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Abstract— Cycle-accurate functional descriptions (CAFDs)
are being widely adopted in integrated circuit (IC) de-
sign flows. Power estimation can potentially benefit from
the inherent increase in simulation efficiency of cycle-based
functional simulation. Currently, most approaches to hard-
ware power estimation operate at the register-transfer level
(RTL), or lower levels of design abstraction. Attempts at
power estimation for functional descriptions have suffered
from poor accuracy because the design decisions performed
during their synthesis lead to an unavoidable, large uncer-
tainty in any power estimate that is based solely on the
functional description.

We propose a methodology for CAFD power estimation
that combines the accuracy achieved by power estimation at the
structural RTL with the efficiency of cycle-accurate functional
simulation. We achieve this goal by viewing a CAFD as
an abstraction of a specific, known RTL implementation that
is synthesized from it. We identify correlations between a
CAFD and its RTL implementation, and “back-annotate”
information into the CAFD solely for the purpose of power
estimation. The resulting RTL-aware CAFD contains a layer
of code that instantiates virtual placeholders for RTL com-
ponents, and maps values of CAFD variables into the RTL
components’ inputs/outputs, thus enabling efficient and ac-
curate power estimation. Power estimation is performed
in our methodology by simply co-simulating the RTL-aware
CAFD with a simulatable power model library that contains
power macro-models for each RTL component. We present
techniques to further improve the speed of CAFD power
estimation, through the use of control state-based adaptive
power sampling.

We have implemented and evaluated the proposed tech-
niques in the context of a commercial C-based hardware
design flow. Experiments with a number of large indus-
trial designs (up to 1 million gates) demonstrate that the
proposed methodology achieves accuracy very close to RTL
power estimation with two-to-three orders of magnitude speedup
in estimation times.

I. Introduction

Cycle-accurate functional descriptions (CAFDs) are
commonly used for specification, efficient simulation, val-
idation, and architectural exploration of hardware in
systems-on-chip (SoCs). The emergence of C-based hard-
ware description languages (HDLs) [26, 27, 29], and exten-
sions to conventional HDLs [28], to support specification at
higher levels of abstraction than RTL, attests to this trend.
The unmapped RTL style of the proposed Accellera stan-
dard for RTL semantics [1] describes paradigms for the use
of CAFDs. In order to support system-level design space
exploration, and cope with increasing circuit complexities,
it is natural to expect that power estimation techniques
should also evolve to operate at higher levels of abstrac-
tion, where they can exploit inherent advantages such as
increase in simulation efficiency. However, this is not eas-
ily achieved, due to the loss of implementation details at
higher levels of abstraction. While accurate power estima-
tion is usually possible at the structural RTL and lower
levels, simulation at these levels is too slow. Therefore,
a power estimation technique with the speed of functional
simulation and RTL-like accuracy is desirable. Such a tech-
nique should also naturally plug into system-level simula-
tion environments, and should provide detailed power in-

formation, e.g., power breakdown over different parts of
the circuit, or power variation over time.

A. Related Work

In order to provide feedback about power consumption at
various stages in the design cycle, power estimation tech-
niques have been developed that operate from the tran-
sistor level to the logic level and RTL [8, 22, 24]. These
techniques are relatively mature, and have been incorpo-
rated in commercial tools. Since an RTL description is
structurally defined, power estimation for a circuit is typi-
cally performed by aggregating power estimates for its con-
stituent RTL components [15, 24]. Extensive research has
been performed on techniques to characterize implementa-
tions of individual RTL components and derive efficient,
yet accurate, macro-models [2–5,9,12,18,20,21,23,30]. We
utilize cycle-accurate power macro-models for RTL compo-
nents [12,18,21,23,30] in our work. RTL power estimation
can be relatively efficient for designs of limited size, but
becomes extremely slow for large designs, especially when
a power vs. time profile is needed. The main reason is that
RTL circuit simulation is slow.

A few approaches to functional (or behavioral) power es-
timation have been investigated [11, 14, 17, 24]. Such tech-
niques analyze a functional description without any regard
to the RTL implementation that it is synthesized into. Al-
though they enjoy the advantage of being fast, they are
much less accurate than RTL power estimation. Hence,
their utility is limited to fairly coarse-grained design deci-
sions, e.g., comparing algorithmic alternatives. In effect,
the accuracy of conventional functional power estimation
approaches is bounded by the inherent variation in power
consumption across the space of different alternative RTL
implementations, which is often as high as 2-3X.

B. Contributions and Paper Overview

In this paper, we address the problem of power estima-
tion for a CAFD when its corresponding RTL implemen-
tation is known.

