
J

A

v
A
c
l
p
c
t
i
a
t
c
c
a
e
m
©

K

1

a
p
i
t
p
o
d
c
t
c
c

0
d

NNFM-2596; No. of Pages 21

J. Non-Newtonian Fluid Mech. xxx (2006) xxx–xxx

Multiscale simulation of viscoelastic free surface flows

Mohit Bajaj a, Pradeep P. Bhat b, J. Ravi Prakash a, Matteo Pasquali b,∗
a Department of Chemical Engineering, Monash University, Clayton, Vic. 3800, Australia

b Department of Chemical and Biomolecular Engineering, MS 362, Rice University, Houston, TX 77005, USA

Received 24 November 2005; received in revised form 4 April 2006; accepted 24 April 2006

bstract

A micro–macro approach based on combining the Brownian configuration fields (BCF) method [M.A. Hulsen, A.P.G. van Heel, B.H.A.A.
an den Brule, Simulation of viscoelastic flow using Brownian configuration fields, J. Non-Newtonian Fluid Mech. 70 (1997) 79–101] with an
rbitrary Lagrangian–Eulerian (ALE) Galerkin finite element method, using elliptic mesh generation equations coupled with time-dependent

onservation equations, is applied to study slot coating flows of polymer solutions. The polymer molecules are represented by dumbbells with both
inear and non-linear springs; hydrodynamic interactions between beads are incorporated. Calculations with infinitely extensible (Hookean) and
re-averaged finitely extensible (FENE-P) dumbbell models are performed and compared with equivalent closed-form macroscopic models in a
onformation tensor based formulation [M. Pasquali, L.E. Scriven, Free surface flows of polymer solutions with models based on the conformation
ensor, J. Non-Newtonian Fluid Mech. 108 (2002) 363–409]. The BCF equation for linear dumbbell models is solved using a fully implicit time
ntegration scheme which is found to be more stable than the explicit Euler scheme used previously to compute complex flows. We find excellent
greement between the results of the BCF based formulation and the macroscopic conformation tensor based formulation. The computations using
he BCF approach are stable at much higher Weissenberg numbers,Wi = λγ̇ (where λ is the characteristic relaxation time of polymer, and γ̇ is the
haracteristic rate of strain) compared to the purely macroscopic conformation tensor based approach, which fail beyond a maximum Wi. A novel
omputational algorithm is introduced to compute complex flows with non-linear microscopic constitutive models (i.e. non-linear FENE dumbbells
nd dumbbells with hydrodynamic interactions) for which no closed-form constitutive equations exist. This algorithm is fast and computationally
fficient when compared to both an explicit scheme and a fully implicit scheme involving the solution of the non-linear equations with Newton’s

ethod for each configuration field.
2006 Elsevier B.V. All rights reserved.
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. Introduction

Free surface flows occur when a layer of liquid meets a gas
t an interface. Such flows arise in a variety of commercial ap-
lications, such as coating (e.g. slot coating, roll coating, etc.),
nk-jet printing, fiber spinning, and micropipetting. Frequently
hese applications involve liquids that are viscoelastic due to the
resence of polymer as final product (e.g. coating) or as rheol-
gy modifier (e.g. ink-jet printing). Most of these flows are time
ependent and their dynamics is controlled by the elasticity and
apillarity of the liquid. Modeling such flows requires compu-

ational methods which can describe and predict the molecular
onformation of polymers in the flow field while simultaneously
apturing accurately the shape of free surfaces. The location of
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he free surface is unknown a priori in these problems and de-
cribing its evolution is a part of the solution to the problem.
ifferent ways of handling free surface flows are discussed in
etail in Refs. [1–5]. Due to the existence of a variety of indus-
rial applications, Newtonian free surface flows have been stud-
ed extensively [6–11] . However, studies related to viscoelastic
ree surface flows are limited [12–17].

Here we study the flow in the downstream section of a
lot coater. Slot coating belongs to a class of coating flows
nown as pre-metered coating, where the thickness of the coated
ayer is predetermined. Calculations of steady Newtonian [6–
1] and viscoelastic slot coating flows [12,13,16] have been re-
orted in literature; transient calculations have been attempted
nly recently [18]. Viscoelastic flows are usually modeled by

dding an extra closed-form constitutive equation for the elastic
tress. These constitutive equations are usually of rate-type, e.g.
ldroyd-B [19], FENE-P [19], etc. Such constitutive equations

re obtained typically by approximating kinetic theory-based
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onstitutive equations with the help of closure approximations.
or instance, the FENE-P model is obtained by pre-averaging

he fluctuating non-linear FENE force.
The conformation tensor based approach [12,20–22] intro-

uces a microstructural variable representing the local state
f the polymer solution (e.g. the conformation of polymer
olecules in the solution). Pasquali and Scriven [12] used the

onformation tensor based approach to study viscoelastic slot
oating flows of ultra-dilute polymer solutions with different
olymer models. They found that when the recirculation under
he die lip was absent, all models failed at low Wi because of
he singularity in the velocity gradient at the contact line (see
lso [23]). However, when a recirculation was present, much
igher Wi could be achieved. The mode of failure was found to
e independent of the model details, i.e., the smallest eigenvalue
f the conformation tensor reached zero in the region of strong
xtensional flow under the stretching free surface. An impor-
ant observation was that, in the presence of a recirculation, the

aximum Wi achieved in all calculations increased as the model
sed to represent the polymer molecules captured the underly-
ng physics more accurately. This suggests that shortcomings
f these models could be due to the use of approximate non-
inear kinetic theory based relations leading to a poor physical
escription of polymer molecules in solution.

Lee et al. [13] observed that viscoelasticity increases the
eniscus invasion in slot coating flows and thus reduces the

ngle of separation at the static contact point. This has been
dentified as a possible mechanism for the onset of ribbing in-
tabilities. A recent study by Romero et al. [16] has verified
xperimentally and theoretically that the viscoelastic nature of
he fluid significantly reduces the contact angle, leading to a
on-uniform coating.

With advances in the availability of computing power, a new
ethod for simulating viscoelastic flows has emerged which

voids the need for a closed-form constitutive equation [24,25].
his approach, known as the micro–macro approach, combines

he solution of macroscopic conservation equations with sophis-
icated non-linear kinetic theory based models for elastic stress
valuation. In essence, polymer molecules are represented by
micro-mechanical model which provides information on mi-

rostructural features such as the stretch and orientation of the
olecules. Such models can incorporate important physics such

s the finite extensibility of the polymer molecules and the pres-
nce of solvent mediated interactions such as hydrodynamic
HI) and excluded volume (EV) interactions between parts of
he polymer chain [24,26]. The incorporation of these effects is
ecessary to explain experimentally observed features such as
hear thinning and bounded extensional viscosity in homoge-
eous flows of dilute polymer solutions [19,26].

The CONNFFESSIT algorithm [25] was the first micro–
acro-based method to be used and validated in one and two

imensional viscoelastic flow calculations [25,27–29]. It has
lso been successfully implemented to solve free surface flows

30,31]. The major problem of CONNFFESSIT is that a large
umber of particles must be convected with flow to reduce the
tatistical error bar on various flow variables. These particles
ust be tracked as they move in the flow field. A more efficient

i
c
2
η
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ariant of this method, the Lagrangian particle method (LPM),
as been applied successfully to solve viscoelastic flows [32].
hile the LPM avoids the need of large number of discrete par-

icles to reduce the error bar using correlated local ensembles,
article tracking still remains a problem. The problems of both
article tracking and spatial fluctuations are circumvented in
he Brownian configuration fields method which also provides
n efficient variance reduction in terms of temporal fluctuations.
n the BCF method, proposed by Hulsen et al. [33], an ensemble
f spatially correlated configuration fields replaces the discrete
articles. The evolution of the ensemble is governed by a par-
ial differential equation that can be solved on the same finite
lement mesh as the flow field. The main advantage of the BCF
ethod over CONNFFESSIT and LPM is that the ensemble size

s the same everywhere in the flow domain even for locally very
efined meshes. However, with CONNFFESSIT and LPM, it
s difficult to work with locally refined meshes as smaller ele-

ents might end up without any dumbbell in them. So far, the
CF method has been applied only to confined flows [33–35].

This paper extends the BCF method to solve transient vis-
oelastic free surface flows using a finite element algorithm.
he algorithm is validated against exact closed-form macro-
copic conformation tensor based models. We further extend
he capabilities of BCF to FENE dumbbells and models with
ydrodynamic interactions for which no closed-form equation
an be derived. We present a new predictor–corrector time in-
egration algorithm based on an earlier algorithm by Öttinger
24] to tackle the presence of non-linearities that aries due to the
ncorporation of a non-linear spring force and hydrodynamic
nteractions.

The next section presents an overview of the basic macro-
copic conservation equations with a brief description of macro-
copic and microscopic constitutive equations. The finite el-
ment implementation and time integration schemes are de-
cribed in Section 3. Section 4 analyzes the flow under the down-
tream section of a slot coater, and Section 5 summarizes the
onclusions of this paper.

