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Abstract: Implantable ventricular assist devices give hope
of a permanent clinical solution to heart failure. These
devices, both pulsatile- and continuous-flow, are presently
used as medium-term bridge to heart transplant or recov-
ery. While long-term use of continuous-flow axial and cen-
trifugal pumps is being explored, the excessive level of
blood damage in these devices has emerged as a design
challenge. Blood damage depends both on shear stress and
exposure time, and device designers have relied tradition-
ally on global space- and time-averaged estimates from
experimental studies to make design decisions. Measuring
distributions of shear stress levels and the blood cell’s
exposure to these conditions in complex rotary pump flow
is difficult. On the other hand, computational fluid dynam-
ics (CFD) is now being used as a tool for designing viable
devices, offering more detailed information about the flow
field. A tensor-based blood damage model for CFD analy-

sis is proposed here. The model estimates the time- and
space-dependent strain experienced by individual blood
cells and correlates it to blood damage data from steady
shear flow experiments. The blood cells are modeled as
deforming droplets and their deformation is tracked along
the pathlines of a computed flow. The model predicts that
blood cells in a rapidly fluctuating shear flow can sustain
high shear stress levels for very short exposure time with-
out deforming considerably. In the context of mechanical
modeling of the implantable Gyro blood pump being
developed  at  Baylor  College  of  Medicine,  this  suggests
that  blood  cells  traversing  regions  of  highly  fluctuat-
ing shear stress rapidly may not hemolyze significantly.
Key Words: Ventricular assist device—Computational
fluid dynamics—Red blood cell—Hemolysis—Droplet
deformation.

Every year 800 000 new cases of heart disease are
reported in the United States; by a conservative esti-
mate, 50 000 patients can use a new heart, but only
2500 donor hearts are available annually (1). Similar
statistics prevail worldwide. While a patient waits for
a healthy donor heart, life-saving medical treatment
with a ventricular assist device (VAD) is currently
the only hope for the ailing heart. Since the first
successful VAD implant in 1966 by DeBakey (1),
VAD technology has progressed to a point where
these devices are being used as a medium-term
bridge to transplant. Presently, the development of
the third generation VAD devices with magnetically
suspended no-contact bearings is underway (2), and

these devices can potentially provide an alternate
treatment to heart transplant.

The development of VADs poses a tremendous
challenge because the working fluid in these devices
is blood, which has a highly complex, flow-dependent
physical and chemical nature. Blood is a suspension
of formed elements—red blood cells (RBCs), white
blood cells, and platelets—in a Newtonian liquid
(plasma) of viscosity 1 mPa·s (cP). At normal con-
centrations, blood  behaves  as  a  non-Newtonian
fluid. Most traditional blood-handling devices were
designed for Newtonian fluids and adapted for blood
flow applications after prolonged in vivo animal tri-
als. Besides being time-consuming and laborious, the
process was costly, and by necessity, involved only a
handful of candidate designs.

There are two aspects of VAD design—hydraulic
and hematologic. The hydraulic design ensures that
the pump delivers appropriate flow rates against a
given pressure head; the hematologic design aims at
minimizing the blood damage in the pump. Hydraulic
design methods for centrifugal pumps are well devel-
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oped, and the conservation equations governing the
flow are known completely (3–9). Thus, the hydraulic
design process of the VAD is well-formulated.
Recently, computational fluid dynamics (CFD) has
emerged as a reliable hydraulic design tool for VADs.
Since a 3-dimensional non-Newtonian CFD simula-
tion of a blood pump is a formidable task, several
groups have conducted Newtonian CFD analysis of
both pulsatile- and continuous-flow blood pumps
over the past decade (5–9) and reported hydraulic
parameters such as flow rate, pressure head, shear
stress, velocity profiles, location and size of stagna-
tion zones, and local shear rate. These parameters
provide crucial quantitative information for hydrau-
lic design, and qualitative information for hemato-
logic design. Burgreen et al. reviewed the CFD-based
holistic design process of rotary blood pumps and
pointed to the need for coupling between hydraulic
and hematologic design (10).

Blood damage (hemolysis) and blood aggregation
(thrombosis) are two important features of hemato-
logic design (11). How these processes occur in com-
plex flow situations is not yet understood clearly. As
a result, unlike the hydraulic design process, the
hematologic design problem is not well-formulated.
Previous works on hematologic design have relied on
test-loop experiments with human or animal blood
to obtain actual measurements of hemolysis (12–14).
The experimentally measured hemolysis values, while
being accurate, provide only global, time- and space-
averaged estimates by treating the blood pump as one
complete unit. It is not possible to obtain a local
estimate of hemolysis in a section of the blood pump
in test-loop experiments. Flow visualization tech-
niques have been used to estimate qualitatively local
hemolysis characteristics of the pumps (15). Thus,
understanding the effect of design changes on device
performance (e.g., minimal hemolysis) is a slow,
expensive, and laborious process. On the other hand,
CFD-based hemolysis prediction is quicker, cheaper,
can easily show the effect of localized design modifi-
cation on pump performance, and can also assess the
aggregate effect of multiple design changes. However,
in order to succeed, it requires a realistic model of
blood damage. While the flow in blood pumps is 3-
dimensional and unsteady, blood damage models are
available only for simple steady shear flows.

In  our  previous  work  on  computational  analysis
of implantable ventricular assist devices (3,4), we
reported hydraulic measures; here we propose a
model for predicting hemolysis based on instanta-
neous deformation of RBCs in a general flow. This
model accounts for blood cell properties, and is tuned
with the experimental data on flow-induced RBC

deformation and hemolysis. In this article, we review
the literature on hemolysis in the next section. The
governing equations describing the blood flow are
discussed in the following section. A blood damage
model based on RBC deformation can be developed
only with a clear understanding of RBC behavior in
shear flow, which has been reported in several exper-
imental studies; thus, the next section details the
RBC behavior in steady shear flow as observed in
viscometric experiments reported in the literature,
and discusses a hemolysis-stress-exposure correla-
tion. Then we set out  the tensor-based blood cell
deformation model; the parameters of this model are
then tuned with available experimental data. The
instantaneous blood cell deformation is related to
hemolysis prediction. Implementational details of
hemolysis prediction in homogeneous and inhomo-
geneous flows are given, followed by numerical
experiments, which compare the new hemolysis pre-
dictions with the traditional methods. Finally, we con-
clude with a summary and future directions.

