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bstract

We study the effect of viscoelasticity on the fluid dynamics of slot coating flow of dilute polymer solutions. The fluid is modeled by the Oldroyd-B
nd FENE-P equations in a conformation tensor formulation. The fully coupled equations of the flow are solved by the DEVSS-TG finite element
ethod together with the elliptic domain mapping method to capture the unknown free surface. We observe that dilute solutions, where the presence

f polymer molecules affects the flow field, behave qualitatively differently from ultra-dilute solutions, where the presence of polymer molecules
oes not alter the flow field. In dilute solutions: (1) the stagnation point on the free surface moves towards the static contact line and the recirculation
one shrinks with increasing Weissenberg number; (2) once the stagnation point reaches the static contact line, the hoop stress on the free surface
hanges sign from negative to positive, which destabilizes the flow; (3) the region of most severe polymer stretch and distortion also moves to the

tatic contact line. The field variables, such as velocity, velocity gradient and conformation tensor, become singular due to a geometric singularity
t the static contact line which leads to the failure of the computational method. In contrast, in ultra-dilute solutions, the computations fail when
he mesh can not capture steep stress boundary layers at the free surface. The low-flow limit of inertialess slot coating flow is examined in terms
f the Elastocapillary number; the coating window for uniform coating narrows as the liquid grows more elastic.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Slot coating belongs to a class of coating flows known as
re-metered coating, where the thickness of the coated layer is
redetermined. In pre-metered coating, all the liquid fed into the
oating die by a metering device, e.g., a displacement pump, is
eposited on the substrate (see Fig. 1). As a result, the average
lm thickness is predetermined for a given feed flow rate, coat-

ng width in the cross-web direction, and substrate speed, and
s consequently ideal for high precision coating. The average
lm thickness is independent of the rheological properties of

he coating liquid.
Frequently, coating applications involve liquids that are vis-
oelastic due to the presence of polymer as a final product or
s a rheology modifier. Most of these flows are time dependent
nd their dynamics are controlled by the elasticity and capillar-
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ty of the liquid. The competition among viscous, capillary and
lastic forces (also inertial forces if the Reynolds number (Re) is
ufficiently high) determines the range of parameters in which
he flow is stable and steady. Although the coating thickness is
ndependent of the non-Newtonian nature of the liquid, the flow
n the coating bead and the uniformity of the liquid layer are
ffected by the rheological properties of the liquid [1].

Until recently, coating flow research has largely been based
n steady Newtonian coating flows [2–12] and their stability
13–18]. Studies related to viscoelastic coating flows have only
ecently been attempted and are limited [19–25]. For slot coating
ow in particular, calculations of steady Newtonian [3,4,9–12]
nd viscoelastic flows [19,20,23,25] have been reported in the
iterature. To some extent, the limited number of studies in
he area of viscoelastic coating flow can be attributed to the
omplexity posed by the presence of free surfaces especially

t low Capillary number, Ca (defined as the ratio of viscous
o surface forces). Modeling coating flows requires equations
nd computational methods which can describe and predict the
olecular conformation of polymers in the flow field while

mailto:mp@rice.edu
dx.doi.org/10.1016/j.jnnfm.2007.05.013
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Fig. 1. Flow domain and boundary conditions used in analyzing th

imultaneously capturing accurately the shape of free surfaces.
he location of the free surface is unknown a priori and captur-

ng its location is a part of the problem solution. Different ways
f handling free surface flows are discussed in detail in Refs.

1,5,26,27].

The work by Pasquali and Scriven [19], Lee et al. [20] and
ajaj et al. [25] highlight the following aspects of viscoelastic

lot coating flows.
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r

ig. 2. Evolution of the xx component of the elastic stress (σxx) as a function of Wi fo
= 0.75, b = 50. (a and b) Wi = 1.0, (c and d) Wi = 2.0 and (e and f) Wi = 3.0.
of viscoelastic liquid in the downstream section of a slot coater.

Pasquali and Scriven [19] carried out flow computations of
ifferent coating operations for both the dilute and ultra-dilute
olutions using conformation tensor based constitutive models.
n ultra-dilute solutions conservation equations are decoupled

rom the conformation tensor equation and as a result, the veloc-
ty field is computed independent of the polymer stress. In case
f slot coating of ultra-dilute solutions, they observed that the
ecirculation under the die strongly affects the computations at

r Oldroyd-B (a, c and e) and FENE-P (b, d and f) models. Ca = 0.1, Q = 0.3,
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igh Weissenberg number Wi (Wi = λγ̇ , where λ is the char-
cteristic relaxation time of polymer, and γ̇ is the characteristic
ate of strain). In the absence of recirculation under the die lip,
arious constitutive models failed at a relatively low value of Wi

ecause of the singularity in the velocity gradient at the contact
ine [28–30]. However, when recirculation was present, much
igher Wi could be achieved before failure. In the latter case,
he mode of failure was independent of the model details, i.e.,
he smallest eigenvalue of the conformation tensor reached zero
n the region of strong extensional flow under the stretching
ection of the free surface. The maximum Wi achieved in all
alculations increased as the molecules became stiffer. Pasquali
nd Scriven [19] also discussed that in dilute polymer solutions
in which case the conservation equations are coupled with the
onformation tensor equation and the velocity field depends
n the polymer stress), increase in the polymer viscosity or
i result in the disappearance of recirculations under the die
ip which ultimately lead to the failure of numerical computa-
ions.

