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Chapter 1

Two-Level-Atom and Semiclassical

Theory

In quantum optics, we are often interested in the dynamics of atoms coupled to an electromagnetic field

(laser). Simple models are required to describe many of the most important features of this dynamics. In

these models, the field may be described either classically or fully quantum mechanically, while the atomic

system is adequately described by a small number of essential states (together with a free-electron continuum

in problems involving ionization). This simplest atomic model is of course the two-level-atom.

1.1 Two-Level-Atom

The level structures of a real atom look anything but two-level. So how can a two-level-atom (TLA) be a

good approximation? The reason lies in two factors: 1) Resonance excitation and 2) Selection rules.

The absorption cross section of an atom absorbing an off-resonant photon is generally of the order of

1Å2. But when the frequency of the photon matches with the transition frequency from the initial state to

some final state, the cross section can be enhanced by many orders of magnitude. This is why the intensities

of the lasers used in labs are much less than that required to produce an electric field with one atomic unit

(8.3× 1016W/cm2).

Under the resonance condition, many levels lying far away from the resonance can be simply ignored.

In addition, the dipole section rules dictates only certain magnetic sublevels are excited. In most cases, the

field therefore only causes transitions between a small number of discrete states, in the simplest of which

only two states are involved.

1.2 Semiclassical Theory

In the semiclassical theory of atom-photon interaction, the atom is quantized (it has quantized level struc-

tures), while the light field is treated classically. The classical treatment of field is valid when the field
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contains many photons, hence the quantum mechanical commutation relations are no longer important.

Of course, certain aspects of atom-photon interaction cannot be studied with the semiclassical theory,

e.g., the spontaneous emission of an atom.

By treating the field classically, we neglect the quantum correlations of the atomic operators and the

field.
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Chapter 2

Optical Bloch Equations

2.1 operator physics for a two-level atom

The states for a two-level atom: |g〉 and |e〉. They are assumed to have opposite parity (hence dipole transition

is allowed) and orthogonal to each other. From these one can construct four independent operators:

|g〉〈g|, |g〉〈e|, |e〉〈g|, |e〉〈e|,

which form a complete basis. Any arbitrary operator, Ô, can then be expanded onto this basis as

Ô = Oggσ̂gg + Ogeσ̂ge + Oegσ̂eg + Oeeσ̂ee

where σ̂ij = |i〉〈j|, and Oij = 〈i|Ô|j〉. In particular, the dipole operator d̂ = er̂ can be expressed as

d̂ = dgeσ̂ge + degσ̂eg

where we have used the property that states |g〉 and |e〉 have opposite parity such that 〈g|r̂|g〉 = 〈e|r̂|e〉 = 0.

2.2 Feynman-Bloch Equations

Assume deg = dge = d, the total Hamiltonian under the dipole approximation is:

H = ~ω0σ̂ee − d̂ ·E = ~ω0σ̂ee − d ·E(σ̂ge + σ̂eg)

Using

i~ ˙̂
O = [Ô, H],

the equations of motion in Heisenberg picture for σij = 〈σ̂ij〉 are (note that the equations of motion for

operators σ̂ij are linear, their respective expectation values σij obey exactly the same equations.)

i~σ̇gg = −d ·E(σge − σeg) (2.1)

i~σ̇ee = d ·E(σge − σeg) (2.2)

i~σ̇eg = −~ω0σeg − d ·E(σee − σgg) (2.3)

i~σ̇ge = ~ω0σge + d ·E(σee − σgg) (2.4)
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From these 4 quantities, we can difine

S0 = σgg + σee, probability (2.5)

S1 = σge + σeg, dipole moment (2.6)

S2 = i(σge − σeg), dipole current (2.7)

S3 = σee − σgg, population inversion (2.8)

The equations of motion are

Ṡ0 = 0 (2.9)

Ṡ1 = −ω0S2 (2.10)

Ṡ2 = ω0S1 +
2d ·E
~

S3 (2.11)

Ṡ3 = −2d ·E
~

S2 (2.12)

Define the Feynman-Bloch vector

S = [S1, S2, S3]

the last three equations of motion can be combined to give

Ṡ = Ωopt × S (2.13)

where the vector

Ωopt = [−2d ·E
~

, 0, ω0]

For typical parameters, ω0 À |2d · E/~|, so Ωopt ≈ ω03̂ (designate by 1̂, 2̂ and 3̂ the fixed unit vectors of

the three-dimensional coordinate system). Hence, from Eq. (2.13), the “main motion” of S is then simply

constant precession about axis-3̂.

Now, for a monochromatic light field,

E(r, t) = E0

(
e−iωt + c.c.

)
= E0 cos ωt

we can decompose Ωopt as

Ωopt = Ω(3) + Ω(+) + Ω(−)

where

Ω(3) = ω0 3̂ (2.14)

Ω(±) = −R (cos ωt 1̂± sin ωt 2̂) (2.15)

where R = 2d ·E0/~ is the so-called Rabi frequency.

We can see that Ω(±) rotate in the 1̂-2̂ plane in opposite directions. Ω(+) rotates in phase (co-rotating)

with the main motion of S, while Ω(−) (counter-rotating) rotates in the opposite direction from the main

motion. We expect S to see a very rapidly alternating effect from Ω(−) and a persistent effect from Ω(+).
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2.3 rotating wave approximation and RWA equations

Taking the hint from the discussion above, let us define a rotating coordinate with rotating axis 3̂:

e1(t) = cos ωt 1̂ + sin ωt 2̂ (2.16)

e2(t) = − sin ωt 1̂ + cos ωt 2̂ (2.17)

e3 = 3̂ (2.18)

Key advantage of rotating frame: automatically separates time scales, allowing more detailed examination

of slow but significant changes.

Now we want to derive the new equation of motion, i.e., the counterpart of Eq. (2.13) in the rotating

frame. First, we decompose S in the new frame as

S = u e1(t) + v e2(t) + we3

where 


u

v

w


 =




cosωt sin ωt 0

− sin ωt cosωt 0

0 0 1







S1

S2

S3




Second, we want to decompose Ωopt. Using

Ω(3) = ω0 e3 (2.19)

Ω(+) = −Re1 (2.20)

Ω(−) = −R (cos 2ωt e1 − sin 2ωt e2) (2.21)

As one can see, Ω(−) represents terms rotating at frequency 2ω. These fast rotating terms average quickly

to zero. This is the reason that we can neglect these double-frequency terms. This is called the Rotating

Wave Approximation (RWA).

Now we seem to be ready to convert Eq. (2.13) into the rotating frame. But before doing so, we should

remind ourselves about the Coriolis effect from classical mechanics: the rate of change of a vector V in a

rotating frame is the rate of change of V in the original fixed frame minus a Coriolis term, which is given

by ωâ ×V, where â is the unit vector in the direction of the axis of rotation and ω is the rate of rotation.

Therefore, (
Ṡ
)

rot
=

(
Ṡ
)

fixed
− ω3̂× S = ΩRWA × S (2.22)

where

ΩRWA = −R e1 −∆ e3

with ∆ = ω − ω0 being the laser detuning from atomic transition frequency.

The equations for the components of S in the rotating frame under RWA can be easily extracted:

d

dt




u

v

w


 =




0 ∆ 0

−∆ 0 R

0 −R 0







u

v

w


 (2.23)
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It is also instructive to note that the expectation value of the dipole operator

〈d̂〉 = dgeσge + c.c. =
1
2
dge(S1 − iS2) + c.c. =

1
2
dge(u− iv)e−iωt + c.c.

Hence (u − iv) can be interpreted as the dimensionless part of the dipole moment in the rotating frame.

Furthermore,

u2 + v2 + w2 = 1

2.4 RWA: an alternative formulation

Consider a two-level atom interacting with a classical laser light whose electric field is written as

E(r, t) = E0(r)
(
e−i[ωt+φ(r)] + c.c.

)
(2.24)

The Hamiltonian that describes the interaction reads

H = HA + HAF

where the atomic bare Hamiltonian

HA = ~ω0σ̂ee

and the atom-field interaction Hamiltonian

HAF = −d̂ ·E =
~
2
Ω(r)e−iωt (σ̂eg + σ̂ge) +

~
2
Ω∗(r)eiωt (σ̂ge + σ̂eg)

where Ω(r) = −2d ·E0(r)e−iφ(r)/~ is the Rabi frequency.