LITERATURE REVIEW: HEMOLYSIS IN 
BLOOD PUMPS

RBCs are the largest constituent of blood, and
hemolysis refers to premature damage of RBCs,
which otherwise have a normal life span of 120 days
in a healthy person (16). While the body can adapt
to a moderately abnormal depletion rate of RBC,
excessive hemolysis may lead to a low RBC count
and a state of hemolytic anemia. Apart from low
RBC count response, the plasma free hemoglobin is
toxic for the kidneys (2), and can eventually lead to
multiple organ failure. Hemolysis can happen due to
various pathological conditions or external factors,
which can all be reduced to four basic mechanisms:
colloid osmotic lysis, perforation of a cell, excessive
deformation or fragmentation of RBCs, and eryth-
rophagocytosis. Of these, deformation and fragmen-
tation of RBCs due to shearing, i.e., mechanical
hemolysis, is the dominant mechanism of hemolysis
in VADs. Mechanical hemolysis starts when an RBC
deforms excessively in response to high shearing, and
leaks part of its hemoglobin content into the blood-
stream through small reversible openings in its mem-
brane. Catastrophic hemolysis occurs when the RBC
membrane ruptures. For over four decades, steady-
shear hemolysis studies have been performed to
understand mechanical hemolysis (17–20). Some of
the early studies advocated the importance of wall
shear stress and wall area (21), but it is well accepted
now that mechanical hemolysis is primarily a bulk
phenomenon, which depends on the shear stress and
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exposure time (16,22). Although most studies of
mechanical hemolysis have focused on the effects of
steady shearing, a few unsteady-shearing experi-
ments have also been reported (23).

Despite extensive experimentation, there is a lack
of consensus on a model for mechanical hemolysis.
Moreover, the timescale of most reported mechanical
hemolysis experiments was three orders of magnitude
greater than the timescale in a VAD. The typical flow
rate in a VAD matches that of a human heart (5 L/
min); the characteristic residence time of an RBC in
a VAD is approximately 500 ms. Thus, most steady
shear hemolysis data cannot be used for developing
a blood damage model for VAD applications. Heuser
and Opitz developed a Couette viscometer to mea-
sure hemolysis at short exposure times (24), and
human-blood hemolysis experimental data from this
setup were reported by Wurzinger et al. (25). Gier-
siepen et al. (26) developed a correlation (discussed
below) for steady shear hemolysis based on these
experiments. These hemolysis data and correlation
are the most relevant for VAD applications, and are
used here for developing a blood damage model.

Whereas  the  hemolysis  experimental  data  are
for steady shear loading, the flow in VADs is 3-
dimensional and unsteady. Previous works attempted
to relate the 3-dimensional flow effects to steady shear
loading through a single scalar parameter. A few
scalar-parameter-based hemolysis models have
appeared in the literature over the past decade (e.g.,
Bludszuweit proposed a representative instantaneous
one-dimensional stress parameter obtained from the
six components of the deviatoric stress tensor) (27).
These models relating the complex VAD flow to
steady shear flows through a representative instanta-
neous scalar stress parameter for hemolysis predic-
tion are hereafter called “stress-based” and are
further discussed below. It is also important to note
that the instantaneous stress, or instantaneous strain,
models assume an instantaneous one-to-one relation-
ship between local stress and RBC deformation; such
relationship holds only in Lagrangian steady flows,
i.e., flows where the velocity gradient is constant along
streamlines (e.g., steady shear flow). The RBC mem-
brane is viscoelastic, and the viscoelastic lag of blood
cell membrane to the applied shear rate can be taken
into account by considering accumulated straining.
Another concern in the long term use of VADs is the
repeated exposure to mechanical straining of the
RBCs flowing through VAD implanted circulation.
Yeleswarapu et al. developed a scalar damage accu-
mulation model which incorporates the aging of
RBCs (28). This model requires a damage function,
which is unknown in complex flow situations. Thus,

short exposure instantaneous stress-based models are
presently used for hemolysis predictions.

GOVERNING EQUATIONS FOR 
BLOOD FLOW

Blood flow is modeled by the momentum and mass
conservation equations for an incompressible fluid,

(1)

(2)

where r is the blood density (1058 kg/m3), u is the
velocity, p is the pressure, s is the extra stress, and f
denotes body forces per unit mass (e.g., gravity). The
problem is closed by prescribing an appropriate con-
stitutive equation for the stress. Blood is a shear-
thinning viscoelastic fluid; Yeleswarapu et al. showed
that a generalized Oldroyd-B constitutive equation
can describe well the rheological behavior of blood
in shear flows (29). In the current work, we treat
blood as a Newtonian liquid:

(3)

where m is dynamic viscosity of blood at high shear
rate i.e., 3.5 mPa·s (cP). Thus, Eqs. 1 and 2 reduce to
the incompressible Navier–Stokes equations. How-
ever, we develop the hemolysis model in a general
context that can be applied to flow calculations per-
formed with other constitutive models.

RED BLOOD CELLS IN SHEAR 
FLOW AND HEMOLYSIS

A blood damage model based on RBC deforma-
tion should account for RBC properties and defor-
mation in shear flow, and it should be related to a
relevant hemolysis data set. An RBC at rest is a
biconcave disc of a viscoelastic membrane filled with
a Newtonian liquid with a viscosity of approximately
6 mPa·s (cP). The RBC membrane has a relaxation
time of approximately 200 ms which depends on the
age of the cell (30), and it can support an estimated
areal strain of 6% before rupturing (16). Owing to its
biconcave shape, an RBC has 40% excess surface
area compared to a sphere of the same volume. The
excess surface area enables RBCs to undergo defor-
mations that preserve both volume and surface area.
In a flow, the RBCs behave as neutrally buoyant
microcapsules with high deformabilty but small areal
stretchability (31,32). The RBCs at rest aggregate
into coinstack shaped structures called rouleaux.
These structures break as shear stress increases, and
RBCs become dispersed. As reported by Schmid-
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Schönbein and Wells (31), the dispersed RBCs pre-
serve their biconcave shape and tumble in a flow with
shear stress below ª 0.1 Pa. The tumbling gradually
reduces and the cells begin to align with the flow at
ª 0.2 Pa. The RBCs deform into ellipsoidal shape,
orient with the flow and show tank-treading at shear
stress greater than 1 Pa. Tank-treading is a phenom-
enon in which the cell membrane rotates around the
enclosed fluid. It is not clear if the RBCs deform into
prolate or general ellipsoids, but most experimental
studies refer to the general ellipsoidal state. The
tank-treading and deformation into ellipsoidal shape
has been confirmed in several later experimental
studies (17,33). Leverett et al. found that above
150 Pa, extensive hemolysis occurs due to shear
stress alone (19). This shear stress corresponds to
shear rate of ª 42 000 s-1 for whole blood. The RBC
membrane is believed to reach its 6% areal strain
limit at this shear rate, so that any further stretching
of the membrane leads to catastrophic hemolysis.
Figure 1 (top) shows these configurations of RBC in
shear flow. The leftmost state corresponds to no shear
and shows rouleaux, and the rightmost state shows a
hemolyzing RBC with pores on the surface.

