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Abstract. We evaluate the stabilized three-field stress-velocity-pressure Galerkin/Least-
Squares finite element formulation for viscoelastic fluids, using a benchmark problem of
Oldroyd-B flow past a cylinder at various Weissenberg numbers. To address the issue of
weak consistency exhibited by low-order velocity interpolations in the context of stabilized
formulations, we also employ velocity gradient recovery, and study how such an approach
affects the quality of computed results. We show that characteristic flow quantities obtained
with the new formulation are in good agreement standard DAVSS and DEVSS results,
while the cost of fully-implicit velocity gradient computation may be in some cases avoided.
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1 INTRODUCTION

Numerical modeling of viscoelastic fluids of rate type is fraught with difficult issues.
The viscoelastic stress, or the conformation tensor, must be represented as an additional
flow unknown. The advective nature of the constitutive equations, and the interaction of
multiple discrete unknown fields (viscoelastic stress, velocity and pressure) both present
obstacles to numerical method development. Yet, as has been the case with Newtonian
fluid modeling before, these obstacles are being gradually overcome. In the finite element
arena, on which we concentrate our attention, adding the Streamline-Upwind/Petrov-
Galerkin (SUPG) terms [1,2] to the traditional Galerkin formulation was instrumental in
overcoming the difficulties associated with the advective terms present in the constitutive
equation. The Discontinuous-Galerkin (DG) [3] approach provided similar benefits, albeit
with a marked increase in the complexity of the implementation.

Dealing with instabilities related to the interplay of discrete interpolations of the vis-
coelastic stress and the velocity fields has been even more challenging. Compatibility
conditions on these interpolations have been since formulated, and appear to be well un-
derstood [4–6]. These requirements are analogous to the LBB condition [7] for mixed
formulations of incompressible flow. In order to satisfy such conditions, complex combi-
nations of interpolation functions were needed, such as the 4 × 4 stress sub-element [2]
complementing quadratic velocity interpolation.

In time, alternative methods were developed which admitted simpler, more efficient,
and easier to implement, equal-order interpolations of the viscoelastic stress and velocity.
Recent reviews by Baaijens [8] and Keunings [9,10] outline the development of the Elastic
Viscous Stress Splitting (EVSS [11]) approaches, in which the original Galerkin, SUPG, or
DG formulation is modified and new variables or terms are introduced. The state-of-the-
art methods are the so-called Discrete EVSS [12, 13] methods (DEVSS-G/SUPG [14, 15]
and DEVSS-G/DG [16]), which include the following features:

• the velocity gradient is an independent variable approximated with continuous in-
terpolation functions;

• the viscous stress is split into two contributions, associated with the continuous
velocity gradient and with the discontinuous gradient of the velocity field;

• the constitutive equation of the viscoelastic stress (or the conformation) is trans-
formed into weak form with the streamline-upwind (SUPG) or discontinuous Galerkin
(DG) method.

Baaijens [8] points out that even in the relatively simple two-dimensional flow in an abrupt
contraction, mesh-converged results cannot be obtained downstream of corner (location
of the singularity) with the DEVSS-G/SUPG and DEVSS-G/DG methods.

The common characteristics of all the EVSS-based methods is the addition to the weak
form of the momentum equation of an elliptic term which represents the difference between
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the continuous and discontinuous velocity gradient, and vanishes with increasing mesh
resolution. A similar stabilizing term arises naturally when the Petrov-Galerkin approach
is replaced with a Least-Squares (LS) method, as was done by Carey’s group [17, 18].
Yet, the LS approach carries the usual penalty of high condition numbers of the resulting
equation system matrices, and stringent continuity requirements for the interpolation
functions (although the orders of interpolation are not higher than those required by the
EVSS, DEVSS, and DEVSS-G methods). Moreover, the divergence of the stress is not
integrated by parts in the LS form of the momentum equation; thus, the traction at the
boundary does not appear naturally in the weak form and imposing boundary conditions
at free surfaces and deformable boundaries is difficult.

