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Recent advances in the area of computational analysis of blood flow devices are presented. Flow
simulation techniques relevant to blood pump design based on stabilized finite element formulations
and a deforming-mesh space–time approach are outlined, and the results are compared with
experimentally-obtained data for a rotary blood pump. Flow prediction is augmented by a strain-based
morphology-tensor numerical model capable of quantifying mechanical blood damage. For more
accurate representation of blood constitutive behavior, a stabilized finite element formulation for
viscoelastic fluids of Oldroyd-B type is also under development. Taken together, this collection of
numerical techniques has the potential of significantly improving predictive capabilities of
computational fluid dynamics (CFD) during the development stage of blood flow devices.
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Red blood cells
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1. Introduction

The design of medical devices involving blood flow, such
as blood pumps, oxygenators and artificial heart valves,
benefits increasingly from computational fluid dynamics
(CFD) modeling. In particular, ventricular assists devices
(VADs) (Nosé et al. 2000) have seen application of
numerical techniques (Bludszuweit 1995, Miyazoe et al.
1999, Anderson et al. 2000, Apel et al. 2001, Behr 2004),
leading to increased understanding of time-dependent flow
fields inside the device, and enabling comparative studies
between alternative virtual prototypes. We present our
experience in CFD modeling of Baylor GYRO pump
(Yoshikawa et al. 2000) in Section 2. Beyond CFD
analyses of existing devices, firmly in sight is the goal of
design optimization, where computer model does not only
point out the trends improving the device performance, but
also pinpoints the best one in a family of configurations.
Yet even the original CFD task of analyzing an existing
VAD presents challenges, and unique properties of blood
as the circulating fluid need to be addressed.

Blood is a complex fluid—a suspension of red blood
cells (RBCs), white blood cells and platelets in a
Newtonian liquid (plasma). The first consequence is that
blood is susceptible to physiological phenomena not
described by fluid mechanics alone. Primary concern here
is hemolysis, i.e. premature damage of RBCs, leading to
hemolytic anemia. Plasma free hemoglobin released from
RBCs is toxic for the kidneys, and can lead to multiple
organ failure. Artificial flow devices in particular are

capable of producing non-physiological levels of shear
stress, which can lead to deformation and fragmentation of
RBCs (mechanical hemolysis). The relation between
macroscopic flow characteristics, such as shear stress, and
microscopic RBC response, such as pore formation or
fragmentation, is complicated and not yet fully under-
stood. Available experimental hemolysis data is largely
confined to steady shearing flow fields, much different
from unsteady flow in VADs. There is also large degree of
variability in the hemolytic response depending on the
blood species—human, bovine, etc.—and even individual
samples. Nevertheless, numerical models for hemolysis
are being developed, based principally on the published
steady-shear experimental results. In Section 3, we discuss
the prevalent stress-based approaches to hemolysis
modeling, and the need for a strain-based approach, as
exemplified by the morphology-tensor method.

Second consequence of the complex composition of
blood is the nonlinear and viscoelastic behavior of this
fluid in the macroscale. Although useful qualitative and
even quantitative results can be obtained by assuming that
blood flow is governed by Navier–Stokes equations of
Newtonian fluid, better constitutive models should be used
whenever possible. A generalized Newtonian model
accounting for the overall shear-thinning behavior is
typically the first step, followed by viscoelastic models of
rate type, and culminating in multi-scale homogenization-
based approaches. In Section 4, we outline the stabilized
finite element formulation applicable to flows of complex
fluids governed by Oldroyd-B constitutive law.
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We conclude our overview with a summary and point
out future research directions in Section 5.

2. Flow modeling

The basis for detailed computational modeling of blood
flow are robust and efficient analysis tools providing
approximate numerical solutions of the flow governing
equations—the incompressible Navier–Stokes equations.
Due to complex geometries that needs to be represented,
finite difference methods based on overset grids, or more
commonly, finite element or volume methods based on
unstructured grids, are typically used.

