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Abstract

A micro—-macro approach based on combining the Brownian configuration fields (BCF) method [M.A. Hulsen, A.P.G. van Heel, B.H.A.A.
van den Brule, Simulation of viscoelastic flow using Brownian configuration fields, J. Non-Newtonian Fluid Mech. 70 (1997) 79-101] with an
Arbitrary Lagrangian—Eulerian (ALE) Galerkin finite element method, using elliptic mesh generation equations coupled with time-dependent
conservation equations, is applied to study slot coating flows of polymer solutions. The polymer molecules are represented by dumbbells with both
linear and non-linear springs; hydrodynamic interactions between beads are incorporated. Calculations with infinitely extensible (Hookean) and
pre-averaged finitely extensible (FENE-P) dumbbell models are performed and compared with equivalent closed-form macroscopic models in a
conformation tensor based formulation [M. Pasquali, L.E. Scriven, Free surface flows of polymer solutions with models based on the conformation
tensor, J. Non-Newtonian Fluid Mech. 108 (2002) 363—409]. The BCF equation for linear dumbbell models is solved using a fully implicit time
integration scheme which is found to be more stable than the explicit Euler scheme used previously to compute complex flows. We find excellent
agreement between the results of the BCF based formulation and the macroscopic conformation tensor based formulation. The computations using
the BCF approach are stable at much higher Weissenberg numbers, Wi = Ay (where A is the characteristic relaxation time of polymer, and y is the
characteristic rate of strain) compared to the purely macroscopic conformation tensor based approach, which fail beyond a maximum Wi. A novel
computational algorithm is introduced to compute complex flows with non-linear microscopic constitutive models (i.e. non-linear FENE dumbbells
and dumbbells with hydrodynamic interactions) for which no closed-form constitutive equations exist. This algorithm is fast and computationally
efficient when compared to both an explicit scheme and a fully implicit scheme involving the solution of the non-linear equations with Newton’s
method for each configuration field.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Free surface flows occur when a layer of liquid meets a gas
at an interface. Such flows arise in a variety of commercial ap-
plications, such as coating (e.g. slot coating, roll coating, etc.),
ink-jet printing, fiber spinning, and micropipetting. Frequently
these applications involve liquids that are viscoelastic due to the
presence of polymer as final product (e.g. coating) or as rheol-
ogy modifier (e.g. ink-jet printing). Most of these flows are time
dependent and their dynamics is controlled by the elasticity and
capillarity of the liquid. Modeling such flows requires compu-
tational methods which can describe and predict the molecular
conformation of polymers in the flow field while simultaneously
capturing accurately the shape of free surfaces. The location of
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the free surface is unknown a priori in these problems and de-
scribing its evolution is a part of the solution to the problem.
Different ways of handling free surface flows are discussed in
detail in Refs. [1-5]. Due to the existence of a variety of indus-
trial applications, Newtonian free surface flows have been stud-
ied extensively [6—11] . However, studies related to viscoelastic
free surface flows are limited [12-17].

Here we study the flow in the downstream section of a
slot coater. Slot coating belongs to a class of coating flows
known as pre-metered coating, where the thickness of the coated
layer is predetermined. Calculations of steady Newtonian [6—
11] and viscoelastic slot coating flows [12,13,16] have been re-
ported in literature; transient calculations have been attempted
only recently [18]. Viscoelastic flows are usually modeled by
adding an extra closed-form constitutive equation for the elastic
stress. These constitutive equations are usually of rate-type, e.g.
Oldroyd-B [19], FENE-P [19], etc. Such constitutive equations
are obtained typically by approximating kinetic theory-based
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constitutive equations with the help of closure approximations.
For instance, the FENE-P model is obtained by pre-averaging
the fluctuating non-linear FENE force.

The conformation tensor based approach [12,20-22] intro-
duces a microstructural variable representing the local state
of the polymer solution (e.g. the conformation of polymer
molecules in the solution). Pasquali and Scriven [12] used the
conformation tensor based approach to study viscoelastic slot
coating flows of ultra-dilute polymer solutions with different
polymer models. They found that when the recirculation under
the die lip was absent, all models failed at low Wi because of
the singularity in the velocity gradient at the contact line (see
also [23]). However, when a recirculation was present, much
higher Wi could be achieved. The mode of failure was found to
be independent of the model details, i.e., the smallest eigenvalue
of the conformation tensor reached zero in the region of strong
extensional flow under the stretching free surface. An impor-
tant observation was that, in the presence of a recirculation, the
maximum Wi achieved in all calculations increased as the model
used to represent the polymer molecules captured the underly-
ing physics more accurately. This suggests that shortcomings
of these models could be due to the use of approximate non-
linear kinetic theory based relations leading to a poor physical
description of polymer molecules in solution.

Lee et al. [13] observed that viscoelasticity increases the
meniscus invasion in slot coating flows and thus reduces the
angle of separation at the static contact point. This has been
identified as a possible mechanism for the onset of ribbing in-
stabilities. A recent study by Romero et al. [16] has verified
experimentally and theoretically that the viscoelastic nature of
the fluid significantly reduces the contact angle, leading to a
non-uniform coating.

With advances in the availability of computing power, a new
method for simulating viscoelastic flows has emerged which
avoids the need for a closed-form constitutive equation [24,25].
This approach, known as the micro—macro approach, combines
the solution of macroscopic conservation equations with sophis-
ticated non-linear kinetic theory based models for elastic stress
evaluation. In essence, polymer molecules are represented by
a micro-mechanical model which provides information on mi-
crostructural features such as the stretch and orientation of the
molecules. Such models can incorporate important physics such
as the finite extensibility of the polymer molecules and the pres-
ence of solvent mediated interactions such as hydrodynamic
(HI) and excluded volume (EV) interactions between parts of
the polymer chain [24,26]. The incorporation of these effects is
necessary to explain experimentally observed features such as
shear thinning and bounded extensional viscosity in homoge-
neous flows of dilute polymer solutions [19,26].

The CONNFFESSIT algorithm [25] was the first micro—
macro-based method to be used and validated in one and two
dimensional viscoelastic flow calculations [25,27-29]. It has
also been successfully implemented to solve free surface flows
[30,31]. The major problem of CONNFFESSIT is that a large
number of particles must be convected with flow to reduce the
statistical error bar on various flow variables. These particles
must be tracked as they move in the flow field. A more efficient

variant of this method, the Lagrangian particle method (LPM),
has been applied successfully to solve viscoelastic flows [32].
While the LPM avoids the need of large number of discrete par-
ticles to reduce the error bar using correlated local ensembles,
particle tracking still remains a problem. The problems of both
particle tracking and spatial fluctuations are circumvented in
the Brownian configuration fields method which also provides
an efficient variance reduction in terms of temporal fluctuations.
In the BCF method, proposed by Hulsen et al. [33], an ensemble
of spatially correlated configuration fields replaces the discrete
particles. The evolution of the ensemble is governed by a par-
tial differential equation that can be solved on the same finite
element mesh as the flow field. The main advantage of the BCF
method over CONNFFESSIT and LPM is that the ensemble size
is the same everywhere in the flow domain even for locally very
refined meshes. However, with CONNFFESSIT and LPM, it
is difficult to work with locally refined meshes as smaller ele-
ments might end up without any dumbbell in them. So far, the
BCF method has been applied only to confined flows [33-35].

This paper extends the BCF method to solve transient vis-
coelastic free surface flows using a finite element algorithm.
The algorithm is validated against exact closed-form macro-
scopic conformation tensor based models. We further extend
the capabilities of BCF to FENE dumbbells and models with
hydrodynamic interactions for which no closed-form equation
can be derived. We present a new predictor—corrector time in-
tegration algorithm based on an earlier algorithm by Ottinger
[24] to tackle the presence of non-linearities that aries due to the
incorporation of a non-linear spring force and hydrodynamic
interactions.

The next section presents an overview of the basic macro-
scopic conservation equations with a brief description of macro-
scopic and microscopic constitutive equations. The finite el-
ement implementation and time integration schemes are de-
scribed in Section 3. Section 4 analyzes the flow under the down-
stream section of a slot coater, and Section 5 summarizes the
conclusions of this paper.