We view the CAFD as an abstraction of a specific RTL
implementation, used in its place for the purpose of effi-
cient power estimation. We propose a technique to ana-
lyze a CAFD and its corresponding RTL implementation,
and back-annotate information into the CAFD for the pur-
pose of enabling higher power estimation accuracy. The
resulting RTL-aware CAFD is simulated, together with
power model libraries of various RTL components, to per-
form power estimation. We demonstrate that this approach
enables power estimation accuracy (including spatial and
temporal resolution) that is very close to RTL power es-
timation, at a speed that is comparable to cycle-accurate
functional simulation. We believe that this combination of
accuracy and efficiency is significant, and to our knowledge
has not been achieved before.



We present techniques, based on adaptive control state-
based sampling, to further improve the speed of power es-
timation by optimizing the allocation of “computation ef-
fort” over time such that higher effort is expended during
control states for which power consumption is higher or
displays a higher variation. Even though temporal sam-
pling techniques have been used in the context of average
power estimation at the lower levels [13,16], our state-based
adaptive sampling approach is based on independent sam-
pling and maintaining a separate power history for each
control state. This leads to an accurate estimate of both
cycle-by-cycle and average power.

We have prototyped the proposed techniques in the con-
text of a commercial C-based high-level design flow [29],
and applied them to large industrial designs (over 1M
gates). Promising results (over two orders of magnitude
speedup, with about 2.0% average error and 4.3% cycle-
by-cycle error), were achieved with respect to RTL power
estimation.

The rest of this paper is organized as follows. We present
background material and motivation for this work in Sec-
tion II. We describe back-annotation techniques to pro-
duce RTL-aware CAFDs and the basic approach to CAFD
power estimation in Section III. In Section IV, we motivate
and describe the adaptive state-based sampling approach
for further improving efficiency. We discuss the implemen-
tation of the proposed techniques in a commercial C-based
design flow in Section V, which also provides experimen-
tal results on a number of industrial designs. We present
conclusions in Section VI.

II. Preliminaries

In this section, we discuss the issues involved in power
estimation for CAFDs, and provide necessary background
material.

A. Cycle-accurate Functional Descriptions

CAFDs accurately specify the behavior of a circuit for
each cycle of its operation. Thus, from an I/O perspec-
tive, they are indistinguishable from structural RTL de-
scriptions. CAFDs achieve simulation efficiency by omit-
ting internal structural details of the circuit. For example,
the user may be able to observe the values of only a sub-
set of registers that are present in the implementation. In
addition, they may not be bit-accurate, i.e., they may use
more efficient data types, such as integers, to replace bit-
vectors when possible.

We focus on a popular class of CAFDs, called state-
based CAFDs, in which the design is represented as an
extended finite-state machine (FSM), with functional de-
scriptions for each state. Each functional element (opera-
tor, assignment, or variable reference) in a CAFD belongs
to a unique state. Fig. 1(a) shows an example behavior
that computes the greatest common divider (GCD) of two
integers. The functional description of GCD is given in a
C-like language. For cycle-accurate simulation, the func-
tional description of GCD is scheduled into a CAFD, as
shown in Fig. 1(b). The CAFD is decomposed into control
states, marked ST 1, ST 2, and ST 3.

B. From CAFDs to RTL

When a CAFD is synthesized into an RTL implementa-
tion, the synthesizer assigns functional elements to RTL
components. While the synthesizer knows how a func-
tional element is implemented in hardware, this knowl-
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Fig. 1. Behavior, CAFD, and RTL implementation for the GCD

example

edge is often discarded after synthesis. In our work, we
extract this information and use it to enhance the CAFD
for accurate power estimation. RTL components, such as
registers, functional units, memories, and data-transfer in-
terconnects, can be associated with functional elements in
the CAFD. They are said to be functionally-explicit. Other
RTL components that cannot be associated with any func-
tional elements, e.g., multiplexers, and control logic, are
called functionally-implicit. If a functionally-explicit RTL
element is active in a state, i.e., one of the functional el-
ements from that state is mapped to it, the values of its
inputs and outputs can be obtained from the CAFD by
tracing the appropriate variables.