Giersiepen et al. developed a correlation for
steady-shear hemolysis at short time scales relevant
to flow in a VAD based on experimental results by
Wurzinger et al. (25,26). The correlation is:

(4)

where DHb/Hb is the ratio of plasma free hemoglo-
bin to the total hemoglobin in the sample (i.e., the

D
D

Hb
Hb

t= ¥ -3 62 10 7 2 416 0 785. ,. .s

plasma free hemoglobin plus hemoglobin enclosed in
RBCs), s is the shear stress (Pa) and Dt is exposure
time (s). A plot of percentage hemolysis versus
applied shear stress and exposure time is shown in
Fig. 2(a). These physical properties, deformation con-
figurations, and hemolysis data are used hereafter for
developing the deformation based blood damage
model.

Hemolysis predictions based on Eq. 4 have been
recently reported for rotary blood pumps (34–36).
De Wachter and Verdock used Eq. 4 to calculate
hemolysis in hemodialysis cannulae (37). In these
studies, the rate of hemolysis is integrated along the
pathlines with  an  instantaneous  scalar  measure
of  stress  s  to compute accumulated hemolysis. The
rate of hemolysis,

(5)

is shown in Fig. 2(b). The hemolysis accumulation
decreases with exposure time. It is important to note
that the correlation (4) was developed in steady
shear hemolysis experiments, where the shear stress
s is time independent: however, later studies of
blood pumps used in Eq. 5 a scalar quantity derived
from  the  instantaneous  deviatoric  stress  tensor,

.  As mentioned before, this method of

computing hemolysis is here called “stress-based.”
While DHb/Hb has been the measure of choice in all
the above mentioned works, Normalized Index of
Hemolysis (NIH) is the standard clinical index used
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FIG. 1. Red blood cell and droplet defor-
mation in shear flow: (top row) configura-
tions of RBCs in increasing shear flow;
(bottom row) spherical droplet deforming
into a general ellipsoid.
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to  report  hemolysis  (38)  in  flow  loop  tests. The
NIH per single pass through a test loop is related to
DHb/Hb as:

(6)

where Hct is the blood hematocrit (45% for a healthy
person) and k is the hemoglobin content of blood
(150 g/L for a healthy person). In this work both
DHb/Hb and NIH values are reported.

TENSOR-BASED MODEL OF RED BLOOD 
CELL DEFORMATION

An RBC in a general flow can be approximately
viewed as a neutrally buoyant liquid droplet (31).
Thus, the deformation of an RBC in shear flow can
be approximated by that of a liquid droplet, by taking
the physical properties of an RBC into consideration.
This approach has been followed by Barthès-Biesel
and Rallison (39), who derived a constitutive equa-
tion for the deformation of a droplet by balancing
the interfacial tension with fluid stresses on either
side of the interface. Maffettone and Minale pro-
posed a droplet deformation equation in terms of a
symmetric, positive-definite morphology tensor S
that represents the shape of the droplet (40). The
equation takes into consideration the competing
action of interfacial tension on the droplet surface,
which recovers the spherical shape of the droplet,
and the force exerted by the surrounding liquid. The
equation is frame-invariant (which makes it applica-
ble to complex flows), and it accounts for nonaffine
droplet deformation. Though RBCs can be modeled
as droplets, the tank-treading motion shown by

NIH L bloodg
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RBCs is absent in droplets. On the fluid interface of
a droplet the internal and external fluid velocities
match. For an RBC with tank-treading motion, the
interface  is  a  lipid  bilayer  that  rotates  around
the enclosed liquid with a velocity proportional to
the local fluid shear rate (33); the local velocities of
both internal and external fluids match the rotation
velocity of the membrane. In what follows, we modify
the original equation to account for the tank-treading
phenomenon peculiar to RBCs in shear flow, while
preserving the frame invariance.

Consider a general flow with velocity gradient .
The velocity gradient can be decomposed into the
symmetric rate of strain tensor E and the antisym-
metric vorticity tensor W, as:

(7)

The droplet deformation equation as proposed by
Maffettone and Minale (40) is:

S∞ = f2 [E · S + S · E] - f1 [S - g(S)I], (8)

where

(9)

and II and III are second and third invariants of S,
respectively, defined as:

(10)

The parameters f1 and f2 depend on the physical
properties of the liquid droplet. The first term on the
right-hand side represents how the flow acts to
deform the droplet, and the second term accounts for
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FIG. 2. Hemolysis correlation by Giersiepen et al. (26): (a) hemolysis versus exposure time Dt and stress s; (b) rate of change of
hemolysis correlation given by Eq. 5.
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the resisting effect of interfacial tension. The left-
hand side term,

(11)

represents the Jaumann derivative, and indicates
that the droplet is rotating with the vorticity of the
external fluid. This term makes the equation frame-
invariant. Roscoe showed that for a tank-treading
ellipsoidal particle the effective vorticity seen by the
particle reduces in proportion to the tank-treading
frequency (41). This result holds true for a stationary
ellipsoid that maintains a fixed orientation with the
flow. A tank-treading ellipsoidal RBC in unsteady
flow has varying orientation with the flow, and only
sees a reduction in relative vorticity, i.e., the differ-
ence between the vorticity W and the rate of rotation
of the principal axes of the ellipsoidal particle. The
relative vorticity becomes apparent, if we consider an
orthogonal frame of reference rotating with respect
to the fixed orthonormal frame as:

(12)

where ei and  are the orthonormal vectors of fixed
and rotating frames, and Q is the volume-preserving
rotation matrix (Q ◊ QT = I). The velocity gradients in
the two frames are related as:

(13)

This can also be written as:

(14)

Since  is a skew symmetric tensor, taking trans-
pose of the above equation, and adding and subtract-
ing to itself we get:

(15)

where  is the rotation rate of the rotating
frame with respect to the fixed one. To account for
the instantaneous rotation of the tank-treading cell
we consider the rotating frame defined by the unit
eigenvectors  of S; the rotation W is hence com-
puted as:

(16)

Thus, Maffettone and Minale (40) equation of drop-
let deformation in a frame of reference rotating with
the cell becomes:

(17)
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It is assumed that the shape of the droplet remains
ellipsoidal at all times. It can be easily verified that
Eq. 17 preserves the volume of the droplet (i.e., dIII/
dt = 0). The first term on the righthand side of Eq. 17
models the shape recovery of the droplet in the
absence of shear stress. The second term represents
the nonaffine deformation of the droplet, and the
third term accounts for the tank-treading motion
which reduces the relative vorticity seen by the drop-
let. Such reduction in vorticity was also applied to
RBCs by Keller and Skalak, while keeping the RBC
at a fixed orientation (42). The eigenvalues of S are
the square lengths of the three axes of the shape
ellipsoid. Equation 17 is an implicit equation in S
because the rotation rate W depends on S (unless the
flow is steady, where dS/dt = 0 and W = 0). Figure 1
(bottom) shows the deformed droplet configuration
as represented by our model in comparison to the
actual shape of a deformed RBC in shear flow. The
droplet is spherical at no shear (S = I), and becomes
ellipsoidal as the shear increases. The ellipsoidal
shape and orientation is identified by the eigenvalues
of S.

PARAMETERS

Equation 17, in its general form, is applicable to a
microcapsule that shows tank-treading. The equation
is made specific for capturing RBC deformation by
setting its parameters f1, f2, and f3. The steady shear
experimental observations reported in the literature
are used to choose the appropriate values of these
parameters. In the absence of flow, a deformed drop-
let relaxes to its natural configuration according to:

(19)

For small deformations S ª IIII + eA; consequently,
Eq. 19 reduces to dA/dt = –f1A (Appendix A). The
solution to this approximate equation is
S = I + eA0exp(–f1t), and has 1/f1 as the relaxation
time. The relaxation time of RBCs is approximately
200 ms (30). Thus, we set:

f1 = 5.0 s-1, (20)

so that the droplet and the RBC have the same relax-
ation time. It is important to note that, although
droplets and RBCs recover to different shapes, they
both deform into ellipsoidal shapes under shearing.

In Eq. 17, the eigenvalues of the morphology ten-
sor show oscillatory transients at varying shear rates
when f2 π f3. Such shape fluctuations have not been

S
S

S So ∫ - ◊ - ◊[ ]d
dt

W W .

d
dt

f g
S

S S I= - - ( )( )1 .



1008 D. ARORA ET AL.

Artif Organs, Vol. 28, No. 11, 2004

observed experimentally; thus, we restrict f2 = f3. In a
steady shear flow,

(21)
where G is the intensity of the flow. At steady state,
the droplet remains at fixed orientation to the flow
(W = 0), and the steady-state droplet deformation
equation is:

(22)

The eigenvalues l1, l2, and l3 of S are computed
straightforwardly from Eq. 22 as:

(23)

(24)

(25)
where L, B, and W are three semiaxial lengths of the
droplet. The major axis of the droplet is oriented to
the flow at an angle:

(26)

As shown in the rightmost states of Fig. 1 (bottom),
the droplet surface area is matched with the hemo-
lyzing RBC (6% areal strain at 42 000 s-1). The area
of a general ellipsoidal droplet is computed by a con-
vergent series used by Keller and Skalak (42). An
undeformed RBC has 40% excess surface area with
respect to a droplet of same volume, and it undergoes
6% areal strain before hemolyzing; therefore, an ellip-
soidal droplet such as that used in our model with the
same volume as an RBC should stretch to 1.4 ¥ 1.06
times its original surface area at “hemolysis.” Match-
ing the droplet area with hemolyzing RBC area gives:

f2 = f3 = 1.25 ¥ 10-3. (27)

Thus, the three parameters f1, f2, and f3 together
incorporate relaxation time, long-lived shape oscilla-
tions, tank-treading, and critical areal strain limit into
the hemolysis model. Equation 17, with these param-
eter values, can be used to estimate RBC deforma-
tion in a general flow.
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HEMOLYSIS PREDICTION

In a strain-based hemolysis model, it is reasonable
to assume that the instantaneous rate of leaking of
hemoglobin through an RBC membrane—i.e., the
rate of hemolysis—depends on the instantaneous
shape distortion of the RBC. Equation 17 gives the
instantaneous shape of the droplet in a general flow;
the instantaneous shape distortion D = (L - B)/
(L + B) is computed using the axial lengths of the
droplet (the eigenvalues of S). In a steady shear flow
there is a unique relationship between the distortion
and the intensity Geff, as well as the corresponding
steady shear stress seff Equations 23–25 yield:

(28)

(29)

Because in steady shear there is a one-to-one corre-
spondence of shear stress and distortion, we con-
struct a strain-based hemolysis model by requiring
that the strain-based and stress-based models yield
the same results in steady shearing; using Eq. 4 as in
the stress-based model, results in a strain-based
relationship:

(30)
Below, we compare the strain-based and stress-based
hemolysis prediction for homogeneous and inhomo-
geneous flows, after discussing the numerical aspects.

NUMERICAL METHOD

The blood flow in a complex domain is obtained
by solving the governing equations with the stabi-
lized space-time finite element method, and the mov-
ing boundaries are handled with a sliding mesh
technique. A complete description of the finite ele-
ment method for 3-dimensional analysis of the Gyro
centrifugal blood pump has been previously reported
(3,4).  The  velocity  and  pressure  data  from  the
CFD simulation are postprocessed to obtain RBC
deformation.

A least-squares recovery procedure is used to
extract accurate velocity gradients from the velocity
data. In the case of a general inhomogeneous flow,
the RBC deformation is computed along pathlines.
This enables a Lagrangian computation of RBC
morphology given by Eq. 17 The coordinates of
pathlines are computed using forward Euler integra-
tion as:
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xn+1 = xn + unDt, (31)

where n is the temporal index of the trace point,
and xn and xn+1 are positions of the trace point at
time tn and tn+1 = tn + Dt, respectively. Figure 3(a)
shows two trace points, xn and xn+1, inside an ele-
ment formed by mesh nodes—1, 2, 3, and 4. The
velocity un is interpolated at location xn using piece-
wise linear shape functions over the finite element
mesh. Unlike in a steady problem, velocity data in
unsteady cases are available only at discrete time-
steps. For accurate pathline tracing, the step-ratio
(ratio of step size |xn+1 - xn| to maximum velocity
|u|max in the domain) is set to ~10-5. Due to such a
small step-ratio, the number of trace points along
the pathline is much larger than the number of dis-
crete time steps of the CFD data. The data between
CFD time-steps are interpolated linearly to obtain
velocities at the pathline time-steps. Figure 3(b)
shows the temporal discretization with CFD data
on the left and pathline steps on the right. Thus,
both spatial and temporal interpolations are
required for the unsteady problems whereas only
spatial interpolation is required for the steady
cases.