Using

i~ ˙̂
O = [Ô, H],

the equations of motion in Heisenberg picture for σeg = (σge)∗ and σee = 1− σgg (σij = 〈σ̂ij〉) are

iσ̇eg = −ω0σeg +
Ω∗(r)

2
eiωt(σee − σgg) +

Ω(r)
2

e−iωt(σee − σgg) (2.25)

iσ̇ee =
Ω(r)

2
e−iωt(σeg − σge) +

Ω∗(r)
2

eiωt(σeg − σge) (2.26)

Define the slowly varying variables (equivalent to changing into a rotating frame)

σ̃eg = (σ̃ge)† = e−iωtσeg, σ̃ee = σee, σ̃gg = σgg

The OBEs become

i ˙̃σeg = ∆σ̃eg +
Ω∗(r)

2
(σee − σgg) +

Ω(r)
2

e−i2ωt(σee − σgg) (2.27)

iσ̇ee =
Ω(r)

2
(
σ̃eg − e−i2ωtσ̃ge

)
+

Ω∗(r)
2

(
ei2ωtσ̃eg − σ̃ge

)
(2.28)

Now under RWA, we drop those double-frequency terms and obtain

i ˙̃σeg = ∆σ̃eg +
Ω∗(r)

2
(σee − σgg) (2.29)

iσ̇ee =
Ω(r)

2
σ̃eg − Ω∗(r)

2
σ̃ge (2.30)
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Equivalently, we can start from the RWA interaction Hamiltonian

HRWA
AF = −d̂ ·E =

~
2
Ω(r)e−iωtσ̂eg +

~
2
Ω∗(r)eiωtσ̂ge

Instead of σee and σgg, it is sometimes convenient to use the population inversion defined as

w = σee − σgg

and it satisfies

ẇ = 2σ̇ee = Ω(r)σ̃eg − Ω∗(r)σ̃ge

The OBE’s can be solved analytically if Ω(r) = Ω is a constant. But the general solution is quite

complicated. For the special initial condition that all the populations are in the ground state, i.e., w(0) = −1

and σ̃eg(0) = σ̃ge(0) = 0, the solution for the population inversion is

w(t) = −∆2 + |Ω|2 cos Ω̃t

Ω̃2

where Ω̃ =
√

∆2 + |Ω|2 is the generalized Rabi frequency. The oscillation amplitude is given by 2|Ω|2/Ω̃2.

The effect of increasing |∆| is to increase the oscillation frequency, and to decrease the oscillation amplitude.

2.5 relaxation

Relaxation arises from the collection of weak and effectively random perturbations that practically every

atomic oscillator is subject to. These perturbations are conventionally attributed to interaction with the

“environment” or “reservoir”, which means any very large physical system coupled to a single atom in a

weak way over a very wide frequency band. The effect of the atom on each reservoir mode is infinitesimal,

insignificant for the reservoir, but with cumulative phase memory over the modes and in this way the atom

produces a finite back reaction on itself that has a damping effect on its diagonal (population) and off-

diagonal (coherence) atomic dynamics. For example, spontaneous emission of an excited atom arises from

the interaction between the atom with the vacuum EM modes. I think a full account of relaxation is out

of scope for this course. So let us just take it phenomenologically: adding by hand the decay rates of the

excited state population σee and coherence σeg, σge as:

i ˙̃σeg = −i
Γ
2

σ̃eg + ∆σ̃eg +
Ω∗(r)

2
(σee − σgg) (2.31)

iσ̇ee = −iΓσee +
Ω(r)

2
σ̃eg − Ω∗(r)

2
σ̃ge (2.32)

I take here the decay rate of coherence half that of population. This is the lower limit for the former.

With the addition of relaxation, the above equations allow steady state solutions. In the steady state,

we have

σ̃eg,st =
Ω∗(r)

2∆− iΓ
1

1 + s
(2.33)

σee,st =
1
2

s

1 + s
(2.34)
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where

s =
2|Ω(r)|2
4∆2 + Γ2

is the saturation parameter.

Finally, with relaxation, the equation of motion for Feynman-Bloch vector in the rotating frame becomes:

u̇ = ∆v − u/T2 (2.35)

v̇ = −∆u + Rw − v/T2 (2.36)

ẇ = −Rv − (1 + w)/T1 (2.37)

with 1/T2 = Γ/2 and 1/T1 = Γ. Without the light field (i.e., R = 0), we have

(1 + w)t = (1 + w)0 e−t/T1 (2.38)

(u− iv)t = (u− iv)0 ei∆t−t/T2 (2.39)

With relaxation, the length of the vector u2 + v2 + w2 is no longer a constant. Without the light field, it

eventually decreases to zero.
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Chapter 3

Light Pressure Force and Doppler

cooling on two-level atom

3.1 Expressions for the force for a two-level atom at rest

Consider a two-level atom interacting with a classical laser light whose electric field is written as

E(r, t) = E0(r)
(
e−i[ωt+φ(r)] + c.c.

)
(3.1)

The Hamiltonian that describes the interaction reads

H = HA + HAL

where the atomic bare Hamiltonian

HA =
p̂2

2m
+ ~ω0|e〉〈e|

and the atom-field interaction Hamiltonian under the rotating wave approximation

HAF = −d̂ ·E =
~
2
Ω(r)e−iωt|e〉〈g|+ ~

2
Ω∗(r)eiωt|g〉〈e|

where Ω(r) = −2d ·E0(r)e−iφ(r)/~ = Ω̃(r)e−iφ(r) (Ω̃ = −2d ·E0/~ is real) is the Rabi frequency.

The force acting on the atomic center of mass is

F (r) =
〈

dp̂
dt

〉
= −~

2
〈|e〉〈g|e−iωt

〉∇ [Ω(r)] + c.c.

where we have used
dp̂
dt

=
i

~
[H, p̂]

and

[f(r), p̂] = i~∇f(r)

Now
〈|e〉〈g|e−iωt

〉
= 〈σ̃eg〉. Generally, the characteristic time scale for the atomic internal dynamics is of

the order of Γ−1, which is much faster than the corresponding time scale for the center-of-mass dynamics.
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If this is the case, the internal state of the atoms can be assumed to be in a quasi-steady state relative to

that of the center of mass. So we can replace 〈σ̃eg〉 by its steady state value

σ̃eg,st =
Ω∗(r)

2∆− iΓ
1

1 + s

So the force acting on the atom becomes

F(r) = −~
2
σ̃eg,st∇Ω(r) + c.c.

Using

∇Ω(r) = ∇
(
Ω̃(r)e−iφ(r)

)
= Ω(r)

(
∇Ω̃
Ω̃

− i∇φ

)

we have

F(r) = Fdissipative(r) + Freactive(r) (3.2)

Fdissipative(r) = −~Γ
2

s

1 + s
∇φ(r) (3.3)

Freactive(r) = − ~∆
Ω̃(r)

s

1 + s
∇Ω̃(r) (3.4)

where s(r) = 2Ω̃2(r)/(4∆2 + Γ2).

Example 1: travelling wave with wave vector k = kk̂

E(r, t) = E0

(
e−iωt+ik·r + c.c.

)

therefore,

Ω̃(r) = const, φ(r) = −k · r

Using Eqs. (5.11) and (5.12), we have,

Fdissipative(r) =
~kΓ
2

s

1 + s
k̂, Freactive(r) = 0

Example 2: standing wave

E(r, t) = E0 cos(k · r) (
e−iωt + c.c.

)

therefore,

Ω̃(r) = −(2d ·E0/~) cos(k · r), φ(r) = 0

Using Eqs. (5.11) and (5.12), we have,

Fdissipative(r) = 0, Freactive(r) =
~k∆

1 + s(r)
sin(2k · r)
4∆2 + Γ2

k̂

3.2 Nature of the force

In general, an arbitrary light field consists of a multiple of plane wave components.

Dissipative force, Fdissipative is also called radiation pressure force or spontaneous force. It arises from the

momentum kick received from the photon absorbed out of one plane wave component interacting with the

dissipative component of the dipole moment induced by the light. Its direction is determined by the phase
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gradient of the light, and the strength increases with light intensity but will saturate. For a travelling wave,

as the intensity tends to infinity, Fdissipative reaches its maximum value ~kΓ/2.

Reactive force, Freactive is also called the dipole force or stimulated force. It arises from the momentum

kick received from the photon absorbed out of one plane wave component interacting with the reactive

component of the dipole moment induced by the light. Reactive interaction is a stimulated effect, involving

absorbing one photon from one plane wave component then stimulated emission into another component.

