
REGULARIZATION OF A PROGRAMMED

RECURRENT ARTIFICIAL NEURAL NETWORK

Andrew J. Meade, Jr.

Department of Mechanical Engineering

and Materials Science

Rice University

Houston, Texas, 77251-1892, USA

Phone: (713) 348-5880

E-mail: meade@rice.edu

DRAFT

To be submitted to Journal of Guidance, Controls, and Dynamics.

This work is supported under ONR grant N00014-95-1-0741.

REGULARIZATION OF A PROGRAMMED

RECURRENT ARTIFICIAL NEURAL NETWORK

Andrew J. Meade, Jr.

Department of Mechanical Engineering

and Materials Science,

Rice University

Houston, TX 77251-1892, USA

Abstract
A method is developed for manually constructing recurrent artificial neural net-

works to model the fusion of experimental data and mathematical models of physical
systems. The construction requires the use of Generalized Tikhonov Regularization
(GTR) and imposing certain constraints on the values of the input, bias, and output
weights. The attribution of certain roles to each of these parameters allows for map-
ping a polynomial approximation into an artificial neural network architecture. GTR
provides a rational means of combining theoretical models, computational data, and
experimental measurements into a global representation of a domain. Attention is
focused on a second-order nonlinear ordinary differential equation, which governs the
classic Duffing’s oscillator. The nonlinear ordinary differential equation is modelled
by the recurrent artificial neural network architecture in conjunction with the pop-
ular hyperbolic tangent transfer function. GTR is then used to smoothly merge the
response of the RANN and experimental data. Moreover, this approach is shown to
be capable of incorporating other smooth neuron transfer functions, as long as they
can be described by a Taylor series expansion. A numerical example is presented
illustrating the accuracy and utility of the method.

Key Words: Regularization, recurrent artificial neural networks, neural computation,

differential equations, chaos, network training

1 INTRODUCTION

Presently, an area of increasing interest is the emulation and control of nonlinear dynamic

systems by the recurrent artificial neural network (RANN) architecture. These particu-

lar networks use supervised learning algorithms (training algorithms) such as recurrent

∗ Associate Professor, E-mail: meade@rice.edu
This work is supported under ONR grant N00014-95-1-0741.

backpropagation [1]-[3], which allow the network to simulate a dynamic system without

knowledge of the governing equations.

The supervised training of a RANN system can be formulated as the procedure of

selecting the optimal network parameters so that the response of the neural network is

“close” to the available data, as measured by an error criterion. In terms of the connec-

tionist literature, numerical minimization of this error criterion by the steepest descent

method constitutes the backpropagation algorithm [1]. The conjugate gradient method,

the Levenberg-Marguardt method, and other nonlinear optimization methods have also

been used for network training. However, it has been found that even the most advanced

optimization algorithms can show unreliable convergence in training and can be highly

dependent on nonlinear parameter constraints and their initial values [4]. In modelling

physical systems, the initial values for the neural network parameters are commonly se-

lected by random sampling [5]. If a satisfactory solution is not obtained during training,

the nonlinear optimization procedure is restarted with new randomly selected values [6].

Clearly this approach can require prohibitive computational resources for some practical

problems.

With the many computational mechanics tools available to the typical engineer, it

is doubtful that he or she would resort to data driven modelling by a RANN unless an

analytical description of acceptable fidelity were unavailable. Add to this the previously

mentioned difficulties in training, and it is apparent why artificial neural networks are

not used more widely in engineering. However, unlike soft-computing problems, even the

most highly complex physical problem possesses a course analytical description that can

be derived from semi-empirical relations, the conservation of mass, momentum and energy

or even heuristic considerations. Since it is well known that training algorithms either

reduce to, or are, nonlinear optimization techniques, it is reasonable to assume that they

will benefit from physically meaningful initial values when modelling a physical system.

In this regard, a new connectionist training initialization method is proposed that can be

developed from accurate solutions of the time-dependent differential equations, using only

2

the equations of interest and the initial conditions. This proposed initialization method

is based on three assumptions. Firstly, an artificial neural network system can be treated

as a general approximation scheme [7] capable of approximating differential equations.

Secondly, polynomial bases, which are a traditional method for approximating functions

and analyzing experimental data [8], [9], can be mapped into neural network architectures

through constraints on the network parameters. Thirdly, a-priori mathematical models of

engineering systems, linear and nonlinear, can be utilized to obtain initial values for the

network parameters.

Note that this proposed approach would also allow the initialization of a connectionist

training algorithm without data; this feature could be especially useful for on-line RANN

modelling systems. Also, the method could be useful in obtaining preliminary bounds

on the network performance and estimating the accuracy of network approximations. For

example, by exploiting the analogy between ANN systems and polynomial approximations,

the effect of augmenting networks with additional processing elements could be evaluated.

The framework that is proposed for data-model fusion in the constructed network is

based on Generalized Tikhonov Regularization (GTR) [10]. GTR leads to the formula-

tion of a global response function or hypersurface of the parameter space. Engineers and

scientists routinely attempt to fit hypersurfaces through empirical information so as to

interpolate or determine a trend (prediction) in the information. In doing this, the users

make assumptions about the nature of the underlying functional representation or inter-

polation function. The method proposed in this paper formalizes these assumptions and

extends the user’s abilities to cases where the measurements and underlying function may

exist in different spaces.