Flow of a viscous incompressible fluid occupying a
time-varying nsd-dimensional domainVt with boundary Gt

is characterized by the velocity u(x,t) and pressure p(x,t)
fields satisfying:

rðu;t þ u·7u2 fÞ2 7·s ðu; pÞ ¼ 0 on Vt; ð1Þ

7·u ¼ 0 on Vt; ð2Þ

where f is the body force such as gravity, and the fluid
stress is given as:

s ðu; pÞ ¼ 2pI þ T ðuÞ; T ðuÞ ¼ 2mEðuÞ: ð3Þ

We denote the symmetric and asymmetric parts of the
velocity gradient7u as EðuÞ andWðuÞ. The fluid density r
and dynamic viscosity m are assumed to be constant;
alternate constitutivemodelswill be discussed in Section 4.
The essential and natural boundary conditions on subsets of
the boundary Gt ¼ ðGtÞg < ðGtÞh are imposed as u ¼ g on
(Gt)g and n·s ðu; pÞ ¼ h on (Gt)h. Together with an initial
condition on u, they complete the mathematical statement
of the problem.

The unsteady flow problems (1) and (2) is solved using a
space–time velocity–pressure stabilized finite element

formulation (Behr and Tezduyar 1994): given appropriate
velocity and pressure interpolation function spaces for time
step n2 ðSh

uÞn and ðShpÞn—as well as corresponding
weighting function spaces ðVh

uÞn and ðVh
pÞn and given

ðuhÞ2n , find uh [ ðShuÞn and ph [ ðShpÞn such that ;wh [
ðVh

uÞn and ;qh [ ðVh
pÞn:

rðwh;uh;tþuh·7uh2f hÞQn
þðEðwhÞ;sðuh;phÞÞQn

þðqh;7·uhÞQn
þ
XðnelÞn

e¼1

t

r
r wh

;tþuh·7wh
! "

27·sðwh;qhÞ;
!

r uh;tþuh·7uh2f h
! "

27·sðuh;phÞ
"

Qe
n

þr ðwhÞþn ;ðuhÞþn
!

2ðuhÞ2n
#
Vn¼ðwh;hhÞðPnÞh ;

ð4Þ

where ðuhÞ^n ¼ lim1d0uðtn^1Þ and the domains of inte-
gration Qn, Vn, (Pn)h, and the stabilization parameter t are
defined in a standard way (Behr and Tezduyar 1994). More
details about this approach, including the shear-slip mesh
update method used to account for rotating domain
boundaries in the case of rotary blood pumps, as well as,
other implementation aspects, can be found in (Behr 2003).

Typical flow simulations using this methodology have
been reported in (Behr 2004). They involve the GYRO
centrifugal pump under development at the Baylor College
ofMedicine. The computational domain and a typical finite
element mesh is shown in figure 1. Given the finite element
model, the hydraulic performance of the device can
be readily established. In this type of investigation,
the computational problem reproduces experimental
conditions, where the pump is run in a test loop mode,
using glycerol or blood as test fluid, with varying angular
velocity of the impeller. Different levels of clamping are
applied to the flow loop tubing, and the resulting flow rate
or flux, is recorded and tabulated. In the computations,
appropriate pressure head can be applied between Gin and
Gout corresponding to various clamping levels. At each flow

Figure 1. Computational domain and typical mesh for the GYRO rotary blood pump.
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condition, 4–8 revolutions of the impeller are required for
the computed flow field to reach quasi-steady condition.

Three so obtained performance curves are plotted in

Q1

figure 2 for both the experiments and the numericalmodel, at
three angular velocities of 1800, 2000 and 2200 rpm. Multi-
valued numerical flux reflects small-scale fluctuations
naturally occurring in a time-dependent flow field. The
agreement between numerical predictions and experimental
values is goodat 1800and2000 rpm,with larger discrepancy
observed at 2200 rpm, possibly due to the limitations of the
turbulencemodel.At lower rpm rates, the numerical analysis
is a viable method for predicting pump performance, before
the actual prototypes are built. All computations were
performed on aLinuxPC cluster,withMyrinet interconnect,
on partitions ranging from 32 to 72 CPUs, requiring several
hours to obtain a quasi-steady flux at each flow condition.
Such high computational requirements are balanced by the
ease of geometry modification in the numerical model, and
by the detailed insight into the flow field.

3. Blood damage modeling

A standard CFD analysis of a blood flow device such as the
one discussed in Section 2 can provide important qualitative
and quantitative information about the flow field. As in
countless other engineering fields, the nature of the flow can
be ascertained before any actual prototypes are built, and the
design can benefit in its earliest stages from the insights into
velocity and pressure distribution obtained via computer
modeling. Yet, in contrast to other CFD applications, the
topology of the flow field, and even the performance curves
shown infigure 2, provideonlypartial characterization of the
device. The raw flow field data do not address the two
important aspects of blood flow devices: their hemolytic and
thrombogenic properties. Blood damage (hemolysis) and
clotting (thrombosis, not discussed here) are of primary
importance to long-term successful application of blood
pumps. In spite of intense research activity, there is currently
no consensus on suitable models that would relate fluid

dynamics information such as stress and shear rate to clinical
properties such as normalized index of hemolysis (NIH). In
this section, we outline a recently-proposed tensor-based
model for blood damage (Arora et al. 2004).