Obviously, reactive effects requires more than one plane wave components. From Eq. (5.12), one can see

that Freactive can be written as the gradient of a “optical dipole potential”

Uopt =
~∆
2

ln(1 + s) =
~∆
2

ln

(
1 +

2Ω̃2(r)
4∆2 + Γ2

)

and Freactive = −∇Uopt. Uopt can therefore regarded as the interaction potential between the light and the

induce atomic dipole moment. Note that Freactive is sensitive to the sign of ∆. For red detuning (∆ < 0), the

induced dipole moment and the light field are in-phase, and the minima of Uopt coincide with the maxima

of light intensity, the atom is thus “strong field seeking”; for blue detuning (∆ > 0), the atom is “weak field

seeking”.

For far off resonance light, |∆| À Γ, Ω̃,

Uopt ≈ ~Ω̃2(r)
4∆

The spontaneous emission rate, given by σee,stΓ ≈ sΓ/2, in the mean time, is proportional to Ω̃2/∆2. So it

is always possible to increase both the laser intensity and detuning such that the spontaneous emission is

minimized while the dipole potential depth is kept fixed.

3.3 Doppler Cooling

For simplicity, we confine our discussion in 1D.

Consider two counter-propagating travelling light fields with wave vector ±k and Rabi frequency Ω̃.

Neglect the interference between them (e.g., they have orthogonal polarizations). We will also assume low

intensity, i.e., Ω̃ ¿ ∆,Γ. An two-level atom at rest will feel no force since the radiation pressure force from

the two beams cancel each other. Now consider the atom has a small velocity, v. What will happen then?

We can calculate the forces each light field exerted onto the atom. Due to the doppler effect, the effective

detuning of the beam co-propagating with the atom will become ∆1 = ∆ − kv, while that of the beam

counter-propagating with the atom will be ∆2 = ∆ + kv. Other than that, the force still has the same

expression as Fdissipative in Example 1. So we have

F1 =
~kΓ
2

Ω̃2/2
∆2

1 + Γ2/4 + Ω̃2/2
(3.5)

F2 = −~kΓ
2

Ω̃2/2
∆2

2 + Γ2/4 + Ω̃2/2
(3.6)
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The total force is then F = F1 +F2. For small velocity such that kv ¿ ∆, we can expand the force as power

series of v. Keep only the linear term, we have:

F =
~k2ΓΩ̃2∆

(∆2 + Γ2/4)2
v (3.7)

Therefore, we have a damping or cooling force for red detuning ∆ < 0.

From Eq. (3.7), we know the cooling rate (when ∆ < 0) is given by

(dE/dt)cool = Fv

However, at each moment, the atom can absorb a photon from either beam with equal probability (neglecting

the small Doppler effect). For the low intensity limit we are considering here, each absorption event is

independent from each other. Following each absorption, there is a spontaneous emission which is also

random in nature. If we neglect spontaneous emission pattern, and assume that the ith emitted photon has

momentum ki which can take values k or −k with equal probability, then the momentum change for the

atom after an N absorption-emission cycle is

∆p = (N1 −N2)~k −
N∑

i=1

~ki

or

(∆p)2 = (N2
1 + N2

2 − 2N1N2)~2k2 − 2(N1 −N2)~2k

N∑

i=1

ki + ~2k2N + ~2
∑

i6=j

kikj

where N1 and N2 are number of photons absorbed from beam 1 and 2 respectively. Now N1,2 obey Poisson

statistics since the absorption events are independent:

〈N1〉 = 〈N2〉 = N/2, 〈N1N2〉 = 〈N1〉〈N2〉 = N2/4, 〈N2
1 〉 = 〈N1〉2 + 〈N1〉 = N2/4 + N/2 = 〈N2

2 〉

For the spontaneously emitted photon, we have

〈
∑

i

ki〉 = 0

Therefore, the total kinetic energy change due to the random nature of light absorption and emission is

(∆E)heat = 〈(∆p)2〉/(2m) = 2N~2k2/(2m)

So the corresponding heating rate is

(dE/dt)heat = (~2k2/m)dN/dt

Here dN/dt is the absorption rate and is give by Γσee,st ≈ Γs/2 = ΓΩ̃2/(4∆2 + Γ2). So the heating rate

(under the small velocity, low intensity limit) is

(dE/dt)heat =
~2k2Γ
4m

Ω̃2

∆2 + Γ2/4

In the steady state, cooling and heating reaches an equilibrium. so (dE/dt)cool + (dE/dt)heat = 0, or

~k2ΓΩ̃2∆
(∆2 + Γ2/4)2

v2 +
~2k2Γ
4m

Ω̃2

∆2 + Γ2/4
= 0
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or

kBT = mv2 = −~
4

∆2 + Γ2/4
∆

The minimum temperature is obtained when ∆ = −Γ/2,

kBTDoppler = ~Γ/4

This temperature is called the Doppler limit. A more sophisticated calculation including higher dimension-

ality and spontaneous emission pattern shows that the Doppler limit is a factor of 2 higher than the above

expression, i.e. kBTDoppler = ~Γ/2.
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Chapter 4

Density Matrix

4.1 A state vector is not enough

A quantum state can be described by a state vector. However, in many situations, we don’t have a full

knowledge about the state of the system. Such situations arise, for example, when the system is coupled to

a reservoir and we can no longer keep track of all the degrees of freedom.

Let us try to gain some insight from the following example. Given a particle with a state described by

state vector |ψ〉. The probability density to find the particle at x is

P (x) = |〈x|ψ〉|2 = 〈x|ψ〉〈ψ|x〉 = 〈x|ρ̂|x〉

where we have introduced the hermitian operator

ρ̂ ≡ |ψ〉〈ψ|

This operator is called the density operator since we can use it to calculate probability densities.

Suppose the state |ψ〉 is expanded onto a complete basis {|m〉} as

|ψ〉 =
∑
m

cm|m〉

then the density operator reads:

ρ̂ =
∑
m,n

cmc∗n|m〉〈n| =
∑
m,n

ρmn|m〉〈n|

The complex-valued numbers ρmn = cmc∗n form a matrix consisting of products made out of the expansion

coefficients cm. The matrix formed by ρmn is called the density matrix.

Now suppose we don’t have good knowledge about the state. We only know that the system has proba-

bility Pm = |cm|2 to be in state |m〉, but no information on phase is gained. In other words, we have

cm =
√

Pm eiφm

where φm is a random phase. Then we need to average over these phases in order to calculate any expectation

values. The density matrix element ρmn averaged over the phase becomes

ρmn = cmc∗n =
√

PmPnei(φm−φn) = Pmδmn



15

and the density operator becomes

ρ̂ =
∑
m

Pm|m〉〈m|

In conclusion, we have two kinds of averages: The first one results from quantum mechanics and the fact

that a quantum state can only provide a statistical description. The second average is a classical one. It

reflects the fact that we don not have complete information about the system (in the example above, we

don’t know the phases of the probability amplitudes): We do not know in which quantum state the system

is.

4.2 Definition and properties

For a set of states |ψm〉 (m = 0, 1, 2, ...), the density operator is defined as

ρ̂ =
∑
m

Pm|ψm〉〈ψm|

where Pm is the classical probability with which state |ψm〉 appears. Note that in the definition, the states

|ψm〉 don’t have to form an orthonormal set, but the density operator is most conveniently defined if they

do. So we’ll take such an assumption. Under this condition, we have

〈ψm|ρ̂|ψm〉 = Pm

Since Pm are probabilities, they have to add up to unity, hence

Trρ̂ ≡
∑
m

〈ψm|ρ̂|ψm〉 =
∑
m

Pm = 1

Let us take this opportunity to say a few words about the trace of operator.

• The definition of the trace of the operator Ô reads

TrÔ ≡
∑
m

〈ψm|Ô|ψm〉

where |ψm〉 is a complete set of states. Hence

1 =
∑
m

|ψm〉〈ψm|

Therefore,

Ô = 1Ô1 =
∑
mn

|ψm〉〈ψm|Ô|ψn〉〈ψn| =
∑
mn

Omn|ψm〉〈ψn|

with Omn = 〈ψm|Ô|ψn〉. And the trace of Ô is indeed the sum over the diagonal elements Omm.