2. Governing equations
2.1. Transport equations

The transport equations for mass and momentum in an un-
steady, isothermal and incompressible flow of a dilute polymer
solution in the absence of external forces are

0=V.v (D
ov
0:p<at+v-Vv)—V~T )

where v is the liquid velocity and p is the liquid density. The total
stress tensor is T = —pI + 7 + o, where p is the pressure, I the
identity tensor, T the viscous stress tensor and o is the polymer
contribution to the total stress tensor. The viscous stress is: T =
2nsD, where D = %(VV + VvT) is the rate of strain tensor and
ns is the Newtonian viscosity.
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Table 1
Constitutive functions for Oldroyd-B and FENE-P models

& X 80 81 82 a
G
Oldroyd-B 1 1 —1 0 5 trM
by — 1 3G (bm — -
FENE-P 1 1 ~1 M 0 (Gu — 1) ( by — 1 )
by —trM/3 2 by —trM/3

The polymer contribution o to the total stress tensor can be
evaluated either by using a macroscopic closed-form constitutive
equation (e.g. Oldroyd-B or FENE-P) or from polymer kinetic
theory [19,26] using the BCF method as discussed briefly below.

2.2. Macroscopic constitutive equation

The conformation tensor M is a microstructural variable that
represents the local expectation value of the stretch and orienta-
tion of polymer molecules. In dilute solutions, the conformation
tensor can be interpreted as the second moment of the end-to-end
vector of an ensemble of polymer molecules:

M= QQPQ.nHdQ 3
QeR3

where Q is the end-to-end vector, and P(Q, 1)dQ is the con-
figurational distribution function which describes the number
of polymer molecules whose end-to-end vectors lie between Q
and Q 4 dQ at any given instant. Conformation tensor-based
models have been shown to be thermodynamically consistent
[20-22,36,37]. The invariants of the conformation tensor pro-
vide useful information on the microstructural state of the poly-
mer. The eigenvectors of the conformation tensor represent the
principal directions along which polymer chains are stretched,
contracted, or oriented and its eigenvalues represents the square
of principal stretch. The time evolution of the dimensionless
conformation tensor is [37]:

oM D:M

0 UM — 22— M
a TV STM

D:M T

1
+7@d+&M+&M% )

where w = %(VV — VVT) is the vorticity tensor, and A is the
characteristic relaxation time of the polymer. The constitutive
function £(M) represents the polymer’s resistance to stretching
along its backbone, x(M) represents the polymer’s resistance to
orientation with respect to its neighbors and go(M), g1(M), and
g2(M) define the rate of relaxation of polymer segments. RZ /3
is the length scale used to normalize the conformation tensor
where R, is the end-to-end distance of the polymer segment.

The elastic stress, o, is related to the conformation tensor by
Pasquali and Scriven [37]:

M da da

o=2(¢& X)I:MM' 3M+2XM'3M 5)
where a(M), is the Helmholtz free energy per unit volume of the
liquid.

Table 1 contains the constitutive functions (§(M), x(M),
goM), g1 (M), g2(M), and a(T, M)) for the Oldroyd-B and
FENE-P models. The constitutive parameters are the polymer
elastic moduls G, the relaxation time A, and by, the ratio of
maximum length square of the polymer to its average length
square at equilibrium in the FENE-P model.

2.3. Microscopic constitutive equation

Microscopic theories represent a polymeric liquid as an
ensemble of non-interacting coarse-grained Brownian micro-
mechanical models such as the bead-spring chain model [19,26].
The dumbbell model is the simplest in its class, and is used here-
after. A dumbbell consists of two Brownian beads with a friction
coefficient {. The configurational state of a dumbbell is specified
by the dumbbell connector vector Q. The configurational distri-
bution function, P(Q, #) obeys the following Fokker—Planck or
diffusion equation [26]:

P _ 3 [T .0 24U 2kgT 3, 9P
en‘aQ{W QCAaQ%”'§8QA8Q
®)

where T is the temperature and kg the Boltzmann’s constant.
The bead friction coefficient ¢ is related to the Stokes drag as
¢ = 6mnsa for spherical beads with radius a. The intermolecular
potential energy U is the sum of the spring potential accounting
for the polymer chain connectivity, and other local interactions
such as excluded volume. In this work we have neglected ex-
cluded volume interactions and have only considered different
spring potentials, which are related to the spring force F by
F* = 0U/9Q. The tensor A is the diffusion tensor, whose form
is discussed shortly below.

The spring force law F* = AQ. Here, A = H for Hookean
dumbbells, A = H/(1 — (Q?)/Q3) for FENE-P dumbbells and
A=H/(1 - Q% Q%) for FENE dumbbells. H is the spring con-
stant, Q¢ is the maximum extensibility of the spring and (0?%)
is the end-to-end distance of the dumbbell averaged over all the
configurations of the dumbbell. The angular brackets denote an
ensemble-average with respect to the configurational distribu-
tion function, i.e.:

<g=/&@Q 7

where g is any physical quantity.

In this case, +/ R% /3 is used as the length scale for the dumb-
bell connector Q where Rg = (Q2)eqm /3 with (Q2)eqm repre-
senting the ensemble average of the end-to-end distance of a
polymer molecule at equilibrium. The choice of \/R2/3 as the
length scale for the dumbbell connector is consistent with the
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length scale used to normalize the conformation tensor. The
FENE parameter b = 3Q(2)/ Rg. In all our simulations we set
R2/3 = 1 and hence b = Q3. Note that by = b/3.

The diffusion tensor A is

A=(T-¢R) ®

where € is the hydrodynamic interaction tensor which is repre-
sented by the regularized Oseen—Burgers tensor [38]:

33

= <M I+N Q?)
800 (0% + w) 0

Here, w = 2h*/mkgT/3H, M = Q° + 10? 0* + J* 0? and

N=0%+ %a)2 04 — %w4 Q2. h* is the hydrodynamic interac-

tion parameter, h* = ¢/ns{\/ H/(36m3kgT)}.

The polymer contribution to the stress is given by

2Q) ©))

o = —nkgTI + n(QF®) (10)

where n is the number density of the dumbbells.

An alternative approach to obtaining the configuration aver-
age in Eq. (10) through solving the Fokker—Plank equation (6),
is to obtain directly averages from trajectories of the connector
vector Q, determined from the stochastic differential equation
(SDE) [24]:

dQ = VvT-Q—iA-FS} dr+,/4k?T(B-dW) (11)

where dW is a time-uncorrelated, Brownian force which ac-
counts for the random displacement of the beads due to ther-
mal motion, with zero mean and unit variance. The components
of the tensor B(Q), which correspond to the diffusion term in
Eq. (6), are chosen such that:

B-BT=A (12)

It can be seen from Eqgs. (8) and (9) that the tensor A has the form
2(Q)I + 3(Q)QQ/ Q2. Therefore, the tensor B can be chosen to
be [24]:

QQ
QZ
Because the tensor A is a function of the configurations of dumb-
bells Q, Eq. (12) must be solved for each dumbbell at every
time step. Consequently, the number of equations represented
by Eq. (13) depends on the ensemble size.

In the BCF approach, the (Lagrangian) stochastic ordi-
nary differential equation (11) is converted into the (Eulerian)

BQ = V5 QI+ (Ve@+3Q - V3Q) (13)

pinned static

diewall V=0

moving web

stochastic partial differential equation [33]:

dQ = [—V~VQ+VVT-Q—§A-FS dt

4kgT
+4/ c B-dW) (14)

The first term on the right-hand side of Eq. (14) accounts
for the convection of the configuration field by the flow and
W is a time-uncorrelated but spatially homogeneous Brow-
nian force. The expression for stress calculation remains as
Eq. (10).

2.4. Mesh generation

A boundary fitted elliptic mesh generation method proposed
by de Santos [39] is used to construct the mapping between the
physical domain and a reference or computational domain. The
mapping obeys:

V.-D-VE=0 (15)

where & is the position in the computational domain and the
dyadic D controls the spacing of the coordinate lines [12].