ARBC at rest is a biconcave viscoelasticmembrane filled
with a Newtonian liquid. The membrane has a relaxation
time of approximately 200ms (Hénon et al. 1999), and it is
capable of supporting an estimated areal strain of 6% before
rupturing (Blackshear and Blackshear 1987). The RBCs at
rest aggregate into stacked structures called rouleaux, which
disperse as shear stress increases. The dispersed RBCs
preserve their biconcave shape and tumble in a flow with
shear stress below,0.1 Pa (Schmid-Schönbein 1969).With
increasing shear, the tumbling slows and the cells align
with the flow at ,0.2 Pa. The RBCs achieve an ellipsoidal
shape orientedwith the flow at shear stress greater than 1Pa.
An associated tank-treading phenomenon involves the
rotationof the outer cellmembrane around the enclosedfluid
(Williams 1973, Fischer and Stöhr-Liesen 1978). Above
150Pa, extensive hemolysis occurs due to shear stress alone
(Leverett et al. 1972), at which point the membrane reaches
its areal strain limit.

A correlation for steady-shear hemolysis at short time-
scales relevant to flow in blood pumps has been obtained
(Giersiepen et al. 1990) based on experimental results:

DHb

Hb
¼ 3:62 £ 1027T 2:416Dt 0:785; ð5Þ

where (DHb/Hb) is the ratio of plasma free (released)
hemoglobin to the total hemoglobin, T is the scalar shear
stress in Pa, and Dt is exposure time in seconds. From
equation (5), the clinically-relevant NIH (American
Society for Testing and Materials 1997) can be readily
obtained. This correlation was developed for steady-shear
hemolysis experiments; however, later studies of blood
pumps used in equation (5) a scalar quantity derived from
the instantaneous deviatoric stress tensor, e.g.
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1=2ÞT : T

p
. This method of computing hemo-

lysis can be called stress-based. A well-known example of
this approach is a blood damage model of Bludszuweit
(1995), with enhanced models incorporating some aspects
of stress threshold and aging, as well as, callibration for a
particular device (Yeleswarapu et al. 1995, Arvand et al.
2004, Goubergrits and Affeld 2004).

An alternative is to approximate the deformation of an
RBC in a shear flow by that of a liquid droplet, taking the
physical properties of anRBC into consideration. A droplet-
deformation equation has been proposed in terms of a
symmetric positive-definite morphology tensor that rep-
resents the shape of the droplet (Maffettone 1998). The
equation takes into consideration the competing action of
interfacial tension on droplet surface, which recovers the
spherical shape of the droplet, and the force exerted by the
surrounding liquid. The equation is frame-invariant and it
accounts for non-affine droplet deformation. Although
RBCs can be modeled as droplets, the tank-treading motion
shown by RBCs is absent in droplets.
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Figure 2. Performance curves for the GYRO rotary blood pump:
experiment (black) vs simulation (red).
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The hemolysis model proposed in (Nosé et al. 2000)
modifies the droplet-deformation equation to account for the
tank-treading phenomenon peculiar to RBCs in shear flow,
while preserving the frame invariance. In this model, the
evolution of the RBC morphology tensorB is governed by:

dB
dt

2 ½V·B2 B·V& ¼ 2f 1½B2 gðBÞI &

þ f 2½eEE·Bþ B·eEE&
þ f 3½fWW·B2 B·fWW&; ð6Þ

where gðBÞ ¼ ð3III=IIÞ (involving third and second
invariant of B), f 1 ¼ 5:0 s21 based on RBC relaxation
time, and f 2 ¼ f 3 ¼ 1:25 £ 1023 are uniquely determined
by RBC behavior in steady shear flow (Nosé et al. 2000).
The orthonormal matrix V defines the rate of rotation of a
reference frame attached to the eigenvectors ofB, leading to
E~¼ E, and fWW ¼ W 2V.