• Trace is independent of representation To show this, let us consider a different complete set of
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orthonormal states |φn〉 and 1 =
∑

n |φn〉〈φn|. Then

TrÔ =
∑
m

〈ψm|1Ô1|ψm〉 =
∑

m,n,l

〈ψm|φn〉〈φn|Ô|φl〉〈φl|ψm〉

=
∑

n,l

〈φl

(∑
m

|ψm〉〈ψm|
)

φn〉〈φn|Ô|φl〉

=
∑

n,l

δnl〈φn|Ô|φl〉

=
∑

n

〈φn|Ô|φn〉

• Tr[ÂB̂] = Tr[B̂Â]

• Expectation value is the Trace The trace operation allows us to calculate expectation values of

operators. First, the expectation value of operator Ô is defined as

〈Ô〉 =
∑
m

Pm〈ψm|Ô|ψm〉

It can be easily shown that

〈Ô〉 = Tr[Ôρ̂]

Using the above property, we have the following properties for density operator:

• 〈ρ̂〉 ≤ 1 since 〈ρ̂〉 = Tr[ρ̂ρ̂] =
∑

m P 2
m ≤ ∑

m Pm = 1. The equal sign occurs if and only if there is one

single state |ψl〉 contributing to the sum, i.e., Pm = δlm. In this case, the quantum system is described

by a single state, and is therefore a pure state. Otherwise, the state is call a mixed state.

• The matrix elements of the density matrix in any basis {|ψn〉} is given by

ρnm = 〈ψn|ρ̂|ψm〉 = ρ∗mn

and are constrained by the inequality

ρnmρmn ≤ ρnnρmm (4.1)

where the equal sign holds for pure state.

The proof of the inequality goes as follows: Define two states as

|φ1〉 = ρ̂1/2|ψn〉, |φ〉 = ρ̂1/2|ψm〉

then we have

〈φ1|φ2〉 = ρnm, 〈φ1|φ1〉 = ρnn, 〈φ2|φ2〉 = ρmm

and the inequality (4.1) follows from the Cauchy-Schwarz inequality

|〈φ1|φ2〉|2 ≤ 〈φ1|φ1〉〈φ2|φ2〉
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To show that the equal sign holds in (4.1) for a pure state, we realize that the operator ρ̂1/2 can be written

as

ρ̂1/2 =
∑

n

√
σn|λn〉〈λn|

where {|λn〉} is a set of basis states where the density matrix is diagonal, i.e., ρ̂ =
∑

n σn|λn〉〈λn|. For a

pure state, one and only one of the σn’s will be equal to 1 and all the other will be zero. Let’s say σn = δn1,

then we have

|φ1〉 = 〈λ1|ψn〉|λ1〉, |φ2〉 = 〈λ1|ψm〉|λ1〉

i.e., |φ1〉 and |φ2〉 correspond to the same state with a c-number constant factor. Thus, the equal sign holds

for the Cauchy-Schwarz inequality, hence also for (4.1).

4.3 Time evolution of the density operator

The density matrix operator, introduced as a device to represent our knowledge of the initial state of the

quantum system under study, is frequently employed for time-dependent purposes. How can a bookkeeping

statement about the system at t = 0 acquire dynamic properties? The answer is, by switching from the

Heisenberg picture to the Schrödinger picture. To see this, consider the expectation value of Ô:

〈Ô(t)〉 = Tr[ρ̂Ô] = Tr[ρ̂U−1(t, 0)Ô(0)U(t, 0)] = Tr[U(t, 0)ρ̂U−1(t, 0)Ô(0)] = Tr[ρ̂(t)Ô(0)]

where

ρ̂(t) ≡ U(t, 0)ρ̂U−1(t, 0)

and U(t, 0) is the time evolution operator which satisfies

i~
∂

∂t
U(t, 0) = HU(t, 0)

Note that ρ̂(t) and ρ̂ are not related in the same way as any Heisenberg operators Ô(t) and Ô(0) are related,

since

Ô(t) = U−1(t, 0)Ô(0)U(t, 0)

The consequence of this difference is that ρ̂(t) obeys an equation of motion:

i~ ˙̂ρ(t) = [H, ρ̂]

which is sometimes called the quantum Liouville equation.

4.4 Application to two-level atom

The Hilbert space is spanned by states |g〉 and |e〉. So the density operator can be represented by a 2 × 2

matrix whose elements are given by ρij = 〈i|ρ̂|j〉 (i, j = g, e). Let us find the relationship between ρij and

σ̂ij we encountered earlier. To do so, let us check that

σij(t) = 〈σ̂ij(t)〉 = Tr[ρ̂(t)σ̂ij(0)] = Tr[ρ̂(t)|i〉〈j|] =
∑

k=g,e

〈k|ρ̂(t)|i〉〈j|k〉 = 〈j|ρ̂(t)|i〉 = ρji(t)

The optical Bloch equations can be also written in terms of ρij .
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Chapter 5

Sisyphus cooling

5.1 OBEs for Arbitrary Jg ↔ Je dipole transition

A dipole allowed transition requires Jg − Je = 0, ±1. The ground state has Ng = 2Jg + 1 magnetic

sublevels with mg = −Jg,−Jg + 1, ..., Jg, similarly, the excited manifold has Ne = 2Je + 1 sublevels with

me = −Je,−Je + 1, ..., Je. Define projection operators

Pg =
Jg∑

mg=−Jg

|Jg,mg〉〈Jg,mg|

Pe =
Je∑

me=−Je

|Je,me〉〈Je, me|

which satisfy:

1 = Pg + Pe, PiPj = Piδij

The density operator can be decomposed as

ρ̂ = ρgg + ρge + ρeg + ρee

Note that ρij is an operator itself, not a density matrix element.

An arbitrary light field is given by

E(r, t) = E(+)(r)e−iωt + E(−)(r)eiωt

with E(+) = [E(−)]∗. We can further decompose E(+) into a spherical basis of olarization vectors

ε̂±1 = ∓ 1√
2
(x̂± iŷ), ε̂0 = ẑ

corresponding, respectively, to the σ± and π polarizations, such that E(+) =
∑

q=−1,0,1 Eq ε̂q.

The atomic dipole operator is given by D̂ = Dd̂ = Dd̂(+) +Dd̂(−) where D is the reduced dipole matrix

and is assumed to be real, the dimensionless operators

d̂(+) = Pe d̂Pg (5.1)

d̂(−) = Pg d̂Pe (5.2)



19

The Wigner-Echart theorem applied to the dipole operator gives

〈Jeme|ε̂q · d̂(+)|Jgmg〉 = 〈Jeme|Jg1mgq〉

where the right hand side is nothing but the Clebsch-Gordon coefficient.

The interaction Hamiltonian under the RWA is

HAF = −D̂ ·E = −Dd̂(+) ·E(+)e−iωt + h.c. (5.3)

Now we can derive the equations of motion as before:

i ˙̃ρeg = (−∆− iΓ/2)ρ̃eg − Ω̂(+)ρgg + ρeeΩ̂(+) (5.4)

i ˙̃ρge = (∆− iΓ/2)ρ̃ge + ρggΩ̂(−) − Ω̂(+)ρee (5.5)

iρ̇ee = −iΓρee + ρ̃egΩ̂(−) − Ω̂(+)ρ̃ge (5.6)

iρ̇gg = i(ρ̇gg)sp + ρ̃geΩ̂(+) − Ω̂(−)ρ̃eg (5.7)

where we have defined as before the slowly varying operators

ρ̃eg = ρeg eiωt, ρ̃ge = ρge e−iωt

and

Ω̂(+) = Dd̂(+) ·E(+)/~, Ω̂(−) = Dd̂(−) ·E(−)/~

and

(ρ̇gg)sp = Γ
∑

q=−1,0,1

(
ε̂∗q · d̂(−)

)
ρee

(
ε̂q · d̂(+)

)
(5.8)

represents the effect of spontaneous emission on the ground manifold.

5.2 Force under the low intensity low velocity limit

Under the low velocity limit, the atomic center-of-mass motion follows its internal dynamics. So to calculate

the light pressure force, we can first calculate the steady state solutions of OBEs.