C. Challenges in Power Estimation for CAFDs

It is hard to estimate power consumption based on the
CAFD alone, since it does not specify the components uti-
lized in the circuit. For example, the CAFD shown in
Fig. 1(b) for the GCD example can be synthesized us-
ing either one subtracter or two subtracters, and using ei-
ther one multi-function comparator or separate < and ! =
comparators. Furthermore, even if the number of compo-
nents in the implementation is fixed, the manner in which
the operations and variables in the CAFD are mapped to
components can affect power consumption. However, if
an RTL implementation is supplied, information can be
derived from it to enable CAFD power estimation. For
example, for the RTL implementation shown in Fig. 1(c)
we know that all subtraction operations are bound to the
single subtracter (sub), shown in grey. This implies that,
whenever the CAFD is in control state ST 2, the subtracter
performs the operation y1 = y − x, which implies that the
inputs to the subtracter assume the values of CAFD vari-
ables y and x, and its output assumes the value of variable
y1. If we were able to deduce the inputs to each component
in each CAFD state (equivalently, each simulation cycle),
we could perform fairly accurate power estimation using
power macro-models for each RTL component. Unfortu-
nately, it is not clear what the I/O values of the subtracter
are for state ST 1, in which there are no CAFD operations
mapped to it, i.e., it is idle. These values depend on how
the multiplexers feeding the subtracter are configured in
the idle cycle, and the values at the selected data inputs.

Generalizing the observations from the above example,
the following questions need to be addressed to solve the



problem of accurate CAFD power estimation.
• How can we extract the minimum information neces-

sary for power estimation from the RTL implementation?
• How can this information be automatically back-

annotated into the CAFD?
• How can inputs for idle components in each control

state be determined?
Answers to these three questions form the basis of our RTL-
aware cycle-accurate functional power estimation tech-
nique.

D. Evaluating Power Estimation Accuracy

We next define the accuracy metrics used in our work.
Consider a circuit and an input testbench of N cycles.

Let P (i), i = 1, 2, ..., N , denote the power consumption
of the circuit in the ith cycle, as estimated by a reference
power estimation tool (RTL or gate-level, in our work).
Let P ′(i) denote the power estimate for the ith cycle. Pavg

and P ′

avg are the corresponding average power estimates
over the entire testbench. The average or accumulative
power estimation error is given by

Avg. Error = |
P ′

avg − Pavg

Pavg

| · 100%

The absolute cycle power error (ACPE) for the ith cycle
is defined as

ACPE(i) = |
P ′(i) − P (i)

P (i)
| · 100%

The average ACPE (AACPE) over the N cycles is used
to measure the accuracy of cycle-by-cycle power estima-
tion. Naturally, obtaining a low AACPE is more challeng-
ing than obtaining a low average power error.

III. CAFD Power Estimation Methodology

Fig. 2 presents an overview of our methodology for
CAFD power estimation. We are given a CAFD and corre-
sponding simulation testbench, and a power model library
for RTL components. The library contains power macro-
models for each type of RTL component, which express
power consumption as a function of the current and pre-
vious input vectors seen at the component’s I/Os. The
power model library is generated once for each fabrica-
tion technology, using well-known characterization tech-
niques [2–5, 9, 12, 18, 20, 21, 23, 30], and will not be further
described here.

The CAFD is first preprocessed in order to enable eas-
ier back-annotation of RTL information, and subjected to
high-level synthesis to generate an RTL implementation.
Alternatively, the CAFD may be generated as an inter-
mediate by-product of high-level synthesis starting from a
pure behavioral description. The preprocessed CAFD and
RTL implementation are analyzed to derive the minimum
necessary information and back-annotate it into the CAFD.
This step includes the tasks of virtual component instan-
tiation and idle cycle analysis, resulting in an RTL-aware
CAFD. The RTL-aware CAFD is co-simulated with the
power model library under the given testbench to generate
an average power report or power vs. time waveforms.

The composition of an RTL-aware CAFD is shown in
Fig. 3. The enhancements made to the original CAFD for
the purpose of power estimation are shown shaded in grey.
The RTL-aware CAFD includes “virtual components”,
which are automatically instantiated by our methodology,
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Fig. 2. Overview of the proposed CAFD power estimation method-
ology

corresponding to each component in the RTL implementa-
tion. Unlike components in a structural RTL description,
virtual components do not simulate the actual functional-
ity of the component they represent. Instead, they act as
placeholders to collect the information necessary to invoke
the power model, i.e., the component’s I/O values in the
current and previous cycles. Virtual components are also
responsible for invoking the component power model dur-
ing each simulation cycle, and storing the resulting power
estimate for use in power aggregation and reporting. The
RTL-aware CAFD also includes automatically-generated
I/O mapping code that maps the values of CAFD variables
to the I/O values for virtual components. The power aggre-
gation and reporting code sums up the power values from
all the virtual components according to the circuit hierar-
chy, and keeps relevant statistics such as the power break-
down by component type. It is also responsible for generat-
ing the average power consumption report, or a power vs.
time dump that can be viewed using standard waveform
viewers.