Themorphology tensor evolution is trackedwith equation
(6) along pathlines, providing information about the
deformation, or strain, of the RBC at each point in the flow
field. An instantaneous deformation of the RBC can be
uniquely associated with a hypothetical steady shear flow
that would generate such a deformation, and thus, matched
with a hemolysis rate using experimental correlation (5)
(Nosé et al. 2000). That rate can be in turn integrated along
each pathline, and information from many pathlines
averaged, to provide hemolysis release information for the
entire device. To distinguish from models using instan-
taneous stress values which assume immediate response of
the RBC to the surrounding flow field, the model based on
the morphology tensor B is referred to as strain-based.
The difference between strain- and stress-based approaches
to hemolysis modeling is schematically shown in figure 3.

Comparison of this strain-based model with standard
stress-based approach showed significant over-estimation of
hemolysis when using the latter in the context of a test two-
dimensional (2D) pump geometry (Nosé et al. 2000). Initial
three-dimensional (3D) results also indicate that the strain-
based model leads to lower predicted values of NIH, which
are more in line with the experimental results. A typical set
of streamlines in the GYRO device at 2000 rpm and
5 lmin21 flow rate is shown in figure 4,with each streamline
colored by cumulative hemolysis release (DHb/Hb). The
resultingNIH values, predicted using the stress- and a strain-
based model are compared to the experimentally-obtained
value (Yuri et al. 2004) in table 1. Although the close
agreement between experiment and strain-based hemolysis
prediction awaits further testing and may be a coincidence,
it is clearly seen that the stress-based model overestimates
the hemolysis by a factor of three.

4. Viscoelastic modeling

Blood flow in artificial devices is typically modeled using a
Newtonianconstitutivemodel described inSection2.Amore
accurate description of the constitutive behavior of the blood
as a fluid is a generalized Newtonian model—in particular,
the Carreau-Yasuda model (Gijsen et al. 1999, Leuprecht,
2001). Although easy to implement, a generalized
Newtonian model leads to additional non-linearities in the
equation system and complicates the task of achieving
convergence at each time step of the simulation. In our
experience, an application of the shear-thinning model gives
largely the sameglobal behavior, e.g. theperformance curves
from figure 2, as those obtained when using a Newtonian
simplification. For other tasks, such as shape optimization,

strain-based stress-based

shear stress

hemolysis

steady-shear experiments

Figure 3. Strain- and stress-based approaches to hemolysis modeling: RBC deformation (red) matched with an equivalent steady stress vs assumed
instantaneous response of the RBC to a given fluid stress.
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significant differences in the outcome has been observed
depending on the constitutive model (Abraham et al. 2004).
Sincean evenmore accurate descriptionof blood constitutive
behavior has been identified as a modified Oldroyd-B model
(viscoelastic fluid in a shear-thinning solvent) (Yeleswarapu
1996), we are also interested in developing robust and
efficient finite element techniques for this type of complex
fluids. Viscoelastic fluids of rate type present a number of
numerical challenges: the advectivenatureof the constitutive
equations, and the interaction of multiple discrete unknown
fields—viscoelastic stress, velocity and pressure. Adding the
streamline-upwind/petrov-galerkin (SUPG) terms (Marchal
and Crochet 1987) to the Galerkin formulation, or using the
discontinuous-galerkin (DG) approach (Fortin 1989), was
instrumental in overcoming the difficulties associated with
the advective terms in the constitutive equation. Compati-
bility conditions on stress and velocity interpolations were
identified (Fortin and Pierre 1987) and first satisfied by
complex combinations of interpolation functions. Later
methods allowed simpler equal-order interpolations for the
viscoelastic stress and velocity, such as the discrete elastic
viscous stress splitting (DEVSS) approaches—DEVSS-
G/SUPG (Guénette and Fortin 1995, Szady et al. 1995) and
DEVSS-G/DG (Sun et al. 1999).

For an Oldroyd-B fluid, the governing equations (1) and
(2) are supplemented by a constitutive equation:

s ¼ 2pI þ T 1 þ T 2; T 1 þ lT 1

7

¼ 2m1EðuÞ;
T 2 ¼ 2m2EðuÞ; ð7Þ

where the T
7

denotes an upper-convected derivative:

T
7

¼ T ;t þ u·7T 2 ð7uT þ T ð7uÞT Þ; ð8Þ

and m1 and m2 are the viscoelastic and solvent viscosities,
respectively.