One approach that has been quite successful in circumventing the LBB condition
in the case of the Navier-Stokes equations has been the Galerkin/Least-Squares (GLS)
method [19]. Here, the stabilizing least-squares form of the governing equations is added
to the Galerkin weak form, in the element interiors. The resulting formulation recovers
SUPG terms, and also includes pressure-stabilizing terms that alleviate the need to satisfy
the LBB condition. Moreover, the traction term is present in the GLS formulation, which
allows imposing free-surface boundary conditions naturally. This particular approach
has been used by Behr and Franca [20] to design and analyze a Galerkin/Least-Squares
variational formulation of Navier-Stokes equations involving viscous stress, velocity and
pressure as the primary variables, without the usual restrictions on the interpolation
function spaces. The GLS approach was extended by Behr [21] to the Maxwell-B and
Oldroyd-B constitutive models—hereafter referred to as three-field GLS formulation, or
GLS3. The method showed a number of desirable characteristics:

• SUPG stabilization terms in the constitutive equation were obtained immediately
from the GLS terms;

• equal-order interpolations for all flow field variables (viscoelastic stress, velocity and
pressure) were admissible;

• hence, the implementation was straightforward and the computational cost was
modest.

The formulation has been then used to compute a benchmark problem of flow in a con-
traction. The present work represents an effort to resume and complete the evaluation of
the GLS3 approach, and to improve upon it by developing several variants of the method.

We will begin by introducing the equations of motion for the Oldroyd-B fluid and its
Maxwell-B limit case in Section 2. In Section 3, we present the three-field stress-velocity-
pressure Galerkin/Least-Squares finite element formulation. We comment on the weak
consistency of this formulation when used with low-order interpolation functions, and
introduce two variants that improve the consistency of the method in such situations. In
Section 4, we present an example of flow past a cylinder placed in a slit, and compare
obtained drag coefficient at various Weissenberg numbers with published results.
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2 PROBLEM STATEMENT

We consider a viscous, incompressible fluid occupying at an instant t ∈ (0, T ) a bound-
ed region Ωt ⊂ R

nsd , with boundary Γt, where nsd is the number of space dimensions.
The velocity and pressure, u(x, t) and p(x, t), are governed by the momentum and mass
balance equations:

ρ

(
∂u

∂t
+ u · ∇u − f

)
− ∇ · σ = 0 on Ωt ∀t ∈ (0, T ), (1)

∇ · u = 0 on Ωt ∀t ∈ (0, T ), (2)

where ρ is the fluid density, assumed to be constant, and f(x, t) is an external, e.g.,
gravitational, force field. The closure is obtained with a constitutive equation relating
the stress tensor σ to velocity and pressure fields. Both the Dirichlet and Neumann-type
boundary conditions are taken into account, represented as:

u = g on (Γt)g , (3)

n · σ = h on (Γt)h , (4)

where (Γt)g and (Γt)h are complementary subsets of the boundary Γt. The vector sub-
scripts signify that this decomposition of Γt may be different for each of the velocity
components. The initial condition consists of a divergence-free velocity field specified
over the entire domain:

u(x, 0) = u0, ∇ · u0 = 0 on Ω0. (5)

Viscoelastic fluids exhibit dependence of the stress not only on the instantaneous rate
of strain, but also on the strain history. For the upper-convected Maxwell fluid, also called
the Maxwell-B fluid, the constitutive equation acquires an evolutionary character:

σ = −pI + T,

T + λ
�
T = 2µε(u), (6)

where the
�
T denotes an upper-convected derivative:

�
T =

∂T

∂t
+ u· ∇T −

(
∇uT + T (∇u)T

)
, (7)

and the rate-of-strain tensor is defined as:

ε(u) =
1

2

(
∇u + (∇u)T

)
. (8)

Note that, in the case of steady flows considered in the remainder of this article, the time
derivative in (7) is dropped, and domain Ωt is replaced simply by a constant region Ω.
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The upper-convected Oldroyd model, also known as the Oldroyd-B model, includes the
Newtonian and Maxwell models, and covers the cases in which an elastic fluid obeying the
Maxwell relation is mixed with a fluid governed by a Newtonian law. This corresponds to
a situation in which an elastic polymer with viscosity µ1 is dissolved in a viscous solvent
with viscosity µ2:

σ = −pI + T,

T = T1 + T2,

T1 + λ
�
T1 = 2µ1ε(u),

T2 = 2µ2ε(u),

µ1 + µ2 = µ. (9)

The Maxwell fluid is extremely difficult to handle numerically, partially because of
the convective character of the stress evolution equation (6). The difficulty is lessened
considerably by even a small addition of the Newtonian solvent in an Oldroyd-B fluid.
Even so, one may expect the problems normally associated with an advective systems to
arise when the relevant constitutive equation is discretized.

3 THREE-FIELD GLS FORMULATION

Due to the non-trivial nature of the constitutive equation, the components of the extra
stress have to be treated as additional degrees of freedom, complementing the velocity and
pressure fields. A mixed formulation is naturally extended to accommodate the added
equation and unknown. However, an arbitrary choice of the stress interpolation often
leads to failure, as documented in [2]; possible remedies have been discussed in Section 1.