The time dependent free surface flow problem is solved by
the ALE algorithm [40-43]. The time derivatives of any scalar,
vector or a tensor quantity @ are transformed to time derivatives

e}
at fixed iso-parametric coordinates (denoted by @) as

P %V (16)
PR —X -
ot

where X is the mesh velocity.
2.5. Problem description and boundary conditions

Fig. 1 shows the downstream section of a slot coater. The up-
per wall is the die wall and the lower solid wall is the moving web.
The liquid is being coated on the moving web. In pre-metered
slot coating, the flow rate at the inlet and the final coating thick-
ness are known. For the two dimensional flow in the downstream
section of a slot coater considered in this work, Egs. (1), (2), (4),
(15), and (21) constitute a set of 13 scalar equations in 13 un-
knowns when solving for the flow field using the macroscopic
approach, while Egs. (1), (2), (14), and (15) are a set of 5 + 3Ny
scalar equations when solving using the micro—macro approach,
where N is the size of the ensemble. These equations are solved
with boundary conditions on the transport and mesh equations
as discussed below.

no penetration
no shear stress

contact line . .
/ capillary normal stress jump
fully developed flow
e -
_—

vy = 1,vy =0
J

Y L |
15 0

20

Fig. 1. Flow domain and boundary conditions used in analyzing the flow of viscoelastic liquid in the downstream section of a slot coater.
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2.5.1. Boundary conditions on transport equations

(1) Anoslipboundary condition is applied at the solid walls (i.e.
v = 0 at the die wall while v, = web velocity and vy, =0
at the web).

(2) A force balance at the free surface is imposed as the bound-
ary condition on the momentum equation through the fol-
lowing traction boundary condition:

n-T=-pn+¢n(Vy-n) (17

where V;7 = (I — nn) - V denotes the surface divergence
operator [44], p, is the ambient pressure in the gas phase
and ¢ is the surface tension. n is the unit vector normal to
the free surface.

This boundary condition is applied naturally through the
boundary integration of the traction term (n - T) in the mo-
mentum equation. As the normal vector n is discontinuous
on the free surface, Eq. (17) cannot be used in its present
form. Eq. (17) is integrated by parts before it is inserted into
the traction term of the momentum equation. More details
on the implementation of the traction boundary condition
can be found, e.g., in Kistler and Schweizer [5], Ruschak
[45] and Pasquali and Scriven [12].

(3) The flow rate at the inflow boundary is imposed by specify-
ing a velocity profile v = f(x).

(4) The fully developed flow condition at the outflow boundary
is imposed naturally asn - Vv = 0.

(5) The conformation transport equation [Eq. (4)] is hyperbolic
and the boundary condition on this equation is imposed in
weighted residual form only at the inflow boundary. In fully
developed flow, the polymer conformation does not change
along the streamline [12,46] and thus:

vV-VM =0 (18)

holds at the inflow boundary.

(6) The boundary condition on the configuration fields equa-
tion should be imposed at the inflow boundary where the
configurations of the fields must be known. However, the
configurations of the fields are not known in general, and for
a given inflow velocity profile, the inflow configuration pro-
file depends upon the type of spring force and the presence
or absence of hydrodynamic interactions. In the literature,
most viscoelastic flow calculations using the BCF method
[33,34] are carried out either by imposing periodic bound-
ary conditions or by calculating the configuration fields for a
given velocity field (typically a linear or parabolic flow pro-
file). Here, we propose a new way of imposing the inflow
boundary condition on the BCF equation by assuming that
the entry length is long enough to have a fully developed flow
atthe inlet boundary of the slot coater. Due to the fully devel-
oped flow between two parallel plates (Couette—Poiseuille
flow in the slot coating die), the velocity and the velocity
gradient do not change along streamlines. As a result, the
evolution of configuration fields Q along the streamlines is
independent of the flow field. The spatially correlated fields
ensure that the gradient of Q remains zero, i.e.:

v-VQ=0 (19)

must hold at the inflow boundary. Eq. (19) is independent of
the microscopic constitutive model and initial condition on
configuration fields; it is applied weakly as a vector bound-
ary condition by replacing the configuration fields residual
at the inflow boundary.

2.5.2. Boundary conditions on mesh equations
The following boundary conditions are used to solve the mesh
equation [Eq. (15)]:

(1) The location of nodes on the boundary is fixed at the inflow
and on the two solid walls.
(2) At the free surface, the kinematic boundary condition:

n-x—v)=0 (20)

is applied in the weak form.

2.6. Initial conditions

Initial conditions are required to solve the momentum, con-
formation tensor and the configuration field equations. For tran-
sient computations, initial conditions for various field variables
are described in Section 4.3. For steady flow computations,
the initial conditions used for the Brownian dynamics simu-
lation (BDS) to solve the configuration fields equation are as
follows.

For BDS of Hookean dumbbells, all configuration fields
are assumed to be spatially uniform initially and their val-
ues are independently sampled from the equilibrium distribu-
tion function of the Hookean dumbbell model. However, for
FENE and FENE-P dumbbells, BD simulations were started
with an equilibrium ensemble of Hookean dumbbells which
were subsequently allowed to relax for three to five relaxation
times in order to obtain the correct equilibrium distribution in
these cases. The simulations for Wi > 2 are performed by us-
ing the configurations of Brownian fields at lower Wi as initial
condition.

3. Computational method
3.1. Macroscopic approach

The conservation equations are discretized by the DEVSS-
TG (discrete elastic viscous stress split-traceless gradient) mixed
finite element method [12]. DEVSS-TG method is a stable for-
mulation which has been developed as an improvement over the
earlier DEVSS schemes by Guénette et al. [47] and Guénette and
Fortin [48] where an additional field variable for the traceless in-
terpolated velocity gradient L is introduced and computed with
other variables (see [12] for more details). The tensorial equation
for L is

1
O0=L-Vv+ —(V-wI 20
trl

For two dimensional slot coating flow computations carried out
in this work trI = 2.
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Egs. (1), (2), (15) and (21) are written in the weighted
residual form using Galerkin weighting functions. Eq. (4) is
weighted with the Streamline Upwind Petrov Galerkin (SUPG
[49]) weighting functions. All independent variables are then
represented by finite element basis functions as: ® = 8 PP P,
where @ is a vector, dyadic or scalar [v, p, x, L, M], goﬁ are the
basis functions [(pg , <p€ , <p,’? , <p]/i, 901/3/1] and &# are the unknown
coefficients [v5, p/3 ,x8, L#, MP]. Continuous biquadratic basis
functions represent velocity and position, linear discontinuous
basis functions represent pressure and continuous bilinear ba-
sis functions are used for the interpolated velocity gradient and
conformation tensor.

The DEVSS-TG/SUPG spatial discretization results in a
large set of differential-algebraic equations, f(t,y,y) = 0, for
the vector of time dependent unknowns y = [v, p, x, L, M].
A fully implicit predictor—corrector scheme [50] is used for
time integration. A first order forward Euler predictor with
first order backward Euler corrector steps is used for the
first few time steps to ensure time smoothing [51]. Subse-
quently, a second order Adams—Bashforth predictor with sec-
ond order trapezoidal rule corrector is used (see [50,52] for
more details). The resulting set of coupled nonlinear equa-
tions are then solved using a frontal solver algorithm with
Newton’s method and analytical Jacobian at each time step
[12].

3.2. Micro—macro approach

In the BCF based micro—macro approach, the Galerkin finite
element method is used to discretize spatially the mapping, con-
tinuity and momentum equations together with the SUPG [49]
formulation of the BCF equation [35]. The interpolated velocity
gradient is not necessary in this formulation. Bilinear continuous
basis functions are used to approximate the configuration fields.
The evolution of the system is computed at each time step by
first fixing the polymer contribution to the stress and computing
the position, velocity, and pressure with a fully implicit time
integration scheme and Newton’s method. The BCF equation is
then solved to update the polymer contribution to stress using
fixed flow kinematics.

Two different time integration schemes, namely, a fully im-
plicit time integration scheme for linear dumbbell models with-
out hydrodynamic interactions and a semi-implicit time in-
tegration scheme for non-linear dumbbell models (FENE) or
linear dumbbells with hydrodynamic interactions, are used to
integrate the BCF equation. The two schemes are discussed
below.