The droplet morphology is also solved using for-
ward Euler integration along a pathline as:

Sn+1 = Sn + DSn, (32)

(33)
All the nth quantities are computed at tn. Unlike the
rate of strain and vorticity tensors, the rotation rate
tensor Wn is computed using the information from the
(n - 1)th step:

D
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˜ ˜
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(34)

where  (ei)n  and  (ei)n-1  are  eigenvectors  of  Sn  and
Sn-1, respectively. The orientation of the eigenvectors
is checked at each step to ensure correct computation
of the rotation rate.

An instantaneous distortion Dn is computed from
the eigenvalues of Sn, and is used to compute an
equivalent effective steady shear flow intensity (Geff)n

and shear stress (seff)n. Hemolysis accumulated along
the pathlines is computed by integrating the rate of
hemolysis correlation in Eq. 5.

In the case of homogeneous shear flows, the rate
of strain and vorticity tensors are known analytically;
thus, the equation can be simply integrated without
tracing pathlines. In the next section we consider
homogeneous steady and sinusoidal shear flows, and
an inhomogeneous flow in a 2-dimensional blood
pump.

NUMERICAL RESULTS

Steady shear flow
For steady shear flow of intensity G, the velocity

gradient and droplet deformation are given by
Eqs. 21 and 22, respectively. The eigenvalues com-
puted in Eqs. 23–25 are used to compute the distor-
tion D, which when used in Eq. 28 gives:

Geff = G; seff = s, (35)

as expected. Because the effective membrane
stress is the same as the fluid stress, the hemoly-
sis prediction by both stress- and strain-based
models match exactly in a steady shear flow. For
example, both stress- and strain-based hemolysis
models predict DHb/Hb = 0.306% for G = 5000 s-1

after 15 s.

Wn i n
i n i n

i t
= ( ) ( ) - ( ) -Â e

e e 1

D
,

FIG. 3. Interpolation of velocity data: (a) spatial interpolation—the dotted line represents a pathline running through an element; (b)
temporal interpolation—pathline data in the right are interpolated from CFD data on the left.
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Sinusoidal shear
Consider a steady shearing flow of intensity Go

superimposed with sinusoidal shearing G1 sin(wt).
The intensity G(t) of the model flow is:

(36)

A similar flow is observed in VADs, where baseline
shearing is superimposed with a periodic impulse
caused by rotating impeller or a pulsating chamber.
Such a flow may also be observed for devices con-
nected to the heart. Since the model flow is homoge-
neous and the velocity gradient is known, we can
integrate Eq. 17 in a Lagrangian frame by the
explicit Euler method to get the morphology tensor
S.

To study hemolysis in the case of sinusoidal shear-
ing we define 3 nondimensional parameters:

a = G0f2t, (37)

(38)

g = wt, (39)

where t is the relaxation time of RBC membrane
(200 ms), a is a measure of baseline shearing, b is the
strength of sinusoidal pulse, and g is the nondimen-
sional frequency. To account properly for the effect
of exposure time we compute the hemolysis accumu-
lated in 20 s of shearing after steady state is achieved.
A range of a, b, and g is selected and hemolysis
response is studied. The nondimensional frequency g
is varied from 0.4 to 10, such that there are enough
cycles in 20 s at the lowest frequency. The range of a
and b ensure that the maximum shear rate never

G t
du
dy

G G tx( ) ∫ ∫ + ( )0 1 sin .w

b =
G
G

1

0
,

exceeds the critical strain rate limit of 42 000 s-1. As
expected, the hemolysis scales as:

(40)

over the complete range of a, i.e., the effect of the
baseline shearing in a superimposed steady plus sinu-
soidal shearing flow is the same as the effect of the
constant shearing in a steady shearing flow. Figure 4
shows a plot of percentage (DHb/Hb)/a2.416 versus b
and g.

For g < 1.0, i.e., for a low frequency sinusoidal
impulse, the time period of the sinusoidal shearing is
comparable to the relaxation time of RBC. Thus, the
cell deformation closely follows the sinusoidal shear-
ing, and the effective stress seff closely matches the
instantaneous fluid shear stress s. As a result, both
stress- and strain-based models predict similar levels
of hemolysis, and match each other exactly as g tends
to zero (which corresponds to the steady shear case).
As the frequency increases, the time period of sinu-
soidal shearing becomes smaller than the RBC relax-
ation time. Consequently, the RBC does not deform
completely in response to rapidly varying sinusoidal
shearing. Thus, the contribution of the sinusoidal
component of shearing to the cell deformation dimin-
ishes with increasing frequency. This result is consis-
tent with Hashimoto’s experimental observation of
decrease in RBC destruction when exposure time at
larger shear rate (>500 s-1) is interspersed with
smaller shear rates (<300 s-1) (23). For g-value as high
as 10, the time period of sinusoidal shearing is 20 ms,
and the sinusoidal component of shearing does not
cause any significant cell deformation. Consequently,
the hemolysis is caused by the baseline shearing only.

DHb
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µ a 2 416. ,

FIG. 4. Sinusoidal shear flow: % (DHb/
Hb)/a2.416 versus b and g.
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The nondimensional amplitude of sinusoidal
shearing b, determines the contribution of sinusoidal
impulse to cell deformation. For b < 1, the predicted
hemolysis grows with increasing b; as expected, this
enhanced contribution to hemolysis is significant
when g < 1. As the magnitude of the fluctuating com-
ponent of the shear rate approaches the baseline
shearing value (b ª 1) at low frequency (g < 1), the
cell deformation follows closely the sinusoidal shear-
ing; thus, the cell shape oscillates between a com-
pletely relaxed state and a highly stretched one. A
further increase in b causes a reversal in the defor-
mation of the cell during part of the period of oscil-
lation. This yields a higher predicted effective
baseline shearing. While the effect of flow reversal,
i.e., b > 1, and consequent increase in baseline shear-
ing is gradual when g < 1, there is a sharper increase
when g > 1.