The proposed approach to data-model fusion utilizes a common tool used in artificial

neural network (ANN) applications, the original theory of Tikhonov Regularization (TR)

of nonlinear inverse ill-posed problems [18]. Simply put, the task of selecting the best

functional approximation (a hypersurface) to multivariate empirical data is, fundamen-

tally, an ill-posed problem, i.e., the solution is nonunique, or is sensitive to small errors

3

in the data. This problem is addressed by the addition of constraints in a-process known

as regularization. TR involves the addition of smoothing constraints in a variational form

resulting in an optimization problem. This regularization functional is typically designed

to penalize undesirable characteristics of the approximating hypersurface, such as highly

oscillatory behavior between data points. Unfortunately, popular methods, such as ANNs,

use regularizing functionals which are strictly smoothness-based [7] and so are void of any

physical information about the process being modelled. As a consequence, these models

also frequently have poor or unpredictable data generalization properties. What primarily

separates GTR from these interpolation methods and the original TR is that the regular-

ization functionals are based on the physics of the problem and can range from heuristics

to mathematical models. Thus, GTR seeks to approximate the response of the underlying

physical system rather than just interpolate.

The proposed network initialization and regularization methods are critically depen-

dent on demonstrating that a conventional RANN, using nonlinear transfer functions, can

accurately approximate a physical model in the form of differential equations, seamlessly

merge the embedded mathematical model and experimental, and that the accuracy of

the constructed RANN can be controlled by the user. Consequently, the purpose of this

paper is to show how a conventional RANN can be constructed to model a nonlinear

time-dependent ordinary differential equation without the need for training or resorting

to special architectures and that the connection weights can be modified in a systematic

manner to include experimental data. The connection weights of this network are initially

determined by reducing the governing equations to systems of both linear and nonlinear

algebraic equations and approximating the dependent variables by linear combinations of

transfer functions. The connection weights are then merged with empirical data through

GTR as a postprocessing step. The algorithms used were relatively straightforward and

can be run on conventional hardware. The resulting network is architecturally identical to

those that use conventional training techniques, yet it possesses bounded errors that can

be controlled by the network parameters in a straight-forward manner.

4

As a numerical example a RANN using a single input and output layer, with additive

neurons utilizing the hyperbolic tangent activation function, has been constructed to ap-

proximate the solution to the inhomogeneous Duffing’s equation. The Duffing’s equation

describes the forced oscillations of a particle in a two-well potential [11]. This is considered

to be an interesting and practical example since the equation exhibits both chaotic and

nonchaotic behavior for specific parameter combinations. The network output, starting

with the chaotic regime, is altered through GTR and synthetic data to accurately recon-

struct the system response in the nonchaotic regime. Results in the form of phase plane

trajectories compare well with the results of previous computational investigations for both

chaotic and nonchaotic conditions.

2 APPROACH: RANN Construction

Since the RANN construction method is to ultimately serve as a supervised learning initial-

ization technique, the development of the construction method is given in the framework

of supervised training.

2.1 RANN Architecture

A recurrent artificial neural network (RANN) can consist of several layers of processing

elements as illustrated in Fig. 1. It is understood that the network output is fed back to

the input layer, though the connections are not shown in the figure. The variables ui(t),

i = 1, ...,M denote the input states of the RANN at the time t while the variables vj(t+1),

j = 1, ..., N denote the output states of the network at the time t + 1 which in turn are

fed back as some of the input variables used to determine the RANN response at the next

time period. The first P components of the input state vector u(t) are selected as the input

variables of the physical system, P < M . Similarly, the first L components of the vector

v(t + 1) specify the response of the corresponding physical system, L ≤ N . The output

at time t + 1 of a RANN, consisting of k layers of nonlinear processing elements, can be

5

determined by the equation

vj(t+ 1, β) = βN+1
k,j Υk

(∑
l

βj(k−1),lΥ(k−1)

(
...Υ2

(∑
i

βp1,iΥ1 (ui(t))

)))
, (1)

where β represents the set of network parameters, and Υj is the nonlinear transfer function

of neurons associated with the j-th intermediate layer of the network.

Several alternative functions have been used as the processing elements in RANNs, but

the more popular training procedures, such as backpropagation, require that the functions

be continuously differentiable and bounded. In this regard, sigmoidal neurons are often

selected for network applications. The corresponding functions are continuous and are

characterized by the following limits

lim
ξ→∞

Υ(ξ) = 1 , lim
ξ→−∞

Υ(ξ) = −1 , (2)

The function

Υ(ξ) = tanh (ξ) (3)

is a paradigmatic example of such sigmoidal functions.