3.2.1. Fully implicit scheme

For the linear spring force without hydrodynamic interactions
(i.e. with the diffusion tensor replaced with a unit tensor, A =
B =1) Eq. (14) can be rewritten as

N 2A 4kpT
dQ = <—V-VQ+VV ~Q—§Q> dr + : dW()

(22)

Eq. (22) is discretized temporally using an implicit Euler scheme
as

2A
Qn+1 = Qn + <—Vn . VQn.H + VV;{ . Qn+l - CnQn+l>

4kgT
X At + c AW, (23)

where 7 is the previous and (n + 1) is the current time step. A,
is a function of field’s configurations for FENE-P dumbbells
evaluate at the previous time step. Eq. (23) can be rearranged as

2A,
¢ Qn-i—l)

Qn—H + <Vn : VQn-H - VVE : Qn+l +

4kgT
e

The weak form of this equation is

2 A,
/Q [Qn+] + <Vn “VQuy1 — VV}; “Quy1 + é_lQnJrl) At:l

xx[f%d(z—/g

where 1//% is the weighing function for configuration fields equa-
tion and £2 is the physical domain. The configuration field Q is

x At = Q, + AW, (24)

4kgT

Qn + AW, 1/’6 de2=0 (25)

expanded as Q = > 8 Qﬁgoé where QF represent coefficients

and <pé are basis functions. Thus:

SRS =1 (26)
5

where the components of the matrix K for Hookean dumbbell
are

K = /Q [¢5 8ij + {(vn V@) 8 — 9o (Vv

208 H
+¢‘§5,,} At] v de 7

and for FENE-P dumbbell are
K — /
lj Q

2 (ng

= 0h/m

‘Pé 8ij + {(Vn : Vfﬂg)&j - @é(VjUiT)n

8,-]-} At] 1//6 dse2 (28)

d;; representing the Kronecker delta. In Eq. (26) ’Y‘ﬁ ap1 18 @

vector of the coefficients of configuration fields (Qﬂ» ) and

Jyn+1
4kgT
i =/ Qin + | ——AWin
Q ¢

Eq. (26) is assembled to obtain a global set of equations which
in matrix vector form can be written as

KY,1 =f (30)

V8 ds2 (29)

doi:10.1016/j.jnnfm.2006.04.009.
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The set of linear equations (30) can be solved using LU de-
composition of the matrix K followed by back substitution. For
Hookean dumbbells, the matrix K is independent of the con-
figurations of the dumbbells. However, for FENE-P dumbbells,
the matrix K is a function of the configuration of the dumbbells
evaluated at the previous time step [see Eq. (28)]. It should be
noted that the LU decomposition of the matrix K is performed
at each time step because the mesh changes at each time step
and K depends on the mesh. Eq. (30) is the global equation set
for a single configuration field. However, as the configuration
fields are independent of each other, Eq. (30) holds for all the
fields except that the Brownian force term and Q; ,, in Eq. (29)
is different for each field.

3.2.2. Semi-implicit predictor corrector scheme

This scheme was originally developed by Ottinger [24] for
FENE dumbbells in homogeneous flows and has been recently
extended to finitely extensible bead-spring chains with and with-
out hydrodynamic interactions in homogeneous flows [53-55].
The semi-implicit formulation leads to greater stability of the nu-
merical algorithm [24,53,54] when compared to the explicit Eu-
ler scheme, and allows larger time steps. Somasi et al. [54] com-
pared the semi-implicit scheme to an explicit Euler algorithm
with rejections to compute flow of non-linear dumbbells. They
showed that for a given accuracy the semi-implicit predictor—
corrector is three to four times faster than the explicit Euler with
rejection. Somasi and Khomami [35] have used the semi-implicit
scheme for micro—macro simulations of FENE dumbbells in
homogeneous flows. Here, we extend the same scheme to inho-
mogeneous flows of non-linear dumbbells with hydrodynamic
interactions.

In the predictor step, the configuration fields are updated ex-
plicitly using forward Euler as

2 ,
Q:+1 =Q, + {—Vn'VQn+VVz.Q”_§An.F;:| At

+ “ 4k?T(Bn ) Aan) (31)

where Qj | are the predicted configuration fields. The finite
element discretization yields the following matrix vector form:

DM =1 (32)
B

where M is the mass matrix of following form:
M = /Q Ygeplds (33)

Tf: 1 is a vector of the coefficients of configuration fields basis
functions (Qf’*l) and f% is

+
oo
2
o 4"?T<Bn L AW,)

2
Q, + <_Vn‘VQn+VVE'Qn_CAn'FZ> At

¥ de (34)

Eq. (32) is assembled into a global set of linear equations which
is solved using LU decomposition of the mass matrix performed
at each time step.

Estimates of configuration fields generated at the predictor
step (Qj 1) are used in constructing the corrector:

At
Qi1 =Q, — T(Vn : VQZ.H +v,-VQy)

At
+7(VV; Qi+ VvV -Qp)

At S S 4kgT
- ?An -(F,+F, )+ T(Bn -AW,)  (35)

here, the A, and B,, are the same as used in Eq. (31). The force
term, however, is treated implicitly, with the term Fg 41 being
evaluated using Q,,41. Following Ref. [53] and writing

An-Fop A F — 4R - F, (36)
Eq. (35) can be simplified further
At At

Qui1 + ?FSH = Qu = 5 (- VQp + V- VQ)

At
+ 7 (VV;{ : Qj;+1 + VVZ : Qn)

At
- ?<An F3 + AuR, - FS)

4kgT
+ 4/ . B, - AW,) 37

For FENE dumbbells, F* = HQ/(1 — Q?/b) can be substituted
into Eq. (37), which can then be rearranged into the following
form:

2 2
(1_Qn+1+b'§“>on+l—<1—Q;;“>r=o (38)

b

where T is the right-hand side of Eq. (37). I is a function of the
predicted values of the connector vector and of quantities whose
values at the previous time step are known. We solve Eq. (38)
in two distinct ways as follows.

3.2.2.1. Newton’s method with a rejection algorithm. The finite
element discretization of Eq. (38) results in a set of non-linear
equations for each configuration field which can be solved with
Newton’s method. Thus, for each configuration field:

STyPAY) = (39)
p

where ATf = Tl’f = Tg’n 41 With Tg 1 denoting a vector
of the coefficients of configuration fields (Qf 41) at the current
Newton iteration and Tg a4 18 @ vector of the coefficients of

configuration fields (Qg 141) at the previous Newton iteration.

doi:10.1016/j.jnnfm.2006.04.009.
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r“ is the residual vector given by

o _ Qﬁ+1 H At ' Qﬁ+1 ‘
ri_/_q[<l_b+§ Qi nt1— l_T I;

X Y dQ2 (40)

evaluated using the configuration fields at the previous Newton
iteration.

J? is the Jacobian matrix obtained by differentiating Eq. (38)
with respect to Qf 41 (see Appendix A for a derivation of the
Jacobian matrix). The components of J*# are

aff

2
+10 ,-,nH] Vvl ds2 @1)

0?2 H At 2
(1 _ %‘H + T 3ij — EQi,n+le,"+1

evaluated using the configuration fields at the previous Newton
iteration.

Newton’s method is expensive for calculations for FENE
dumbbells because of the large number of configuration fields
and because the Jacobian matrix depends on the field’s con-
figuration. However, an approximate analytical Jacobian can be
derived by replacing Q,%H in Eq. (38) by (Q,%) only in the deriva-
tion of the Jacobian matrix. The approximate Jacobian has the
following form:

of (Q2) HAt\ ,

(Q%) is evaluated at the previous time step; thus, Eq. (42) is
independent of the configurations of the fields at the current
time step and the LU factorization of the Jacobian matrix is
done only once per time step for all the fields. Eq. (42) was used
as an approximate Jacobian except for those fields for which the
desired convergence (107>) was not achieved in a given number
of Newton iterations. For such cases, the exact Jacobian was
used. During the course of Newton iterations any field whose
magnitude stretched beyond its maximum length (+/5) for FENE
dumbbells, was reset to 0.98+/b.

3.2.2.2. Least-squares collocation method (LSC). Eq. (38) can
be rearranged into a cubic equation for the magnitude of Q,41,
which has been shown by Ottinger [24] to have unique solution
between 0 and v/b:

H At
1Qns1l® = TN Qni1|* — b (1 + ;) |Qu1l +1T1b =0

(43)

where | Q1] is the magnitude of Q,4 and |I"| is the magni-
tude of I'. In the LSC method, Eq. (43) is solved at collocation
points, which here are chosen to coincide with the Gauss inte-
gration points. Eq. (43) can be solved at these collocation points
in each element either analytically or numerically. The colloca-
tion solution is then projected onto the mesh using a least-square
projection as discussed below.