Also, the values of the Weissenberg number for which a Galerkin formulation would
remain convergent are extremely small, as seen, e.g., in [22]. The remedy follows the
path of the various upwinding methods developed for the advection-diffusion equation,
or its advective limit. In [2] both the consistent SUPG and an inconsistent Streamline
Upwind (SU) methods are considered. The SU approach is found to stabilize the Galerkin
method sufficiently, but the various coupling effects render the potentially more accurate
SUPG method ineffective. Similar conclusion is reached in [3], where a consistent up-
winding inherent in the Lesaint-Raviart method has to be augmented by an inconsistent
SU addition.

We recall here the stress-velocity-pressure formulation introduced in [20] for Stokes
equations, and generalized to Maxwell-B and Oldroyd-B flows in [21]. The ntc = nsd(nsd+
1)/2 independent tensor components of the extra stress T1 are necessarily treated as
additional unknowns, and equation (9) enters the variational formulation directly. We
drop the subscript from T1, as this is the only stress component entering the formulation
explicitly. The interpolation function spaces for the velocity, pressure and extra stress
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tensor are given as:

Sh
u =

{
uh | uh ∈

[
H1h(Ω)

]nsd ,uh .
= gh on Γg

}
, (10)

Vh
u =

{
uh | uh ∈

[
H1h(Ω)

]nsd
,uh .

= 0 on Γg

}
, (11)

Sh
p = Vh

p =
{

ph | ph ∈ H1h(Ω)
}

, (12)

Sh
T = Vh

T =
{

Th | Th ∈
[
H1h(Ω)

]ntc
}

. (13)

In the λ > 0 case, the spaces Sh
T and Vh

T must also account for the essential boundary
conditions for the extra stress at the inflow boundary of the domain.

The three-field Galerkin/Least-Squares, or GLS3, velocity-pressure-stress formulation
for Oldroyd-B fluid is written as follows: find uh ∈ Sh

u, ph ∈ Sh
p and Th ∈ Sh

T such that:∫
Ω

wh · ρ
(
uh · ∇uh − f

)
dΩ −

∫
Ω

∇ ·whphdΩ +

∫
Ω

ε(wh) : ThdΩ

+ 2µ2

∫
Ω

ε(wh) : ε(uh) −
∫

Γh

wh · hhdΓdΩ +

∫
Ω

qh∇ · uhdΩ

+
1

2µ1

∫
Ω

Sh : ThdΩ +
λ

2µ1

∫
Ω

Sh :
�
ThdΩ −

∫
Ω

Sh : ε(uh)dΩ

+

nel∑
e=1

∫
Ωe

τMOM

1

ρ

[
ρ
(
uh · ∇wh

)
+ ∇qh −∇·Sh − 2µ2∇· ε(wh)

]
·
[
ρ
(
uh · ∇uh − f

)
+ ∇ph − ∇·Th − 2µ2∇· ε(uh)

]
dΩ

+

nel∑
e=1

∫
Ωe

τCONS2µ1

[
1

2µ1
Sh +

λ

2µ1

�
Sh − ε(wh)

]

:

[
1

2µ1
Th +

λ

2µ1

�
Th − ε(uh)

]
dΩ

+

nel∑
e=1

∫
Ωe

τCONT ∇·whρ∇·uhdΩ = 0, ∀wh∈ Vh
u, ∀qh∈ Vh

p , ∀Sh∈ Vh
T. (14)

The stabilization parameters τMOM and τCONT follow standard definitions given, e.g.,
in [23]. The parameter τCONS is taken here as:

τCONS =

{
max

(
1, he

2λ|uh|2

)
, λ|uh|2 > 1

max (1, he) , λ|uh|2 ≤ 1
(15)

Remark 1
The addition of the least-squares form of the momentum equation, i.e., the τMOM-term
in (14), stabilizes the method against well-known adverse effects of under-diffusivity of the
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Galerkin discretization of the momentum equation at high element-level Peclet numbers,
and a possible lack of compatibility between velocity and pressure function spaces.

Remark 2
The least-squares form of the continuity equation, i.e., the τCONT-term in (14), improves
the convergence of non-linear solvers at high Reynolds numbers.

Remark 3
The least-squares form of the constitutive equation, i.e. the τCONS-term in (14), stabilizes
the method against two further causes of spurious numerical oscillations: the under-
diffusivity of the Galerkin discretization of the constitutive equation at high Weissenberg
numbers, and a possible lack of compatibility between velocity and stress function spaces.
As shown in [20], this term allows for arbitrary combinations of interpolation functions
for velocity and the extra stress, which do not have to satisfy a specific LBB condition.