. Governing equations

.1. Transport equations

The transport equations for mass and momentum in an un-
teady, isothermal and incompressible flow of a dilute polymer
olution in the absence of external forces are

= ∇ · v (1)

= ρ

(
∂v
∂t

+ v · ∇v
)

− ∇ · T (2)

here v is the liquid velocity and ρ is the liquid density. The total
tress tensor is T = −pI + τ + σ, where p is the pressure, I the

dentity tensor, τ the viscous stress tensor and σ is the polymer
ontribution to the total stress tensor. The viscous stress is: τ =
ηsD, where D = 1

2 (∇v + ∇vT) is the rate of strain tensor and
s is the Newtonian viscosity.

coelastic free surface flows, J. Non-Newtonian Fluid Mech. (2006),
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Table 1
Constitutive functions for Oldroyd-B and FENE-P models
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Oldroyd-B 1 1 −1

FENE-P 1 1 −1

The polymer contribution σ to the total stress tensor can be
valuated either by using a macroscopic closed-form constitutive
quation (e.g. Oldroyd-B or FENE-P) or from polymer kinetic
heory [19,26] using the BCF method as discussed briefly below.

.2. Macroscopic constitutive equation

The conformation tensor M is a microstructural variable that
epresents the local expectation value of the stretch and orienta-
ion of polymer molecules. In dilute solutions, the conformation
ensor can be interpreted as the second moment of the end-to-end
ector of an ensemble of polymer molecules:

=
∫

QεR3
QQP(Q, t) dQ (3)

here Q is the end-to-end vector, and P(Q, t)dQ is the con-
gurational distribution function which describes the number
f polymer molecules whose end-to-end vectors lie between Q
nd Q + dQ at any given instant. Conformation tensor-based
odels have been shown to be thermodynamically consistent

20–22,36,37]. The invariants of the conformation tensor pro-
ide useful information on the microstructural state of the poly-
er. The eigenvectors of the conformation tensor represent the

rincipal directions along which polymer chains are stretched,
ontracted, or oriented and its eigenvalues represents the square
f principal stretch. The time evolution of the dimensionless
onformation tensor is [37]:

= ∂M
∂t

+ v · ∇M − 2ξ
D : M
I : M

M

−χ
(

M · D + D · M − 2
D : M
I : M

M
)

− M · � − �T · M

+ 1

λ
(g0I + g1M + g2M2) (4)

here � = 1
2 (∇v − ∇vT) is the vorticity tensor, and λ is the

haracteristic relaxation time of the polymer. The constitutive
unction ξ(M) represents the polymer’s resistance to stretching
long its backbone, χ(M) represents the polymer’s resistance to
rientation with respect to its neighbors and g0(M), g1(M), and
2(M) define the rate of relaxation of polymer segments. R2

e/3
s the length scale used to normalize the conformation tensor
here Re is the end-to-end distance of the polymer segment.
The elastic stress, σ, is related to the conformation tensor by

asquali and Scriven [37]:
= 2(ξ − χ)
M

I : M
M :

∂a

∂M
+ 2χM · ∂a

∂M
(5)

here a(M), is the Helmholtz free energy per unit volume of the
iquid.

b
s
p
l
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0
G

2
tr M

bM − 1

− tr M/3
0

3G (bM − 1)

2
ln
(

bM − 1

bM − tr M/3

)
Table 1 contains the constitutive functions (ξ(M), χ(M),

0(M), g1(M), g2(M), and a(T,M)) for the Oldroyd-B and
ENE-P models. The constitutive parameters are the polymer
lastic moduls G, the relaxation time λ, and bM, the ratio of
aximum length square of the polymer to its average length

quare at equilibrium in the FENE-P model.

.3. Microscopic constitutive equation

Microscopic theories represent a polymeric liquid as an
nsemble of non-interacting coarse-grained Brownian micro-
echanical models such as the bead-spring chain model [19,26].
he dumbbell model is the simplest in its class, and is used here-
fter. A dumbbell consists of two Brownian beads with a friction
oefficient ζ. The configurational state of a dumbbell is specified
y the dumbbell connector vector Q. The configurational distri-
ution function, P(Q, t) obeys the following Fokker–Planck or
iffusion equation [26]:

∂P

∂t
= − ∂

∂Q
·
{

∇vT · Q−2

ζ
A · ∂U

∂Q

}
P + 2kBT

ζ

∂

∂Q
· A · ∂P

∂Q

(6)

here T is the temperature and kB the Boltzmann’s constant.
he bead friction coefficient ζ is related to the Stokes drag as
= 6πηsa for spherical beads with radius a. The intermolecular
otential energy U is the sum of the spring potential accounting
or the polymer chain connectivity, and other local interactions
uch as excluded volume. In this work we have neglected ex-
luded volume interactions and have only considered different
pring potentials, which are related to the spring force Fs by
s = ∂U/∂Q. The tensor A is the diffusion tensor, whose form

s discussed shortly below.
The spring force law Fs = ΛQ. Here, Λ = H for Hookean

umbbells,Λ = H/(1 − 〈Q2〉/Q2
0) for FENE-P dumbbells and

= H/(1 −Q2/Q2
0) for FENE dumbbells. H is the spring con-

tant, Q0 is the maximum extensibility of the spring and 〈Q2〉
s the end-to-end distance of the dumbbell averaged over all the
onfigurations of the dumbbell. The angular brackets denote an
nsemble-average with respect to the configurational distribu-
ion function, i.e.:

g〉 =
∫
Pg d3Q (7)

here g is any physical quantity.
In this case,

√
R2

e/3 is used as the length scale for the dumb-

ell connector Q where R2

e = 〈Q2〉eqm/3 with 〈Q2〉eqm repre-
enting the ensemble average of the end-to-end distance of a
olymer molecule at equilibrium. The choice of

√
R2

e/3 as the
ength scale for the dumbbell connector is consistent with the

coelastic free surface flows, J. Non-Newtonian Fluid Mech. (2006),
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ength scale used to normalize the conformation tensor. The
ENE parameter b = 3Q2

0/R
2
e . In all our simulations we set

2
e/3 = 1 and hence b = Q2

0. Note that bM = b/3.
The diffusion tensor A is

= (I − ζ�) (8)

here � is the hydrodynamic interaction tensor which is repre-
ented by the regularized Oseen–Burgers tensor [38]:

(Q) = 3
√

3ω

8ζQ (Q2 + ω2)3

(
MI +N

QQ
Q2

)
(9)

ere, ω = 2h∗√πkBT/3H , M = Q6 + 7
2ω

2Q4 + 9
2ω

4Q2 and
= Q6 + 3

2ω
2Q4 − 3

2ω
4Q2. h∗ is the hydrodynamic interac-

ion parameter, h∗ = ζ/ηs{
√
H/(36π3kBT )}.

The polymer contribution to the stress is given by

= −nkBT I + n〈Q Fs〉 (10)

here n is the number density of the dumbbells.
An alternative approach to obtaining the configuration aver-

ge in Eq. (10) through solving the Fokker–Plank equation (6),
s to obtain directly averages from trajectories of the connector
ector Q, determined from the stochastic differential equation
SDE) [24]:

Q =
[
∇vT · Q − 2

ζ
A · Fs

]
dt +

√
4kBT

ζ
(B · dW) (11)

here dW is a time-uncorrelated, Brownian force which ac-
ounts for the random displacement of the beads due to ther-
al motion, with zero mean and unit variance. The components

f the tensor B(Q), which correspond to the diffusion term in
q. (6), are chosen such that:

· BT = A (12)

t can be seen from Eqs. (8) and (9) that the tensor A has the form
(Q)I + g̃(Q)QQ/Q2. Therefore, the tensor B can be chosen to
e [24]:

(Q) =
√
g(Q)I +

(√
g(Q) + g̃(Q) −

√
g(Q)

) QQ
Q2 (13)

ecause the tensor A is a function of the configurations of dumb-
ells Q, Eq. (12) must be solved for each dumbbell at every

ime step. Consequently, the number of equations represented
y Eq. (13) depends on the ensemble size.

In the BCF approach, the (Lagrangian) stochastic ordi-
ary differential equation (11) is converted into the (Eulerian)

s
w
w
a

Fig. 1. Flow domain and boundary conditions used in analyzing the flow
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tochastic partial differential equation [33]:

Q =
[
−v · ∇Q + ∇vT · Q − 2

ζ
A · Fs

]
dt

+
√

4kBT

ζ
(B · dW) (14)

he first term on the right-hand side of Eq. (14) accounts
or the convection of the configuration field by the flow and

is a time-uncorrelated but spatially homogeneous Brow-
ian force. The expression for stress calculation remains as
q. (10).

.4. Mesh generation

A boundary fitted elliptic mesh generation method proposed
y de Santos [39] is used to construct the mapping between the
hysical domain and a reference or computational domain. The
apping obeys:

· D̃ · ∇ξ = 0 (15)

here ξ is the position in the computational domain and the
yadic D̃ controls the spacing of the coordinate lines [12].

The time dependent free surface flow problem is solved by
he ALE algorithm [40–43]. The time derivatives of any scalar,
ector or a tensor quantityΦ are transformed to time derivatives

t fixed iso-parametric coordinates (denoted by
◦
Φ) as

∂Φ

∂t
= ◦
Φ− ◦

x · ∇Φ (16)

here
◦
x is the mesh velocity.