Lee et al. [20] observed that in dilute polymer solutions, vis-
oelasticity increases the meniscus invasion and thus reduces the

t
d
b
p

ig. 3. Largest (a and b) and smallest (c and d) eigenvalues of the conformation tens
olutions at high Wi. Ca = 0.1, Q = 0.3. (a and c) β = 0.25 and (b and d) β = 0.51.
uid Mech. 149 (2008) 104–123

ontact angle at the static contact line. They identified menis-
us invasion as a possible mechanism for the onset of ribbing
nstabilities. A recent study by Romero et al. [23] has verified
xperimentally and theoretically that the viscoelastic nature of
he fluid significantly reduces the contact angle due to meniscus
nvasion, leading to a non-uniform coating. Both Pasquali and
criven [19] and Lee et al. [20] observed the formation of elastic
tress boundary layers under the free surface and the failure of
he numerical method at high Wi.

Bajaj et al. [25] have observed that the catastrophic fail-
re of numerical simulations at high Wi does not occur if the
oating flow is modelled with a micro-macro approach which
ses kinetic theory based microscopic constitutive models. They
lso found that in ultra-dilute flow computations using a macro-
copic constitutive equation, the maximum Wi corresponding to
he catastrophic failure can be increased substantially by mesh
efinement. However, the failure was found to be insensitive to

he mesh refinement and the choice of constitutive model for
ilute solutions. Bajaj et al. [25] have argued that the different
ehavior shown by dilute polymer solutions is due to the cou-
ling between the velocity and the elastic stress that causes the

or in the flow domain for an Oldroyd-B fluid. Inset shows the convergence of
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ecirculation under the die lip to disappear at high Wi, exposing
he inappropriate boundary condition applied on the momentum
quation at the contact line.

While the coupling between flow and the flow induced
icrostructure in slot coating is yet to be examined, a recent

tudy on roll coating of dilute polymer solutions has revealed
hat the presence of polymer can change dramatically the flow
eld (e.g. velocity field, recirculation, etc.) which ultimately

eads to flow instabilities [24]. This kind of behavior is not
xpected for a ultra-dilute solution as the flow field is indepen-
ent of the elastic stress. Zevallos et al. [24] have established
hat for a given flow condition and Ca in viscoelastic roll coat-
ng flows, there is always a critical Wi beyond which the normal
tress difference at the stagnation point becomes positive, and
he recirculation, which is present at low Wi, completely dis-
ppears. Due to the disappearance of recirculation, the flow
lose to the stagnation point becomes stronger and consequently,

he normal stress difference at the free surface increases dra-

atically. This has been offered as an explanation of how
iquid elasticity makes roll coating flow unstable at a high Wi

31,24].

b
f
R
i

ig. 4. Largest (a and b) and smallest (c and d) eigenvalues of the conformation ten
olutions at high Wi. Ca = 0.1, Q = 0.3, b = 50. (a and c) β = 0.25 and (b and d) β
uid Mech. 149 (2008) 104–123 107

The flow computations by Pasquali and Scriven [19], Lee
t al. [20], Zevallow et al. [24] and Bajaj et al. [25] have fur-
hered the understanding of the role of viscoelasticity on slot
oating and general free surface flows. However, it is not yet clear
hy ultra-dilute polymer solutions differ from dilute ones in the
ode of failure of numerical simulations at high Wi number.
he primary aim of this paper is to understand how viscoelastic
roperties of the fluid affect the macroscopic and microscopic
roperties (e.g., the molecular stretch, the velocity field, recir-
ulation under the die, the location of the stagnation point, etc.)
eading to the observed unusual mesh convergence behavior.
he stability criteria proposed by Graham [31] is applied to
nderstand the role of viscoelasticity on the stability of slot
oating.

To further examine the viscoelastic effect, results for flow
omputations of the low flow limit of slot coating is also pre-
ented. The low-flow limit is the minimum thickness that can

e coated at a given substrate speed while maintaining a uni-
orm coating [2,12,23,32,33]. Carvalho and Kheshgi [12] and
omero et al. [23] have discussed the design of a stable coat-

ng window for slot coating flows. Carvalho and Kheshgi [12]

sor in the flow domain for the FENE-P fluid. Inset shows the convergence of
= 0.51.
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g1(M), and g2(M) define the rate of relaxation of polymer
segments.
08 M. Bajaj et al. / J. Non-Newtoni

ave extended the work on the low-flow limit of Ruschak [2]
nd Landau and Levich [34] by conducting experiments and by
arrying out numerical simulations at much higher values of Re
nd Ca for a Newtonian liquid. Both experiment and numerical
esults predict that the viscocapillary model proposed by Lan-
au and Levich [34] is useful only for low Ca and Re. Carvalho
nd Kheshgi [12] found that at higher Ca, the viscocapillary
odel underpredicts the low flow limit for inertialess flows.
omero et al. [23] extended the work of Carvalho and Kheshgi

12] to viscoelastic liquids and predicted that the critical condi-
ions for the onset of the low-flow limit are strong functions of
iscoelasticity of the fluid and the ratio of solvent to the solu-
ion viscosity (β). Using a strain-type constitutive equation [35]
o capture the behavior of their experimental viscoelastic liq-
id, they demonstrate that viscoelasticity reduces the size of the
oating window. Subsequently, Romero et al. [33] have shown
hat for the Oldroyd-B and FENE-CR fluids, at Wi ∼ 0.1, vis-
oelasticity widens the coating window, while a further increase
n Wi yields higher viscoelastic stresses leading to a narrower
perability window.

In this work, Oldroyd-B and FENE-P constitutive models are
sed to investigate the effect of viscoelasticity on the low-flow
imit in terms of the Elastocapillary number, Ec ≡ Wi/Ca. The
se of Ec is particularly important for a proper representation of
xperimental data on the low flow limit for a given fluid and it
s analogous to the property number (Pp = Re/Ca) defined by
arvalho and Kheshgi [12] to investigate the effect of inertial

orces. Here, we examine the low-flow limit for various values
f Ec and β.