In the remainder of this section, we describe in detail
the steps shaded in grey in the methodology of Fig. 2. We
conclude the section with a discussion of the limitations
and sources of error in our approach.
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A. Preprocessing
To facilitate the back-annotation of RTL information

into a CAFD, we preprocess the CAFD so that each func-
tional element is given a unique identifier, for example the
name and line number at which it appears in the CAFD.
This may require the decomposition of lines that contain
multiple or complex statements. The preprocessing step
also ensures that all inputs to operations in the CAFD are
exposed as CAFD variables. For example, complex arith-
metic expressions such as d = a+b∗c would be broken into
tmp = b∗c and d = a+ tmp. This can increase the number
of variables in the CAFD in general, but from our expe-
rience the attendant overhead in code size and execution
time is quite small.

B. RTL Information Extraction
The RTL information extraction step correlates RTL

components to CAFD functional elements, and estab-
lishes relationships between component inputs/outputs
and CAFD variables.

For each state in a CAFD, we generate a mapping table
to map its functional elements to RTL components. The
table also records the type and bit-width of the RTL com-
ponents, the names of inputs and output, and the RTL
components to which these names are mapped. Functional
elements are identified by their name and the CAFD code
line number.

An RTL implementation not only provides binding in-
formation, but also connectivity information. We need the
synthesizer to record the connectivity information of each
multiplexer, i.e., which RTL components are connected to
its data inputs1. A connectivity table with this information
is generated for each multiplexer that drives the input of a
functionally-explicit RTL component such as a functional
unit or register. Furthermore, we generate a select-signal
table for each multiplexer that specifies which of its data
inputs is selected in each control state. In states where the
functionally-explicit component driven by the multiplexer
is active, the select signal value can be determined by sim-
ply examining which multiplexer input needs to be routed
to the component for it to perform the CAFD operation
mapped to it. In states where the functionally-explicit
component driven by the multiplexer is idle, this infor-
mation can be deduced by analyzing the cone of control
logic that feeds the multiplexer select signals in the RTL
implementation. Whenever the values cannot be decided
statically, a random choice is made.

The above information is used by the virtual component
instantiation and idle cycle analysis techniques described
later in this section.

C. Virtual Component Instantiation and I/O Mapping
A virtual component is instantiated for each functionally-

explicit RTL component and each multiplexer to keep a
record of previous and current input vectors.

For a CAFD code line containing a functional element,
an update to the corresponding virtual component’s I/O
values is performed, by capturing the values of the ap-
propriate CAFD variables. For example, a part of the
RTL-aware CAFD for the GCD circuit is shown in Fig. 4,
wherein the virtual component updates for control state
ST 2 are shown in detail.

Note that the I/O updates described above only affect
components that are active in the current cycle. Option-

1For the sake of efficiency, we consider a multiplexer tree as an
atomic n-to-1 multiplexer.
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Fig. 4. A portion of the RTL-aware CAFD for the GCD example

ally, each virtual component also contains a pointer to the
virtual components that drive its inputs. For example,
the virtual component corresponding to the subtracter in
the GCD circuit (see Fig. 1(c)) contains pointers to the
virtual components corresponding to the two multiplexers
that drive its inputs. As seen later, this is used to get the
input values for idle cycles. Each virtual component uses a
circular queue of depth two to keep track of the input and
output values for the current and previous cycles.

D. Idle-cycle Handling
For any given control state in the CAFD, the in-

put/output values of idle RTL components cannot be di-
rectly deduced from the CAFD or the mapping tables. In
general, this is a difficult problem if the RTL circuit has
arbitrary structure. Fortunately, most high-level synthesis
tools generate RTL implementations that are structured
to have multiplexers at the inputs of functionally-explicit
components (such as registers and functional units). Fur-
thermore, the inputs to these multiplexers come from the
outputs of other functionally-explicit components. Given
this property, idle cycle inputs to a component can be in-
ferred from the implementation style of the component’s
input multiplexers. For example, if an AND-OR based
selector is used to implement the multiplexer, the multi-
plexer’s output is set to zero in idle cycles. Alternatively,
if tristate-based multiplexers are used, the multiplexer’s
output is set to the same value as in the previous active
cycle. For most other multiplexer implementations, one of
the multiplexer’s inputs is routed to its output.