Figure 1 presented the general architecture of a RANN. However, in an actual applica-

tion the user must specify the number of neuron layers as well as the number of neurons

in each layer and their connections. These user specifications may be based on intrinsic

considerations. In this study a simple RANN with two layers of nonlinear processing ele-

ments is used since this type of RANN is arguably the most common in dynamic network

applications [12]. The transfer functions of these layers are taken as the hyperbolic tangent

function of Eq.(3). The response of this type of RANN can be written as

vj(t+ 1) = βN+1
2,j tanh

(∑
i

βj1,i tanh (ui(t))

)
. (4)

2.2 RANN Parameter Initialization Using Mathematical Models

2.2.1 Linear versus Non-Linear Training

The training of the RANN system is performed by adjusting the linear and nonlinear

network parameters in β by nonlinear optimization procedures. As previously mentioned,

6

the success in training depends to a great extent on an appropriate selection of the initial

values of the network parameters. Note that the network response from Eq.(4) depends

linearly only on the parameters βN+1
2,j , other parameters affect the network response in a

nonlinear manner. Consequently, initial values of the network parameters that would be

adequate for successful network training can be determined efficiently by establishing a set

of constraints on the nonlinear parameters. The response of these types of neural networks

can then be rewritten as a linear combination of basis functions Φk (u(t)). Specifically,

vj(t+ 1) ∼=
∑
k

cjkΦk (u(t)) . (5)

In this paper global bases will be formed from linear combinations of transfer functions.

The linear coefficients (connection weights) associated with the bases will be determined

in the process of approximating the dependent variables.

2.2.2 Sigmoidal Networks and Polynomial Bases Approximation

The idea of mapping a conventional approximation scheme, with well established approxi-

mation properties, into neural network architecture has been pursued in the literature [13]-

[17] for theoretical studies regarding the density and approximation properties of ANNs

and the dependence of the network approximation error on the number of neurons. In

this paper, the mapping approach is used with a new and practical intent. Specifically,

the well known method of polynomial approximation, commonly used in data analysis and

computational mechanics applications, will be mapped into a network architecture for the

emulation of mechanical systems. Attention is drawn to the following formula

ψ℘ (w, x) =
∂|℘|

∂wp1
1 ...∂w

ps
s
ψ
(
wTx+ θ

)
= x℘ψ(|℘|)

(
wTx+ θ

)
. (6)

where (·)T denotes a vector transpose, x℘ = x1
p1 ... xs

ps , ℘ is a multi-index such that

|℘| = p1 + ... + ps, ψ is a nonlinear and non-polynomial function and superscript (·)

represents the order of the ordinary derivative of ψ. Equation (6) shows that a polynomial

x℘ can be readily expressed as

x℘ =
(
ψ(|℘|)(θ)

)−1
ψ℘ (0, x) . (7)

7

where the bias θ is selected by the user. Therefore, by replacing the partial derivative

ψ℘ (0, x) by an adequate finite difference approximation, one can accurately approximate

the polynomial x℘ by a finite linear combination of functions in the form ψ
(
wTx+ θ

)
. The

following finite difference scheme is given as an example

ψ℘ (0, x) ∼= Ψ (x) = (2∆w)−|℘|
∑

0≤ζ≤℘
(−1)|ζ|

 ℘

ζ

ψ ((2ζ − ℘)T∆wx+ θ
)

, (8)

where ∆w is a small positive constant and the multi-integer binomial is defined as ℘

ζ

 =
s∏
j=1

 pj

rj

 . (9)

Note that the accuracy of the finite difference scheme of Eq.(8), within a bounded domain

of x, is given by

max |Ψ (x)− ψ℘ (0, x)| ≤ C (∆w)2 . (10)

By combining Eqs. (8) and (9) and replacing the function ψ (x) by the neuron transfer

function Υ (x) it can be shown that the polynomial x℘ can be approximated by a network

layer of
∏s
j=1 (pj + 1) neurons. The error of this approximation can be made arbitrarily

small by the selection of ∆w and θ. For example, the linear function x can be approximated

by xa, where

xa =
(
2∆w Υ(1)(θ)

)−1
[Υ (∆wx+ θ)−Υ (−∆wx+ θ)] . (11)

This approach is also valid for constructing products of dependent variables,

xa ya =
(
4∆wx ∆wy Υ(2)(θ)

)−1
[Υ (∆wxx+ ∆wyy + θ) + Υ (−∆wxx−∆wyy + θ) +

−Υ (−∆wxx+ ∆wyy + θ)−Υ (∆wxx−∆wyy + θ)] (12)

and multilayered approximations

xa2 =
(
2∆w Υ(1)(θ)

)−1
[Υ (∆wxa1 + θ)−Υ (−∆wxa1 + θ)] , (13)

where xa1 is the approximation from Eq.(11) and xa2 is the result from the second layer of

neurons.

8

In section 4.1.1 this approach will be combined with the mathematical model of a

physical system to obtain a reliable and accurate scheme for RANN construction for training

initialization.

3 APPROACH: GTR

3.1 Background

As previously mentioned, GTR was specifically developed to solve ill-posed problems. The

concept of ill-posed problems can be illustrated with a simple example. Assume some

unknown or underlying physical process, u, produces an observable output h, i.e.,

F(u) = h , (14)

where for a linear operator F , h may be an approximation of u. On the other hand, F

may be nonlinear and h and u may exist in entirely different function spaces, in which case

h is defined as the“proxy” output.

The measured outputs he are the experimental data defined as

he(xi) = h(xi) + µi (15)

where µi denotes the random noise of measurements at the coordinate xi. If h is a proxy

output then he(xi) is referred to as the proxy data. The inverse problem is to construct an

approximating hypersurface

ugtr(x) =
∑
k

Φk(x)ck , (16)

where ck are coefficients corresponding to the basis functions Φk. The function ugtr(x) is

designed to pass approximately through the experimental data points he(xi). The con-

struction of a response surface from the minimization of the standard mean squared error,

N∑
i=1

(he(xi)−F(ugtr(xi)))
2 (17)

constitutes an ill-posed problem in the sense of Hadamard [19] because the reconstructed

hypersurface ugtr(x) is non-unique and is sensitive to noise in the data.