The next section presents an overview of the basic macro-
copic conservation and constitutive equations. The finite
lement method to solve the set of governing equations is
escribed in Section 3. Section 4 analyzes the flow under the
ownstream section of a slot coater, while Section 5 summarizes
he central conclusions of this paper.

. Governing equations

.1. Transport equations

The transport equations governing mass and momentum
n steady, isothermal and incompressible flows of dilute
olymer solutions in the absence of any external forces
re:

= ∇ · v (1)

= ρv · ∇v − ∇ · T − ∇� (2)

here v is the liquid velocity, ρ the liquid density, and � is the
otential of body force per unit volume. The total stress tensor:
= −pI + τ + σ, where p is the pressure, I the identity tensor,
the viscous stress tensor and σ is the polymer contribution to

he total stress tensor. The viscous stress: τ = 2ηSD, where D =

1/2)(∇v + ∇vT) is the rate of strain tensor and ηS is Newtonian
iscosity.

The polymer contribution to the total stress is evaluated by
sing the general conformation tensor based constitutive equa-

F
F

uid Mech. 149 (2008) 104–123

ions [19]. The conformation tensor M is a microstructural
ariable that represents the local expectation value of the stretch
nd orientation of polymer molecules [19,36–38].

The steady state transport equations for the evolution of
imensionless conformation tensor are [39]:

= v · ∇M − 2ξ
D : M
I : M

M − ζ

(
M · D+D · M − 2

D : M
I : M

M
)

−M · W − WT · M + 1

λ
(g0I + g1M + g2M2) (3)

here W = 1/2(∇v − ∇vT) is the vorticity tensor, and λ is
he characteristic relaxation time of the polymer. The con-
titutive function ξ(M) represents the polymer’s resistance to
tretching along its backbone, ζ(M) represents the polymer’s
esistance to rotation with respect to its neighbors and g (M),
ig. 5. Change in Wi∗ with number of elements for the Oldroyd-B (a) and
ENE-P (b) models. Ca = 0.1, Q = 0.3, b = 50.
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Table 1
Constitutive functions for Oldroyd-B and FENE-P models

ξ χ g0 g1 g2 a

O
F

[

σ

w
t
ζ

a

2

t

a
o

∇
w
d
t

2

F
W

Q

ldroyd-B 1 1 −1
ENE-P 1 1 −1

The elastic stress, σ, is related to the conformation tensor by
39]:

= 2(ξ − ζ)
M

I : M
M :

∂a

∂M
+ 2ζM · ∂a

∂M
(4)

here a(M) is the Helmholtz free energy per unit volume of
he liquid. Table 1 contains the constitutive functions ξ(M),
(M), g0(M), g1(M), g2(M), and a(T, M) for the Oldroyd-B
nd FENE-P models (see Ref. [39] for more details).
.2. Mesh generation

A boundary fitted elliptic mesh generation method is used
o construct the mapping between the physical domain and

u
w
m

ig. 6. Effect of viscosity ratio (β) on the polymer conformation for the Oldryod-B (
i = 5 for the FENE-P model. Note that the maximum Wi for β = 1 is ∼ 9 (see Fig
= 0.3, b = 50. (a and b) Largest eigenvalue and (c and d) smallest eigenvalue.
1 0 G
2 trM

b−1
b−trM/3 0 3G(b−1)

2 ln
(

b−1
b−trM/3

)

reference or computational domain [5,40]. The mapping
beys

· D̃ · ∇ξ = 0 (5)

here ξ is the position in the computational domain and the
yadic D̃ is a symmetric positive definite tensor which controls
he spacing of the coordinate lines [19].

.3. Problem description and boundary conditions
Fig. 1 shows the downstream section of a slot coater. The
pper wall is the die wall and the lower solid wall is the moving
eb. The liquid is being coated on the moving web. In pre-
etered slot coating, the flow rate at the inlet and the final

a and c) and FENE-P (b and d) models. For β = 1, the stretch is plotted up to
. 3 of Ref. [25]). Computations are carried out using the M4 mesh. Ca = 0.1,
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oating thickness are known. These transport equations and
esh equations governing the slot coating flow are solved with

he following boundary conditions.
.3.1. Boundary Conditions on Transport Equations:
1) A no slip boundary condition is applied at the solid walls

(v = 0 at the die wall and, vx = web velocity; vy = 0 at the
web).

ig. 7. Effect of viscosity ratio (β) on the conformation of the molecule for an Oldroyd
i � 1.5, (b) smallest eigenvalue, Wi � 0.7, (c) largest eigenvalue, 1.5 � Wi � 2.0,

mallest eigenvalue, Wi � 2.0.
uid Mech. 149 (2008) 104–123

2) The force balance at the free surface is imposed on the
momentum equation through the following traction bound-
ary condition:

n · T = −p n + ς n (∇ · n) (6)
a II

where∇II denotes the surface divergence operator [41]∇II =
(I − nn) · ∇, pa the ambient pressure in the gas phase, ς the
surface tension and n is the unit vector normal to the free

-B fluid. Zoomed images of Fig. 6. Ca = 0.1, Q = 0.3. (a) Largest eigenvalue,
(d) smallest eigenvalue, 0.7 � Wi � 2.0, (e) largest eigenvalue, Wi � 2 and (f)
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5.1. Dilute v/s ultra-dilute solutions

This study employs four different meshes used previously to
study slot coating flow by micro-macro methods [25]. Details

Table 2
Meshes used for slot coating flow computations

Mesh Number of
elements

Number of nodes Degrees of freedom
(x, v, p, M, L)

M1 550 2,311 15,712
M2 1096 4,539 30,836
M3 2100 8,611 58,392
M4 4105 16,717 113,215
M. Bajaj et al. / J. Non-Newtoni

surface. The tangential component of Eq. (6) is the vanishing
shear stress, tn : T = 0, at the free surface.