All the above situations can be handled by virtual com-
ponents, as they can record both the values of inputs and
the pointers to the RTL components connected to their in-
puts in the previous active state. The key is to be able
to identify the style of its input multiplexers used during
synthesis.

E. Sources of Error
Theoretically, our approach guarantees the same accu-

racy as RTL power estimation for functionally-explicit RTL
components, which make up the circuit datapath. How-
ever, functionally-implicit components (multiplexers and
control logic) impose a limit on the achievable accuracy.

Large industrial application-specific integrated circuits
(ASICs) usually have relatively small controllers compared
to their datapaths. For example, the combinational com-
ponents of the controllers contribute 1%-3% to the total
power in our benchmark circuits. We estimate the power
consumption in the control logic by making a note of its
RTL components, and analyzing each control state tran-
sition with corresponding RTL power models and a con-



stant switching activity factor for the status inputs from
the datapath. The resulting numbers are used to gener-
ate the power consumed by the control logic in each state.
While similar to previous work on functional modeling of
FSM power [15], this approach can lead to a small amount
of estimation error.

Multiplexers are much more important in terms of power
consumption. Therefore, virtual components are instanti-
ated for them. The connectivity and select-signal tables
enable us to obtain the input values to a multiplexer in ev-
ery state. Error is introduced only when a random choice
is made during select-signal table generation, as discussed
in Section III-B. As demonstrated through our experimen-
tal results, these sources of error do not have a significant
impact.

IV. Adaptive State-based Sampling

The basic approach detailed in the previous section up-
dates the virtual components and calculates power for ev-
ery component in every cycle. The associated computa-
tional overhead can slow the simulation manifold depend-
ing on the implementation. The spatial sampling tech-
niques proposed in [6, 25] can be readily used to alleviate
the “every-component” problem, i.e., by targeting only the
important components. In this paper, we propose solutions
to the “every-cycle” problem, by targeting only the impor-
tant cycles for expending computational effort for power
estimation. Our technique works as follows. During CAFD
simulation, we use a sampling probability to determine
whether or not detailed power estimation will be performed
in the current simulation cycle. This probability is depen-
dent on which control state of the CAFD is executed (hence
the term state-based). Furthermore, the sampling proba-
bility is adaptively varied over time to tightly control the
estimation error, as described later in this section (hence
the term adaptive).

In cycles chosen for sampling, we perform virtual com-
ponent I/O updates, invoke the power macro-models for
each component, and aggregate the power consumed by all
the components, as described in Section III. In order to
produce power estimates for cycles that are not chosen for
sampling, we maintain a small amount of power consump-
tion history for each control state in the CAFD. For exam-
ple, for a state ST 1, we maintain the power consumption
calculated during the last k sampled cycles for which the
CAFD was in state ST 1. We view this state-based history
of power values as a time series for which we need to predict
the next value. This is achieved using simple functions of
the history values to estimate the power consumed in the
current simulation cycle.

In contrast to temporal sampling approaches used at the
gate level, our technique exploits an understanding of the
CAFD structure, by performing independent sampling and
maintaining a separate power history for each control state.
This leads to high accuracy for cycle-by-cycle power esti-
mates in addition to accurate average power estimates.

A. Rationale

The rationale for the proposed adaptive state-based sam-
pling strategy is as follows:
• The power consumption characteristics of circuits are
quite different when they are in different control states.
Some control states exhibit a high variance in power con-
sumption, while other states display a relatively predictable
behavior.

• Several circuits display significantly time-varying power
characteristics. Sampling techniques that ignore the time-
varying nature may generate accurate average power esti-
mates, but usually result in poor cycle-by-cycle estimates.

In order to illustrate the above observations, we consider
an example design, HDTV-1, which is an image filter mod-
ule used in an SoC for HDTV applications. The CAFD for
the HDTV-1 design contains a number of control states, of
which we have selected four representative states for our
discussion, namely, A, B, C, and D.

Fig. 5(a) shows the power histograms for the HDTV-1
circuit when it is in each of the four states A-D. This infor-
mation was derived using a commercial RTL power estima-
tion tool [25]. The X-axis in Fig. 5(a) indicates the power
consumption in milliWatts (mW), while the Y-axis indi-
cates the number of occurrences of that state with the given
power consumption. We can see that the power distribu-
tion of different states can be quite different in terms of
mean and standard deviation. The distributions for states
A, C, and D are single-peaked, while state B’s power dis-
tribution is double-peaked.

Fig. 5(b) plots the power consumption for each state over
time. The X-axis represents the occurrence number of that
state, i.e., the first time the state occurs, the second time
it occurs, and so on. Again, it is quite clear that different
states have significantly differing power characteristics. In
particular, state B displays a relatively large variation over
time.