9

The single central idea in GTR is the minimization of an error term ε where

ε = A+ λB (18)

where A is a measure of the agreement between the hypersurface approximation ugtr(x)

and the data and can usually be written as

A =

(
N∑
i=1

|he(xi)−F(ugtr(xi))| − δ
)2

(19)

where

N∑
i=1

|he(xi)−F(ugtr(xi))| ≤ δ . (20)

In Bayesian terms A is related to a posteriori knowledge. B is a stabilizing functional, also

known as the regularizing operator, which can usually be written as

B = (Λ(ugtr)− η)2 (21)

where

Λ(ugtr) ≤ η , (22)

and is related to a priori information. In practice B is classified as either quantitative

or qualitative and can range from systems of time-dependent nonlinear partial differential

equations, to statistical correlations, to heuristics. The regularizing parameter λ controls

the relevance of the a posteriori and a priori information to the hypersurface ua. Finding

an approximate solution to Eq.(18) reduces to: (a) finding regularizing operators B, and

(b) determining the regularization parameter λ from supplementary information pertaining

to the problem, for example, pertaining to the noise level in he. It is apparent then that

the form of B is not unique and depends on the type of physical process and the data type.

In addition, the direct determination of λ is an area of active research.

It is believed that the framework offered by GTR is ideally suited for the intelligent

analysis of experimental data and the seamless merging of data and computational me-

chanics models in ANN architecture. However, finding an approximate solution to Eq.(14)

10

reduces to finding regularizing operators Λ, and determining the regularization parameter

λ from supplementary information pertaining to the problem, for example, pertaining to

the size of the error in he.

It is apparent then that the form of B is not unique and depends on the type of physical

process and the type of data he. In practice B are classified as either quantitative or

qualitative and can range from systems of time-dependent nonlinear partial differential

equations, to statistical correlations, to heuristics. In the utilization of GTR in this paper,

the physical model in nonvariational form [20] is put in place of Λ and the minimization

of ε is replaced with a conventional computational mechanics form using the method of

weighted residuals (MWR) [21].

Two classes of methods can be used to solve the regularization problem: implicit meth-

ods, and explicit methods. In implicit methods, the regularizers are formed from a priori

mathematical models. Until recently, such regularizers had only been developed when the

optimization problem of Eq.(18) could be cast in variational form. Explicit methods, by

contrast, treat the mathematical model as a numerical (or synthetic) data stream to be

fused with the experimental data. In this explicit approach, the regularization step is ap-

plied as a post-processing step. The equations of the mathematical model are replaced

with a smoothing functional applied to the difference between and the numerical data. It

has been shown [20] that both implicit and explicit approaches to regularization can be

interpreted as an integration of experimental and computational data by which the theo-

retical response of a physical system is “fine-tuned” through available experimental data

and the adjustment of λ. It has also been shown [20] that the developed method can be

used efficiently to process and filter noisy measurements. The response of the mathematical

model characterizes target features of the physical system, which are then used to separate

the serviceable part of the data from its noisy component.

Say the mathematical model of the mechanics problem can be described by the equations

L[u(x)]− g(x) = R(x) = 0 , x ∈ Ω and B[u(x)] = 0 , x ∈ ∂Ω , (23)

11

where L[·] is a general differential operator, B[·] is the boundary operator and R(x) is the

equation residual. The solution to Eq. (23) can also be determined by minimization of the

objective function,

ε(ugtr) =
N∑
i=1

(|he(xi)− hgtr(xi)| − δ)2 + λ
(
〈Rgtr(x), Rgtr(x)〉+ (B[ugtr])

2 − η
)

. (24)

where 〈·〉 represents the inner product and Rgtr(x) represents the equation residual for ugtr.

Preselecting the distribution and localization properties of the basis functions, Eq. (24) is

minimized with respect to the remaining unknowns, ck, resulting in

(λG + Q) c̄ = λb + e . (25)

where

Gkj = 〈ψk(x), L[Φj]〉 , Qkj =
N∑
i=1

F [Φk(xi)]F [Φj(xi)] , bk = 〈ψk(x), g〉 ,

and ek =
N∑
i=1

F [Φk(xi)] (he(xi)− δ) .

The symbol G represents the conventional discretization matrix from computational me-

chanics, Q is a matrix containing the independent variable information of the measurement

points, the vector b is the forcing term of the a priori mathematical model, e represents the

observational data, and ψ(x) is the weighting function. Without regularization, Eq.(25)

is ill-posed. The addition of the model-based G and b terms effectively desingularizes

the problem. One advantage of this method is that it applies to all of the conventional

numerical techniques (such as finite elements, finite volume, finite difference, and spectral

methods) with the appropriate choices of method parameters. These method parameters

involve the choice of basis functions, weighting functions, and integral quadrature.

Use of Eq.(25) requires a-priori knowledge regarding the intensity of the noise in mea-

surements (δ). This is usually available in engineering applications. Also, Eq.(25) suggests

that the regularization technique will work equally well by equating the equation residual

of the a-priori mathematical model to the function residual of the he−hgtr. Therefore, the

value of the regularization parameter λ can be determined such that the trace of λG + Q

is close to zero.