These results indicate that a low baseline shearing
with superimposed high frequency (or short-lived)
spikes is less damaging than a constant shearing of
intermediate intensity. In the context of centrifugal
devices, this suggests that conical centrifugal pumps
with constant, uniform shear should yield higher
hemolysis than vaned centrifugal pumps, where the
blood cells experience short-lived high shear levels
interspersed with low shear baseline values. This has
also been found in recent experimental studies by
Kawahito and Nosé (12). It is important to stress that
the difference between hemolysis prediction with
stress- and strain-based model increases with the fre-
quency of the fluctuating shear component.

A particular case with a = 0.5, b = 0.75 and g = 4 is
observed for 1 s, and shown in Fig. 5. The 1-s window
of observation was selected only after the end of the
transient response to sinusoidal shearing. Figure 5(a)
shows the maximum eigenvalue lmax of S and sinuso-
idal shear flow intensity G(t) with respect to time. The

eigenvalue lags the sinusoidal impulse due to the
viscoelastic nature of the RBC. The phase difference
between the sinusoidal shearing and the eigenvalue
response is directly proportional to the sinusoidal
frequency. Figure 5(b) shows the accumulated hemol-
ysis as predicted by the strain- and stress-based mod-
els in the observed time period. The stress-based
model assumes equivalence of the instantaneous fluid
stress and RBC membrane stress. On the other hand,
the strain-based model computes an equivalent
steady shear stress corresponding to an RBC defor-
mation. Hence, the stress-based model predicts
higher hemolysis than the strain-based model. Both
stress- and strain-based hemolysis predictions start
from zero, but the stress-based hemolysis has a higher
average slope than the strain-based model. Because
over longer exposure times the average slope deter-
mines the hemolysis, the difference between the
stress- and strain-based hemolysis increases with the
exposure time. The accumulation of hemolysis over
a period of 20 s is shown in Fig. 5(c).

Hemolysis in 2-dimensional pump
The steady and sinusoidal shearing experiments

involve homogeneous simple shear flows; the flow in
VADs is inhomogeneous and 3-dimensional. A sim-
plified 2-dimensional version of the 3-dimensional
Gyro centrifugal blood pump (43) is constructed to
test the hemolysis model. Figure 6(a) shows the
geometry of the blood pump. It has a chamber diam-
eter of 5.6 cm, and inlet and outlet ports are 0.8 cm
in width. A 4-vane impeller rotates at 600 rpm and
the flow rate (per unit depth) in the pump is 2.59 (L/
cm)/min. The geometric parameters and flow rate are
similar to the Gyro operating conditions. Specifically,
the flow rate is chosen so that the average residence
time of a blood cell traveling through the 2-
dimensional blood pump is the same as the typical

FIG. 5. Sinusoidal shear flow (G0 = 2000 s-1; G1 = 1500 s-1; w = 20 s-1): (a) maximum eigenvalue and flow intensity versus time (f1 =
5/s, f2 = f3 = 1.25 ¥ 10-3); (b) stress- and strain-based hemolysis accumulation versus observation time of 1 s; (c) stress- and strain-based
hemolysis accumulation versus observation time of 20 s.
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residence time in the Gyro blood pump operating
under normal conditions; the range of shear rates is
comparable.

Figure 6(b) shows the structured/unstructured
finite element mesh, with 10 506 nodes and 9498 ele-
ments. A moving unstructured mesh is attached to
the impeller, and another stationary mesh is
attached to the chamber walls. These two unstruc-
tured meshes are stitched together with a structured
mesh. The rotation of the impeller mesh is accommo-
dated using the shear-slip mesh update method. The
impeller completes one revolution in 160 time steps
of 0.625 ms each. The velocity and pressure data are
saved at every step. Figure 7(a) shows the velocity
vectors in the pump after 10 revolutions. The droplet
deformation along the pathlines is computed with
the Euler integration scheme by our postprocessor.
A piecewise linear interpolation of velocity is used
over the finite element mesh to obtain the data at the
trace points. Because the flow is unsteady, a linear
interpolation in the temporal direction is also used
to obtain the nodal velocities at the trace point time
steps. The components of the velocity gradients are

recovered by a least-squares recovery procedure at
each trace point time step. Figure 7(b) shows two
pathlines traced in the 2-dimensional pump flow
using the velocity data. Figure 8 shows the changes
in eigenvalues of the morphology tensor and the
hemolysis prediction along these pathlines. As
expected, the eigenvalue of the morphology tensor
along the first pathline shows similarity between the
sinusoidal shearing and 2-dimensional blood pump
flow. The similarity is distinctly visible in the stress-
based hemolysis predictions where the stress-based
hemolysis characteristic along the first pathline is
similar to the corresponding sinusoidal shearing
flow. As in the case of sinusoidal shearing, the strain-
based model predicts lower hemolysis than the
stress-based one. This implies that the RBCs moving
along these pathlines are affected by the baseline
shearing only, and the short-lived high shear rates do
not have any significant effect. We calculated the
average hemolysis by scattering 100 uniformly dis-
tributed tracer points over the inflow section and
following them for up to 1.0 s (or until they exit the
device). The total average hemolysis computed with

FIG. 6. Two-dimensional pump: (a) geometry; (b) hybrid mesh.

(a) (b)

FIG. 7. Two-dimensional pump: (a) velocity after 10 revolutions;
(b) pathlines.

1 2

(a) (b)

FIG. 8. Two-dimensional pump: (a)
eigenvalue of morphology tensor; (b)
hemolysis for two pathlines shown in
Fig. 7(b).
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the stress-based model is 2.01 ¥ 10-5% per trace
point, whereas the hemolysis predicted by the strain-
based model is 1.45 ¥ 10-5%. (By using Eq. 6 this can
be translated to NIH values per  single  pass  through
the  pump  of  1.66 ¥ 10-3  and 1.19 ¥ 10-3 g/100 L for
the stress-based and strain-based models, respec-
tively; although the 2-dimensional pump is a hypo-
thetical one, these values fall in the typical range for
actual centrifugal blood pumps, e.g., 1 ¥ 10-3 to
4 ¥ 10-3 g/100 L ) (12,44).