The combination of the stabilization terms circumventing the inf-sup conditions pro-
vides absolute freedom in selecting the interpolation function spaces, allowing in particular
convenient equal-order interpolation for velocity, pressure and the stress. In the example
that follows, a piecewise bi-linear interpolation is in fact used for all three fields (so called
Q1Q1Q1 element).

Although simple to implement and computationally efficient, linear or bi-linear velocity
interpolation suffers from one important drawback. In the presence of the Newtonian
solvent (Oldroyd-B fluid), the second derivatives of velocity in the stabilization terms
are not adequately represented—they are either zero in the linear case, or small and
unrelated to actual second derivative of velocity field in the bi-linear case. The GLS3
formulation, normally considered to be consistent, is only weakly consistent in such cases
as pointed out in [24]. Solutions to this problem in general involve obtaining a continuous
velocity gradient, with well-defined derivatives inside element domain. To this end, one
can employ either of two strategies: a simplified recovery of nodal velocity gradient using a
least-squares approach, or introduction of a continuous velocity gradient field, resulting in
a four-field velocity-pressure-stress-gradient stabilized formulation. The former approach
is taken here; the latter approach leads to a GLS4 formulation which will be explored
in a future article. The GLS4 bears similarities to DEVSS approach, although the extra
velocity gradient field is used only for the proper representation of second derivatives of
velocity in the case of Oldroyd-B fluid, i.e., to improve accuracy, whereas in DEVSS,
such field is necessary for bypassing the compatibility condition on velocity and stress
interpolations, i.e., to prevent a breakdown of discretization.

The least-squares recovery procedure solves, in a decoupled manner, the weak problem:
given uh—piecewise linear or bi-linear computed velocity field—find Lh ∈ Sh

L such that:∫
Ω

Kh : LhdΩ =

∫
Ω

Kh : ε(uh) ∀Kh∈ Vh
L, (16)
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where the function spaces:

Sh
L = Vh

L =
{

Lh | Lh ∈
[
H1h(Ω)

]nsd×nsd
}

, (17)

are by definition composed of continuous functions, with non-trivial derivatives in the
element interior. The recovered values Lh are then used to form the residual of (14) at
the next iteration of the non-linear iteration procedure, namely, in the computation of
the τMOM-terms involving second derivatives of velocity. The mass matrix of the equation
system originating from (16) can be either lumped, for increased computational efficiency,
or solved with a direct or iterative solver for increased accuracy. Depending on this choice,
we arrive at two GLS3 variants:

GLS3-L Base GLS3 method with recovery of continuous velocity gradient using lumped
mass matrix,

GLS3-M Base GLS3 method with recovery of continuous velocity gradient using consistent
mass matrix.

4 NUMERICAL EXAMPLE

Flow of Oldroyd-B fluid past a circular cylinder placed between parallel fixed plates
is a standard benchmark problem for two-dimensional viscoelastic flow simulation. The
results for the ratio of cylinder diameter to slit width of 1/8 have been reported by Sun
et al. [16] using DAVSS-G/DG formulation, and by Pasquali [25] using DEVSS-G/SUPG
formulation, and are reported here for the GLS3 formulation variants.

The flow domain is shown in Figure 1. The center of the cylinder is assumed to be
located at (0, 0), the radius of the cylinder is taken as R = 1, and the slit half-width as
h = 8. The distance from the cylinder center to the inflow boundary Γi and the outflow
boundary Γo is 10 and 20, respectively. A parabolic flow profile is prescribed on the inflow
and outflow boundaries:

u1 = 1.5 (Q/h) (1 − x2
2/h

2),

u2 = 0,

T11 = 2 λ µ1

(
−1.5x2/h

2
)2

,

T12 = µ1

(
−1.5x2/h

2
)
,

T22 = 0. (18)

with flow rate per unit thickness Q = 8 reflecting the value used in [16, 25]. A no-slip
condition was prescribed at the cylinder wall Γc and the slit wall Γs. Finally, a symmetry
condition was applied at the upstream and downstream symmetry lines Γu and Γd.

The fluid and solvent viscosities are µ1 = 0.41 and µ2 = 0.59, respectively, giving the
ratio of solvent viscosity to total viscosity of 0.59. The relaxation time λ is varied to
arrive at the desired Weissenberg number:

Ws = Qλ/hR. (19)
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h

R

Γi Γo

Γc

Γs

Γu Γd

Figure 1: Flow past a circular cylinder: domain description.