Under the low intensity limit, we can adiabatically eliminate the excited state population ρee and the

ground-excited coherence ρ̃eg and ρ̃ge. This is because in such a limit, the characteristic times for the

evolution of the ground state become much longer than those of the excited state. Hence ρgg is a slow

variable compared to ρee, ρ̃eg and ρ̃ge. After a short transient regime, last for a time on the order of 1/Γ,

ρee “slaves” the other variables by imposing its slow rate of variation, so that one can write

|ρ̇ee| ¿ Γρee, | ˙̃ρge,ge| ¿ Γ|ρ̃ge,ge| (5.9)

It is then possible to put the left hand side of Eqs. (5.5), (5.4) and (5.6) into zero in comparison with the

damping terms at the right hand side. Remark: For a moving atom with velocity v, one must not forget

that the time derivative ρ̇ij are actually total time derivatives d/dt = ∂/∂t + v · ∇, so that one must also

consider the order of magnitude of the term v · ∇ρij ≈ kvρij . For the ultracold system we are interested in,

the velocity is very small such that kv ¿ Γ, so that condition (10.14) is satisfied.
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After this procedure, Eqs. (5.5) and (5.4) yield

ρ̃ge = − ρggΩ̂(−)

∆− iΓ/2
, ρ̃eg = − Ω̂(+)ρgg

∆ + iΓ/2
(5.10)

where we have neglected the contribution of ρee which is small.

Now let us obtain the expression for the force

F = −〈∇HAF 〉
= D

∑

i=x,y,z

〈d̂(+)
i 〉∇E

(+)
i e−iωt + c.c.

and

〈d̂(+)
i 〉 = Tr[Ped̂iPgρ̂] = Tr[d̂iρge]

Therefore,

F =
∑

i=x,y,z

Tr[d̂iρ̃ge]∇E
(+)
i + c.c.

Using (5.10), we have

F = − 1
∆− iΓ/2

Tr[d̂iρggΩ̂(−)]∇E
(+)
i

Now let us take a look at the trace

Tr[d̂iρggΩ̂(−)] = Tr[Ω̂(−)d̂iρgg] = Tr[Ω̂(−)(Pe + Pg)d̂iPgPgρ̂Pg] = Tr[Ω̂(−)d̂
(+)
i ρgg] = 〈Ω̂(−)d̂

(+)
i 〉

where we have used 〈X〉 = Tr[Xρgg]. Hence

F = − ~
∆− iΓ/2

〈Ω̂(−)∇Ω̂(+)〉+ c.c.

Decompose the force into the dissipative part and the reactive part, we have

Fdissipative = − i~Γ/2
∆2 + Γ2/4

[
〈Ω̂(−)∇Ω̂(+)〉 − 〈(∇Ω̂(−))Ω̂(+)〉

]
(5.11)

Freactive = − ~∆
∆2 + Γ2/4

〈
∇(Ω̂(−)Ω̂(+))

〉
(5.12)

5.3 Equation of motion of the ground state density matrix

From Eqs. (5.6) and (5.10), we have

ρee =
1

∆2 + Γ2/4
Ω̂(+)ρggΩ̂(−)

So we have

ρ̇gg =
[ −i

∆ + iΓ/2
Ω̂(−)Ω̂(+)ρgg + h.c.

]
+

Γ
∆2 + Γ2/4

∑
q=−1,0,1

(
ε̂∗q · d̂(−)

)
Ω̂(+)ρggΩ̂(−)

(
ε̂q · d̂(+)

)

=
−i∆

∆2 + Γ2/4

[
Ω̂(−)Ω̂(+), ρgg

]
− Γ/2

∆2 + Γ2/4

(
Ω̂(−)Ω̂(+)ρgg + ρggΩ̂(−)Ω̂(+)

)

+
Γ

∆2 + Γ2/4

∑
q=−1,0,1

(
ε̂∗q · d̂(−)

)
Ω̂(+)ρggΩ̂(−)

(
ε̂q · d̂(+)

)
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Let E(+)(r) =
∑

q Eq ε̂q = 1
2E0(r)ε̂(r), where ε̂(r) is the unit polarization vector which satisfies

ε̂∗(r) · ε̂(r) = 1

Then we have

Ω̂(+) =
Ω0

2

(
ε̂(r) · d̂(+)

)
, Ω̂(−) =

Ω0

2

(
ε̂∗(r) · d̂(−)

)

with Ω0(r) = DE0(r)/~. Further define the Hermitian, semi-positive and dimensionless operator

Λ(r) =
(
ε̂∗(r) · d̂(−)

)(
ε̂(r) · d̂(+)

)

Then the equation for ρgg can be written as

ρ̇gg = −i∆′(r)[Λ(r), ρgg]− Γ′(r)
2

[Λ(r)ρgg + ρggΛ(r)]

+Γ′(r)
∑

q=−1,0,1

(
ε̂∗q · d̂(−)

)(
ε̂(r) · d̂(+)

)
ρgg

(
ε̂∗(r) · d̂(−)

)(
ε̂q · d̂(+)

)
(5.13)

where

∆′(r) = ∆
Ω2

0(r)/4
∆2 + Γ2/4

, Γ′(r) = Γ
Ω2

0(r)/4
∆2 + Γ2/4

Let us take a closer look at the three terms at the right hand side of Eq. (5.13).

The first term can be written as (−i/~)[Heff , ρgg], with the effective Hamiltonian Heff = ~∆′(r)Λ(r).

Denote |gα(r)〉 and λα(r) to be the eigenstates and corresponding eigenvalues of Λ(r). Since Λ(r) is Hermitian

and semi-positive, then we have

Λ(r)|gα(r)〉 = λα(r)|gα(r)〉, λα(r) ≥ 0

Each eigenstate |gα(r)〉 gets a well-defined energy shift δEα = ~∆′λα which is called the light shift or AC

Stark Shift. δEα is proportional to Ω2
0, hence the light intensity. All the δEα have the same sign, which

is the sign of laser detuning ∆. The light shift can be considered as the polarization energy of the induced

atomic dipole moment in the driving laser field.

The second term of (5.13) represents a loss term for the ground state atom and describes how the atomic

ground state is emptied by the absorption process. The contribution of this term to the rate of variation of

the population in eigenstate |gα〉 of Λ can be easily calculated as

−Γ′λα〈ρgg〉

Note that λα ≥ 0, so the above term indeed represents a loss. When λα = 0, then the corresponding state

is a trap state of dark state.

The atoms which have left the ground state by photon absorption fall back in the ground state by

spontaneous emission. Such an effect is described by the last term of (5.13). Now let us show that the

trace of the second term cancels exactly that of the third term, a fact means that there are as many atoms

leaving the ground state per unit time as atoms falling back in it, i.e., the population of the ground state is

conserved. The proof goes like this:
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Let’s find out the trace of the third term (neglecting the factor Γ′).

Tr

[ ∑
q=−1,0,1

(
ε̂∗q · d̂(−)

) (
ε̂(r) · d̂(+)

)
ρgg

(
ε̂∗(r) · d̂(−)

)(
ε̂q · d̂(+)

)]

=
∑
mg

∑
q

〈mg|
(
ε̂∗q · d̂(−)

)
|
∑
me

me〉〈me|
(
ε̂(r) · d̂(+)

)
|
∑

m′
g

m′
g〉〈m′

g|ρgg|
∑

m′′
g

m′′
g 〉

〈m′′
g |

(
ε̂∗(r) · d̂(−)

)
|
∑

m′
e

m′
e〉〈m′

e|
(
ε̂q · d̂(+)

)
|mg〉

=
∑
me

∑

m′
e


∑

mg

∑
q

〈mg|
(
ε̂∗q · d̂(−)

)
|me〉〈m′

e|
(
ε̂q · d̂(+)

)
|mg〉


 ∑

m′
g

∑

m′′
g

〈me|
(
ε̂(r) · d̂(+)

)
|m′

g〉

〈m′
g|ρgg|m′′

g 〉〈m′′
g |

(
ε̂∗(r) · d̂(−)

)
|m′

e〉

=
∑
me

∑

m′
g

∑

m”g

〈me|
(
ε̂(r) · d̂(+)

)
|m′

g〉〈m′
g|ρgg|m”g〉〈m”g|

(
ε̂∗(r) · d̂(−)

)
|me〉

where we have used the orthomormality condition for C-G coefficient: The quantity in the square bracket of

the second to last equality gives δme,m′
e
. And finally we can easily identify the last equality is just opposite

of the trace of the second term in (5.13).