Let |Qn+1| = y be the solution of the cubic equation; then,
at each collocation (Gauss) point:

- . r 44
Qui1 = (|F|) y (44)

The least square projection is

/Q Qut1 — Quyy*d2 =0 (45)

The finite element discretization of Eq. (45) results in a set of
linear equations which in matrix vector form can be written as

SoMATL =1 (46)
B

where M® is the mass matrix given by Eq. (33), Tf 41 1s the
vector of coefficients of the configuration fields and

= [ Quvgae )

which can be evaluated trivially by Gaussian quadrature because
Q.1 is known at all Gauss points. Eq. (46) is solved using LU
decomposition of the mass matrix followed by back substitu-
tion. The mass matrix in Eq. (46) is the same as the mass matrix
evaluated at the predictor step and hence there is no extra compu-
tational cost involved in computing and decomposing the mass
matrix at the corrector step.

For linear dumbbells with hydrodynamic interactions (which
is treated explicitly), Eq. (37) is linear in the connector vector
Q,,+1 and can be written as

r
Q1 =T—"+7—= (48)

14 (A, A2/E)

where I is the right-hand side of Eq. (37) with a linear spring
force. A,, = H for Hookean dumbbells and for FENE-P dumb-
bells A, = H/(1 — (Q%)/b). For linear dumbbell models both
Newton’s method and the LSC method are identical. As a result,
the latter method can be used to evaluate the nodal values of
Q,.+1 from Eq. (48). The fully implicit scheme discussed earlier
is not appropriate for linear dumbbells with hydrodynamic in-
teractions because of the non-linear terms in the hydrodynamic
interaction tensor 2.

Eq. (48) can be formulated in the form of with Eq. (46) as,
with

r

=/ 71/1‘6 ds2 (49)
2 1+ (AnAt/)

The global mass matrix is the same as the mass matrix evaluated

at the predictor step.

3.3. Dimensionless numbers

Dimensional analysis of the system of equations suggests that
itis convenient to introduce four dimensionless numbers, which
are combinations of the various macroscopic model parameters
0, L, ns, ¢, v, mp,0, A, p, etc. These dimensionless numbers are:

doi:10.1016/j.jnnfm.2006.04.009.
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(1) The Reynolds number Re = pvL/(ns + 1p,0) where vis the
web speed and L is the height of the gap between the web
and the die.

(2) The Capillary number Ca = (15 + 1p,0)v/¢.

(3) The viscosity ratio 8 = ns/(s + 1p,0)-

(4) The Weissenberg number Wi = A,v/L, where 1, is the
characteristic relaxation time of polymer. The definition of
Ay used here (see Appendix B) is based on the zero shear
rate viscosity.

In all the simulations reported here, we set Re = 0, by choos-
ing p = 0. Similarly, we set Ca = 0.1. This is achieved by choos-
ingv=1,n=ns+np0 =1, and ¢ = 10. In addition to keep-
ing Re and Ca fixed, all simulations are performed at a dimen-
sionless flow rate 0.3, for which a recirculation region is always
present in the flow domain [12]. The only dimensionless num-
bers that are varied in this work are 8 and Wi. Basically, two dif-
ferent values of 8 have been studied (8 = 0.75 and 1.0), while
simulations have been carried out for a wide range of values of
Wi. Since n = 1, and in addition we choose L = 1, variation in
Wi and B is achieved by varying A, and 75 (and consequently
17p,0)- Time is expressed in units of the polymer longest relax-
ation time.

In micro—macro simulations A, is related to microscopic pa-
rameters, such as H, ¢, h*, etc., with a relationship that depends
on the particular microscopic model. In order to compare re-
sults of different models at identical values of Wi, it becomes
important, consequently, to choose appropriate values for these
microscopic parameters. The scheme used here to determine
these parameters is discussed in detail in Appendix B.

4. Results and discussion

The convergence of the numerical solutions is tested on four
different meshes. Details of the meshes M1, M2, M3 and M4 are
given in Table 2. Fig. 2 displays the portion of the meshes near
the contact line. Elements are concentrated near the free surface
to capture the steep layers of conformations at high Wi.

In the macroscopic method, steady state flows can be com-
puted directly. This is not possible with the micro—macro ap-
proach. Except where explicitly indicated, all the macroscopic
steady flows are computed directly hereafter.

4.1. Comparison of linear dumbbell models with equivalent
conformation tensor based models

Because this work represents the first attempt to extend the
BCF method to solve complex free surface flows, we validate

1.0

0.5}

0.0L

1.0

05

0.0L

1.0 -

05L X

0.0l

1.0

0.5

0.0

-2.0 0.0 2.0

Fig. 2. Meshes used in analyzing the downstream section of slot coater.

our numerical scheme by comparing results for linear dumbbell
models using the macroscopic and the micro-macro method for
both ultra-dilute and dilute polymer solutions.

4.1.1. Ultra-dilute solutions

The flow of an ultra-dilute polymer solution is computed by
setting 7, = 0, i.e. B = 1. In this situation the evolution equa-
tions for the conformation tensor and for configuration fields are
decoupled from the mass, momentum and mesh equations. Thus
for a given Newtonian solution, the distribution of polymer con-
formation in flow is investigated by solving the conformation
tensor and configuration fields equations. The slot coating flow
of an ultra-dilute solutions using the conformation tensor model
has been studied earlier (on different meshes) by Pasquali and
Scriven [12].

Fig. 3 shows the largest and smallest eigenvalues of the con-
formation tensor in the flow domain as a function of Wi for the
Oldroyd-B and FENE-P models using the macroscopic method.
As shown in Fig. 3 computations using different meshes break-
down at different values of Wi, i.e. the smallest eigenvalue of the
conformation tensor becomes negative in certain regions of the
flow field [12]. The maximum Wi achieved in these computations

Table 2

Meshes used for slot coating flow computations

Mesh Number of elements Number of nodes Degrees of freedom for fully coupled Degrees of freedom for micro—macro
macroscopic simulations (X, v, p, M, L) simulations

Ml 550 2311 15712 10894 (x, v, p) and 1818 (Q)

M2 1096 4539 30836 21444 (x, v, p) and 3522 (Q)

M3 2100 8611 58392

M4 4105 16717 113215

Micro—macro computations are done only with M1 and M2 meshes.

doi:10.1016/j.jnnfm.2006.04.009.
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Fig. 3. Largest and smallest eigenvalues of the conformation tensor in the flow domain for an ultra-dilute solution of Oldroyd-B liquid using the macroscopic approach
[(a) and (b)] and a FENE-P liquid [(c) and (d)]. Ca = 0.1, Q = 0.3, 8 = 1.0, bm = 100.

for ultra-dilute solutions grows with mesh refinement (Table 3).
Stress boundary layers are formed under the free surface and
these boundary layers cannot be captured beyond a certain Wi
for a given mesh resolution. The evolution of the My, component
of conformation tensor for the Oldroyd-B model with increasing
Wiis displayed in Fig. 4. As Wi increases, both conformation and
the gradient of conformation increase close to the free surface.

500
450
400
350
300

250

MXX

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Distance from the Web to the Free Surface

Fig. 4. xx component of the conformation tensor for an ultra-dilute solution
of Oldroyd-B fluid along line AB (y = 0.5x). For an ultra-dilute solution, the
position of line AB does not change with Wi and hence, the equation of line AB,
y = 0.5x, is independent of Wi. Computations are carried out using M4 mesh.
Ca=0.1,0=03,8=1.0.

Mesh refinement is required to capture the conformation layers
close the free surface at much higher Wi.

It is also observed from Fig. 3 and Table 3 that computations
using the FENE-P model remain stable (conformation tensor
remains positive definite) to a much higher Wi when compared
to the Oldroyd-B model for a given mesh refinement. This is
consistent with the findings of Pasquali and Scriven [12].