B. Proposed Sampling Technique

The above observations motivate us to consider sampling
(calculating) a state’s power consumption in only some of
its occurrences, and estimating it in others based on past
samples. Two questions need to be answered for this pur-
pose: when to sample, and how to estimate power using
the history. We address these questions in the rest of this
sub-section.

B.1 Adaptive Sampling

As we have seen before, different states have different
power value localities and temporal power variations, which
suggests that we devote more computing resources to states
whose power varies a lot and to occurrences of a state in
which power varies faster. In sampling techniques, the sam-
pling probability is the “knob” that can be used to control
the amount of computation effort allocated. Therefore,
we propose a feedback-driven adaptive sampling scheme
to determine a sampling probability for each state. In this
scheme, all states start with the same sampling period.
Whenever a state’s power is sampled, the sampled “real”
power is compared with the “estimated” value (estimation
will be addressed next). If the observed ACPE is larger
than a maximum error threshold, the state’s sample period
is decreased by one “step” unless the period has already
reached the minimum period. Otherwise, if the ACPE is
smaller than a minimum error threshold, the sample period
is increased by one step unless it has already reached the
maximum period.

Note that the minimum and maximum periods are used
to control the adaptation so that it does not go too far. In
all our experiments, they are set to 1 and 30 occurrences,
respectively. In theory, if the maximum period is too large,
a state’s sampling period may become so large that adap-
tation is unresponsive to errors. However, our experiments
showed that accuracy degrades only slightly even when the
maximum period is relaxed to infinity. The step controls
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the adaptation granularity, and is set as two occurrences
in all our experiments.

The speed-accuracy tradeoff can be controlled in our
adaptive sampling technique by changing the values of the
various parameters described above. A shorter step, and
tighter error thresholds, result in higher accuracy at the
cost of increased computational effort.

The net effect of the adaptive state-based sampling tech-
nique is to optimize the allocation of sampling probabilities
to different control states such that states with a higher
time-variance of power will be sampled more frequently.
In order to illustrate this, we also plot in Fig. 6 the varia-
tion of the sampling period over time, for the four states,
A-D, in the HDTV-1 benchmark. For the sake of clarity,
in Fig. 6, the waveforms corresponding to states A and C
have been shifted up by 40 cycles and 20 cycles, respec-
tively. Referring to Fig. 5, we can see that state B has
a relatively high standard deviation and exhibits higher
power variation over time. As a result, the adaptive state-
based sampling technique decreases the sampling period
for state B (i.e., increases the sampling frequency), in this
case to the minimum value. On the other hand, the sam-
pling frequency for states A, C, and D is initially increased
to the maximum value, but subsequently adapted when
errors above the maximum threshold are observed.

B.2 History-based Estimation Policy

Next, we address the “how to estimate” question. Un-
like the classical time series prediction problem, the history
we have for the power consumption of a state is quite spo-
radic since we only have a sampled, instead of complete,
history. Moreover, since power estimation has to be carried
out in every cycle, it has to be very efficient. We experi-
mented with several choices. A simple estimation can be
based on the mean of past samples. If we assume the state
power has a normal distribution and different occurrences
of the same state behave independently of each other, they
can be viewed as a stationary Gaussian time series [7], for
which the minimal mean square error is achieved when the
mean of the past values is used as the predicted value for
the next occurrence. However, we observed that different

occurrences of the same state are actually slightly related
to each other and the autocorrelation drops rapidly as the
distance (lag) between samples increases. Such a vanishing
dependence makes the mean prediction not as good as a
mean of a limited history, which is in turn worse than the
weighted mean of a limited history with smaller weights
for older samples. Our experiments show that a weighted
mean based estimation slightly outperforms the mean and
significantly outperforms extrapolation-based estimation.
Therefore, the weighted mean approach is adopted in our
implementation.

Another concern is the history size, i.e., the number of
past samples, used for estimation. Our experiments show
that increasing the history size beyond four does not yield
much accuracy benefit. Hence, unless otherwise indicated,
four past samples are used in all our experiments. The
power consumption, Ps(n), for the nth occurrence of state
s is estimated as

Ps(n) = 0.4·Ps(m
S
1
)+0.3·Ps(m

S
2
)+0.2·Ps(m

S
3
)+0.1·Ps(m

S
4
)

where mS
1
, mS

2
, mS

3
, and mS

4
are the most recent four oc-

currences of s (mS
1

being the most recent, then mS
2
, and

so on), for which power is sampled instead of estimated.
Such an estimation is much simpler than using RTL power
models, and results in substantial speedup, as shown in the
next section.