5.4 application to a 1/2 ↔ 3/2 transition

The ground manifold has two sublevels with mg = −1/2 and 1/2. Take the light field to be the so-called 1D

Lin⊥Lin configuration:

E(+)(z) =
1
2
E0

(
x̂eikz − iŷe−ikz

)

Decompose it into the spherical basis, we have E(+)(z) = 1
2E0ε̂(z) where E0 =

√
2E0 and

ε̂(z) = ε̂−1 cos kz − iε̂+1 sin kz

Then the matrix for
(
ε̂∗(r) · d̂(−)

)
and

(
ε̂(r) · d̂(+)

)
are given by

(
ε̂∗(r) · d̂(−)

)
=


 cos kz 0 −i

√
1
3 sin kz 0

0
√

1
3 cos kz 0 −i sin kz




(
ε̂(r) · d̂(+)

)
=




cos kz 0

0
√

1
3 cos kz

i
√

1
3 sin kz 0

0 i sin kz




Therefore, Λ(z) =
(
ε̂∗(r) · d̂(−)

)(
ε̂(r) · d̂(+)

)
takes a diagonal form

Λ(z) =


 cos2 kz + 1

3 sin2 kz 0

0 1
3 cos2 kz + sin2 kz


 =


 1− 2

3 sin2 kz 0

0 1− 2
3 cos2 kz




This means that the bare atomic ground state mg = ±1/2 are the eigenstates of Heff , with lights shifts given

by

E−1/2(z) = −3U0

2
+ U0 sin2 kz, E1/2(z) = −3U0

2
+ U0 cos2 kz (5.14)
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with U0 = − 2
3~∆

′.

From Eq. (5.11) we immediately see that Fdissipative = 0. Now let us calculate Freactive. From Eq. (5.12)

we have

Freactive = −〈∇Heff〉 = −Π−1/2∇E−1/2 −Π1/2∇E1/2

where Π±1/2 is the population for ground state sublevel mg = ±1/2, and it’s easy to see that

Freactive(z) = F (z) = kU0 sin(2kz)M(z) ẑ

where

M(z) = Π1/2(z)−Π−1/2(z)

is the steady state population difference between the two ground state sublevels, which is z-dependent.

Now we need to obtain Π±1/2.

5.5 Optical pumping rates

Using Eq. (5.13), we can easily obtain the equations of motion for ground state populations. The first term

of (5.13) gives rise to an energy shift and hence does not contribute to the population dynamics. Also, due

to the lack of π-polarized light, population only couples to populations, not to ground state coherence. After

some algebra, we may obtain

Π̇−1/2 = −Γ−→+Π−1/2 + Γ+→−Π1/2 (5.15)

Π̇1/2 = Γ−→+Π−1/2 − Γ+→−Π1/2 = −Π̇−1/2 (5.16)

where the pumping rates are given by

Γ−→+ =
2
9
Γ′ sin2 kz, Γ+→− =

2
9
Γ′ cos2 kz (5.17)

According to Eqs. (5.14) and (5.17), the maxima pumping rate out of state mg = −1/2〉 (Γ−→+) coincides

with those of the light shift for the state (E−1/2), provided that ∆ < 0, i.e., U0 > 0. And the same is true

for state |mg = 1/2〉.

5.6 sisyphus cooling mechanism

Consider an atom moving with velocity v along z-axis in the bi-potential E±1/2. Suppose initially the kinetic

energy of the atom is larger than U0 so that the atom is not trapped in one of the potential wells. Also

assume that

Γ′ ¿ kv ¿ Γ

so that, on the one hand, the atom travels over several wavelengths before being optically pumped from

one sublevel to the other; on the other hand, the atom travels over a distance very small compared to

the wavelength during the duration 1/Γ of a fluorescence cycle, hence each optical-pumping cycle can be
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considered as occurring instantaneously in a given spatial point. kv ¿ Γ is also required for the adiabatic

elimination of fast variables.

Suppose that initially the atom is in the sublevel |mg = −1/2〉. As long as it remains in this sublevel, its

total energy is conserved. We neglect for the moment the recoil due to the absorbed and re-emitted photons

in the fluorescence cycles. Because of the spatial dependence of the optical pumping rate, the transfer by

optical pumping from |mg = −1/2〉 to |mg = 1/2〉 will occur preferentially near the maxima of E−1/2, and

the atom will jump suddenly from a point near the top of one hill of E−1/2 to a point near the bottom of

one valley of E1/2. The corresponding change of its potential energy δU will, therefore, be negative and on

the order of U0. If we neglect photon recoil, then the total energy of atom will decrease by δU .

From there, the same sequence can be repeated. On the average, the atom is running up the hills more

than down (hence the name “Sisyphus”) and its total energy decreases by a series of discontinuous steps

until its kinetic energy becomes on the order of or smaller than U0. So the cooling limit of this mechanism

(for |∆| À Γ) is

kBT ∼ U0 ∼ ~Ω̃2

|∆|
It seems from above that one can cool down the atom indefinitely by decreasing U0. However, the above

discussion neglects photon recoil. When U0 becomes a few ER = ~2k2/(2m), the Sisyphus effect is no longer

sufficient to overcome the heating due to the recoil. So Sisyphus cooling is “recoil-limited”.
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Chapter 6

Subrecoil Cooling

6.1 Single-photon recoil limit

All cooling mechanisms described so far (Doppler and Sisyphus) are based on a friction force which damps

the atomic velocity. Spontaneous emission processes play a basic role for dissipating the energy removed

from the external degrees of freedom of the atom. Therefore, it is impossible to avoid the random recoil due

to spontaneously emitted photons and the corresponding single-photon recoil energy

ER =
~2k2

2m
= kBTR

The temperature TR is called the recoil limit and appears as a fundamental limit for any cooling process

using spontaneous emission. The corresponding velocity

vR = ~k/m

and frequency ωR = ER/~ are the recoil velocity and recoil frequency, respectively.

In order to get temperatures lower than TR, we must somehow stop the spontaneous emission precesses

for those atoms we want to cool down. For this purpose, we just need to select those cold atoms and put

them into the ground state and somehow persuade them not to absorb photon anymore. How can we achieve

this?

6.2 Velocity-Selective Coherent Population Trapping

So here is our goal: We want to construct a “trap” in velocity space with width δv. Because of the momentum

transferred to the atom by absorbed photon and the momentum carried away by the fluorescence photon,

there a random change of atomic momentum after each fluorescence cycle. We want an atom with v > δv

to undergo such a cycle and end up with v < δv. Once this is done, the atom falls into the trap and stops

interacting with light. The cooling mechanism radically differs from the other ones since it is not based on

a friction force but on a combination of momentum diffusion and VSCPT.
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To anticipate the ultra-low velocity this can achieve, we don’t want to use the semi-classical treatment

used earlier where we treat the atom as a point particle which valid when the atomic de Broglie wavelength

¿ laser wavelength. But for atomic velocities lower than the recoil velocity, this assumption is no longer

valid. Hence, a fully quantum treatment of all degrees of freedom is required.

6.3 VSCPT for a 1 ↔ 1 transition

We consider a Jg = 1 ↔ Je = 1 atomic dipole transition with a σ+ − σ− laser field configuration (we again

restrict our discussion in 1D z-direction and the two laser fields have equal detuning ∆):

E(r, t) = E(+)(z) e−iωt + E(−)(z) eiωt

and

E(+)(z) =
1
2
E0

(
ε̂+1e

ikz + ε̂−1e
−ikz

)

Such a field decouples the atomic system into two uncoupled sub-systems: a V -type composed of |e−1〉, |e+1〉
and |g0〉 and a Λ-type composed of |g−1〉, |g+1〉 and |e0〉. Due to zero C-G coefficient between transition e0

and g0, spontaneous emission will optically pump the population out of V -system into Λ. Therefore, we can

neglect the V altogether and the atomic system reduces to a Λ-type three-level transition.

In the rotating frame, the interaction Hamiltonian under RWA can then be written as

HAF = − ~Ω
2
√

2

(
eikz|e0〉〈g−1|+ e−ikz|e0〉〈g1|

)
+ h.c.

with Ω = −DE0/~. Since e±ikz are translation operators in momentum space, we have

HAF |g−1, p〉 = − ~Ω
2
√

2
|e0, p + ~k〉

HAF |g+1, p〉 =
~Ω
2
√

2
|e0, p− ~k〉

where we have labelled the atomic states by its internal state and the momentum. This suggests to introduce

the states

|ψNC(p)〉 =
1√
2

(|g−1, p− ~k〉+ |g+1, p + ~k〉)

which are not coupled to the laser light since

HAF |ψNC(p)〉 =
~Ω
4

(−|e0, p〉+ |e0, p〉) = 0

In other words, the two absorption amplitudes starting respectively from states |g−1, p−~k〉 and |g+1, p+~k〉,
and ending both in the same final state |e0, p〉, interfere destructively.