3) The flow rate at the inflow boundary is imposed by specify-
ing a velocity profile v = f (x).

4) The fully developed flow condition at the outflow boundary
is imposed naturally as n · ∇v = 0.

5) The conformation transport equation (Eq. (3)) is a hyper-
bolic equation. In fully developed flow, the polymer
conformation does not change along streamlines [19,42] and
thus,

v · ∇M = 0 (7)

holds at the inflow boundary.

.3.2. Boundary conditions on mesh equations
The following boundary conditions are used to solve the mesh

quation (Eq. (5)):

1) The location of nodes on the boundary is fixed at the inflow
and on the two solid walls.

2) At the free surface, the following kinematic boundary con-
dition is applied.

n · v = 0 (8)

More details on mesh boundary conditions can be found in
ef. [19].

. Dimensionless numbers

Dimensional analysis of the system of equations suggests that
t is convenient to introduce five dimensionless numbers, which
re combinations of the various macroscopic model parameters
, H0, q, ηS, ς, ηp,0, v, λ, etc. Here, H0 is the die gap, q the
ow rate, ηS the solvent viscosity, ηp,0 the polymer contribution

o the zero shear viscosity, and v is the web velocity. These
imensionless numbers are:

1) The Reynolds number, Re = ρvH0/(ηS + ηp,0).
2) The Capillary number, Ca = (ηS + ηp,0)v/ς.
3) The viscosity ratio, β = ηS/(ηS + ηp,0).
4) The Weissenberg number, Wi = λv/H0.
5) The dimensionless feed flow rate, Q = q/(vH0)
6) The Elastocapillary number, Ec = Wi/Ca = λς/(ηS +

ηp,0)H0. This dimensionless number is useful because it
depends only on fluid properties and slot width and is
independent of the web velocity (unlike Ca and Wi). To
investigate the effect of viscoelasticity on the low flow limit
of inertialess slot coating flow, the parameter space to be
explored is either a combination of Ec, Ca and β or a com-
bination of Ec, Wi and β. Both combinations ensure that all
the relevant forces are taken into account and, conveniently,
the web velocity is related solely to a single dimensionless

parameter (either Ca or Wi).

All simulations are performed at Re = 0. The FENE-P simu-
ation are carried at b = 50, ensuring that the behavior of FENE-

F
t
0

uid Mech. 149 (2008) 104–123 111

model differs from the Oldroyd-B fluid. The dimensionless
umbers that are varied in this work are Ca, β, Wi and Ec. Sim-
lations to predict critical conditions for the low-flow limit are
erformed at different values of Ca, Ec and die gap to coating
hickness ratio (H0/t), where t is the coating thickness (Fig. 1).

. Computational method

The mesh equation and transport equations are discretized
y using the DEVSS-TG/SUPG mixed finite element method
19] which is a stable formulation based on the earlier work
y Guénette and Fortin [43] and Szady [44]. The DEVSS-TG
ormulation involves the introduction of an additional variable,
he velocity gradient L. Continuous biquadratic basis functions
epresent velocity and position, linear discontinuous basis func-
ions represent pressure and continuous bilinear basis functions
re used for the interpolated velocity gradient and conforma-
ion tensor. The DEVSS-TG/SUPG spatial discretization results
n a large set of coupled non-linear algebraic equations, which
s solved by Newton’s method with analytical Jacobian, frontal
olver, and first order arclength continuation in parameters [19].

. Results
ig. 8. Effect of viscosity ratio on the largest eigenvalue of the rate of strain
ensor along the free surface for an Oldryod-B fluid. Wi = 2.0, Ca = 0.1, Q =
.3.
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Fig. 9. Change in spatial position of the largest (a, c and e) and smallest (b, d and f) eigenvalues of the conformation tensor as a function of Wi for an Oldroyd-B
fluid. Ca = 0.1, Q = 0.3.
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Fig. 10. Change in the spatial position of the maximum molecular shear (a) and
extension rate (b) with Wi number for different values of β. The Newtonian free
surface profile is shown for reference. Ca = 0.1, Q = 0.3.

Fig. 11. Molecular extension rate as a function of Wi for an Oldroyd-B fluid.
Ca = 0.1, Q = 0.3, β = 0.75.

Fig. 12. Normal stress difference along the free surface as a function of Wi for an Oldroyd-B fluid. (b)The close-up image of (a) near to the static contact line.
Ca = 0.1, Q = 0.3, β = 0.75.
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n meshes M1, M2, M3, and M4 are given in Table 2. Chiefly,
he four meshes differ in the density of elements near the static
ontact line and near the air/liquid interface.