V. Experimental Results

In this section, we first describe how the proposed CAFD
power estimation techniques were integrated in the context
of a commercial C-based design flow. We then present the
results of applying the techniques to a number of large
industrial designs.

A. Implementation
We implemented the proposed RTL-aware and adaptive

state-based sampling approaches in the context of the CY-
BER C-based commercial design flow [29]. For any input
functional description and resource constraints, CYBER
performs high-level synthesis and generates an optimized
RTL description in VHDL and the corresponding CAFD
in C or SystemC. The CYBER design flow also provides
an RTL power estimation tool that uses pre-characterized
power macro-models (also described as simulatable VHDL
entities) for various RTL components.

RTL-awareness: CYBER tags the output RTL VHDL
description and C-based CAFD with the corresponding
code line numbers of the input functional description for
the purpose of debugging. We were able to generate most of
the RTL information discussed in Section III-B by match-
ing the tags in both the RTL VHDL description and the
C-based CAFD. We first preprocessed the functional de-
scription so that tag matching is facilitated as described



in Section III-A. Then we used CYBER to synthesize the
preprocessed functional description into an RTL descrip-
tion in VHDL and the corresponding CAFD in C, sub-
ject to resource constraints and synthesis options. We im-
plemented a tag matcher that generates the mapping ta-
bles and connectivity tables by correlating functional ele-
ments with RTL components through matching of the cor-
responding tags. The multiplexer implementation informa-
tion can be deduced from the synthesis options of CYBER
for idle cycle handling.

Virtual component instantiations: We implemented
a script that converts the RTL VHDL power macro-models
into C functions, which consist of more than 25K lines of C
code. It is worth noting that our approach is independent
of how the RTL power macro-models are built. We imple-
mented a library of virtual component classes, as outlined
in Section III-C. The virtual component library consists of
about 3.4K lines of C++ code (note that the RTL power
library has more than 58K lines of code). Another script
instantiates virtual components in the CAFD based on the
power library implementation, and generates I/O mapping
code. During simulation, previous and current input val-
ues recorded by virtual components are input to the power
models for calculating the power consumption in each cy-
cle.

Adaptive state-based sampling: We implemented
the proposed adaptive state-based sampling approach as
a stand-alone C library. Instead of calculating power every
cycle or on each state occurrence, the RTL-aware CAFD
calls routines in the library for adaptive state-based sam-
pling. The policy parameters associated with the adap-
tive mechanism can be set by command line options. (For
the experiments, the settings mentioned in Section IV were
used.)

Usage: The virtual component-instantiated CAFD with
sampling-based power estimation can be compiled into an
executable using the GNU compiler gcc. A large number of
command line options (such as whether adaptive sampling
is used, sampling parameters, number of cycles to simu-
late, etc.) are provided for flexibility. Power profiles for
different types of RTL components or even individual RTL
component instances can be generated.

It is worth noting that synthesis by CYBER and our
post-processing step take little time, finishing in tens of sec-
onds, while RTL power estimation takes minutes to hours,
and even days for the largest benchmarks.

B. Benchmarks

We performed power estimation on a number of large in-
dustrial designs using our prototype implementation. Sim-
ulations were performed on a SUN Fire 280R server with
two 900-MHz Ultra-Sparc processors and 4GB RAM. Ta-
ble 1 reports statistics for our benchmark designs, which
correspond to complete ASICs, as well as components
of industrial SoCs. DES, JPEG, SORT, VITERBI, and
WAVELET are designs that implement the Digital Encryp-
tion Standard encryption, JPEG decoding, bubble-sort al-
gorithm, Viterbi decoding, and a Wavelet-based image fil-
ter, respectively. HDTV-1 is a filter module in an industrial
SoC design for HDTV decoding, while MPEG4-IDCT and
MPEG4-ISPQ are two modules in an industrial SoC de-
sign for MPEG4 decoding. Columns 2 and 3 indicate the
number of lines of code in the original (No P.) and power-
estimation enhanced (P.) CAFD. Columns 4 and 5 report
the corresponding numbers for the RTL VHDL descrip-
tions. Column 6 reports the gate counts for the technology

Table 1

Benchmark information

Circuit Number of code lines (×103) Gate count
CAFD in C RTL in VHDL
No P. P. No P. P.