.5. Problem description and boundary conditions

Fig. 1 shows the downstream section of a slot coater. The up-
er wall is the die wall and the lower solid wall is the moving web.
he liquid is being coated on the moving web. In pre-metered
lot coating, the flow rate at the inlet and the final coating thick-
ess are known. For the two dimensional flow in the downstream
ection of a slot coater considered in this work, Eqs. (1), (2), (4),
15), and (21) constitute a set of 13 scalar equations in 13 un-
nowns when solving for the flow field using the macroscopic
pproach, while Eqs. (1), (2), (14), and (15) are a set of 5 + 3Nf

calar equations when solving using the micro–macro approach,
hereNf is the size of the ensemble. These equations are solved
ith boundary conditions on the transport and mesh equations

s discussed below.

of viscoelastic liquid in the downstream section of a slot coater.

coelastic free surface flows, J. Non-Newtonian Fluid Mech. (2006),
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.5.1. Boundary conditions on transport equations
1) A no slip boundary condition is applied at the solid walls (i.e.

v = 0 at the die wall while vx = web velocity and vy = 0
at the web).

2) A force balance at the free surface is imposed as the bound-
ary condition on the momentum equation through the fol-
lowing traction boundary condition:

n · T = −pan + ςn(∇II · n) (17)

where ∇II = (I − nn) · ∇ denotes the surface divergence
operator [44], pa is the ambient pressure in the gas phase
and ς is the surface tension. n is the unit vector normal to
the free surface.

This boundary condition is applied naturally through the
boundary integration of the traction term (n · T) in the mo-
mentum equation. As the normal vector n is discontinuous
on the free surface, Eq. (17) cannot be used in its present
form. Eq. (17) is integrated by parts before it is inserted into
the traction term of the momentum equation. More details
on the implementation of the traction boundary condition
can be found, e.g., in Kistler and Schweizer [5], Ruschak
[45] and Pasquali and Scriven [12].

3) The flow rate at the inflow boundary is imposed by specify-
ing a velocity profile v = f (x).

4) The fully developed flow condition at the outflow boundary
is imposed naturally as n · ∇v = 0.

5) The conformation transport equation [Eq. (4)] is hyperbolic
and the boundary condition on this equation is imposed in
weighted residual form only at the inflow boundary. In fully
developed flow, the polymer conformation does not change
along the streamline [12,46] and thus:

v · ∇M = 0 (18)

holds at the inflow boundary.
6) The boundary condition on the configuration fields equa-

tion should be imposed at the inflow boundary where the
configurations of the fields must be known. However, the
configurations of the fields are not known in general, and for
a given inflow velocity profile, the inflow configuration pro-
file depends upon the type of spring force and the presence
or absence of hydrodynamic interactions. In the literature,
most viscoelastic flow calculations using the BCF method
[33,34] are carried out either by imposing periodic bound-
ary conditions or by calculating the configuration fields for a
given velocity field (typically a linear or parabolic flow pro-
file). Here, we propose a new way of imposing the inflow
boundary condition on the BCF equation by assuming that
the entry length is long enough to have a fully developed flow
at the inlet boundary of the slot coater. Due to the fully devel-
oped flow between two parallel plates (Couette–Poiseuille
flow in the slot coating die), the velocity and the velocity
gradient do not change along streamlines. As a result, the

evolution of configuration fields Q along the streamlines is
independent of the flow field. The spatially correlated fields
ensure that the gradient of Q remains zero, i.e.:

v · ∇Q = 0 (19)

0

F
i
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must hold at the inflow boundary. Eq. (19) is independent of
the microscopic constitutive model and initial condition on
configuration fields; it is applied weakly as a vector bound-
ary condition by replacing the configuration fields residual
at the inflow boundary.

.5.2. Boundary conditions on mesh equations
The following boundary conditions are used to solve the mesh

quation [Eq. (15)]:

1) The location of nodes on the boundary is fixed at the inflow
and on the two solid walls.

2) At the free surface, the kinematic boundary condition:

n · (
◦
x − v) = 0 (20)

is applied in the weak form.

.6. Initial conditions

Initial conditions are required to solve the momentum, con-
ormation tensor and the configuration field equations. For tran-
ient computations, initial conditions for various field variables
re described in Section 4.3. For steady flow computations,
he initial conditions used for the Brownian dynamics simu-
ation (BDS) to solve the configuration fields equation are as
ollows.

For BDS of Hookean dumbbells, all configuration fields
re assumed to be spatially uniform initially and their val-
es are independently sampled from the equilibrium distribu-
ion function of the Hookean dumbbell model. However, for
ENE and FENE-P dumbbells, BD simulations were started
ith an equilibrium ensemble of Hookean dumbbells which
ere subsequently allowed to relax for three to five relaxation

imes in order to obtain the correct equilibrium distribution in
hese cases. The simulations for Wi > 2 are performed by us-
ng the configurations of Brownian fields at lower Wi as initial
ondition.

. Computational method

.1. Macroscopic approach

The conservation equations are discretized by the DEVSS-
G (discrete elastic viscous stress split-traceless gradient) mixed
nite element method [12]. DEVSS-TG method is a stable for-
ulation which has been developed as an improvement over the

arlier DEVSS schemes by Guénette et al. [47] and Guénette and
ortin [48] where an additional field variable for the traceless in-

erpolated velocity gradient L is introduced and computed with
ther variables (see [12] for more details). The tensorial equation
or L is
= L − ∇v + 1

tr I
(∇ · v)I (21)

or two dimensional slot coating flow computations carried out
n this work tr I = 2.

coelastic free surface flows, J. Non-Newtonian Fluid Mech. (2006),
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Eqs. (1), (2), (15) and (21) are written in the weighted
esidual form using Galerkin weighting functions. Eq. (4) is
eighted with the Streamline Upwind Petrov Galerkin (SUPG

49]) weighting functions. All independent variables are then
epresented by finite element basis functions as: � =∑β Φ

βϕβ,

here � is a vector, dyadic or scalar [v, p, x,L,M], ϕβ are the
asis functions [ϕβv , ϕ

β
p , ϕ

β
x , ϕ

β
L, ϕ

β
M] and Φβ are the unknown

oefficients [vβ, pβ, xβ,Lβ,Mβ]. Continuous biquadratic basis
unctions represent velocity and position, linear discontinuous
asis functions represent pressure and continuous bilinear ba-
is functions are used for the interpolated velocity gradient and
onformation tensor.

The DEVSS-TG/SUPG spatial discretization results in a
arge set of differential–algebraic equations, f(t, y, ẏ) = 0, for
he vector of time dependent unknowns y = [v, p, x,L,M].

fully implicit predictor–corrector scheme [50] is used for
ime integration. A first order forward Euler predictor with
rst order backward Euler corrector steps is used for the
rst few time steps to ensure time smoothing [51]. Subse-
uently, a second order Adams–Bashforth predictor with sec-
nd order trapezoidal rule corrector is used (see [50,52] for
ore details). The resulting set of coupled nonlinear equa-

ions are then solved using a frontal solver algorithm with
ewton’s method and analytical Jacobian at each time step

12].

.2. Micro–macro approach

In the BCF based micro–macro approach, the Galerkin finite
lement method is used to discretize spatially the mapping, con-
inuity and momentum equations together with the SUPG [49]
ormulation of the BCF equation [35]. The interpolated velocity
radient is not necessary in this formulation. Bilinear continuous
asis functions are used to approximate the configuration fields.
he evolution of the system is computed at each time step by
rst fixing the polymer contribution to the stress and computing

he position, velocity, and pressure with a fully implicit time
ntegration scheme and Newton’s method. The BCF equation is
hen solved to update the polymer contribution to stress using
xed flow kinematics.

Two different time integration schemes, namely, a fully im-
licit time integration scheme for linear dumbbell models with-
ut hydrodynamic interactions and a semi-implicit time in-
egration scheme for non-linear dumbbell models (FENE) or
inear dumbbells with hydrodynamic interactions, are used to
ntegrate the BCF equation. The two schemes are discussed
elow.

.2.1. Fully implicit scheme
For the linear spring force without hydrodynamic interactions

i.e. with the diffusion tensor replaced with a unit tensor, A =
= I) Eq. (14) can be rewritten as
Q =
(

−v · ∇Q + ∇vT · Q − 2Λ

ζ
Q
)

dt +
√

4kBT

ζ
dW(t)

(22)

E
i
K

Please cite this article as: Mohit Bajaj et al., Multiscale simulation of vis
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q. (22) is discretized temporally using an implicit Euler scheme
s

n+1 = Qn +
(

−vn · ∇Qn+1 + ∇vT
n · Qn+1 − 2Λn

ζ
Qn+1

)

×�t +
√

4kBT

ζ
�Wn (23)

here n is the previous and (n+ 1) is the current time step. Λn
s a function of field’s configurations for FENE-P dumbbells
valuate at the previous time step. Eq. (23) can be rearranged as

Qn+1 +
(

vn · ∇Qn+1 − ∇vT
n · Qn+1 + 2Λn

ζ
Qn+1

)

×�t = Qn +
√

4kBT

ζ
�Wn (24)

he weak form of this equation is∫
Ω

[
Qn+1 +

(
vn · ∇Qn+1 − ∇vT

n · Qn+1 + 2Λn
ζ

Qn+1

)
�t

]

×ψαQ dΩ−
∫
Ω

[
Qn +

√
4kBT

ζ
�Wn

]
ψαQ dΩ = 0 (25)

hereψαQ is the weighing function for configuration fields equa-
ion and Ω is the physical domain. The configuration field Q is
xpanded as Q =∑β Qβϕ