Bajaj et al. [25] have presented the mesh convergence results
n terms of the eigenvalues of the conformation tensor. The
igenvalues of the conformation tensor are always real and pos-
tive because the conformation tensor is symmetric and positive
efinite [19]. They found that computations for dilute (β = 0.75)
nd ultra-dilute (β = 1.0) solutions failed at a critical Weis-
enberg number (Wi∗) when one of the eigenvalues became
egative somewhere in the flow domain. In dilute solutions,
i∗ was independent of mesh refinement and choice of consti-

utive model. Conversely, Wi∗ depended strongly both on mesh
efinement and the choice of constitutive model in ultra-dilute
olutions (see Figs. 3, 5, 10 and 11 of Ref. [25]). Contrary to the
ommon belief, this suggests that in dilute polymer solutions,
esh refinement does not resolve stress boundary layers formed
nder the stretching section of the free surface at high Wi (see
ig. 2). Here, we extend the work of [25] to analyze a wider
ange of viscosity ratios to gain a clear insight into the behavior
f dilute and ultra-dilute solutions.

ig. 14. Normal stress difference along the free surface (a and b) and near the contact
= 0.3. (a and c) Wi = 0.5 and (b and d) Wi = 2.0.

Fig. 13. Normal stress difference along the free surface for different constitutive
equations. Ca = 0.1, Q = 0.3, β = 0.75, b = 50.
line (c and d) as a function of viscosity ratio for an Oldroyd-B fluid. Ca = 0.1,
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Figs. 3 and 4 show the mesh convergence of computational
esults for the Oldroyd-B and FENE-P models at two different
alues of β. As for β = 0.75, lower β values also show that
i∗ is independent of mesh and constitutive model. However,
esh converged results are obtained at least up to Wi = 2 at all

our values of β. The mesh independence of Wi∗ is more clearly
hown in Fig. 5 for both the Oldroyd-B and FENE-P models.
i∗ decrease at lower viscosity ratio (Fig. 5).
The unusual mesh convergence behavior of dilute and ultra-

ilute solutions with regards to its sensitivity to mesh refinement
nd choice of constitutive equations poses interesting questions.
o probe these differences, a detailed analysis of the effect
f viscosity ratio on flow properties is presented in the next
ection.

.1.1. Effect of viscosity ratio on the polymer conformation
Fig. 6 shows the effect of the viscosity ratio β on the stretch

f polymer molecules as a function of Wi for the Oldroyd-B and
ENE-P models. These figures display the largest and smallest
igenvalues of conformation tensor in the flow domain (irre-
pective of location). For clarity, the same data are broken up in
ig. 7 into different regimes of magnitude of Wi for the Oldroyd-
model. Fig. 7(a) shows that whenWi is below∼ 1.5, the largest

igenvalue of the conformation tensor is independent of viscos-
ty ratio. Beyond Wi ∼ 1.5, (Fig. 7(c)), the rate of stretching
ecreases with decreasing β (which corresponds to an increas-
ng concentration of polymer). At Wi > 2 (Fig. 7(e)), the stretch
n dilute system is lower than that in the ultra-dilute, as long as
he computations hold accurately (Fig. 7(f)).

Fig. 8 shows the effect of viscosity ratio on the largest
igenvalue of the rate of strain tensor. By decreasing the vis-
osity ratio, the largest eigenvalue of the rate of strain tensor
ecreases which explains the decrease in the rate of stretching

ith decreasing viscosity ratio (Fig. 7(c)).
The smallest eigenvalue of the conformation tensor shows

weaker dependence on the viscosity ratio in the range of Wi

rom 0 to 2 (Fig. 7(b) and (d)) compared to the rate of change of

ig. 15. Effect of polymer viscosity on the shape of the free surface for an
ldroyd-B fluid. Wi = 2.0, Ca = 0.1, Q = 0.3.
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ig. 16. Movement of the stagnation point for an Oldroyd-B liquid. The dark
lled circle denotes the stagnation point. Ca = 0.1, Q = 0.3, β = 0.75. From

op to bottom Wi = 0.0 (Newtonian), 0.75, 1.0, 1.5, 2.0 and 3.0.

he largest eigenvalue. However, for the Wi at which the rate of
hange of the largest eigenvalue diverges, the minimum eigen-

alue becomes zero and the conformation tensor eventually loses
ts positive definiteness (Fig. 7(f)).

Another interesting feature of Fig. 6 is that both the largest
nd smallest eigenvalues show a point of inflection at Wi∗L ∼ 1.5
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nd Wi∗S ∼ 0.7, respectively; these values are independent of the
hoice of constitutive equation as shown in Fig. 6(b) and (d) for
he FENE-P model. The two different regimes of the rate of
tretching near Wi∗L and Wi∗S, can be explained by examining
he location of the largest and smallest eigenvalues of the con-
ormation tensor in the flow domain (Fig. 9). When Wi < Wi∗L,
he Y-coordinate of the location of the largest eigenvalue in the
ow domain remains at Y = 0 (on the moving web) (Fig. 9(a))

ndependent of the viscosity ratio. On the web, the stretch of the
olecules is dominated by shearing flow kinematics. Beyond
i∗L, the largest eigenvalue abruptly jumps from the web to

he free surface as shown in Fig. 9(e). For clarity, the free sur-
ace profile is plotted at β = 0.25, Wi = 2.0 in Fig. 9(e). On the
ree surface, the flow kinematics is extensional in nature. Dif-
erent flow kinematics at the web and the free surface lead to the
ifferent rates of change of the largest eigenvalue around Wi∗L.