Substituting T 2 directly into equation (1) and dropping
the subscript from T 1, the GLS3 velocity–pressure–
stress formulation for Oldroyd-B fluid is written
as follows: given ðuhÞ2n and ðT hÞ2n , find uh [ ðShuÞn,
ph [ ðShpÞn and T h [ ðSh

T Þn such that ;wh [ ðVh
uÞn,

;qh [ ðVh
pÞn and ;Sh [ ðVh

T Þn:

r wh;uh;tþuh·7uh2f
! "

Qn

2 7·wh;ph
% #

Qn

þ EðwhÞ;T hþ2m2EðuhÞ
% #

Qn
þ qh;7·uh
% #

Qn

þ Sh;
1

2m1
T hþ l

2m1
T h
7

2EðuhÞ
 !

Qn

þ
Xnel

e¼1

tMOM

r
r wh

;tþuh·7wh
!

þ7qh27·Sh
! "

22m27·EðwhÞ;r uh;tþuh·7uh2f
! "

þ7ph27·T h22m27·EðuhÞ
#
Qe

n
þ
Xnel

e¼1

2m1tCONS

£ 1

2m1
Shþ l

2m1
Sh
7

2EðwhÞ; 1

2m1
T hþ l

2m1
T h
7

2EðuhÞ
 !

Qe
n

þr ðwhÞþn ;ðuhÞþn 2ðuhÞ2n
! "

Vn

þ l

2m1
ðShÞþn ;ðT hÞþn 2ðT hÞ2n

! "

Vn

¼ðwh;hhÞðPnÞh ;

ð9Þ

where ðShuÞn and ðVh
uÞn are the space–time extensions of

appropriately defined interpolation and weighting function
spaces for velocity, pressure and the deviatoric visco-
elastic stress (Miyazoe et al. 1999).

As in equation (4), standard stabilization parameter
tMOM is used. The parameter tCONS is:

tCONS ¼ 1þ 2ljuhj
h

& '2

lj7uhj
% #2

 !1
2

; ð10Þ

resulting in better behavior at low Weissenberg numbers
than the one used in (Behr et al. 2004). Two variations of
GLS3 formulation were introduced in (Behr et al. 2004),
which involve decoupled recovery of continuous
velocity gradient using consistent (GLS3-M) and lumped
(GLS3-L) mass matrix. These improve consistency of the
stabilization terms in the presence of Newtonian solvent.

A subset of this formulation suitable for steady flows
has been recently applied to the benchmark problem,
involving flow of an Oldroyd-B fluid past a circular
cylinder placed between parallel fixed plates, with channel
width being eight times the cylinder diameter (Behr et al.
2004). One of the characteristic flow quantities is the drag

Figure 4. Flow in a GYRO blood pump: pathlines used for NIH
computation color-coded by accumulated hemoglobin release.

Table I. Hemolysis in a GYRO blood pump: NIH values for numerical
models and the experiment.

Hemolysis [g/100 l]

Stress-based model 0.0200
Strain-based model 0.0069
Experiment 0.0073
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on the cylinder as a function of the Weissenberg number,
shown in figure 5. The agreement between GLS3-M,
GLS3-L and DEVSS-G/SUPG results of Sun et al. (1999)
is excellent up to Weissenberg number of 1.8.

5. Concluding remarks

We have presented an overview of our recent efforts in the
area of computational analysis of blood flow devices.
We have described an application of flow simulation
techniques relevant to blood pump design. Our approach is
based on stabilized finite element formulations, and a
deforming-mesh space–time approach, with the shear-slip
mesh update technique used to accommodate a rotating
impeller. Owing to portable parallel implementation, our
time-accurate simulations are performed on parallel clusters
of commodity computers. The agreement with experimen-
tally-observed flow characteristics is satisfactory, save for
high impeller rotation rates which are believed to expose
shortcomings in turbulencemodeling.For clinical relevance,
the CFD analysis needs to be accompanied by hemolysis
prediction, and to this end, we have introduced a tensor-
deformation model that mimics roughly the behavior of red
blood cells in the flow field. The Lagrangian approach used
currently should be re-derived in an Eulerian form for
increased cost-effectiveness. For added accuracy,weare also
developing robust and efficient ways of accounting for
complex constitutive behavior of blood and in particular,
a stabilized finite element formulation for viscoelastic fluids
of Oldroyd-B type. Testing of this new formulation is still
focused on 2D benchmarks, with 3D benchmarks and
applications still to follow.
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