β
Q where Qβ represent coefficients

nd ϕβQ are basis functions. Thus:∑
β

Kαβϒ
β
n+1 = fα (26)

here the components of the matrix Kαβ for Hookean dumbbell
re

αβ
ij =

∫
Ω

[
ϕ
β
Q δij +

{
(vn · ∇ϕβQ) δij − ϕ

β
Q(∇jviT)n

+2ϕβQH

ζ
δij

}
�t

]
ψαQ dΩ (27)

nd for FENE-P dumbbell are

αβ
ij =

∫
Ω

[
ϕ
β
Q δij +

{
(vn · ∇ϕβQ) δij − ϕ

β
Q(∇jviT)n

+ 2 ϕβQH

ζ(1 − 〈Q2
n〉/b)

δij

}
�t

]
ψαQ dΩ (28)

ij representing the Kronecker delta. In Eq. (26) ϒ
β
j,n+1 is a

ector of the coefficients of configuration fields (Qβ
j, n+1) and

α
i =

∫ [
Qi,n +

√
4kBT

ζ
�Wi,n

]
ψαQ dΩ (29)
Ω

q. (26) is assembled to obtain a global set of equations which
n matrix vector form can be written as
ϒn+1 = f (30)

coelastic free surface flows, J. Non-Newtonian Fluid Mech. (2006),

dx.doi.org/10.1016/j.jnnfm.2006.04.009


JNNFM-2596; No. of Pages 21

M. Bajaj et al. / J. Non-Newtonian Fluid Mech. xxx (2006) xxx–xxx 7

The set of linear equations (30) can be solved using LU de-
composition of the matrix K followed by back substitution. For
Hookean dumbbells, the matrix K is independent of the con-
figurations of the dumbbells. However, for FENE-P dumbbells,
the matrix K is a function of the configuration of the dumbbells
evaluated at the previous time step [see Eq. (28)]. It should be
noted that the LU decomposition of the matrix K is performed
at each time step because the mesh changes at each time step
and K depends on the mesh. Eq. (30) is the global equation set
for a single configuration field. However, as the configuration
fields are independent of each other, Eq. (30) holds for all the
fields except that the Brownian force term and Qi,n in Eq. (29)
is different for each field.

3.2.2. Semi-implicit predictor corrector scheme
This scheme was originally developed by Öttinger [24] for

FENE dumbbells in homogeneous flows and has been recently
extended to finitely extensible bead-spring chains with and with-
out hydrodynamic interactions in homogeneous flows [53–55].
The semi-implicit formulation leads to greater stability of the nu-
merical algorithm [24,53,54] when compared to the explicit Eu-
ler scheme, and allows larger time steps. Somasi et al. [54] com-
pared the semi-implicit scheme to an explicit Euler algorithm
with rejections to compute flow of non-linear dumbbells. They
showed that for a given accuracy the semi-implicit predictor–
corrector is three to four times faster than the explicit Euler with
rejection. Somasi and Khomami [35] have used the semi-implicit
scheme for micro–macro simulations of FENE dumbbells in
homogeneous flows. Here, we extend the same scheme to inho-
mogeneous flows of non-linear dumbbells with hydrodynamic
interactions.

In the predictor step, the configuration fields are updated ex-
plicitly using forward Euler as

Q∗
n+1 = Qn +

[
−vn · ∇Qn + ∇vT

n · Qn − 2

ζ
An · Fs

n

]
�t

+
√

4kBT

ζ
(Bn ·�Wn) (31)

where Q∗
n+1 are the predicted configuration fields. The finite

element discretization yields the following matrix vector form:∑
β

Mαβϒ
β,∗
n+1 = fα (32)

where Mαβ is the mass matrix of following form:

Mαβ =
∫
Ω

ψαQϕ
β
QI dΩ (33)

ϒ
β,∗
n+1 is a vector of the coefficients of configuration fields basis

functions (Qβ,∗
n+1) and fα is

fα =
∫
Ω

[
Qn +

(
−vn · ∇Qn + ∇vT

n · Qn − 2

ζ
An · Fs

n

)
�t

+
√

4kBT

ζ
(Bn ·�Wn)

]
ψαQ dΩ (34)

Eq. (32) is assembled into a global set of linear equations which
is solved using LU decomposition of the mass matrix performed
at each time step.

Estimates of configuration fields generated at the predictor
step (Q∗

n+1) are used in constructing the corrector:

Qn+1 = Qn − �t

2
(vn · ∇Q∗

n+1 + vn · ∇Qn)

+ �t

2
(∇vT

n · Q∗
n+1 + ∇vT

n · Qn)

− �t

ζ
An · (FS

n + FS
n+1) +

√
4kBT

ζ
(Bn ·�Wn) (35)

here, the An and Bn are the same as used in Eq. (31). The force
term, however, is treated implicitly, with the term FS

n+1 being
evaluated using Qn+1. Following Ref. [53] and writing

An · FS
n+1 ≈ FS

n+1 − ζ(�n · FS
n) (36)

Eq. (35) can be simplified further

Qn+1 + �t

ζ
FS
n+1 = Qn − �t

2
(vn · ∇Q∗

n+1 + vn · ∇Qn)

+ �t

2

(∇vT
n · Q∗

n+1 + ∇vT
n · Qn

)
− �t

ζ
(An · FSn) +�t(�n · FSn)

+
√

4kBT

ζ
(Bn ·�Wn) (37)

For FENE dumbbells, Fs = HQ/(1 −Q2/b) can be substituted
into Eq. (37), which can then be rearranged into the following
form:(

1 − Q2
n+1

b
+ H �t

ζ

)
Qn+1 −

(
1 − Q2

n+1

b

)
� = 0 (38)

where � is the right-hand side of Eq. (37). � is a function of the
predicted values of the connector vector and of quantities whose
values at the previous time step are known. We solve Eq. (38)
in two distinct ways as follows.

3.2.2.1. Newton’s method with a rejection algorithm. The finite
element discretization of Eq. (38) results in a set of non-linear
equations for each configuration field which can be solved with
Newton’s method. Thus, for each configuration field:∑
β

Jαβ�ϒ
β
n+1 = −rα (39)

where �ϒ
β
n+1 = ϒ

β
n+1 − ϒ

β
0,n+1 with ϒ

β
n+1 denoting a vector

of the coefficients of configuration fields (Qβ
n+1) at the current

Newton iteration and ϒ
β
0,n+1 is a vector of the coefficients of

configuration fields (Qβ
0,n+1) at the previous Newton iteration.

Please cite this article as: Mohit Bajaj et al., Multiscale simulation of viscoelastic free surface flows, J. Non-Newtonian Fluid Mech. (2006),
doi:10.1016/j.jnnfm.2006.04.009.
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α is the residual vector given by

α
i =

∫
Ω

[(
1 − Q2

n+1

b
+ H �t

ζ

)
Qi, n+1−

(
1 − Q2

n+1

b

)
Γi

]

×ψαQ dΩ (40)

valuated using the configuration fields at the previous Newton
teration.

Jαβ is the Jacobian matrix obtained by differentiating Eq. (38)
ith respect to Qβ

n+1 (see Appendix A for a derivation of the
acobian matrix). The components of Jαβ are

αβ
ij =

∫
Ω

[(
1 − Q2

n+1

b
+ H �t

ζ

)
δij − 2

b
Qi,n+1Qj,n+1

+ 2

b
ΓiQj,n+1

]
ψαQϕ

β
Q dΩ (41)

valuated using the configuration fields at the previous Newton
teration.

Newton’s method is expensive for calculations for FENE
umbbells because of the large number of configuration fields
nd because the Jacobian matrix depends on the field’s con-
guration. However, an approximate analytical Jacobian can be
erived by replacingQ2

n+1 in Eq. (38) by 〈Q2
n〉 only in the deriva-

ion of the Jacobian matrix. The approximate Jacobian has the
ollowing form:

αβ
ij =

∫
Ω

(
1 − 〈Q2

n〉
b

+ H �t

ζ

)
ψαQϕ

β
Qδij dΩ (42)

Q2
n〉 is evaluated at the previous time step; thus, Eq. (42) is

ndependent of the configurations of the fields at the current
ime step and the LU factorization of the Jacobian matrix is
one only once per time step for all the fields. Eq. (42) was used
s an approximate Jacobian except for those fields for which the
esired convergence (10−5) was not achieved in a given number
f Newton iterations. For such cases, the exact Jacobian was
sed. During the course of Newton iterations any field whose
agnitude stretched beyond its maximum length (

√
b) for FENE

umbbells, was reset to 0.98
√
b.