The transition in position of the smallest eigenvalue from
he web to the free surface occurs at Wi ∼ Wi∗S as shown in
ig. 9(f). However, for dilute solutions (β < 1), the position of

he smallest eigenvalue once more abruptly changes from the
ree surface to the static contact line when the smallest eigen-
alue approaches zero (see Fig. 9(b)). The change in position
rom the free surface to the static contact line occurs at a higher

i at higher viscosity ratio. When β = 1, the smallest eigen-

alue always remains on the free surface for Wi > Wi∗S. The
onformation tensor always loses it positive definiteness at the
tatic contact line for β < 1, which is different from simulation

m
e
e
f

Fig. 17. Change in velocity profile by changing the Wi for
uid Mech. 149 (2008) 104–123

f ultra-dilute solutions (β = 1) where the conformation tensor
oses its positive definiteness under the stretching section of the
ree surface (as reported earlier by Pasquali and Scriven [19]).
he behavior of the location of the eigenvalues for the FENE-P
odel with b = 50 virtually coincides with those obtained with

he Oldroyd-B model.
The X-coordinate of the largest (Fig. 9(c)) and smallest

Fig. 9(d)) eigenvalues indicate that both eigenvalues move on
he free surface towards the die wall as Wi increase when β < 1.
his behavior can be understood by considering the position of

he maximum molecular extension rate (shown in Fig. 10). The
ean ensemble molecular extension and shear rates are

˙ ≡ |m3m3 : D|; γ̇ ≡ |m1m3 : D| (9)

here m1 and m3 are the eigenvectors associated with the
mallest and largest eigenvalues of the conformation tensor,
espectively [19]. Fig. 10(a) shows that for an Oldroyd-B fluid,
he maximum molecular shear rate always remains on the web at
ll Wi (see Refs. [19,23]); Fig. 10(b) shows the evolution of the
ocation of the maximum molecular extension rate as a function
f Wi. At low Wi, the molecules stretch predominantly near the
eb, where the rate of strain is highest and the flow is dom-

nated by shear. At high Wi, the polymer molecules becomes

ore and more stretched and a thin layer of high molecular

xtension grows at the free surface. The maximum molecular
xtension rate always occur under the stretching section of the
ree surface, i.e., downstream of the stagnation point (Fig. 11).

an Oldroyd-B fluid. Ca = 0.1, Q = 0.3, β = 0.75.
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n abrupt change in the location of the highest molecular exten-
ion rate explains why the largest and smallest eigenvalues of
onformation tensor suddenly move from the web to the free
urface.

Fig. 10(b) also shows that the maximum molecular exten-
ion rate moves upstream towards the static contact line, which
xplains behavior of the the X-position of the largest and smallest
igenvalues of the conformation tensor in Fig. 9.

.1.2. Effect of viscosity ratio on the macroscopic flow
The viscoelastic nature of the fluid strongly affects the flow

eld in the vicinity of the static contact line. The change in the
ow behavior is analyzed here in terms of the stability crite-
ion proposed by Zevallos et al. [24] to examine the stability of
oll coating. Zevallos et al. [24] combined the stability criteria
roposed by Pitts and Greiller [14] for Newtonian film splitting
ow with the stability mechanism proposed by Graham [31] for
iscoelastic free surface flows and showed that for given flow
onditions, an increase in Wi leads to the disappearance of the
ecirculation under the free surface at the film split location.

his yields a positive normal stress difference at the film split
nd promotes instability.

The difference between the streamwise (Ttt) and crossstream
Tnn) normal stress components along the free surface is plotted

m
l
c
y

ig. 18. Change in velocity profile by changing the viscosity ratio for the Oldroyd-B
β = 0.25), (b) FENE-P (β = 0.25), (c) Oldroyd-B (β = 0.51), (d) FENE-P (β = 0.5
uid Mech. 149 (2008) 104–123 117

gainst Wi in Fig. 12. T is the sum of pressure, viscous and elastic
tresses. As Wi increases, the normal stress difference (Ttt −
nn) along the free surface grows. Fig. 12(b) shows that near the
tatic contact line, the normal stress difference is negative (Tnn >

tt) at small Wi and changes sign beyond Wi ∼ 1. This happens
ecause as Wi grows, the stagnation point moves from the free
urface to the die wall. Fig. 13 shows that the normal stress
ifference for the FENE-P model is smaller than the Oldryod-B
odel for b = 50.
Fig. 14 displays the effect of the viscosity ratio on nor-

al stress difference at two different Wi(Wi = 0.5, 2.0), for an
ldroyd-B liquid. At a given Wi, the normal stress difference

ncreases with decreasing β. Fig. 14(c) and (d) shows that for a
iven Wi, a reduction in β leads to a positive normal stress dif-
erence in the vicinity of the static contact line. Similar behavior
as observed for the FENE-P model.
Fig. 15 shows the effect of viscosity ratio on the shape of

he free surface. For the parameters studied in this work, the
hape of free surface is not significantly altered by viscoelas-
icity. However, close to the static contact line the free surface
oves into the die as viscoelasticity increases, as predicted ear-
ier by Lee et al. [20] and Romero et al. [23]. This movement
auses a reduction in the contact angle and ultimately would
ield the detachment of the free surface from the die wall.

and FENE-P models. Wi = 2.0, Ca = 0.1, Q = 0.3, b = 50. (a) Oldroyd-B
1), (e) Oldroyd-B (β = 0.75) and (f) FENE-P (β = 0.75).
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Fig. 16 shows the position of the stagnation point for an
ldroyd-B liquid as a function of Wi. The stagnation point is

lways on the free surface when Wi � 1, moves to the static
ontact line when Wi ∼ 1 and on the die wall at higher Wi.

s long as (Tnn − Ttt) is negative (see Fig. 12(b)), the stag-
ation point is on the free surface and it jumps to the die
all when (Tnn − Ttt) becomes positive. The strong extensional

tresses arising from the viscoelastic nature of the fluid pulls

o
r
b

ig. 19. Components of velocity gradient (left) and conformation tensor (right) for an
rom the die wall to the free surface. X = 0 is static contact line. Wi = 2.0, Ca = 0.1
uid Mech. 149 (2008) 104–123

he liquid out of the recirculation region and the recirculation
one shrinks as depicted in Fig. 17. For Wi � 1, the recircu-
ation region attached to the static contact line completely dis-
ppears.
The effect of the viscosity ratio and the constitutive model
n the size of the recirculation zone is shown in Fig. 18. The
ecirculation is much smaller at β = 0.25 than at β = 0.75
ecause of the higher normal stress difference at smaller β val-

Oldroyd-B fluid. X-axis shows the x-coordinate of the position while moving
, Q = 0.3.
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es. As shown in Fig. 18, the choice of constitutive model affects
inimally the size of the recirculation. Both the Oldroyd-B

nd FENE-P models produce similar behavior with varying β

alues.