DES 5.9 6.3 3.6 9.9 5,845
HDTV-1 7.5 9.3 4.5 10.0 12,118
JPEG 66.7 79.2 41.8 106.1 1,187,696

MPEG4-IDCT 5.6 6.2 3.3 6.3 11,227
MPEG4-ISPQ 13.5 15.0 6.9 17.9 49,262

SORT 8.3 10.2 1.9 8.8 4,574
VITERBI 8.7 12.6 11.3 18.0 47,655

WAVELET 1.1 1.6 1.5 2.0 257,918
Table 2

Efficiency and Accuracy for the basic approach

Circuit Error (%) Speedup Slowdown
Accum. AACPE (X) (X)

DES 2.1 2.2 73 1.3
HDTV-1 1.5 3.9 150 7.5
JPEG 2.8 6.5 331 11.3

MPEG4-IDCT 3.1 4.7 214 6.1
MPEG4-ISPQ 1.2 2.2 177 5.2

SORT 1.6 5.5 148 3.0
VITERBI 1.2 5.9 123 7.5

WAVELET 2.3 3.8 129 3.6

mapped net-lists (mapped to a commercial 0.18µ technol-
ogy [19]) obtained after logic synthesis using Synopsys De-
sign Compiler [10].

C. Results
For each benchmark, we first employed the RTL power

estimation tool to obtain the reference cycle-accurate
power report. We then compared the corresponding num-
bers generated from CAFD power estimation with the ref-
erence report to obtain the AACPE and the error in accu-
mulative (average) power estimation. All benchmarks were
simulated for 40K cycles, except SORT (2600 cycles) and
VITERBI (22K cycles).

Table 2 summarizes the results for the basic CAFD
power estimation approach in which sampling is not used.
Note that “Speedup” (Column 4) refers to the speedup
of our approach over RTL power estimation, while “Slow-
down” (Column 6) compares the performance of our ap-
proach with pure C-based cycle-accurate functional simu-
lation without power estimation, which is actually an up-
per bound for the speed of cycle-accurate functional power
estimation. The results show that significant speedup is
achieved with little sacrifice in cycle-by-cycle power accu-
racy.

We have already seen the advantage of the adaptive
state-based sampling approach in Section IV. Table 3
summarizes the results when it is used along with the ba-
sic CAFD power estimation approach for all the bench-
marks. Column 4 reports the speedup with respect to RTL
power estimation. Column 5 shows that the power simula-
tion speed with adaptive state-based sampling is, at worst,
only about three times slower than the bound set by cycle-
accurate functional simulation without power estimation.

To offer a closer look at the absolute cycle power er-
rors (ACPEs), Fig. 7 plots the ACPE distributions for four
of the benchmarks. It shows that more than 50% of the
ACPEs are within 5% and more than 80% are within 10%.

The speedups reported in Tables 2 and 3 include constant
simulation overheads such as binary loading and program
initiation. We performed an additional experiment in order



Table 3

Efficiency and Accuracy with adaptive state-based sampling

Circuit Error (%) Speedup Slowdown
Accum. AACPE (X) (X)

DES 2.1 2.2 83 1.1
HDTV-1 1.7 4.0 356 3.2
JPEG 2.7 6.6 1,143 3.3

MPEG4-IDCT 3.1 5.1 412 3.2
MPEG4-ISPQ 1.5 2.4 438 2.1

SORT 1.7 5.4 266 1.7
VITERBI 1.4 6.5 305 3.0

WAVELET 2.4 5.1 223 2.1
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to study the variation of execution time with the length of
simulation (Fig. 8) for the HDTV-1 benchmark. The re-
sults show that C-based power estimation is asymptotically
more than 180 times faster than RTL VHDL power esti-
mation in this case. The use of adaptive sampling further
doubles this speedup.

VI. Conclusions

In this paper, we proposed a fast and accurate method-
ology for obtaining cycle-accurate power estimation for
functional descriptions of hardware. Our methodology
leverages the correlation that exists between a CAFD
and a lower-level (RTL) structural implementation, whose
components have been pre-characterized for their power
consumption behavior. We provided efficient techniques
for augmenting functional descriptions with limited RTL-
awareness as well as the code needed for power estimation.
We also proposed adaptive state-based sampling for im-
proving the performance of cycle-accurate power estima-
tion. We validated the proposed framework in the context
of an industrial C-based design flow and evaluated its per-
formance with a number of industrial benchmarks. The
results indicate that cycle-accurate power reports can be
generated with very high efficiency (over two-to-three or-
ders of magnitude speedup compared to RTL power estima-
tion). In effect, the proposed power estimation approach
has a speed close to functional simulation, with accuracy
close to RTL power estimation.
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