The state

|ψC(p)〉 =
1√
2

(−|g−1, p− ~k〉+ |g+1, p + ~k〉)

is orthogonal to |ψNC〉 and coupled to |e0, p〉:

HAF |ψC(p)〉 =
~Ω
2
|e0, p〉
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Therefore the three states

F(p) = {|e0, p〉, |g−1, p− ~k〉, |g+1, p + ~k〉} = {|e0, p〉, |ψC(p)〉, |ψNC(p)〉}

form a closed family when spontaneous emission is ignored. This fact does not change when the bare

Hamiltonian considered below is taken into account.

Now we need to consider the bare atomic Hamiltonian

HA =
P 2

2m
− ~∆|e0〉〈e0|

Using

HA|g±1, p± ~k〉 =
(p± ~k)2

2m
|g±1, p± ~k〉

we have

HA|ψNC(p)〉 =
(

p2

2m
+ ER

)
|ψNC(p)〉+

~kp

m
|ψC(p)〉

HA|ψC(p)〉 =
(

p2

2m
+ ER

)
|ψC(p)〉+

~kp

m
|ψNC(p)〉

Such a result shows that HA shifts the two states |ψC(p)〉 and |ψNC(p)〉 by the same amount p2/(2m) + ER

and introduces a motional coupling between these two states

〈ψC(p)|HA|ψNC(p)〉 =
~kp

m

Therefore, the non-coupling state |ψNC(p)〉 is not truly “dark” unless p = 0.

6.4 Effect of spontaneous emission

When spontaneous emission is ignored, an atomic state which initially belongs to F(p), cannot leave F(p).

Spontaneous emission gives a width Γ to the excited state. To account for this effect, we can add an imaginary

part −i~Γ/2 to the energy of |e0, p〉. The effective Hamiltonian matrix, written in the rotating frame and

under the basis of |e0, p〉, |ψC(p)〉 and |ψNC(p)〉, reads

Heff = ~




−∆− iΓ/2 Ω/2 0

Ω/2 0 kp/m

0 kp/m 0




where ∆ = ω − ω0 + ωR. As a result of coupling, the three basis states are not the eigenstates of Heff .

However, under the limit of low light intensity (Ω ¿
√

∆2 + Γ2/4) and low velocity (specified later), these

three states are still approximately eigenstates of Heff .

Consider first the case p = 0. In this case |ψNC(p = 0)〉 is completely isolated from the other two states

which are described by Hamiltonian matrix

~


 −∆− iΓ/2 Ω/2

Ω/2 0



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Under the low light intensity limit, a second order perturbation calculation gives that the energy of |ψC(p =

0)〉 is

EC =
(~Ω/2)2

~(∆ + iΓ/2)
= ~(∆C − iΓC/2)

with

∆C =
s

2
∆ =

Ω2

4∆2 + Γ2
∆, ΓC =

s

2
Γ =

Ω2

4∆2 + Γ2
Γ

which means that under the effect of laser light, the state |ψC(p = 0)〉 is light shifted by ~∆C and gets a

finite width ΓC.

Now suppose p is nonzero but sufficiently small, such that

k|p|/m ¿
√

∆2
C + Γ2

C/4

then we can treat the motional coupling between |ψC(p)〉 and |ψNC(p)〉 as a small perturbation. The results

obtained above for |ψC(p)〉 are still valid, but the state |ψNC(p)〉 has an energy under the second order

calculation:

ENC =
(~kp/m)2

−EC
= ~(∆NC − iΓNC/2)

with

∆NC =
4k2p2

m2Ω2
∆, ΓNC =

4k2p2

m2Ω2
Γ

Therefore, the departure rate ΓNC out of the dark state is very small when p is small, and vanishes for p = 0.

An atom put in the dark state at t = 0 can remain there for a time on the order of 1/ΓNC(p). Conversely,

for a given interaction time Θ, we can find a range of δp of values of p around p = 0 such that, if |p| < δp, an

atom in dark state |ψNC(p)〉 will have a high probability to remain trapped in that state during the whole

interaction time Θ. The corresponding value of δp is given by the condition ΓNC(δp)Θ < 1 or

δp <
m

2k
√

Γ
Ω√
Θ

which can be as small as we want.

6.5 spontaneous transfers between different families

After a spontaneous emission process, the atom can move into a new family. This diffusion in momentum

space is essential for transferring atoms into the trapping states with |p| < δp.

Let us again stick to the 1D situation. A spontaneous emission process give the atom a momentum kick

~k along a random direction. Its projection along the z-axis, u = ~kz, takes a value anywhere between

−~k and ~k. Assume just before the spontaneous emission, the atom is in state |e0, p〉 which belongs to the

family F(p). Just after the spontaneous emission, the atom is in a linear superposition of |g+1, p + u〉 and

|g−1, p + u〉 (i.e., an entangled state with photon polarization). If we do not care about the polarization of

the emitted photon, we can trace over that degree of freedom. This yields the atom to be in a statistical

mixture of |g+1, p + u〉 and |g−1, p + u〉, which belongs to the families F(p − ~k + u) and F(p + ~k + u),

respectively. Since −~k ≤ u ≤ ~k, the spontaneous process can transfer atoms between families F(p) and

F(p′) with p− 2~k ≤ p′ ≤ p + 2~k.
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Chapter 7

Second Quantization

7.1 Fock state and Fock space

Second quantization is just a clever way of bookkeeping. Single particle quantum formalism is powerful

in study of a single particle. But often times, we need to deal with a system consisted of a macroscopic

number of particles. To write explicitly the wave function for such a many-body system, is as impossible as

to determine the momentary position and velocity of each particle in its classical counterpart. In classical

statistical mechanics, the problem is avoided by introducing distribution functions, giving probabilities of,

e.g., finding a particle with velocity v1 at point r1, and another with velocity v2 at point r2, and so on. The

distribution functions give information on how many particles occupy each unit of phase space.

There is of course a whole hierarchy of them, including one-, two-, ... N -particle distribution functions,

and together they contain exactly the same amount of information as the record of velocities and positions

of all particles in the system. The enormous advantage is that we usually need only the few first functions

of this hierarchy.

In quantum statistics, we have to operate with the wave function of the N -body system as a whole,

Φ(ξ1, ξ2, ..., ξN ), with ξi denoting the parameter(s) characterizing the ith particle. In quantum mechanics,

identical particles cannot be distinguished in principle. This indistinguishability requires that if we exchange

two particles, the wave function can only acquire an overall phase factor:

Φ(ξ1, ξ2, ..., ξi, ...ξj , ..., ξN ) = eiχΦ(ξ1, ξ2, ..., ξj , ...ξi, ..., ξN )

After making the second permutation of the same pair of particles, we have

Φ(ξ1, ξ2, ..., ξi, ...ξj , ..., ξN ) = ei2χΦ(ξ1, ξ2, ..., ξi, ...ξj , ..., ξN )

so that ei2χ = 1 or eiχ = ±1, and we are left with two choices:

Φ(ξ1, ξ2, ..., ξi, ...ξj , ..., ξN ) =





+Φ(ξ1, ξ2, ..., ξj , ...ξi, ..., ξN ) Bose− Einstein statistics

−Φ(ξ1, ξ2, ..., ξj , ...ξi, ..., ξN ) Fermi−Dirac statistics
(7.1)



30

The N -particle wave function can be expanded over a complete set of functions, which are provided by

the eigenfunctions of some one-particle Hamiltonian H1:

Φ(ξ1, ξ2, ..., ξN ) =
∑

{pi}
Cp1,p2,...,pN

φp1(ξ1)φp2(ξ2) · · ·φpN
(ξN )

where H1φj(ξ) = εjφj(ξ), pj labels the one-particle state and the summation is performed over all possible

permutations. For homogeneous systems, we often choose for φj(ξ) plane waves.

The condition of (7.1) means that we can use only properly symmetrized products of one-particle func-

tions. For bosons, we have

ΦN1,N2,...
B (ξ1, ξ2, ..., ξN ) = |N1, N2, ...〉B =

√
N1!N2! · · ·

N !

∑

{pi}
φp1(ξ1)φp2(ξ2) · · ·φpN

(ξN )

Here the non-negative integer number Ni shows how many times the ith one-particle eigenfunction φi enters

the product and is called the occupation number of state φi. The occupation number are subject to the

condition ∑
Ni = N

For fermions, we use Slater’s determinants

ΦN1,N2,...
F (ξ1, ξ2, ..., ξN ) = |N1, N2, ...〉F =

1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φp1(ξ1) φp1(ξ2) · · · φp1(ξN )

φp2(ξ1) φp2(ξ2) · · · φp2(ξN )

· · · · · · · · · · · ·
φpN

(ξ1) φpN
(ξ2) · · · φpN

(ξN )

∣∣∣∣∣∣∣∣∣∣∣∣

The properties of determinants guarantee the necessary antisymmetry of the wave function. Indeed, a

transmutation of two particles in this case corresponds to transmutation of two rows in the determinant,

which by definition changes its sign. Then, if two rows are equivalent (e.g., pi = pj), the determinant equals

zero. Physically this means that two fermions cannot occupy the same quantum state (Pauli Principle).