12

4 RESULTS

4.1 Developing A RANN Model of Duffing’s Equation

The a-priori mathematical model of the the inhomogeneous Duffing’s equation can be

described by the following second-order ordinary differential equation

d2x

dt2
+ 2µ

dx

dt
− 1

2

(
x− x3

)
= F0 cos (ωt) (26)

where t, x, µ, F0, and ω represent the time, displacement, damping coefficient, force ampli-

tude, and frequency of excitation, respectively. Equation (26) describes the forced motion

of a particle between two equilibrium states. The importance of this equation is that its

chaotic and nonchaotic behavior has been extensively examined by theoretical [22], exper-

imental [23], and numerical methods [11], [24] - [26].

To make the Duffing’s equation more easily approachable by the RANN construction

method, and to allow the user to obtain particle displacement and velocity, Eq.(26) is

reduced to a system of two first-order equations by the following change of variables

s =
x

κ1

, y =
1

κ2

dx

dt
=

1

κ2

ẋ , (27)

where κ1 and κ2 are constants used to scale the new variables. Therefore, Eq.(26) becomes

ds

dt
= κ3y (28)

where κ3 =
κ2

κ1

and

dy

dt
= −2µy +

1

2κ3

(
s− κ1

2s3
)

+
F0

κ2

cos (ωt) . (29)

4.1.1 RANN Model of the Duffing’s Equation

For this paper integration of the initial value problem of Eqs. (28) and (29) will be made, for

arbitrary coefficients, by the explicit MacCormack method [27]. The MacCormack method

is a finite-difference, predictor-corrector scheme commonly used in the solution of time-

dependent fluid dynamics equations. It should be noted that the RANN programming

approach can use any time marching technique that can be put into explicit form (e.g.

13

Runge-Kutta method). The application of the MacCormack technique to a general first-

order ordinary differential equation

du

dt
− f(u, t) = 0 ,

where f is some arbitrary function of the dependent variable u and independent variable

t, results in

Predictor: u∗ = un + ∆tf(un, tn)

Corrector: un+1 =
1

2
(un + u∗ + ∆tf(u∗, t∗)) = un +

∆t

2
(f(un, tn) + f(u∗, t∗))

where the superscripts denote the time level and t∗ = tn + ∆t.

Application of the MacCormack method to Eqs. (28) and (29) results in

s∗ = sn + ∆tf1(sn, yn, tn)

sn+1 = sn +
∆t

2
(f1(sn, yn, tn) + f1(s∗, y∗, t∗)) (30)

y∗ = yn + ∆tf2(sn, yn, tn)

yn+1 = yn +
∆t

2
(f2(sn, yn, tn) + f2(s∗, y∗, t∗)) (31)

where

f1(s, y, t) = κ3y and f2(s, y, t) = −2µy +
1

2κ3

(
s− κ1

2s3
)

+
F0

κ2

cos (ωt)

Substitution of the expressions for f1, f2, s∗, and y∗ into the equations for sn+1 and yn+1

result in the following algebraic system,

zn = (sn + κ3∆t yn) (32)

sn+1 = H1s
n +H2y

n +H3(sn)3 +H4 cos (nω∆t) (33)

yn+1 = H5s
n +H6y

n +H7(sn)3 +H8(zn)3 +H9 cos (nω∆t)−H10 sin(nω∆t) (34)

sin((n+ 1)ω∆t) = H11 sin(nω∆t) +H12 cos(nω∆t) (35)

cos((n+ 1)ω∆t) = H11 cos(nω∆t)−H12 sin(nω∆t) (36)

14

The coefficients H1 through H12 are

H1 = 1 +
∆t2

4
, H2 = κ3∆t (1− µ∆t) , H3 = −κ

2
1∆t2

4

H4 =
F0∆t2

2κ1

, H5 =
∆t

2κ3

(1− µ∆t) , H6 = 1− 2µ∆t+ 2µ2∆t2 +
∆t2

4

H7 = −κ1
3

κ2

∆t

4
(1− 2µ∆t) , H8 = − κ1

3

κ2κ4
3

∆t

4
, H9 =

F0

κ2

∆t

2
(1− 2µ∆t+ cos(ω∆t))

H10 = −F0

κ2

∆t

2
sin(ω∆t) , H11 = cos(ω∆t) , H12 = sin(ω∆t) (37)

If it is required that ∆t be constant then the time dependent coefficients of Eq.(37)

become constants for specific values of µ, F0, κ1 and κ2. Equations (32) through (36) are

the linear and nonlinear algebraic equations that approximate Duffing’s equation and that

must be modelled by the RANN.

For the sake of convenience the magnitude of all dependent variables are scaled to lie

in the closed interval [−1, 1]. To satisfy this constraint on the magnitude of the dependent

variables sn, yn and zn it is required that

κ1 > |x| , κ2 >

∣∣∣∣∣dx

dt

∣∣∣∣∣ and κ4 ≥ 1 + ∆tκ3 , respectively. (38)

Using the results of section 2.2.2 the time dependent unknowns of the nonlinear set of

algebraic equations can be approximated by the linear combination of transfer functions

Υ with a user specified order of accuracy. Assuming ξn represents the dependent variables

sn, yn, zn, sin(nω∆t) and cos(nω∆t), an eighth-order accurate scheme was chosen for the

approximation (ξa
n) of the the linear and cubic terms, with θ = 0 and assuming that

Υ(−ξ) = −Υ(ξ), Υ(1)(0) 6= 0 and Υ(3)(0) 6= 0.