.2.2.2. Least-squares collocation method (LSC). Eq. (38) can
e rearranged into a cubic equation for the magnitude of Qn+1,
hich has been shown by Öttinger [24] to have unique solution
etween 0 and

√
b:

Qn+1|3 − |Γ ||Qn+1|2 − b

(
1 + H �t

ζ

)
|Qn+1| + |Γ |b = 0

(43)

here |Qn+1| is the magnitude of Qn+1 and |Γ | is the magni-
ude of �. In the LSC method, Eq. (43) is solved at collocation

oints, which here are chosen to coincide with the Gauss inte-
ration points. Eq. (43) can be solved at these collocation points
n each element either analytically or numerically. The colloca-
ion solution is then projected onto the mesh using a least-square
rojection as discussed below.

i
a
ρ
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Let |Qn+1| = y be the solution of the cubic equation; then,
t each collocation (Gauss) point:

˜
n+1 =

(
�

|Γ |
)
y (44)

he least square projection is∫
Ω

(Qn+1 − Q̃n+1)ψα dΩ = 0 (45)

he finite element discretization of Eq. (45) results in a set of
inear equations which in matrix vector form can be written as∑
β

Mαβϒ
β
n+1 = fα (46)

here Mαβ is the mass matrix given by Eq. (33), ϒ
β
n+1 is the

ector of coefficients of the configuration fields and

α =
∫
Ω

Q̃n+1ψ
α
Q dΩ (47)

hich can be evaluated trivially by Gaussian quadrature because
˜
n+1 is known at all Gauss points. Eq. (46) is solved using LU

ecomposition of the mass matrix followed by back substitu-
ion. The mass matrix in Eq. (46) is the same as the mass matrix
valuated at the predictor step and hence there is no extra compu-
ational cost involved in computing and decomposing the mass

atrix at the corrector step.
For linear dumbbells with hydrodynamic interactions (which

s treated explicitly), Eq. (37) is linear in the connector vector
n+1 and can be written as

n+1 = �

1 + (Λn �t/ζ)
(48)

here � is the right-hand side of Eq. (37) with a linear spring
orce.Λn = H for Hookean dumbbells and for FENE-P dumb-
ells Λn = H/(1 − 〈Q2

n〉/b). For linear dumbbell models both
ewton’s method and the LSC method are identical. As a result,

he latter method can be used to evaluate the nodal values of
n+1 from Eq. (48). The fully implicit scheme discussed earlier

s not appropriate for linear dumbbells with hydrodynamic in-
eractions because of the non-linear terms in the hydrodynamic
nteraction tensor �.

Eq. (48) can be formulated in the form of with Eq. (46) as,
ith

α =
∫
Ω

�

1 + (Λn�t/ζ)
ψαQ dΩ (49)

he global mass matrix is the same as the mass matrix evaluated
t the predictor step.

.3. Dimensionless numbers
Dimensional analysis of the system of equations suggests that
t is convenient to introduce four dimensionless numbers, which
re combinations of the various macroscopic model parameters
, L, ηs, ς, v, ηp,0, λ, ρ, etc. These dimensionless numbers are:

coelastic free surface flows, J. Non-Newtonian Fluid Mech. (2006),

dx.doi.org/10.1016/j.jnnfm.2006.04.009


J

an Fluid Mech. xxx (2006) xxx–xxx 9

(

(
(
(

i
i
i
s
p
b
f
s
W
W
η

a

r
o
s
i
m
t

4

d
g
t
t

p
p
s

4
c

B

o
m
b

4

s
t
d
f
f
t
o
h
S

f
O

T
M

M

NNFM-2596; No. of Pages 21

M. Bajaj et al. / J. Non-Newtoni

1) The Reynolds numberRe = ρvL/(ηs + ηp,0) where v is the
web speed and L is the height of the gap between the web
and the die.

2) The Capillary number Ca = (ηs + ηp,0)v/ς.
3) The viscosity ratio β = ηs/(ηs + ηp,0).
4) The Weissenberg number Wi = ληv/L, where λη is the

characteristic relaxation time of polymer. The definition of
λη used here (see Appendix B) is based on the zero shear
rate viscosity.

In all the simulations reported here, we setRe = 0, by choos-
ngρ = 0. Similarly, we setCa = 0.1. This is achieved by choos-
ng v = 1, η = ηs + ηp,0 = 1, and ς = 10. In addition to keep-
ng Re and Ca fixed, all simulations are performed at a dimen-
ionless flow rate 0.3, for which a recirculation region is always
resent in the flow domain [12]. The only dimensionless num-
ers that are varied in this work are β and Wi. Basically, two dif-
erent values of β have been studied (β = 0.75 and 1.0), while
imulations have been carried out for a wide range of values of
i. Since η = 1, and in addition we choose L = 1, variation in
i and β is achieved by varying λη and ηs (and consequently

p,0). Time is expressed in units of the polymer longest relax-
tion time.

In micro–macro simulations λη is related to microscopic pa-
ameters, such as H, ζ, h∗, etc., with a relationship that depends
n the particular microscopic model. In order to compare re-
ults of different models at identical values of Wi, it becomes
mportant, consequently, to choose appropriate values for these

icroscopic parameters. The scheme used here to determine
hese parameters is discussed in detail in Appendix B.

. Results and discussion

The convergence of the numerical solutions is tested on four
ifferent meshes. Details of the meshes M1, M2, M3 and M4 are
iven in Table 2. Fig. 2 displays the portion of the meshes near
he contact line. Elements are concentrated near the free surface
o capture the steep layers of conformations at high Wi.

In the macroscopic method, steady state flows can be com-
uted directly. This is not possible with the micro–macro ap-
roach. Except where explicitly indicated, all the macroscopic
teady flows are computed directly hereafter.

.1. Comparison of linear dumbbell models with equivalent

onformation tensor based models

Because this work represents the first attempt to extend the
CF method to solve complex free surface flows, we validate

A
d
c
fl

able 2
eshes used for slot coating flow computations

Mesh Number of elements Number of nodes Degrees of
macroscopic

M1 550 2311 15712
M2 1096 4539 30836
M3 2100 8611 58392
M4 4105 16717 113215

icro–macro computations are done only with M1 and M2 meshes.

Please cite this article as: Mohit Bajaj et al., Multiscale simulation of vis
doi:10.1016/j.jnnfm.2006.04.009.
Fig. 2. Meshes used in analyzing the downstream section of slot coater.

ur numerical scheme by comparing results for linear dumbbell
odels using the macroscopic and the micro–macro method for

oth ultra-dilute and dilute polymer solutions.

.1.1. Ultra-dilute solutions
The flow of an ultra-dilute polymer solution is computed by

etting ηp = 0, i.e. β = 1. In this situation the evolution equa-
ions for the conformation tensor and for configuration fields are
ecoupled from the mass, momentum and mesh equations. Thus
or a given Newtonian solution, the distribution of polymer con-
ormation in flow is investigated by solving the conformation
ensor and configuration fields equations. The slot coating flow
f an ultra-dilute solutions using the conformation tensor model
as been studied earlier (on different meshes) by Pasquali and
criven [12].

Fig. 3 shows the largest and smallest eigenvalues of the con-
ormation tensor in the flow domain as a function of Wi for the
ldroyd-B and FENE-P models using the macroscopic method.

s shown in Fig. 3 computations using different meshes break-
own at different values of Wi, i.e. the smallest eigenvalue of the
onformation tensor becomes negative in certain regions of the
ow field [12]. The maximum Wi achieved in these computations

freedom for fully coupled
simulations (x, v, p,M, L)

Degrees of freedom for micro–macro
simulations

10894 (x, v, p) and 1818 (Q)
21444 (x, v, p) and 3522 (Q)

coelastic free surface flows, J. Non-Newtonian Fluid Mech. (2006),
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Fig. 3. Largest and smallest eigenvalues of the conformation tensor in the flow domain for an ultra-dilute solution of Oldroyd-B liquid using the macroscopic approach
[(a) and (b)] and a FENE-P liquid [(c) and (d)]. Ca = 0.1,Q = 0.3, β = 1.0, bM = 100.

for ultra-dilute solutions grows with mesh refinement (Table 3).
Stress boundary layers are formed under the free surface and
these boundary layers cannot be captured beyond a certain Wi
for a given mesh resolution. The evolution of theMxx component
of conformation tensor for the Oldroyd-B model with increasing
Wi is displayed in Fig. 4. As Wi increases, both conformation and
the gradient of conformation increase close to the free surface.

Fig. 4. xx component of the conformation tensor for an ultra-dilute solution
of Oldroyd-B fluid along line AB (y = 0.5x). For an ultra-dilute solution, the
position of line AB does not change with Wi and hence, the equation of line AB,
y = 0.5x, is independent of Wi. Computations are carried out using M4 mesh.
Ca = 0.1,Q = 0.3, β = 1.0.

Mesh refinement is required to capture the conformation layers
close the free surface at much higher Wi.

It is also observed from Fig. 3 and Table 3 that computations
using the FENE-P model remain stable (conformation tensor
remains positive definite) to a much higher Wi when compared
to the Oldroyd-B model for a given mesh refinement. This is
consistent with the findings of Pasquali and Scriven [12].

Fig. 5 compares the largest and smallest eigenvalues of the
conformation tensor obtained with the micro–macro method and
the macroscopic method. The figure clearly indicates that com-
putations using the micro–macro method are stable at much
higher Wi than those for the macroscopic method. The stabil-
ity of the micro–macro method can be attributed to the inher-
ent positive definiteness of the conformation tensor. The steady
state values reported using the micro–macro approach are a time
and ensemble-average over all the Brownian configuration fields
after the system reaches a stationary state. The error bars are
smaller than the size of the symbols.