Fig. 5 compares the largest and smallest eigenvalues of the
conformation tensor obtained with the micro-macro method and
the macroscopic method. The figure clearly indicates that com-
putations using the micro—macro method are stable at much
higher Wi than those for the macroscopic method. The stabil-
ity of the micro-macro method can be attributed to the inher-
ent positive definiteness of the conformation tensor. The steady
state values reported using the micro—macro approach are a time
and ensemble-average over all the Brownian configuration fields
after the system reaches a stationary state. The error bars are
smaller than the size of the symbols.

Fig. 5 (a) and (b) shows that the results using the micro-macro
approach for Hookean dumbbells depart from results using the

Table 3
Maxmium Wi achieved in calculations for Oldroyd-B and FENE-P the using
macroscopic constitutive equations for ultra-dilute solution, 8 = 1.0

Mesh Wima (Oldroyd-B) Wimax (FENE-P)
Ml 2.68 3.02
M2 3.08 3.66
M3 3.38 5.27
M4 5.45 8.25

doi:10.1016/j.jnnfm.2006.04.009.
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Fig. 5. Comparison of the largest and smallest eigenvalues of the conformation tensor for an ultra-dilute solution obtained from macroscopic and micro—macro
approach. Hookean dumbbells [(a) and (b)] and FENE-P dumbbells [(c) and (d)]. Ca = 0.1, Q = 0.3, 8 = 1.0, bp = 100, Ny = 2000.

macroscopic approach at Wi ~ 3, beyond which the smallest
eigenvalues using the macroscopic method drops quickly to zero.
However, for all the values of Wi investigated in this work, the
conformation tensor computed using the micro-macro method
remains positive definite. At higher Wi (Wi > 5) it is found that
several relaxation times must be computed before a steady state
is achieved for the Hookean dumbbell model. The micro—macro
simulations of FENE-P dumbbells (see Fig. 5(c) and (d)) show
similar qualitative behavior but computations at high Wi(~ 12)
remain numerically stable as the dumbbell reaches its maximum
extension.

Fig. 6 examines the time step convergence of the steady state
results obtained with the micro-macro method for Hookean
dumbbells. It is clear that within statistical error bars the largest
eigenvalue of conformation tensor at steady state, for a time step
of 0.02 is identical to those obtained for a time step of 0.0075.
The eigenvalue for both time steps eventually coincide with the
final steady state value obtained using the macroscopic Oldroyd-
B model. The steady state value for the higher time step value
(0.05) settle down to a lower value than the one obtained us-
ing the Oldroyd-B model but it remains within error bars. Error
bars in Fig. 5 are smaller than those displayed in Fig. 6 because
error bars for steady state averages in Fig. 5 are evaluated by
carrying out time and ensemble-averages over all the configura-
tion fields, while error bars for transient averages in Fig. 6 are
evaluated only via ensemble average.

Hereafter all reported micro—macro simulations have been
carried out with At = 0.02 unless otherwise specified.

Fig. 7 displays the sensitivity of the micro—macro solution to
ensemble size. Ensemble sizes of 500, 1000 and 2000 dumbbells

are chosen to run simulations for a particular case of Wi = 2.0
and B = 1.0. As expected, the solution gets increasingly more
accurate as the ensemble size increases, i.e. the number of dumb-
bells or the number of trajectories increases. The temporal fluc-
tuations in the largest eigenvalue of the conformation tensor are
more pronounced for an ensemble size of 500 than for an en-
semble size of 1000 or 2000. Here, an ensemble size of 2000
dumbbells is chosen for all the micro—-macro computations in
order to have a smaller variance in the field variables.
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Fig. 6. Time step convergence of micro—macro method for an ultra-dilute solu-
tion of Hookean dumbbells. Inset shows the change in the eigenvalue at initial
times. Ca = 0.1, Q = 0.3, Wi = 2.0, 8 = 1.0, Ny = 2000.
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Table 4
Mesh convergence of calculations for Oldroyd-B and FENE-P using macro-
scopic constitutive equations for dilute solution, § = 0.75

Mesh Wim (Oldroyd-B) Wim (FENE-P)
M1 2.68 2.98
M2 3.31 3.29
M3 3.33 3.30
M4 3.37 3.33

4.1.2. Dilute solution
In dilute solutions the evolution equations of the conforma-
tion tensor and of configuration fields are coupled with the mass,

12

5 100 . . . .
@
S 90

L A ]
R /"-,'\ ! *a -
) Somiarl —=r —
- S R e J roz
® _I" - -.'-+'“J\‘ e f i
E 7ot & T 8
o ¥ .
-
S 6o0r f .
o /
S 50r i E
2 i
T;‘;‘ 40 i E
S 30t A )
o H Macroscopic
w 5t i ~ = = Micro-Macro (N=500)
g 10 : ..... Micro-Macro (N;=1000)
H | TRRERE Micro-Macro (N=2000)
_I 0 ’ 1 L 1 1

0 20 40 60 80 100

Time

Fig. 7. Effect of the ensemble size (micro—macro approach) on the largest eigen-
value of the conformation tensor for Hookean dumbbells in an ultra-dilute solu-
tion. Computations are carried out with the M1 mesh. Error bars are shown for
Nt = 500 and 2000. Ca = 0.1, Q = 0.3, Wi = 2.0, B = 1.0, Ar = 0.02.

The mesh convergence of the evolution of the largest eigen-
value of the conformation tensor for Hookean dumbbells for
two different ensemble sizes using the micro-macro approach
is shown in Fig. 8. Note that Fig. 5 demonstrates the mesh con-
vergence of the steady state results. It is evident that in order to
address the issue of mesh convergence, a sufficiently large en-
semble of configuration fields must be chosen. For Ny = 1000,
the presence of large fluctuations prevents a clear demonstra-
tion of mesh convergence. For Ny = 2000, mesh convergence is
evident.

Fig. 9 shows the components of the conformation tensor
My, My, and My, along the free surface. The results of the
micro—macro method compare very well with the macroscopic
method.
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Fig. 8. Mesh convergence of micro-macro approach for Hookean dumbbells for
an ultra-dilute solution. Figures shows mesh convergence for two different en-
semble sizes. Ca = 0.1, Q = 0.3, Wi = 2.0, 8 = 1.0, At = 0.02, Ny = 2000.

momentum and mesh equations. The flow field is computed by
solving the coupled set of equations for both the Oldroyd-B and
FENE-P constitutive equations using a viscosity ratio § = 0.75.
Fig. 10 shows the largest and smallest eigenvalues of the con-
formation tensor as a function of Wi. It is clear from Fig. 10 that
mesh refinement does not increase the maximum Wi achieved
for dilute solutions as compared to the ultra-dilute solutions (see
Fig. 3). The failure of the simulations is neither affected by mesh
refinement (i.e. M2, M3 and M4 meshes fails at almost the same
Wi), nor by changing the molecular model (i.e. the catastrophic
failure for Oldroyd-B and FENE-P models occurs at nearly the
same Wi (as seen in Table 4)). This is in strong contrast to sim-
ulations for ultra-dilute solutions. The origin of this behavior
may be due to the inappropriate boundary condition applied
on the momentum equation at the contact line having a more
pronounced effect on the solution of the conformation tensor
equation for dilute solutions [23].

Fig. 11, which is further evidence for the numerical stability
of micro—macro methods, shows the comparison of the largest
and the smallest eigenvalues using microscopic models and their
macroscopic equivalent models. Though the micro—macro re-
sults are from the coarsest mesh (M1), stability is still obtained.
We have not explored the limit of the micro—-macro method.

Fig. 12 compares contour plots of the largest and smallest
eigenvalues of the conformation tensor with the results for the
macroscopic method on mesh M1. Clearly, the results for the
micro—macro method agree closely with the macroscopic results
for the same mesh.

Fig. 13 reveals the effect of 5 on the stretch of molecules along
the free surface. An increase in the polymer concentration (8 <
1) results in an overall decrease in the stretch of the molecules.
A detailed analysis of the effect of S on the stability of slot coat-
ing flows will be discussed in future publications. As expected,
the Oldroyd-B model predicts higher stretch along the free sur-
face when compared to the FENE-P model. The behavior of the
smallest eigenvalue is similar to that of the largest eigenvalue.