A semi-structured mesh with 25,025 nodes and 24,619 bi-linear elements covers the
domain, as shown in Figure 2. The size of the smallest elements, i.e., the ones adjacent
to the cylinder, is approximately 0.010×0.018 in the radial and circumferential direction,
respectively.

Figure 2: Flow past a circular cylinder: finite element mesh.

A characteristic quantity for this flow field is the drag force exerted by the fluid on
the cylinder, and its variation with the Weissenberg number. The drag force is computed
using the integral:

Fd = −2

∫
Γc

e1 · σh · ndΓ, (20)

where e1 is the horizontal unit vector and n is the unit normal at the cylinder surface
pointing out of the flow domain. Note that this line integral includes contributions from
the pressure ph, viscoelastic stress Th, and the viscous stress 2µ2ε(uh). The drag for
Weissenberg numbers 0.0 to 2.0 is tabulated in Table 1 and shown in Figure 3. The
agreement between GLS3-M and results of Sun et al. [16] is excellent up to Weissenberg
number of 1, while GLS3-L under-predicts the drag by less than 1%. For Weissenberg
numbers higher than 1, the GLS3-M and GLS3-L formulations depart further from Sun
et al. [16] results, especially for Ws > 1.8, where the difference reaches 2.5%. Note that
Ws � 2.0 is the limit of convergence for many methods when applied to this problem,
including that of Sun et al. [16].
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Ws Sun et al. GLS3-L GLS3-M
0.0000 15.722 15.6720 15.7004
0.1000 15.705 15.6748 15.7062
0.2000 15.691 15.6648 15.6960
0.3000 15.682 15.6516 15.6822
0.4000 15.668 15.6384 15.6684
0.5000 15.662 15.6292 15.6584
0.6000 15.652 15.6270 15.6556
0.7000 15.665 15.6346 15.6624
0.8000 15.693 15.6536 15.6808
0.9000 15.728 15.6852 15.7122
1.0000 15.774 15.7306 15.7570
1.1000 15.843 15.7898 15.8160
1.2000 15.924 15.8626 15.8886
1.3000 16.007 15.9502 15.9764
1.4000 16.120 16.0492 16.0754
1.5000 16.235 16.1628 16.1892
1.6000 16.360 16.2854 16.3120
1.7000 16.530 16.4158 16.4428
1.8000 16.689 16.5472 16.5754
1.9000 16.884 16.6630 16.6910
2.0000 17.148 16.7608 16.7912

Table 1: Flow past a circular cylinder: drag as a function of Weissenberg number.
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Figure 3: Flow past a circular cylinder: drag as a function of Weissenberg number.
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Figures 4–6 show, for comparison with DEVSS-G/SUPG results of Pasquali [25], the
three components of the viscoelastic stress T obtained with the GLS3-M formulation.
Qualitatively, the agreement is excellent, and the contours are free of oscillations at this
high Weissenberg number.

-4.0 0.0 4.0 8.0 12.0
0.0

1.0

2.0

Figure 4: Flow past a circular cylinder: T11 contours in the vicinity of the cylinder at Ws = 2.0 obtained
with GLS3-M.

-4.0 0.0 4.0 8.0 12.0
0.0

1.0

2.0

Figure 5: Flow past a circular cylinder: T12 contours in the vicinity of the cylinder at Ws = 2.0 obtained
with GLS3-M.

-4.0 0.0 4.0 8.0 12.0
0.0

1.0

2.0

Figure 6: Flow past a circular cylinder: T22 contours in the vicinity of the cylinder at Ws = 2.0 obtained
with GLS3-M.

5 CLOSING REMARKS

We have presented an evaluation of the stabilized three-field velocity-pressure-stress
Galerkin/Least-Squares finite element formulation, designed for efficient and robust com-
putation of flows of viscoelastic fluids. We have outlined the shortcomings of that for-
mulation when used with low-order interpolation functions, and proposed appropriate
remedies. The formulation considered allows equal-order interpolation for all three fields
involved, and can benefit from, but does not strictly require, a separate interpolation for
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the velocity gradient, which is a necessary ingredient of contemporary approaches to vis-
coelastic flow simulation. Comparison with an established approach—DAVSS-G/DG—
shows good agreement in measured drag force exerted on a cylinder by an Oldroyd-B
fluid. The distribution of the viscoelastic stress also matches closely that reported for
DEVSS-G/SUPG method.

A variant of the current method—a four-field GLS formulation—featuring a fully-
implicit recovery of the velocity gradient is also under development. More comprehensive
set of benchmark results, including quantitative measures of computational efficiency, will
be a reported in a future article.
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