ξa
n =

(
5∆w Υ(1)(0)

)−1 [
8Υ(∆wξn)− 2Υ(2∆wξn) + (21)−1(8)Υ(3∆w ξn) (39)

−(28)−1Υ(4∆wξn)
]

+O
(
∆w8

)

(ξa
n)3 =

(
2520∆w3 Υ(3)(0)

)−1
[−11683Υ(∆wξn) + 8738Υ(2∆wξn) (40)

−(2)−1(4869)Υ(3∆w ξn) + (3)−1(1261)Υ(4∆wξn)

−(12)−1(410)Υ(5∆wξn)
]

+O
(
∆w8

)
15

Since the updated dependent variables must each exit a single node in the second layer,

the following approximation was used:

mξa
n+1 = m

(
∆w Υ(1)(0)

)−1
Υ(∆w ξn+1) +O

(
∆w2

)
. (41)

where m is an integer constant.

Using these approximations with Υ(ξ) = tanh(ξ), Eqs. (32) through (36) become

m1∆wsa
n+1 = m1 tanh [∆w H1sa

n + ...+ ∆w H4 cosa(nω∆t)] (42)

for m1 = 1, ..., 5 ,

m2∆wya
n+1 = m2 tanh [∆w H5sa

n + ...−∆w H10 sina(nω∆t)] (43)

for m2 = 1, ..., 4 ,

m3∆wza
n+1 = m3 tanh [∆w sa

n + κ3∆t ya
n] for m3 = 1, ..., 5 , (44)

m4∆w sina((n+ 1)ω∆t) = m4 tanh [∆w H11 sina(nω∆t) + ∆w H12 cosa(nω∆t)] (45)

for m4 = 1, ..., 4 and

m5∆w cosa((n+ 1)ω∆t) = m5 tanh [∆w H11 cosa(nω∆t)−∆w H12 sina(nω∆t)] (46)

for m5 = 1, ..., 4 .

Figure 2 is a sketch of the fully connected two-layer, twenty two node, RANN given by

Eqs. (42) through (46), which are third-order accurate. An initial time t0 = 0 is assumed.

4.2 Modification of an ANN Generated Chaotic Time Series

The explicit approach outlined in section 3.1 was chosen for the regularization of the RANN.

In this approach merit function is written as

ε =

(
N∑
i=1

∣∣∣se(ti)− sgtr(t
i)
∣∣∣− δ1

)2

+

(
N∑
i=1

∣∣∣ye(ti)− ygtr(t
i)
∣∣∣− δ2

)2

+

λ1 (〈R1gtr(x), R1gtr(x)〉 − η1) + λ1 (〈R2gtr(x), R2gtr(x)〉 − η2) , (47)

16

where

R1gtr(t) =
d (sgtr − sa)

dt
+ (sgtr − sa)

R2gtr(t) =
d (ygtr − ya)

dt
+ (ygtr − ya) ,

If both the regularized and the pre-existing numerical approximations of s and y can

be represented by a weighted sum of piecewise linear basis functions, we can write their

respective time series up to time level n as

sgtr(t) =
n∑
j=1

(
Φj(t)s

j
gtr + ϕj−1(t)sj−1

gtr

)
,

where

Φj(t) ≡

(t− tj−1) /∆tj−1 tj−1 ≤ t ≤ tj

0 otherwise

ϕj(t) ≡

(tj+1 − t) /∆tj tj ≤ t ≤ tj+1

0 otherwise

where ∆tj−1 = tj − tj−1 = ∆tj = tj+1 − tj = ∆t for a constant time step.

Using s as an example, Eq.(47) is minimized with respect to the time level n, resulting

in

λ1

n∑
j=1

(
〈ψn, L [Φj]〉sjgtr + 〈ψn, L [ϕj−1]〉sj−1

gtr

)
+

n∑
j=1

N∑
i=1

(
Φn(ti)Φj(t

i)sjgtr + Φn(ti) ϕj−1(ti)sj−1
gtr

)
=

λ1

n∑
j=1

(
〈ψn, L [Φj]〉sja + 〈ψn, L [ϕj−1]〉sj−1

a

)
+

N∑
i=1

Φn(ti)
(
ye(t

i)− δ1

)
.

where

ψn =
dΦn

dt
+ Φn , L [Φj] =

dΦj

dt
+ Φj , and L [ϕj] =

dϕj
dt

+ ϕj .

Restricting our attention to the interval between time levels tn−1 and tn, we can finally

write the linear algebraic equation that computes the regularized system response as,(
λ1 (2∆t+ 3) + 12

N∑
i=1

Φn(ti)Φn(ti)

)
sngtr = −

(
λ1 (∆t− 3) + +12

N∑
i=1

Φn(ti) ϕn−1(ti)

)
sn−1

gtr +

λ1 (2∆t+ 3) sna + λ1 (∆t− 3) sn−1
a + 12

N∑
i=1

Φn(ti)
(
se(t

i)− δ1

)
.

