all strains, it oscillates with
strain (time) along the free surface when ˇ = 0.262. (The inset in
the figure shows details of the fluctuations in Trz/G at z/L = 0.1 and
ˇ = 0.262 for different values of strain.) Thus, increasing ˇ dampens
the oscillations in the shear stress inside the filament. The result-
ing negative shear near the mid-filament at strain values greater

than 2.5 when ˇ = 0.262 drives the flow toward the center of the
filament. The same phenomenon occurs in the other half of the fil-
ament; as a consequence, a bead starts forming at the center of the
filament.
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is expected of a viscoelastic liquid and hence physical). Note that
the steady shear value for � = 0 is higher than that for � = 0.26.
This is because the PTT model shows increased shear thinning as �
increases.
0 P.P. Bhat et al. / J. Non-Newto

Fig. 10 shows the variation of the derivative of the shear stress
ith respect to the axial position, (L/G) ∂Trz/∂z, along the free

urface at different strains. The derivative is calculated from the
ata in Fig. 9 using centered differences. At small strains, for ˇ =
.262, this derived quantity is constant near the center of the fila-
ent and then decreases along the length of the free surface until

nd-effects become important. At strains greater than or equal
o 1.84 – the strain at which the split in the maximum of Dzz is
rst seen (see Fig. 5) – this derived quantity increases first with
/L before the end-effects are seen. Thus, the occurrence of the
plit in the maximum of Dzz coincides with the change in the
lope of the (L/G) ∂Trz/∂z vs. z/L curve. When ˇ is increased to
.75, (L/G) ∂Trz/∂z remains constant in the mid-filament region
or all values of strain computed. As a consequence, the location
f the maximum in Dzz does not migrate from the center of the
lament (see the bottom plot in Fig. 6) and no bead forms. It

s to be noted that at the limit of our computations (ε = 4.13),
e do not see when ˇ = 0.75 any indication of bead formation

ither: that is, we do not observe the slope of (L/G) ∂Trz/∂z chang-
ng in the mid-filament region or a split in the maximum of
zz .

The unusual behavior of the PTT model in step shear could also
xplain the difference between the present calculations and that of
atallah et al. [19] as they use a different numerical method in their

omputations. By contrast, when � = 0, the flow inside the filament
s nearly plug-flow, i.e., ∂vz/∂r = 0 (not shown).

. Concluding remarks

The breakup of viscoelastic filaments in filament stretching
xperiments is preceded by the formation of the beads-on-string
orphology in some cases. Computationally, such an event was

ot reproduced with strain-hardening models until recently [19].
ead-like structures on filaments were reported in calculations
ith the PTT model that has the Gordon–Schowalter (GS) con-

ected derivative. This starkly different behavior of the PTT model
ith the GS convected derivative has been further examined in this
aper.

The occurrence of a bead is found to be preceded first by
he split in the maximum of the axial component of the rate-of-
train tensor inside the filament and next by a similar split in
he maximum of the axial elastic stress. Regions of shear form
nside the filament during initial elongation due to the presence
f a curved interface. This change happens quickly. As a conse-
uence, the shear stress developed shows temporal oscillations,
hich is expected of a constitutive equation with the GS convected
erivative [28]. The resulting shear stress in the mid-filament
egion, equal but with opposite signs in the two halves of the
lament, drives the flow toward the center of the filament caus-

ng the formation of a bead there. Such oscillations in stress are
ampened when ˇ is increased and absent when � is set equal to
ero.

Although we report bead formation in PTT filaments as has been
one earlier by Matallah et al. [19], we see no asymmetry develop-

ng in physical variables about the z = 0 plane as claimed in [19].
his finding accords with the symmetric conditions imposed on the
roblem. Further, the occurrence of the bead is attributed here to
he presence of GS convected derivative in the PTT equation unlike
19] where it is said to be an effect of strain-hardening. A differ-

nt numerical scheme is adopted in [19] which gives qualitatively
he same (formation of a bead) but quantitatively different (dis-
greements in Fig. 2) results from our calculations. This observation
ighlights the need for a further investigation into the stability
f the dynamical system that consists of the PTT equation with a
on-zero �.
luid Mech. 159 (2009) 64–71
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Appendix A. The Giesekus constitutive equation

The transport equation for the conformation tensor in the
Giesekus model [20] is

∂M
∂t

= −v · ∇M + �(M · D + D · M) + M · W + WT · M − 1
�

[(˛ − 1)I

+ (1 − 2˛)M + ˛M2] (A.1)

where � = 1 and ˛ is a model parameter (called the mobility param-
eter). The elastic stress � is obtained from the conformation tensor
M as � = G(M − I).

Appendix B. Response of the PTT constitutive equation to
step shear

Equations with the GS convected derivative are known to show
unphysical oscillations in stress when a step change is applied to the
strain rate in transient shear flows [28]. Fig. B.1 shows this behavior
in the case of the PTT equation for � = 0.26. The shear stress, 
xy/G,
is computed by solving Eq. (2) for transient shear flows. The dimen-
sionless shear rate �	̇ is instantaneously changed from one value to
another. The computations are started with the steady shear value
that corresponds to the strain-rate at time t/� = 0. Fig. B.1 also
shows the stress behavior for the affine case (� = 0). While the stress
oscillates before reaching a steady value when � /= 0, it reaches the
same with an overshoot and no oscillations in the affine case (which
Fig. B.1. Development of the shear stress 
xy/G with time t/� when the dimension-
less shear rate �	̇ is subjected to step changes in the PTT model with (� = 0.26) and
without (� = 0) the GS convected derivative. Here � = 0.035.
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