.1.3. Effect of geometric singularity on mesh convergence
As a consequence of the shrinking recirculation zone, the

eometric singularity that is present in slot coating flows is
xposed in relatively strong flows. The geometric singularity
rises due to the imposition of an inadequate boundary condi-
ion on the die wall and the free surface. While moving from
he die wall to the free surface, the boundary condition changes
rom a no-slip boundary at the die wall to the shear-free con-
ition on the free surface. Pasquali and Scriven [19] showed
hat for an ultra-dilute solution, the geometric singularity at the

tatic contact line does not affect viscoelastic flow calculations
hen recirculation is present under the die (which occurs for
< 0.33). An analysis of the flow field for an Oldroyd-B liq-

id near corners (formed by the intersection of a slip surface

ig. 20. Effect of Ca on the stretch and the normal stress difference for an
ldroyd-B fluid. Wi = 2.0, Q = 0.3, β = 0.75. (a) Largest eigenvalue of the

onformation tensor along the free surface and (b) Hoop stress along the free
urface.
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ith either a no-slip or a shear-free boundary) by Salamon et
l. [30] revealed that for dilute and ultra-dilute solutions both
tress and flow fields have a singularity at the point of intersec-
ion of the free surface and the solid surface in the absence of
he recirculation. They found that the strength of the singularity
epends upon the dimensionless solvent viscosity (defined as
in this work) and in particular, for dilute solutions, the sin-

ularity in the rate-of-strain and elastic stress fields scale with
/β

Both the rate-of-strain and the conformation tensor for an
ldroyd-B fluid are plotted as a function of the X-position along

he die wall and the free surface in Fig. 19. Clearly, the field vari-
bles become singular as the static contact line is approached;
he singularity is much stronger for a smaller β value which is
onsistent with the findings of Salamon et al. [30]. The higher
trength of the singularity in field variables and the require-
ent of refined meshes to capture higher normal stresses along
he free surface explains why the conformation tensor loses its
ositive definiteness at a smaller Wi for decreasing values of β

Fig. 6).

ig. 21. Effect of Ca on free surface shape for an Oldyod-B fluid. Wi=2.0,
= 0.30, β = 0.75. (a) Ca = 0.1 and (b) Ca = 0.5.
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ig. 22. Change in velocity profile by changing the Ca for an Oldroyd-B fluid. Q
a = 0.5 and (d) Wi = 2.0, β = 0.75, Ca = 0.5.

.2. Effect of Ca

Here, we analyze the effect of Ca on microscopic and macro-
copic flow properties at Ca = 0.1 and 0.5. As is well known

or a Newtonian fluid, an increase in Ca causes the free surface
o move into the die (meniscus invasion) [1–4,12]. The menis-
us invasion causes the rate of strain or the velocity gradient
o increase. Such higher rate of strain significantly affects the

h
o

c

ig. 23. Evolution of streamlines with the change in the gap to the coating thickness
rofile for an Oldroyd-B liquid is on the right for Ca = 0.75, Ec = 2.0 and β = 0.75
3. (a) Newtonian, Ca = 0.1, (b) Wi = 2.0, β = 0.75, Ca = 0.1, (c) Newtonian,

ow behavior of viscoelastic liquids. Fig. 20 shows the effect
f Ca on the stretch of polymer molecules and on the normal
tress difference along the streamlines on the free surface for an
ldroyd-B fluid. As expected, both the stretch and the stress are

igher at Ca = 0.5 than at Ca = 0.1, because of the higher rate
f strain.

The normal stress difference arising because of the fluid vis-
oelasticity contributes to the net pressure gradient at the free

ratio (H0/t). The Newtonian flow profile is on the left for Ca = 0.75 and flow
.
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Fig. 24. Change in the contact angle with the change in the gap to coating
thickness ratio (H0/t). H0/tmin shown in the figure is used to predict the low-
M. Bajaj et al. / J. Non-Newtoni

urface. In order to balance the increased pressure gradient due to
iscoelasticity, the free surface must curve more than in a New-
onian liquid. The effect of viscoelasticity on meniscus invasion
s displayed in Fig. 21 for two different Ca. While at smaller
a the surface forces can balance the increased pressure differ-
nce without drastic changes in curvature (Fig. 21(a)), at high Ca

smaller surface tension), the free surface must curve more when
he liquid is viscoelastic liquids compared to the Newtonian case
Fig. 21(b)).

Fig. 22 shows that in viscoelastic liquids the recirculation
hrinks more at high Ca compared to that at lower Ca because
he normal stress effect grows with Ca.