Table 5 compares the memory and the CPU time require-
ments for steady state slot coating flow computations using
the macroscopic and micro-macro methods for the Oldroyd-B
model. It is evident from Table 5 that the CPU time requirements
for the micro—macro approach are much more demanding than
the macroscopic approach especially when compared on a sin-
gle processor and on the same Mesh. However, the micro-macro
method can easily be parallelized and the wall time drops signif-
icantly after parallelization. Table 5 also compares the memory

doi:10.1016/j.jnnfm.2006.04.009.
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results are for M1 mesh. Ca = 0.1, Q = 0.3, Wi = 2.0, 8 = 1.0, byy = 100, Ny =

and the CPU time requirements to solve the BCF equation using
the explicit Euler scheme and the proposed fully implicit scheme
for the Hookean dumbbell model. Note that explicit computa-
tions are done with a time step 0.01, as the explicit scheme is
unstable for time step size 0.02. Although the CPU time required
for a single time step is the same for both the explicit scheme and
the fully implicit scheme, the total CPU time required to reach
steady state is much smaller for the implicit scheme as a larger

Table 5

2000. Left: Oldroyd-B; Right: FENE-P.

time step can be used while maintaining the same accuracy as
the explicit scheme.

It is worth mentioning that the CPU time and memory re-
quirements are independent of the type of microscopic consti-
tutive equation (for a linear dumbbell model) for free surface
flow computations using the fully implicit scheme. However, for
confined flow problems (fixed mesh), the CPU time required de-
pends upon the type of microscopic constitutive equation used,

Comparison of CPU time and memory requirements for the macroscopic and the micro-macro method

Constitutive equation Number of processors Time steps CPU time Wall time Memory (MB)
Macroscopic (M1 mesh) 1 Steady state 90s 90s 147
Macroscopic (M4 mesh) 1 Steady state 90 min 90 min 2000
Microscopic (Exp. Euler: At = 0.02) 1 Unstable - - ——
Microscopic (Exp. Euler: At = 0.01) 1 1000 32h 32h 150
Microscopic (Imp. Euler: Ar = 0.02) 1 1000 32h 32h 150
Microscopic (Imp. Euler: At = 0.02) 8 1000 32h 4h 150

Wi = 2.0, 8 = 0.75, Ny = 2000. The micro—macro values are for M1 mesh.
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i.e., computations using Hookean dumbbells are less expensive
compared to a FENE-P model because the mass matrix [Eq. (33)]
is independent of the configurations of the dumbbells and hence
it is not required to be factorized at each time step.
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Fig. 13. Effect of viscosity ratio on the stretch of molecules. Ca = 0.1, 0 =
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Fig. 14 shows the numerical stability of the proposed fully
implicit scheme compared to the explicit Euler scheme at Wi =
2.0 and B = 0.75 for three different time steps, namely Ar =
0.01,0.02 and 0.05. It is clear that both implicit and explicit
schemes are stable for At = 0.01. However, when the time step
is increased to 0.02 or 0.05, only the implicit scheme remains
stable.

4.2. Non-linear dumbbell models

In this section, we present results using non-linear dumbbell
models. Since there are no equivalent constitutive equations for
FENE dumbbells and models with hydrodynamic interactions,
we only compare results for the non-linear dumbbell models
with results of the linear dumbbell models.

Fig. 15 shows the components of the conformation tensor
M, Myy and My, along the free surface computed using New-
ton’s method and the collocation method for FENE dumbbells
and Hookean dumbbells with hydrodynamic interactions. It is
observed that both methods give identical results. The local val-
ues of components of the conformation tensor differ by less than
1073 between the two methods.

Fig. 16 displays the ratio of CPU times using the Newton’s
method and the collocation method as a function of Wi. We
observe that collocation method is approximately three times
faster than the Newton’s method for Wi < 1.5 at any given time
step. As Wi increases beyond 1.5 the collocation method be-
comes much more CPU efficient. The CPU time required for
the collocation method is relatively insensitive to the values of
Wi. However, the CPU time required for the Newton’s method
increases with increasing Wi since it takes more Newton itera-
tions for the Newton’s method to converge. It is also observed
in our simulations that for Wi > 2, many of the dumbbells are
stretched beyond the maximum length +/4 during the course of
Newton’s iterations requiring the configuration vectors of these
dumbbells to be reset in order to get a physically meaningful
spring force law.
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Table 6 compares the memory and the CPU time require-
ments for the micro-macro computations using linear and
non-linear dumbbell models. The computations for non-linear
dumbbell models using the collocation method are almost
twice as expensive as computations for linear dumbbell mod-
els both in terms of the CPU time and memory require-
ments. The memory and CPU time required for non-linear
dumbbell models are controlled by storage and evaluation of
the configuration fields at the predictor step which is not re-
quired in the scheme used for linear dumbbell models in this
work.

Figs. 17 and 18, which examines the effect of different con-
stitutive models used in this study, show the largest eigenvalue
of the dimensionless stress tensor and the stretch of the polymers
along the free surface, respectively. The stress, a macroscopic
property, appears relatively unaffected by the presence of dif-
ferent non-linear phenomena (except the FENE force). In other
words, Hookean dumbbells, Hookean dumbbells with hydrody-
namic interactions, and FENE-P dumbbells exhibit nearly same
stress along the free surface. On the other hand, the stretch of
the polymer, a microscopic property, is significantly different for
different constitutive models. The Peterlin approximation to the

Table 6

Comparison of CPU time requirements for linear and non-linear dumbbell models for M1 mesh

Constitutive equation Number of processors Time steps CPU time (h) Wall time (h) Memory (MB)
Linear dumbbells 8 1000 32 4 147
Non-linear dumbbells with Newton’s method 8 1000 224 28 285
Non-linear dumbbells with collocation method 8 1000 64 8 285

Wi =2.0,8=0.75, At = 0.02, Ny = 2000.
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FENE dumbbell model over-predicts the stretch. The inclusion
of hydrodynamic interactions appears to reduce the stretch in
comparison with the pure Hookean dumbbell model.

4.3. Transient results

Here, the evolution of the molecular conformation in the
downstream section of a slot coater is studied as the flow evolves
from one steady state to another after a gradual change of the di-
mensionless flow rate from 0.3t0 0.27 at Wi = 2.0and 8 = 0.75.
The initial condition for all the transient simulations is the steady
state solution of flow equations at dimensionless flow rate 0.3,
Wi = 2.0 and B = 0.75. The flow rate is gradually changed over
a period of 31 while keeping all other parameters fixed. The
gradual change in flow rate ensures a divergence free velocity at
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each time step which is necessary to calculate the flow field at a
subsequent time step [50].

Fig. 19 displays the change in the largest eigenvalue of the
conformation tensor by changing the flow rate for an Oldroyd-
B fluid and Hookean dumbbell model. Changing the flow rate
from 0.30 to 0.27 increases the local velocity gradient under
the die lip because the free surface moves inward for a con-
stant web velocity. As a result molecules at a lower flow (0.27)
rate are more stretched compared to the those at a higher flow
rate (0.30). Transient results calculated using the micro—macro
method are subject to statistical fluctuations due to the finite en-
semble size of the configuration fields. Fig. 19 shows that by in-
creasing the size of the ensemble from 500 to 2000, the statistical
error bar gets smaller as the variance is inversely proportional to
the square root of the number of trajectories. The results show
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Fig. 19. Change in the largest eigenvalues of the conformation tensor by chang-
ing the flow rate for the Hookean dumbbell model. Ca = 0.1, Q = 0.3, Wi =
2.0, B = 0.75, Ny = 2000, At = 0.01. Micro-macro and macroscopic compu-
tations are carried out with the M1 and M3 mesh, respectively, and using the
fully implicit scheme.
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out with the M1 mesh and using the fully implicit scheme.

good comparison between the macroscopic and micro—macro
method within statistical error.

Fig. 20 shows the time step convergence of the micro—macro
results reported in Fig. 19. It is evident from Fig. 20 that as
the time step size gets smaller, the solution gets increasingly
more accurate. The results using a time step of Ar = 0.01 are
very close to the results using At = 0.0075. Hence, At = 0.01
is used hereafter.

Fig. 21 shows the change in the coating thickness with time
at the outflow plane. It should be noted that although the flow
rate is changed at r = 0 the coating thickness starts changing
only after r ~ 30. This in explained in Fig. 22 which shows the
change in y-position of the free surface with time at different
x-positions along the free surface. As shown in Fig. 22, a front
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Fig. 21. Change in the coating thickness by changing the flow rate for
the Hookean dumbbell model. Ca = 0.1, Q = 0.3, Wi = 2.0, 8 = 0.75, Ny =
2000, At = 0.01. Computations are carried out with the M1 mesh and using the
fully implicit scheme.