(48)

17

The algebraic equation for yngtr is nearly identical,(
λ2 (2∆t+ 3) + 12

N∑
i=1

Φn(ti)Φn(ti)

)
yngtr = −

(
λ2 (∆t− 3) + +12

N∑
i=1

Φn(ti) ϕn−1(ti)

)
yn−1

gtr +

λ2 (2∆t+ 3) yna + λ2 (∆t− 3) yn−1
a + 12

N∑
i=1

Φn(ti)
(
ye(t

i)− δ2

)
.

(49)

The RANN of Fig. 2 was constructed with the damping value and excitation amplitude

of µ = 0.084 and F0 = 0.178, respectively, and run for the same forcing frequency range

(ω = 0.633 to ω = 1.02) illustrated in Fig. 3. Previous results of the two well potential

system [11] indicate a maximum displacement between ± 2.0 and maximum velocity be-

tween ± 1.0. As a result κ1 = 4.0 and κ2 = 2.0. Initial conditions were set for x(0) = 1.0

and ẋ(0) = 0.0. To ensure that steady-state solutions were displayed, approximations were

run for 900 periods, T, based on the forcing frequency ω (T = 2π/ω). Throughout the

simulation the time step (∆t = T/200) used in the RANN was half that used in the Masoud

and Asfar study. All computations were done in single precision with ∆w = 1× 10−4 and

all test cases were run in less than 40 seconds on a Sparc 20 workstation.

The Duffing equation with chaotic response (ω = 0.860) shown in Fig. 4, was used as

the a-priori mathematical model in approximating the non-chaotic solution from ω = 1.02

as shown in Fig. 5. Two hundred data points (N = 200) for se and ye were used to simulate

experimental information, with δ1 = δ2 = 0 and λ = 0.15.

Figure 6(a) shows the transient response of the RANN when the GTR acts to modify the

forcing function, using the explicit formulation of Eqs. (48) and (49). When in the region

of the data, the response of the RANN is pulled from the a-priori trajectory, oscillates

and settles into the target response. Figure 6(b) illustrates the satisfactory response of

regularized RANN after the transients have settled out. One can use functional ANOVA

[28] to permanently modify the forcing function or use parameter identification to modify

the model equation.

18

5 CONCLUSIONS

A method was developed for manually constructing recurrent artificial neural networks to

model the fusion of experimental data and mathematical models of physical systems. The

construction required the use of GTR and imposing certain constraints on the values of the

input, bias, and output weights. The attribution of certain roles to each of these parameters

allowed for mapping a polynomial approximation into an artificial neural network archi-

tecture. GTR provided a rational means of combining theoretical models, computational

data, and experimental measurements into a global representation of a domain. Particular

attention was focused on the inhomogeneous Duffing’s oscillator. The nonlinear ordinary

differential equation was modelled by the recurrent artificial neural network architecture in

conjunction with the popular hyperbolic tangent transfer function. GTR was then used to

smoothly merge the response of the RANN and experimental data. A numerical example

was presented illustrating the accuracy and utility of the method.

The author chose to map the algebraic equations, rather than the explicit differential

equations, because it was thought that this will give greater utility to the engineer. The

more popular numerical techniques, such as finite difference and finite elements, reduce

differential equation to algebraic form for use on digital computers. As a result, the engineer

can use these familiar and well understood techniques in the process of programming and

regularizing the RANN.

6 ACKNOWLEDGEMENTS

This work was supported under ONR grant N00014-95-1-0741.

REFERENCES

[1] Rumelhart, D. E. and McClelland, J. L. (1986) Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition, (MIT Press, Cambridge MA) pp. 318-362.

[2] Williams, R. J. and Zipser, D. (1989) A Learning Algorithm for Continually Running
Fully Recurrent Neural Networks, Neural Computation, 1, pp. 270-280.

19

[3] Pineda, F. J. (1989) Recurrent Backpropagation and the Dynamical Approach to
Adaptive Neural Computation, Neural Computation, 1, pp. 161-172.

[4] Saarinen, S., Bramley, R. and Cybenko, G. (1993) Ill-Conditioning in Neural Network
Training Problems, SIAM J. Sci. Comput., 14, 3, pp. 693-714.

[5] Igelnik, B. and Pao, Y.-H. (1995) Stochastic Choice of Basis Function in Adaptive
Function Approximation and the Function-Link Net, IEEE Transactions on Neural
Networks, 6, 6, pp. 1320-1329.

[6] Schidt, W.F., Raudys, S., Kraaijveld, M.A., Skurikhina, M. and Duin, R.P.W. (1993)
Initializations, Back-Propagation and Generalization of Feed-Forward Classifiers, Pro-
ceedings of IEEE International Conference on Neural Networks, ICNN-93, Vol. 1, pp.
598-604.

[7] Poggio, T. and Girosi, F. (1990) Networks for Approximation and Learning, Proceed-
ings of the IEEE, 78, 9, pp. 1481-1497.

[8] Canto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T.A. (1988) Spectral Methods in
Fluid Dynamics, (Springer-Verlag, Berlin Heidelberg), pp. 31-75.

[9] Box, G.E.P. and Draper, N.R. (1987) Empirical Model-Building and Response Surface
(Wiley, New York).