CONCLUSIONS

The design cycle of VADs can be considerably
shortened by the use of CFD in the design process.
CFD are frequently applied to obtain an appropriate
flow rate, pressure head, velocity profile, etc., i.e., an
efficient hydraulic design of VADs. However, pre-
dicting mechanical hemolysis levels—hematologic
design—requires a realistic model for blood damage.
The experimental research on mechanical hemolysis
has focused mainly on steady shear flows, and a cor-
relation is available for such experimental data relat-
ing hemolysis to exposure time and steady shear
stress. In the absence of any unsteady data and cor-
relation, CFD-based hemolysis predictions in the
past have used the steady correlation directly in the
unsteady flow situations by replacing the steady
shear stress with a scalar quantity derived from the
instantaneous deviatoric stress tensor. Such a
method is here called “stress-based.”

This work proposes a tensor-based blood damage
model, also referred to as “strain-based” method.
The model is developed using an analogy between
RBCs and droplets. In the model, an instantaneous
morphology of RBC is computed, which conse-
quently provides an instantaneous deformation esti-
mate of RBC. A steady shear stress corresponding to
the instantaneous deformation is used in the steady
shearing hemolysis correlation to predict hemolysis.
The model incorporates experimentally observed
phenomena—tank-treading and ellipsoidal defor-
mation. The parameters of the model are set based
on experimentally measured quantities—relaxation
time of the RBC membrane, excess surface area of
the RBC as compared to a droplet of the same vol-
ume, and the strain rate threshold for catastrophic
hemolysis. The model also accounts for the estimated
areal strain limit of the RBC membrane.

The strain-based model is tested in both homoge-
neous flows, where the velocity gradient is uniform
throughout the flow domain, and inhomogeneous
flows. The stress-based model of Giersiepen et al.
(26) and the strain-based model proposed in this arti-

cle predict equal hemolysis levels in steady simple
shear flow and agree equally well with the data of
Wurzinger et al. (25). The stress-based model pre-
dicts higher hemolysis when a sinusoidal shear flow
is superimposed on a simple shear flow. This differ-
ence suggests that the relative merit of stress-based
and strain-based models could be assessed by
studying short-time hemolysis in flows where a time-
periodic straining is superimposed on a steady strain-
ing; an apparatus for such studies could be built by
modifying the flow-through Couette device of
Heuser and Opitz (24) and driving the inner cylinder
at a time-dependent rate.

The difference between the stress- and strain-
based models grows as the frequency of sinusoidal
shearing increases. This is consistent with the exper-
imental observation of negligible hemolysis in a
blood sample exposed for a few microseconds to
shear stress as high as 1000 Pa (16). In the context of
blood pumps, this suggests that sustained moderate
levels of stress (typically encountered in conical
blood pumps) may be more damaging than a short-
lived high shear stresses superimposed on a lower
baseline shearing (typically seen in vaned centrifugal
blood pumps). The RBC deformation is computed in
a 2-dimensional blood pump, and hemolysis predic-
tions by the two models are compared along path-
lines. The stress-based model predicts a higher
hemolysis than the strain-based one. Albeit in a sim-
plistic way, the strain-based model accounts for the
physical phenomena of RBC membrane stretching
and is thus a suitable candidate for realistic hemolysis
predictions.

Currently, a 3-dimensional implementation of the
deformation equation is under development; the
results from a complete 3-dimensional blood-pump
simulation will be compared with experiments being
conducted at Baylor College of Medicine. Data from
this  study  will  further  assess  the  model,  and  would
be immensely valuable for VAD designers. The pro-
posed model can also be used to optimize VAD
design by minimizing the deviation of the morphol-
ogy tensor from identity over a family of pathlines.

Acknowledgments: This work was supported by
the National Science Foundation under award CTS-
ITR-0312764, and by Texas ATP grant 003604-0011-
2001. Computational Resources were provided by
the National Partnership for Advanced Computa-
tional Infrastructure (NPACI), by the Rice Compu-
tational Engineering Cluster, funded by NSF through
MRI award EIA-0116289, and by the Rice Terascale
Cluster funded by NSF under Grant EIA-0216467,
Intel, and Hewlett-Packard.



1014 D. ARORA ET AL.

Artif Organs, Vol. 28, No. 11, 2004

REFERENCES

1. DeBakey ME. The odyssey of the artificial heart. Artif Organs
2000;24:405–11.

2. Olsen DB. Presidential address: the history of continous-flow
blood pumps. Artif Organs 2000;24:401–4.

3. Behr M. Biofluid simulations on Linux clusters. In: Matsuno
K, Ecer A, Periaux J, Satofuka N, Fox P, eds. Parallel Com-
putational Fluid Dynamics—New Frontiers and Multi-
Disciplinary Applications. New York: Elsevier, 2003;451–8.

4. Behr M, Arora D. Shear-slip mesh update method: Implemen-
tation and applications. Comput Methods Biomech Biomed
Engin 2003;6:113–23.

5. Anderson JB, Wood HG, Allaire PE, Bearnson G, Khan-
wilkar P. Computational flow study of the continuous flow
ventricular assist device, prototype number 3 blood pump.
Artif Organs 2000;24:377–85.

6. Miyazoe Y, Sawairi T, Ito K, et al. Computational fluid
dynamic analysis to establish design process of centrifugal
blood pumps. Artif Organs 1998;22:381–5.

7. Yu SCM, Ng BTH, Chan WK, Chau LP. The flow patterns
within the impeller passage of a centrifugal blood pump
model. Med Engin Phys 2000;22:381–93.

8. Qian Y, Bertram CD. Computational fluid dynamics analysis
of hydrodynamic bearings of the ventrassist rotary blood
pump. Artif Organs 2000;24:488–91.

9. Allaire PE, Wood HG, Awad RS, Olsen DB. Blood flow in a
continuous flow ventricular assist device. Artif Organs 1999;
23:769–73.

10. Burgreen GW, Antaki JF, Wu ZJ, Holmes AJ. Computational
fluid dynamics as a development tool for rotary blood pump.
Artif Organs 2001;25:336–40.

11. Nosé Y. A rotary blood pump: its design and development
strategy. Artif Organs 1997;21:263–4.

12. Kawahito K, Nosé Y. Hemolysis in different centrifugal
pumps. Artif Organs 1997;21:323–6.

13. Takami Y, Makinouchi K, Nakazawa T, et al. Hemolytic char-
acteristic of a pivot bearing supported Gyro centrifugal pump
(C1E3) simulating various clinical applications. Artif Organs
1996;20:1042–9.

14. James NL, Wilkinson CM, Lingard NL, van der Meer AL,
Woodard JC. Evaluation of hemolysis in the ventrassist
implantable rotary blood pump. Artif Organs 2003;27:108–
13.