Fig. 5 (a) and (b) shows that the results using the micro–macro
approach for Hookean dumbbells depart from results using the

Table 3
Maxmium Wi achieved in calculations for Oldroyd-B and FENE-P the using
macroscopic constitutive equations for ultra-dilute solution, β = 1.0

Mesh Wimax (Oldroyd-B) Wimax (FENE-P)

M1 2.68 3.02
M2 3.08 3.66
M3 3.38 5.27
M4 5.45 8.25

Please cite this article as: Mohit Bajaj et al., Multiscale simulation of viscoelastic free surface flows, J. Non-Newtonian Fluid Mech. (2006),
doi:10.1016/j.jnnfm.2006.04.009.
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F n tensor for an ultra-dilute solution obtained from macroscopic and micro–macro
a ]. Ca = 0.1,Q = 0.3, β = 1.0, bM = 100, Nf = 2000.
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are chosen to run simulations for a particular case of Wi = 2.0
and β = 1.0. As expected, the solution gets increasingly more
accurate as the ensemble size increases, i.e. the number of dumb-
bells or the number of trajectories increases. The temporal fluc-
tuations in the largest eigenvalue of the conformation tensor are
more pronounced for an ensemble size of 500 than for an en-
semble size of 1000 or 2000. Here, an ensemble size of 2000
dumbbells is chosen for all the micro–macro computations in
order to have a smaller variance in the field variables.
ig. 5. Comparison of the largest and smallest eigenvalues of the conformatio
pproach. Hookean dumbbells [(a) and (b)] and FENE-P dumbbells [(c) and (d)

acroscopic approach at Wi ∼ 3, beyond which the smallest
igenvalues using the macroscopic method drops quickly to zero.
owever, for all the values of Wi investigated in this work, the

onformation tensor computed using the micro–macro method
emains positive definite. At higher Wi (Wi > 5) it is found that
everal relaxation times must be computed before a steady state
s achieved for the Hookean dumbbell model. The micro–macro
imulations of FENE-P dumbbells (see Fig. 5(c) and (d)) show
imilar qualitative behavior but computations at high Wi(∼ 12)
emain numerically stable as the dumbbell reaches its maximum
xtension.

Fig. 6 examines the time step convergence of the steady state
esults obtained with the micro–macro method for Hookean
umbbells. It is clear that within statistical error bars the largest
igenvalue of conformation tensor at steady state, for a time step
f 0.02 is identical to those obtained for a time step of 0.0075.
he eigenvalue for both time steps eventually coincide with the
nal steady state value obtained using the macroscopic Oldroyd-
model. The steady state value for the higher time step value

0.05) settle down to a lower value than the one obtained us-
ng the Oldroyd-B model but it remains within error bars. Error
ars in Fig. 5 are smaller than those displayed in Fig. 6 because
rror bars for steady state averages in Fig. 5 are evaluated by
arrying out time and ensemble-averages over all the configura-
ion fields, while error bars for transient averages in Fig. 6 are
valuated only via ensemble average.
Hereafter all reported micro–macro simulations have been
arried out with �t = 0.02 unless otherwise specified.

Fig. 7 displays the sensitivity of the micro–macro solution to
nsemble size. Ensemble sizes of 500, 1000 and 2000 dumbbells

Fig. 6. Time step convergence of micro–macro method for an ultra-dilute solu-
tion of Hookean dumbbells. Inset shows the change in the eigenvalue at initial
times. Ca = 0.1,Q = 0.3,Wi = 2.0, β = 1.0, Nf = 2000.

Please cite this article as: Mohit Bajaj et al., Multiscale simulation of viscoelastic free surface flows, J. Non-Newtonian Fluid Mech. (2006),
doi:10.1016/j.jnnfm.2006.04.009.
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Fig. 7. Effect of the ensemble size (micro–macro approach) on the largest eigen-
value of the conformation tensor for Hookean dumbbells in an ultra-dilute solu-
t
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Table 4
Mesh convergence of calculations for Oldroyd-B and FENE-P using macro-
scopic constitutive equations for dilute solution, β = 0.75

Mesh Wimax (Oldroyd-B) Wimax (FENE-P)

M1 2.68 2.98
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ion. Computations are carried out with the M1 mesh. Error bars are shown for

f = 500 and 2000. Ca = 0.1,Q = 0.3,Wi = 2.0, β = 1.0,�t = 0.02.

The mesh convergence of the evolution of the largest eigen-
alue of the conformation tensor for Hookean dumbbells for
wo different ensemble sizes using the micro–macro approach
s shown in Fig. 8. Note that Fig. 5 demonstrates the mesh con-
ergence of the steady state results. It is evident that in order to
ddress the issue of mesh convergence, a sufficiently large en-
emble of configuration fields must be chosen. For Nf = 1000,
he presence of large fluctuations prevents a clear demonstra-
ion of mesh convergence. ForNf = 2000, mesh convergence is
vident.

Fig. 9 shows the components of the conformation tensor
xx,Mxy and Myy along the free surface. The results of the

icro–macro method compare very well with the macroscopic
ethod.

ig. 8. Mesh convergence of micro–macro approach for Hookean dumbbells for
n ultra-dilute solution. Figures shows mesh convergence for two different en-
emble sizes. Ca = 0.1,Q = 0.3,Wi = 2.0, β = 1.0,�t = 0.02, Nf = 2000.
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M2 3.31 3.29
M3 3.33 3.30
M4 3.37 3.33

.1.2. Dilute solution
In dilute solutions the evolution equations of the conforma-

ion tensor and of configuration fields are coupled with the mass,
omentum and mesh equations. The flow field is computed by

olving the coupled set of equations for both the Oldroyd-B and
ENE-P constitutive equations using a viscosity ratio β = 0.75.
ig. 10 shows the largest and smallest eigenvalues of the con-
ormation tensor as a function of Wi. It is clear from Fig. 10 that
esh refinement does not increase the maximum Wi achieved

or dilute solutions as compared to the ultra-dilute solutions (see
ig. 3). The failure of the simulations is neither affected by mesh
efinement (i.e. M2, M3 and M4 meshes fails at almost the same
i), nor by changing the molecular model (i.e. the catastrophic

ailure for Oldroyd-B and FENE-P models occurs at nearly the
ame Wi (as seen in Table 4)). This is in strong contrast to sim-
lations for ultra-dilute solutions. The origin of this behavior
ay be due to the inappropriate boundary condition applied

n the momentum equation at the contact line having a more
ronounced effect on the solution of the conformation tensor
quation for dilute solutions [23].

Fig. 11, which is further evidence for the numerical stability
f micro–macro methods, shows the comparison of the largest
nd the smallest eigenvalues using microscopic models and their
acroscopic equivalent models. Though the micro–macro re-

ults are from the coarsest mesh (M1), stability is still obtained.
e have not explored the limit of the micro–macro method.
Fig. 12 compares contour plots of the largest and smallest

igenvalues of the conformation tensor with the results for the
acroscopic method on mesh M1. Clearly, the results for the
icro–macro method agree closely with the macroscopic results

or the same mesh.
Fig. 13 reveals the effect ofβ on the stretch of molecules along

he free surface. An increase in the polymer concentration (β <
) results in an overall decrease in the stretch of the molecules.
detailed analysis of the effect of β on the stability of slot coat-

ng flows will be discussed in future publications. As expected,
he Oldroyd-B model predicts higher stretch along the free sur-
ace when compared to the FENE-P model. The behavior of the
mallest eigenvalue is similar to that of the largest eigenvalue.

Table 5 compares the memory and the CPU time require-
ents for steady state slot coating flow computations using

he macroscopic and micro–macro methods for the Oldroyd-B
odel. It is evident from Table 5 that the CPU time requirements

or the micro–macro approach are much more demanding than

he macroscopic approach especially when compared on a sin-
le processor and on the same Mesh. However, the micro–macro
ethod can easily be parallelized and the wall time drops signif-

cantly after parallelization. Table 5 also compares the memory

coelastic free surface flows, J. Non-Newtonian Fluid Mech. (2006),
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ig. 9. Comparison of the components of conformation tensor:Mxx,Mxy andM
esults are for M1 mesh. Ca = 0.1,Q = 0.3,Wi = 2.0, β = 1.0, bM = 100, N

nd the CPU time requirements to solve the BCF equation using
he explicit Euler scheme and the proposed fully implicit scheme
or the Hookean dumbbell model. Note that explicit computa-
ions are done with a time step 0.01, as the explicit scheme is

nstable for time step size 0.02. Although the CPU time required
or a single time step is the same for both the explicit scheme and
he fully implicit scheme, the total CPU time required to reach
teady state is much smaller for the implicit scheme as a larger

t
fl
c
p

able 5
omparison of CPU time and memory requirements for the macroscopic and the mic

Constitutive equation Number of processors Ti

Macroscopic (M1 mesh) 1 St
Macroscopic (M4 mesh) 1 St
Microscopic (Exp. Euler: �t = 0.02) 1 Un
Microscopic (Exp. Euler: �t = 0.01) 1 10
Microscopic (Imp. Euler: �t = 0.02) 1 10
Microscopic (Imp. Euler: �t = 0.02) 8 10

i = 2.0, β = 0.75, Nf = 2000. The micro–macro values are for M1 mesh.

Please cite this article as: Mohit Bajaj et al., Multiscale simulation of vis
doi:10.1016/j.jnnfm.2006.04.009.
an ultra-dilute solution. Macroscopic results are for M4 mesh and micro–macro
00. Left: Oldroyd-B; Right: FENE-P.

ime step can be used while maintaining the same accuracy as
he explicit scheme.

It is worth mentioning that the CPU time and memory re-
uirements are independent of the type of microscopic consti-

utive equation (for a linear dumbbell model) for free surface
ow computations using the fully implicit scheme. However, for
onfined flow problems (fixed mesh), the CPU time required de-
ends upon the type of microscopic constitutive equation used,

ro–macro method

me steps CPU time Wall time Memory (MB)

eady state 90 s 90 s 147
eady state 90 min 90 min 2000
stable – – −−
00 32 h 32 h 150
00 32 h 32 h 150
00 32 h 4 h 150

coelastic free surface flows, J. Non-Newtonian Fluid Mech. (2006),
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Fig. 10. Largest and smallest eigenvalues of the conformation tensor for an Oldroyd-B liquid [(a) and (b)] and a FENE-P liquid [(c) and (d)].Ca = 0.1,Q = 0.3, β =
0.75, bM = 100. Macroscopic method.