Fig. 22. Change in the Y-position of the free surface at different X-positions
along the free surface. Solid lines are for Oldroyd-B model (macroscopic)
and dashed lines are for the Hookean dumbbell model (micro-macro). Ca =
0.1, 0 =0.3, Wi =2.0, 8 =0.75, At = 0.01, Ny = 2000. Computations are
carried out with the M1 mesh and using the fully implicit scheme.

develops at the contact line and propagates downstream like a
wave. Figs. 19-22 show that we have a good agreement between
the micro-macro and macroscopic methods for transients flows.
Transient results for other constitutive models show a behavior
similar to that of the Oldroyd-B model.

5. Conclusion

We have extended the BCF based micro—macro approach
to solve transient viscoelastic free surface flow problems. This
method involves Brownian dynamics simulation of the motion
of polymer molecules coupled together with a time dependent
finite element algorithm for the solution of the macroscopic con-
servation equations. We have validated our method by compar-
ing the flow behavior in the downstream section of a slot coater
for linear dumbbell models, i.e., Hookean and FENE-P dumb-
bells, with their equivalent macroscopic closed form constitutive
equations in a conformation tensor based formulation. We found
excellent agreement between the results from the BCF approach
and the results using the macroscopic approach. An important
observation was that the computations using the BCF method
were stable at higher Wi and on a relatively coarser mesh when
compared to the computations using the macroscopic approach.
In addition, a new fully implicit scheme is proposed for the time
integration of the BCF equation for linear dumbbell models. We
have shown that this scheme is more stable than the explicit
Euler scheme with no additional computational and memory
requirements for the solution of free surface flows.

We have further extended the capabilities of BCF to solve
complex flow problems by using FENE dumbbells and dumb-
bells with hydrodynamic interactions, for which no closed-form
constitutive equations exist. Two different algorithms to solve
the non-linear dumbbell models namely, Newton’s method and
a novel least-squares and collocation method, were examined.
We have shown that both algorithms give identical results. How-
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ever, the collocation method is fast and computationally efficient
when compared to Newton’s method. We found significant dif-
ferences between the stretch of the polymers at the free surface
for different microscopic constitutive models.
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Appendix A. Derivation of the Jacobian matrix for the
configuration fields equation

Here, analytical Jacobian entries of the configuration field
equation for FENE force are computed. From Eq. (38)

Qn+l i HAI) -r (1 Qn—&-l)’
b ¢ b

HA 2
oo (2o )

Qn+1

Go ' H At
i _/Q Qt,n+1 b +T
T <1 Qn+l>‘| wa de

The Jacobian entries are obtained by differentiating Eq. (A.1)
with respect to Qj nal- With Q41 = Ql)‘fn+1¢’(y) and J?f =
9G2/00% . 1)

J‘Yﬁ — / 1— QZ+1 + HAt\ 9Qin+1
! 2 b ¢ aQ]n-H

G:Qn-H (
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2
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The first derivative on the RHS of Eq. (A.2) is
aQi,rH—l an/n+1 )//3 B
8Qj,l‘l+1 8Qj n+1

The derivative appearing in second and third term on the RHS
of Eq. (A.2) is

aQ,%H _ Qi Qui) g P
BQ BQ n+ /3
jin+1 Jjin+1 jin+l
3Qkn+1 00k i1
=20kn+1 5 = 20knt19Q 5
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(A4)
Combining equations (A.2)—-(A.4), we get:
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Appendix B. Calculation of characteristic relaxation
times and microscopic parameters for different
microscopic constitutive models

In this appendix, we discuss the systematic procedure adopted
for determining the microscopic parameters H, ¢, h*, etc., such
that identical values for Wi (or equivalently, A;) are obtained
in all the microscopic constitutive models used in micro—macro
computations. The definition of A, is

1§ My,

- B.1
T NakgT (B-1)

where [77]8 is the intrinsic viscosity in a 8-solution in the limit
of zero shear rate, M is the molecular weight and Ny is the
Avogadro number. In can be shown for dilute solutions [19,24]
that

(B.2)

The relationship of A, to microscopic parameters in models with
and without fluctuating hydrodynamic interactions (HI) is dis-
cussed separately below. Before we do so, however, the fol-
lowing points are worth noting. In all micro—macro simulations
reported here, we set Rg /3 =1 and kgT = 1, and in models
with FENE springs, we choose a value for the FENE parameter
b = 300. Furthermore, since 7,0 and A, are known for given
values of 8 and Wi, Eq. (B.2) can be used to find the polymer
density n in all cases.

(1) Dumbbells without HI: For constitutive models without fluc-
tuating HI, the relationship between Rg /3 and A, and the
microscopic parameters H, b, and Ay = {/4H, can be ob-
tained analytically [19,26], and is given in Table B.1. For
the fixed values of Rg /3, kT and b chosen here, the spring
constant H can be evaluated from the expression for Rg /3
(see Table B.1). For any particular value of A,, the calcu-
lated value of H, and the relationship between A, and Ay
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Table B.1 0.35 T T T T T T
End-to-end vector and characteristic relaxation time for different microscopic
constitutive models [26] 0.3k 1
Constitutive model R2/3 Ay o =
Hookean ksT/H Al 0.25+ o # 1
FENE-P ks T(b — 3)/Hb An(b—13)/b o
FENE ksT(b —5)/Hb Au(b —5)/b P
) 0.2t e - .
(Table B.1), can then be used to determine the value of the = okl p 2 |
drag coefficient ¢ to be used in the microscopic model. o e
(2) Dumbbells with HI: The presence of hydrodynamic inter- 01l o i
actions does not affect static properties, and as a result, ex- &’ ’
pressions for R2/3, and the calculation of H, remains un- 0.05k W |
altered from the cases where HI is absent. However, since o
Ay for dumbbells with fluctuating HI cannot be derived an- o . . - : ‘ . .
alytically, a Green—Kubo formula [56,57] has been used to LA °‘2c AMS B4 022 04 o
1

calculate the shear relaxation modulus G(#), from which
the characteristic relaxation time can be obtained. Before
discussing the Green—Kubo formula below, it is worth not-
ing that in models with HI, rather than the drag coeffi-
cient ¢, it is more common to use the non-dimensional pa-
rameter 4*. For these models, therefore, the parameter /*
must be chosen such that the desired value of A, can be
obtained.

The Green—Kubo formula relates Gp(¢) to the equilib-
rium autocorrelation of the quantity Sy, = Q, dU/90Q, by
the expression:

Gp(1) = (Sxy()Sxy(0)) g (B.3)

It can be shown that 4, is related to G, by [26]:

Ag o0

= Gp(r)dr (B.4)
H 0

For Hookean dumbbells with HI, A is related to 4™ by

An = % (%)3/2 kg Tnsh* (B.5)
Egs. (B.4) and (B.5) can be combined to give

2 =h* /OO G, (1) dt (B.6)
3(n/H)*? ks Tns o

The right-hand side of the equation above depends only on
h*, and can be determined once and for all, for any appro-
priate value of h*.

Here, the right-hand side is determined by carrying out
equilibrium Brownian dynamics simulations. Basically, the
product S,y(#)Syy(0) is evaluated after each time step for
every equilibrium trajectory, and the average of this prod-
uct at any time over the ensemble of trajectories gives the
autocorrelation function in Eq. (B.3). The values of Gp(t)
obtained in this manner are then integrated with respect to
t using numerical quadrature. The dependence of the left-
hand side of Eq. (B.6) on h*, determined in this manner,
can be plotted as shown in Fig. B.1. For any given value
of A, and s and calculated value of H, the corresponding
value of #* to be used in a microscopic model with fluctu-
ating HI, can consequently be determined from the curve in
Fig. B.1.

Fig. B.1. Characteristic relaxation time of Hookean dumbbells with hydrody-
namic interaction. C; = 2/(3(r/ H)3/>/kgT ns). The line is drawn for guiding
the eye. The error bars in the Brownian dynamics simulations are much smaller
than the size of the symbols.
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