15. Yamane T, Asztalos B, Nishida M, et al. Flow visualization as
a complementary tool to hemolysis testing in the development
of centrifugal blood pump. Artif Organs 1998;22:375–80.

16. Blackshear PL, Blackshear GL. Mechanical hemolysis. In:
Skalak R, Chien S, eds. Handbook of Bioengineering. New
York: McGraw-Hill, 1987;15.1–15.19.

17. Williams AR. Shear-induced fragmentation of human eryth-
rocytes. Biorheology 1973;10:303–11.

18. Champion JV, North PF, Coakley WT, Williams AR. Shear
fragility of human erythrocytes. Biorheology 1971;8:23–9.

19. Leverett LB, Hellums JD, Alfrey CP, Lynch EC. Red blood
cell damage by shear stress. Biophys J 1972;12:257–73.

20. Sutera SP, Mehrjardi MH. Deformation and fragmentation of
human red blood cells in turbulent shear flow. Biophys J
1975;15:1–11.

21. Croce PA. Hemolysis of Erythrocytes in Laminar and Turbu-
lent Shear Flows. PhD Thesis. Department of Mechanical and
Aerospace Engineering, Washington University in St. Louis,
1972.

22. Hellums JD, Brown CH. Blood damage by mechanical forces.
In: Hwang NHC, Normann NA, eds. Cardiovascular Flow
Dynamics and Measurements. Baltimore, MD: University
Park Press, 1977;799–823.

23. Hashimoto S. Erythrocyte destruction under periodically fluc-
tuating shear rate: comparative study with constant shear rate.
Artif Organs 1989;13:458–63.

24. Heuser G, Opitz R. A Couette viscometer for short time
shearing of blood. Biorheology 1980;17:17–24.

25. Wurzinger LJ, Opitz R, Eckstein H. Mechanical blood trauma.
An overview. Angeiologie 1986;38:81–97.

26. Giersiepen M, Wurzinger LJ, Opitz R, Reul H. Estimation of
shear stress-related blood damage in heart valve prostheses—
in vitro comparison of 25 aortic valve. Artif Organs 1990;13:
300–6.

27. Bludszuweit C. Three-dimensional numerical prediction of
stress loading of blood particles in a centrifugal pump. Artif
Organs 1995;19:590–6.

28. Yeleswarapu KK, Antaki JF, Kameneva MV, Rajagopal KR.
A mathematical model for shear-induced hemolysis. Artif
Organs 1995;19:576–82.

29. Yeleswarapu KK, Kameneva MV, Rajagopal KR, Antaki JF.
The flow of blood in tubes: theory and experiments. Mechanics
Res Commun 1998;25:257–62.

30. Hénon S, Lenormand G, Richert A, Gallet F. A new deter-
mination of the shear modulus of the human erythrocyte
membrane using optical tweezers. Biophys J 1999;76:1145–51.

31. Schmid-Schönbein H, Wells R. Fluid drop-like transition of
erythrocytes under shear. Science 1969;165:288–91.

32. Hochmuth RM. Properties of red blood cells. In: Skalak R,
Chien S, eds. Handbook of Bioengineering. New York:
McGraw-Hill, 1987;12.1–12.17.

33. Fischer TM, Stöhr-Liesen M, Schmid-Schönbein H. The red
cell as a fluid droplet: tank tread-like motion of the human
erythrocyte membrane in shear flow. Science 1978;202:894–6.

34. Pinotti M, Rosa ES. Computational prediction of hemolysis in
a centrifugal ventricular assist device. Artif Organs 1995;19:
267–73.

35. Mitoh A, Yano T, Sekine K, et al. Computational fluid dynam-
ics analysis of an intra-cardiac axial flow pump. Artif Organs
2003;27:34–40.

36. Chan WK, Wong YW, Ding Y, Chua LP, Yu SCM. Numerical
investigation of the effect of blade geometry on blood trauma
in a centrifugal blood pump. Artif Organs 2002;26:785–93.

37. De Wachter D, Verdonck P. Numerical calculation of hemol-
ysis levels in peripheral hemodialysis cannulas. Artif Organs
2002;26:576–82.

38. F1841-97 Designation: Standard Practice for Assessment of
Hemolysis in Continous Flow Blood Pumps. West Consho-
hocken, PA: ASTM International, 1997;1326–30.

39. Barthès-Biesel D, Rallison JM. The time-dependent def-
ormation of a capsule freely suspended in a linear shear flow.
J Fluid Mechanics 1981;113:251–67.

40. Maffettone PL, Minale M. Equation of change for ellipsoidal
drops in viscous flow. J Non-Newtonian Fluid Mechanics
1998;78:227–41.

41. Roscoe R. On rheology of a suspension of viscoelastic spheres
in a viscous liquid. J Fluid Mechanics 1967;29:273–93.

42. Keller SR, Skalak R. Motion of a tank-treading ellipsoidal
particle in a shear flow. J Fluid Mechanics 1982;120:27–47.

43. Nonaka K, Linneweber J, Ichikawa S, et al. Development of
the Baylor Gyro permanently implantable centrifugal blood
pump as a biventricular assist device. Artif Organs 2001;25:
675–82.

44. Nosé Y. Design and development strategy for the rotary blood
pump. Artif Organs 1998;22:438–46.

APPENDIX A

A deformed droplet returns to its natural configu-
ration according to,

(A-1)

For small deformations S = I + eA. The eigenval-
ues li of S are:

li = 1 + emi, (A-2)

d
dt

f g
S

S S I= - - ( )( )1 .
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where mi are the eigenvalues of A. Substituting
S = I + eA in Eq. A-1 yields:

(A-3)

where g(S) = 3III/II. Consequently, the second and
the third invariants of S become:

II = 3 + 2e(m1 + m2 + m3) + O(e2), (A-4)

III = 1 + e(m1 + m2 + m3) + O(e2), (A-5)

but the volume of droplet is preserved (dIII/dt = 0),
thus tr(A) = m1 + m2 + m3 = 0. Neglecting the O(e2)

e e
d
dt

f g
A

I A S I= - + - ( )( )1 ,

terms leads to g(S) = 1. Substituting g(S) in Eq. A-3
we get:

(A-6)

The solution to this equation is of the form:

A = A0exp(-f1t), (A-7)

where 1/f1 is the relaxation time. Because the
relaxation time of RBC membrane is 200 ms we set
f1 = 5 s-1.

d
dt

f
A

A= - 1 .