Fig. 11. Comparison of the largest and the smallest eigenvalues of the conformation tensor using the macroscopic and the micro–macro approach. Hookean dumbbells
[(a) and (b)] and FENE-P dumbbells [(c) and (d)]. Ca = 0.1,Q = 0.3, β = 0.75, bM = 100, Nf = 2000.

Please cite this article as: Mohit Bajaj et al., Multiscale simulation of viscoelastic free surface flows, J. Non-Newtonian Fluid Mech. (2006),
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Fig. 12. (Color online) Comparison of contours of the largest (a and c) and
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mallest (b and d) eigenvalues of the conformation tensor. The macroscopic
esults are represented by grey lines and the micro–macro results are by red lines.
ldroyd-B [(a) and (b)] and FENE-P [(c) and (d)]. Ca = 0.1,Q = 0.3,Wi =
.0, β = 0.75, bM = 100, Nf = 2000.
.e., computations using Hookean dumbbells are less expensive
ompared to a FENE-P model because the mass matrix [Eq. (33)]
s independent of the configurations of the dumbbells and hence
t is not required to be factorized at each time step.

ig. 13. Effect of viscosity ratio on the stretch of molecules. Ca = 0.1,Q =
.3,Wi = 2.0, bM = 100.
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ig. 14. Comparison of the solution obtained using the explicit Euler scheme and
he fully implicit scheme for Hookean dumbbells for Ca = 0.1,Q = 0.3,Wi =
.0, β = 0.75, Nf = 2000.

Fig. 14 shows the numerical stability of the proposed fully
mplicit scheme compared to the explicit Euler scheme atWi =
.0 and β = 0.75 for three different time steps, namely �t =
.01, 0.02 and 0.05. It is clear that both implicit and explicit
chemes are stable for�t = 0.01. However, when the time step
s increased to 0.02 or 0.05, only the implicit scheme remains
table.

.2. Non-linear dumbbell models

In this section, we present results using non-linear dumbbell
odels. Since there are no equivalent constitutive equations for
ENE dumbbells and models with hydrodynamic interactions,
e only compare results for the non-linear dumbbell models
ith results of the linear dumbbell models.
Fig. 15 shows the components of the conformation tensor
xx,Mxy andMyy along the free surface computed using New-

on’s method and the collocation method for FENE dumbbells
nd Hookean dumbbells with hydrodynamic interactions. It is
bserved that both methods give identical results. The local val-
es of components of the conformation tensor differ by less than
0−5 between the two methods.

Fig. 16 displays the ratio of CPU times using the Newton’s
ethod and the collocation method as a function of Wi. We

bserve that collocation method is approximately three times
aster than the Newton’s method forWi < 1.5 at any given time
tep. As Wi increases beyond 1.5 the collocation method be-
omes much more CPU efficient. The CPU time required for
he collocation method is relatively insensitive to the values of

i. However, the CPU time required for the Newton’s method
ncreases with increasing Wi since it takes more Newton itera-
ions for the Newton’s method to converge. It is also observed
n our simulations that for Wi > 2, many of the dumbbells are√

tretched beyond the maximum length b during the course of
ewton’s iterations requiring the configuration vectors of these
umbbells to be reset in order to get a physically meaningful
pring force law.

coelastic free surface flows, J. Non-Newtonian Fluid Mech. (2006),
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ig. 15. Comparison of the components of conformation tensor: Mxx,Mxy a
umbbells (left) and Hookean dumbbells with HI (right). Ca = 0.1,Q = 0.3,W

Table 6 compares the memory and the CPU time require-
ents for the micro–macro computations using linear and

on-linear dumbbell models. The computations for non-linear
umbbell models using the collocation method are almost
wice as expensive as computations for linear dumbbell mod-
ls both in terms of the CPU time and memory require-
ents. The memory and CPU time required for non-linear
umbbell models are controlled by storage and evaluation of
he configuration fields at the predictor step which is not re-
uired in the scheme used for linear dumbbell models in this
ork.

n
s
t
d

able 6
omparison of CPU time requirements for linear and non-linear dumbbell models fo

Constitutive equation Number of processors

Linear dumbbells 8
Non-linear dumbbells with Newton’s method 8
Non-linear dumbbells with collocation method 8

i = 2.0, β = 0.75,�t = 0.02, Nf = 2000.

Please cite this article as: Mohit Bajaj et al., Multiscale simulation of vis
doi:10.1016/j.jnnfm.2006.04.009.
yy computed using the Newton’s method and the collocation method. FENE
2, β = 0.75, bM = 100, Nf = 2000, h∗ = 0.14.

Figs. 17 and 18, which examines the effect of different con-
titutive models used in this study, show the largest eigenvalue
f the dimensionless stress tensor and the stretch of the polymers
long the free surface, respectively. The stress, a macroscopic
roperty, appears relatively unaffected by the presence of dif-
erent non-linear phenomena (except the FENE force). In other
ords, Hookean dumbbells, Hookean dumbbells with hydrody-

amic interactions, and FENE-P dumbbells exhibit nearly same
tress along the free surface. On the other hand, the stretch of
he polymer, a microscopic property, is significantly different for
ifferent constitutive models. The Peterlin approximation to the

r M1 mesh

Time steps CPU time (h) Wall time (h) Memory (MB)

1000 32 4 147
1000 224 28 285
1000 64 8 285

coelastic free surface flows, J. Non-Newtonian Fluid Mech. (2006),
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semble size of the configuration fields. Fig. 19 shows that by in-
ig. 16. Comparison of CPU time requirement for the computations of FENE
umbbells using the Newton’s method and the collocation method. Ca =
.1,Q = 0.3, β = 0.75, bM = 100, Nf = 2000.

ENE dumbbell model over-predicts the stretch. The inclusion
f hydrodynamic interactions appears to reduce the stretch in
omparison with the pure Hookean dumbbell model.

.3. Transient results

Here, the evolution of the molecular conformation in the
ownstream section of a slot coater is studied as the flow evolves
rom one steady state to another after a gradual change of the di-
ensionless flow rate from 0.3 to 0.27 atWi = 2.0 andβ = 0.75.
he initial condition for all the transient simulations is the steady

tate solution of flow equations at dimensionless flow rate 0.3,
i = 2.0 and β = 0.75. The flow rate is gradually changed over
period of 3λ while keeping all other parameters fixed. The

radual change in flow rate ensures a divergence free velocity at

ig. 17. Largest eigenvalue of dimensionless stress tensor along the free
urface for different constitutive models. Ca = 0.1,Q = 0.3, bM = 100, β =
.75, h∗ = 0.14.
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ig. 18. Stretch (largest eigenvalue of the conformation tensor) of the poly-
er molecules along the free surface for different constitutive models. Ca =
.1,Q = 0.3,Wi = 2, β = 0.75, bM = 100, Nf = 2000, h∗ = 0.14.

ach time step which is necessary to calculate the flow field at a
ubsequent time step [50].

Fig. 19 displays the change in the largest eigenvalue of the
onformation tensor by changing the flow rate for an Oldroyd-

fluid and Hookean dumbbell model. Changing the flow rate
rom 0.30 to 0.27 increases the local velocity gradient under
he die lip because the free surface moves inward for a con-
tant web velocity. As a result molecules at a lower flow (0.27)
ate are more stretched compared to the those at a higher flow
ate (0.30). Transient results calculated using the micro–macro
ethod are subject to statistical fluctuations due to the finite en-
reasing the size of the ensemble from 500 to 2000, the statistical
rror bar gets smaller as the variance is inversely proportional to
he square root of the number of trajectories. The results show

ig. 19. Change in the largest eigenvalues of the conformation tensor by chang-
ng the flow rate for the Hookean dumbbell model. Ca = 0.1,Q = 0.3,Wi =
.0, β = 0.75, Nf = 2000,�t = 0.01. Micro–macro and macroscopic compu-
ations are carried out with the M1 and M3 mesh, respectively, and using the
ully implicit scheme.
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Fig. 20. Time step convergence of the change in the largest eigenvalues of the
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Fig. 22. Change in the Y-position of the free surface at different X-positions
along the free surface. Solid lines are for Oldroyd-B model (macroscopic)
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onformation tensor by changing the flow rate for Hookean dumbbell model.
a = 0.1,Q = 0.3,Wi = 2.0, β = 0.75, Nf = 2000. Computations are carried
ut with the M1 mesh and using the fully implicit scheme.

ood comparison between the macroscopic and micro–macro
ethod within statistical error.
Fig. 20 shows the time step convergence of the micro–macro

esults reported in Fig. 19. It is evident from Fig. 20 that as
he time step size gets smaller, the solution gets increasingly

ore accurate. The results using a time step of �t = 0.01 are
ery close to the results using �t = 0.0075. Hence, �t = 0.01
s used hereafter.