[10] Ulbrich, M. (1998) A Generalized Tikhonov Regularization for Nonlinear Inverse Ill-
Posed Problems, TUM-M9810, Fak. F. Math, Techn. Univ. München, München, Ger-
many.

[11] Masoud, K. K. and Asfar, K. R. (1993) Period Doublings, Bifurcations and Strange At-
tractors in a Two-Well Potential Oscillator, European Journal of Mechanics, A/Solids,
12, 3, pp. 417-428.

[12] Hecht-Nielsen, R. (1990) Neurocomputing (Addison-Wesley, Inc., New York), pp. 183-
191.

[13] Hornik, K., Stinchcombe, M. and White, H. (1989) Multilayer Feedforward Networks
are Universal Approximators, Neural Networks, 2, pp. 359-366.

[14] Hornik, K., Stinchcombe, M. and White, H. (1990) Universal Approximation of an Un-
known Mapping and its Derivatives Using Multilayer Feedforward Networks, Neural
Networks, 3, pp. 551-560.

[15] Ito, Y. (1991) Representation of Functions by Superpositions of a Step or Sigmoidal
Function and Their Applications to Neural Network Theory, Neural Networks, 4, pp.
385-394.

[16] Leshno, M., Lin, V.Y., Pinkus, A. and Schocken, S. (1993) Multilayer Feedforward
Networks with a Nonpolynomial Activation Function Can Approximate Any Function,
Neural Networks, 6, pp. 861-867.

[17] Mhaskar, H.N. (1995) Neural Networks for Optimal Approximation of Smooth and
Analytic Functions, Neural Computation, 8, pp. 164-177.

[18] Tikhonov, A. N. and Arsenin, V. Y. (1977) Solution of Ill-Posed Problems, V. H.
Winston & Sons, Washington, D.C.

[19] Hadamard, J., Lecture on Cauchy Problem in Linear Partial Differential Equations,
Yale University Press, New Haven, CT, 1923.

20

[20] Zeldin, B. A. and Meade, A. J. (1997) Integrating Experimental Data and Mathemat-
ical Models in Simulation of Physical Systems, AIAA J., 35, 11, pp. 1787-1790.

[21] Fletcher, C. A. J. (1984) Computational Galerkin Methods, Springer, New York, N.Y.,
1984.

[22] Holmes, P. (1979) A Nonlinear Oscillator with a Strange Attractor, Phil. Trans. The
Roy. Soc. London, 292, pp. 419-448.

[23] Moon, F. C. (1980) Experiments on Chaotic Motions of a Forced Nonlinear Oscillator:
Strange Attractors, ASME Journal of Applied Mechanics, 47, pp. 638-644.

[24] Ueda, Y. (1979) Randomly Transitional Phenomena in the System Governed by Duff-
ing’s Equation, Journal of Statistical Physics, 20, 2, pp. 181-196.

[25] Dowell, E. H. and Pezeshki, C. (1986) On the Understanding of Chaos in Duffings
Equation Including a Comparison With Experiment, Journal of Applied Mechanics,
53, pp. 5-9.

[26] Pezeshki, C. and Dowell, E. H. (1988) On Chaos and Fractal Behaviour in a Generalised
Duffing’s System, Physica D, 32, pp. 194-209.

[27] Anderson, D. A., Tannehill, J. C. and Pletcher, R. H. (1984) Computational Fluid
Mechanics and Heat Transfer (Hemisphere Publishing Corporation, New York), pp.
163-164.

[28] Lin, X., Wahba, G., Xiang, D. Gao, F., Klein, R. and Klein, B. (1998) Smoothing Spline
ANOVA Models for Large Data Sets With Bernoulli Observations and Randomized
GACV, TR No. 998, Department of Statistics, University of Wisconsin, Madison, WI.

21

u (t)
1

v (t+1)
1

u (t)
P

u (t)
M

v (t+1)
L

v (t+1)
N

Figure 1: General RANN architecture.

(∆w)y
n+1

(∆w)s
n+1

(∆w)cos((n+1)ω∆t)

(∆w)sin((n+1)ω∆t)

n
(∆w)y

(∆w)s
n

(∆w)cos(nω∆t)

(∆w)sin(nω∆t)

(∆w)z
n

(∆w)z
n+1

Figure 2: Complete two-layer twenty two node RANN assembly from the network con-

struction scheme applied to Duffing’s equation.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
ω

a b c d e f g h i

Figure 3: Classification of frequency response for the inhomogenous Duffing’s equation: (a)

and (i) period-1 motion; (b) second chaotic region; (c) evolution of period-3 attractor into

chaos; (d) first chaotic region; (e) period doubling bifurcations in the period-5 attractor;

(f) bifurcations from the symmetric period-5 attractor to asymmetric one; (g) coexistence

of the period-5 attractor; (h) period doubling bifurcations.

22

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

DISPLACEMENT

V
E

LO
C

IT
Y

Figure 4: Chaotic phase space trajectory of the a-priori model (ω = 0.860).

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

DISPLACEMENT

V
E

LO
C

IT
Y

Figure 5: Desired nonchaotic trajectory (ω = 1.02).

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

DISPLACEMENT

V
E

LO
C

IT
Y

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

DISPLACEMENT

V
E

LO
C

IT
Y

Figure 6: (a) Transients of the regularized RANN using GTR. (b) Response of the RANN

using GTR using λ = 0.15.

23