.3. Low flow limit in slot coating flows

The viscoelasticity of the coating fluid affects the low-flow
imit of slot coating. Fig. 23 shows the evolution of streamlines as
function of the gap to coating thickness ratio (H0/t) for a New-

onian fluid and for an Oldroyd-B liquid at Ca = 0.75, Ec = 2.0
nd β = 0.75. As the ratio H0/t increases, the free surface
ecomes more curved and the contact angle (θ) between the
ree surface and the die wall diminishes. Fig. 23 shows that
iscoelasticity leads to smaller contact angle compared to the
ewtonian fluids; this limits the minimum coating thickness that

an be coated at a given flow rate. However, the extent of this
eduction depends on Ca at a given β and Ec (Fig. 24 (a)). For
given H0/t, β, and Ec, the static contact angle θ decreases

s Ca increases for both Newtonian and Oldroyd-B liquids
4,12,23,33]. At low Ca surface tension forces are strong enough
hat there is little difference between Newtonian and viscoelas-
ic liquids with Ec up to ≈ 2. As the normal stress difference
rows with Ca (lower surface forces), the free surface curves
ore at high Ca. Higher Ec or lower β yields higher normal

tresses at a given Ca and the ratio H0/t; the computed contact
ngle decreases more rapidly. The effect of β is displayed in
ig. 24(b).

Fig. 24(c) shows the effect of the finite extensibility of the
olymer molecules on the contact angle. For the FENE-P model
he normal stresses at the free surface are smaller (due to shear
hinning) than the stresses predicted by the Olydroyd-B model
or b = 50. Hence, the change in contact angle for the FENE-P
odel is less steep compared to the change in contact angle for

he Oldroyd-B model.
Romero et al. [23] established that the critical conditions for

he low-flow limit obtained by solving only the downstream sec-
ion of a slot coater are virtually the same as those predicted for
he full slot coater [12,23] for Ca ≈ 1 and inertialess flows. As
nly the downstream section of the slot coater has been ana-
yzed in this work, the low-flow limit computed here is limited
o 0.1 � Ca � 1 and inertialess flows.

Following Ref. [23], the onset of the low-flow limit at a given
a is determined by computing the ratio H0/t at which the static
ontact angle falls below 20◦ as shown in Fig. 24. Fig. 25 display

he critical conditions for the low-flow limit predicted using the
ldroyd-B and FENE-P models. For the Oldroyd-B model, the
nset of the low-flow limit occurs at a lower gap to coating
hickness ratio compared to a Newtonian fluid for all values

flow limit.(a) Effect of Ca for Newtonian and Oldroyd-B fluids (β = 0.75), (b)
effect of the viscosity ratio β for an Oldroyd-B fluid (Ca = 0.75) and (c) change
in contact angle for different constitutive models (β = 0.75, b = 50).
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Fig. 25. Effect of viscoelasticy on the size of coating window. (a) Effect of Ec

for an Oldroyd-B fluid (β = 0.75), (b) effect of viscosity ratio β for an Oldroyd-
B fluid and (c) coating window for different constitutive models (β = 0.75, b =
50).
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f Ec and β considered (Fig. 25(a) and (b)). The minimum film
hickness that can be coated increases as the liquid becomes more
iscoelastic. A reduction in the size of the coating window has
een reported earlier by Romero et al. [23] both experimentally
nd theoretically.

Rheological properties of liquids (e.g., shear thinning)
trongly the affects size of the coating window. Fig. 25(c) com-
ares the critical conditions for different constitutive models. As
redicted, for the FENE-P model with b = 50 the onset of the
ow flow limit occurs at a higher gap to coating thickness ratio
ompared to the Oldroyd-B model because of smaller normal
tresses.

. Conclusion

In this paper, the flow behavior of Oldroyd-B and FENE-
liquids in the downstream section of slot coating flow has

een investigated. The DEVSS-TG finite element method cou-
led with an elliptic mesh generation scheme was used to solve
he transport and mesh equations. The flow behavior of dilute
olymer solutions differs dramatically from that of ultra-dilute
olutions. In ultra-dilute solutions, the maximum Wi that can
e achieved before the conformation tensor becomes negative
efinite depends strongly on mesh refinement and constitutive
odel. In contrast, the maximum attainable Wi is nearly inde-

endent of mesh and constitutive model in dilute solutions.
The flow transitions between two regimes at a critical Weis-

enberg number, Wi∗L. Below Wi∗L, polymer molecules are
redominantly stretched in the shear flow at the web; the rate
f stretching of molecules is independent of the viscosity ratio.
eyond Wi∗L, polymer molecules are chiefly stretched in the
xtensional flow at the free surface; the rate of stretching
ecreases with viscosity ratio. Wi∗L is nearly unaffected by the
hoice of constitutive equation.

In dilute polymer solutions, the position of the smallest eigen-
alue of the conformation tensor abruptly moves to the static
ontact line at high Wi just before numerical simulations fail.
n the other hand, the position of the smallest eigenvalue always

emains on the free surface in ultra-dilute solutions. This impor-
ant observation suggests that the mode of failure for dilute
olymer solutions is due to the artificial geometric singular-
ty at the static contact line; for ultra-dilute solutions, it occurs
ecause mesh can not capture steep stress boundary layers close
o the free surface.

In dilute solutions, the high normal stresses at the free sur-
ace pull the liquid away from the recirculation region present
n a Newtonian flow under the web. As a result, the recirculation
one shrinks, and flow close to the static contact line becomes
tronger. The stagnation point moves from the free surface to the
ie wall and the normal stress difference close to the static con-
act line becomes positive. Consequently, various field variables,
uch as the velocity gradient and conformation tensor, become
ingular.
We have also investigated the effects of viscoelasticity and
iscosity ratio on the low-flow limit of slot coating flows. We
nd that for viscoelastic liquids, the minimum coating thickness

s higher than the coating thickness for Newtonian liquids, i.e.,
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he coating window of a viscoelastic fluid is smaller than that of
Newtonian fluid of equal zero-shear viscosity.
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