Fig. 21 shows the change in the coating thickness with time
t the outflow plane. It should be noted that although the flow
ate is changed at t = 0 the coating thickness starts changing

nly after t ∼ 30. This in explained in Fig. 22 which shows the
hange in y-position of the free surface with time at different
-positions along the free surface. As shown in Fig. 22, a front

ig. 21. Change in the coating thickness by changing the flow rate for
he Hookean dumbbell model. Ca = 0.1,Q = 0.3,Wi = 2.0, β = 0.75, Nf =
000,�t = 0.01. Computations are carried out with the M1 mesh and using the
ully implicit scheme.
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nd dashed lines are for the Hookean dumbbell model (micro–macro). Ca =
.1,Q = 0.3,Wi = 2.0, β = 0.75,�t = 0.01, Nf = 2000. Computations are
arried out with the M1 mesh and using the fully implicit scheme.

evelops at the contact line and propagates downstream like a
ave. Figs. 19–22 show that we have a good agreement between

he micro–macro and macroscopic methods for transients flows.
ransient results for other constitutive models show a behavior
imilar to that of the Oldroyd-B model.

. Conclusion

We have extended the BCF based micro–macro approach
o solve transient viscoelastic free surface flow problems. This

ethod involves Brownian dynamics simulation of the motion
f polymer molecules coupled together with a time dependent
nite element algorithm for the solution of the macroscopic con-
ervation equations. We have validated our method by compar-
ng the flow behavior in the downstream section of a slot coater
or linear dumbbell models, i.e., Hookean and FENE-P dumb-
ells, with their equivalent macroscopic closed form constitutive
quations in a conformation tensor based formulation. We found
xcellent agreement between the results from the BCF approach
nd the results using the macroscopic approach. An important
bservation was that the computations using the BCF method
ere stable at higher Wi and on a relatively coarser mesh when

ompared to the computations using the macroscopic approach.
n addition, a new fully implicit scheme is proposed for the time
ntegration of the BCF equation for linear dumbbell models. We
ave shown that this scheme is more stable than the explicit
uler scheme with no additional computational and memory

equirements for the solution of free surface flows.
We have further extended the capabilities of BCF to solve

omplex flow problems by using FENE dumbbells and dumb-
ells with hydrodynamic interactions, for which no closed-form

onstitutive equations exist. Two different algorithms to solve
he non-linear dumbbell models namely, Newton’s method and
novel least-squares and collocation method, were examined.
e have shown that both algorithms give identical results. How-
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ver, the collocation method is fast and computationally efficient
hen compared to Newton’s method. We found significant dif-

erences between the stretch of the polymers at the free surface
or different microscopic constitutive models.
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ppendix A. Derivation of the Jacobian matrix for the
onfiguration fields equation

Here, analytical Jacobian entries of the configuration field
quation for FENE force are computed. From Eq. (38)

G = Qn+1

(
1 − Q2

n+1

b
+ H �t

ζ

)
− �

(
1 − Q2

n+1

b

)
,

Gi = Qi,n+1

(
1 − Q2

n+1

b
+ H �t

ζ

)
− Γi

(
1 − Q2

n+1

b

)
,

Gαi =
∫
Ω

[
Qi,n+1

(
1 − Q2

n+1

b
+ H �t

ζ

)

−Γi
(

1 − Q2
n+1

b

)]
ψα dΩ (A.1)

he Jacobian entries are obtained by differentiating Eq. (A.1)
ith respect to Qβ

j,n+1. With Qi,n+1 = Q
γ
i,n+1ϕ

γ
Q and Jαβij =

∂Gαi /∂Q
β
j, n+1)

αβ
ij =

∫
Ω

[(
1 − Q2

n+1

b
+ H �t

ζ

)
∂Qi,n+1

∂Q
β
j,n+1

− Qi,n+1

b

∂Q2
n+1

∂Q
β
j, n+1

+ Γi

b

∂Q2
n+1

∂Q
β
j, n+1

]
ψα dΩ (A.2)

he first derivative on the RHS of Eq. (A.2) is
∂Qi,n+1

∂Q
β
j,n+1

= ϕ
γ
Q

∂Q
γ
i,n+1

∂Q
β
j, n+1

= ϕ
γ
Qδ

γβ
ij = ϕ

β
Qδij (A.3)
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he derivative appearing in second and third term on the RHS
f Eq. (A.2) is

∂Q2
n+1

∂Q
β
j,n+1

= ∂(Qn+1 · Qn+1)

∂Q
β
j,n+1

= 2Qn+1 · ∂Qn+1

∂Q
β
j,n+1

= 2Qk,n+1
∂Qk,n+1

∂Q
β
j,n+1

= 2Qk,n+1ϕ
γ
Q

∂Q
γ
k,n+1

∂Q
β
j, n+1

= 2Qk,n+1ϕ
γ
Qδ

γβ
kj = 2Qk,n+1ϕ

β
Qδkj = 2Qj,n+1ϕ

β
Q

(A.4)

ombining equations (A.2)–(A.4), we get:

e,αβ
ij =

∫
Ω

[(
1 − Q2

n+1

b
+ H�t

ζ

)
δij − 2

b
Qi,n+1Qj,n+1

+ 2

b
ΓiQj,n+1

]
ψαQϕ

β
Q dΩ (A.5)

ppendix B. Calculation of characteristic relaxation
imes and microscopic parameters for different

icroscopic constitutive models

In this appendix, we discuss the systematic procedure adopted
or determining the microscopic parameters H, ζ, h∗, etc., such
hat identical values for Wi (or equivalently, λη) are obtained
n all the microscopic constitutive models used in micro–macro
omputations. The definition of λη is

η = [η]θ0Mηs

NAkBT
(B.1)

here [η]θ0 is the intrinsic viscosity in a θ-solution in the limit
f zero shear rate, M is the molecular weight and NA is the
vogadro number. In can be shown for dilute solutions [19,24]

hat

η = lim
n→0

ηp,0

nkT
(B.2)

he relationship of λη to microscopic parameters in models with
nd without fluctuating hydrodynamic interactions (HI) is dis-
ussed separately below. Before we do so, however, the fol-
owing points are worth noting. In all micro–macro simulations
eported here, we set R2

e/3 = 1 and kBT = 1, and in models
ith FENE springs, we choose a value for the FENE parameter
= 300. Furthermore, since ηp,0 and λη are known for given

alues of β and Wi, Eq. (B.2) can be used to find the polymer
ensity n in all cases.

1) Dumbbells without HI: For constitutive models without fluc-
tuating HI, the relationship between R2

e/3 and λη, and the
microscopic parameters H, b, and λH = ζ/4H , can be ob-
tained analytically [19,26], and is given in Table B.1. For

the fixed values of R2

e/3, kBT and b chosen here, the spring
constant H can be evaluated from the expression for R2

e/3
(see Table B.1). For any particular value of λη, the calcu-
lated value of H, and the relationship between λη and λH
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Table B.1
End-to-end vector and characteristic relaxation time for different microscopic
constitutive models [26]

Constitutive model R2
e/3 λη

(

Fig. B.1. Characteristic relaxation time of Hookean dumbbells with hydrody-
n 3/2√
t
t

R

Hookean kBT/H λH
FENE-P kBT (b− 3)/Hb λH (b− 3)/b
FENE kBT (b− 5)/Hb λH (b− 5)/b

(Table B.1), can then be used to determine the value of the
drag coefficient ζ to be used in the microscopic model.

2) Dumbbells with HI: The presence of hydrodynamic inter-
actions does not affect static properties, and as a result, ex-
pressions for R2

e/3, and the calculation of H, remains un-
altered from the cases where HI is absent. However, since
λη for dumbbells with fluctuating HI cannot be derived an-
alytically, a Green–Kubo formula [56,57] has been used to
calculate the shear relaxation modulus Gp(t), from which
the characteristic relaxation time can be obtained. Before
discussing the Green–Kubo formula below, it is worth not-
ing that in models with HI, rather than the drag coeffi-
cient ζ, it is more common to use the non-dimensional pa-
rameter h∗. For these models, therefore, the parameter h∗
must be chosen such that the desired value of λη can be
obtained.

The Green–Kubo formula relates Gp(t) to the equilib-
rium autocorrelation of the quantity Sxy = Qx ∂U/∂Qy by
the expression:

Gp(t) = 〈Sxy(t)Sxy(0)〉eq (B.3)

It can be shown that λη is related to Gp by [26]:

λη

λH
=
∫ ∞

0
Gp(t) dt (B.4)

For Hookean dumbbells with HI, λH is related to h∗ by

λH = 3

2

( π
H

)3/2√
kBTηsh

∗ (B.5)

Eqs. (B.4) and (B.5) can be combined to give

2λη
3 (π/H)3/2 √

kBTηs
= h∗

∫ ∞

0
Gp(t) dt (B.6)

The right-hand side of the equation above depends only on
h∗, and can be determined once and for all, for any appro-
priate value of h∗.

Here, the right-hand side is determined by carrying out
equilibrium Brownian dynamics simulations. Basically, the
product Sxy(t)Sxy(0) is evaluated after each time step for
every equilibrium trajectory, and the average of this prod-
uct at any time over the ensemble of trajectories gives the
autocorrelation function in Eq. (B.3). The values of Gp(t)
obtained in this manner are then integrated with respect to
t using numerical quadrature. The dependence of the left-
hand side of Eq. (B.6) on h∗, determined in this manner,
can be plotted as shown in Fig. B.1. For any given value

of λη and ηs and calculated value of H, the corresponding
value of h∗ to be used in a microscopic model with fluctu-
ating HI, can consequently be determined from the curve in
Fig. B.1.
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amic interaction. C1 = 2/(3(π/H) kBT ηs). The line is drawn for guiding
he eye. The error bars in the Brownian dynamics simulations are much smaller
han the size of the symbols.
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