The states |N1, N2, ...〉B,F have definite numbers in each single particle state and are called the Fock

states. The Hilbert space spanned by the Fock states is called Fock space, and it is in Fock space that

second-quantized operators act. The state vectors here are defined by the corresponding set of occupation

numbers, and the second-quantized operators change these numbers. Thus, any operator can be represented

by some combination of basic creation and annihilation operators, which act as follows:

cj |..., Nj , ...〉 ∝ |..., Nj − 1, ...〉
c†j |..., Nj , ...〉 ∝ |..., Nj + 1, ...〉

Evidently, any Fock state can be obtained by the repeated action of creation operators on the vacuum state

|0〉 = |0, 0, 0, ...〉:
|N1, N2, ...〉 ∝

(
c†1

)N1
(
c†2

)N2 · · · |0〉

and the vacuum state is annihilated by any annihilation operator

cj |0〉 = 0
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We have to keep in mind that while in the representation of second quantization we explicitly deal with

occupation numbers only, our calculations make sense only as long as we can point out the correct one-particle

basis functions.

7.2 bosons

Let us first focus on the bosons.

7.2.1 one-particle operators

Consider a one-particle operator

O1 =
∑

j

o1(ξj)

, where o1(ξj) is an operator acting on a one-particle state φ(ξj) and the summation is over all N particles.

[Example: kinetic energy operator K = −∑
j (~2∇2

j )/(2m)]

Let us take a matrix element of O1 between two N -particle boson states, 〈ΦB′ |O1|ΦB〉. Since O1 is a

one-particle operator, after its action, there two possibilities: 1) It does not change the state of particle it

acted on. Then the only non-zero elements are diagonal ones with |ΦB〉 = |ΦB′〉. 2) It transfers the particle

from its initial state |i〉 = φi(ξ) to some final state |f〉 = φf (ξ). Then the non-zero elements are off-diagonal

ones between the states |ΦB〉 = |..., Ni, ..., Nf , ...〉 and |ΦB′〉 = |..., Ni − 1, ..., Nf + 1, ...〉.
Let us now calculate the matrix elements. First we notice that since the system consists of N identical

particles, we have

〈ΦB′ |O1|ΦB〉 = 〈ΦB′ |
∑

j

o1(ξj)|ΦB〉 = N〈ΦB′ |o1(ξ1)|ΦB〉

that is, we can just pick an arbitrary particle (say particle 1), calculate its matrix element and times N .

For the diagonal matrix, we have

〈ΦB |o1(ξ1)|ΦB〉 =
(

N1!N2! · · ·
N !

) ∫ ∫
· · ·

∫
dξ1dξ2 · · · dξN

×
∑

{pi},{p′i}
φ∗p′1(ξ1)φ∗p′2(ξ2) · · ·φ∗p′N (ξN ) o1(ξ1)φp1(ξ1)φp2(ξ2) · · ·φpN (ξN )

and p′i = pi. Suppose now particle 1 occupy state |k〉 (k will be summed over at the end), we can take the

diagonal matrix element of o1(ξ1) as

〈k|o1|k〉 =
∫

dξ1 φ∗k(ξ1)o1(ξ1)φk(ξ1)

The other integrals over the remain N − 1 particles (which are equal to one due to orthonormality) can be

symmetrically rearranged in (N − 1)!/[N1!N2! · · · (Nk − 1)! · · · ] ways. Therefore

〈ΦB |o1(ξ1)|ΦB〉 =
∑

k

(
N1!N2! · · ·

N !

)(
(N − 1)!

N1!N2! · · · (Nk − 1)! · · ·
)
〈k|o1|k〉 =

∑

k

Nk

N
〈k|o1|k〉

Therefore

〈ΦB |O1|ΦB〉 =
∑

k

Nk〈k|o1|k〉
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For the off-diagonal matrix, there will be one extra φ∗f (ξ) on the left side and one extra φi(ξ) on the

right side of o1, we have

〈ΦB′ |o1(ξ1)|ΦB〉 =
(

N1! · · · (Ni − 1)! · · · (Nf + 1)! · · ·
N !

)1/2 (
N1! · · ·Ni! · · ·Nf ! · · ·

N !

)1/2

∫ ∫
· · ·

∫
dξ1 dξ2 · · · dξN

∑

{pi},{p′i}
φ∗p′1(ξ1)φ∗p′2(ξ2) · · ·φ∗p′N (ξN ) o1(ξ1) φp1(ξ1)φp2(ξ2) · · ·φpN

(ξN )

These unmatched functions must be integrated with the operator to yield

〈f |o1|i〉 =
∫

dξ1 φ∗f (ξ1)o1(ξ1)φi(ξ1)

while the rest can be rearranged in (N − 1)!/[N1!N2! · · · (Ni − 1)! · · ·Nf ! · · · ] Putting all these together, we

have

〈ΦB′ |O1|ΦB〉 = N〈ΦB′ |o1(ξ1)|ΦB〉

= N
∑

i,f

(
N1! · · · (Ni − 1)! · · · (Nf + 1)! · · ·

N !

)1/2

×
(

N1! · · ·Ni! · · ·Nf ! · · ·
N !

)1/2 (N − 1)!
N1! · · · (Ni − 1)! · · ·Nf ! · · · 〈f |o1|i〉

=
∑

i,f

√
Ni(Nf + 1)〈f |o1|i〉

Now we are in a position to employ the creation/annihilation operators introduced earlier which we will

denote as a† and a here. We define them with the following:

aj |..., Nj , ...〉 =
√

Nj |..., Nj , ...〉
a†j |..., Nj , ...〉 =

√
Nj + 1 |..., Nj , ...〉

Since a†jaj |Nj〉 = Nj |Nj〉, N̂j = a†jaj is called the number operator for particle j. The creation/annihilation

operators thus defined obey the boson commutation relations

[aj , a
†
k] = δjk, [a†j , a

†
k] = [aj , ak] = 0

Returning to the one-particle operator O1 =
∑

o1, we see that it can be expressed as

O1 =
∑

i,f

〈f |o1|i〉 a†fai (7.2)

Intuitively, this expression looks evident: a particle is being “scattered” from state i to f (note that i and f

can be the same).

7.2.2 boson field operators

Equation (7.2) suggests that we rewrite it as

O1 =
∫

dξ φ̂†(ξ) o1 φ̂(ξ)
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where

φ̂(ξ) =
∑

k

φk(ξ) ak, φ̂†(ξ) =
∑

k

φ∗k(ξ) a†k

are the so-called field operators. The operator a†k creates a particle with a wave function φk(ξ′), the field

operator φ̂†(ξ) therefore creates a particle with wave function
∑

k

φ∗k(ξ)φk(ξ′) = δ(ξ − ξ′)

where we have used the completeness of the basis of one-particle states. That is, the field operator creates

(or annihilates) a particle at a given point. The operator

ρ(ξ) = φ̂†(ξ)φ̂(ξ) =
∑

k

|φk(ξ)|2a†kak =
∑

k

|φk(ξ)|2N̂k

evidently gives the density of particles at point ξ, and therefore is called the density operator.

The commutation relations for field operators follow those for creation/annihilation operators:

[φ̂(ξ, t), φ̂†(ξ′, t)] = δ(ξ − ξ′), [φ̂(ξ, t), φ̂(ξ′, t)] = [φ̂†(ξ, t), φ̂†(ξ′, t)] = 0

Note that time dependence of the field operators arise through the operators a†, a (Heisenberg picture), or

through the basis functions φk(ξ) (Schrödinger picture), or both (interaction picture). What is important is

that definite commutation relations exist only between field operators taken at the same moment of time.

The definition of the field operators is reminiscent of the expansion of an arbitrary single-particle wave

function under some basis states ψ(ξ) =
∑

k φk(ξ)ck. That is why the method is called second quan-

tization: It looks as if we quantize the quantum wave function one more time, transforming it into an

operator!

7.2.3 two-particle operators

Consider now a two-particle operator

O2 =
1
2

∑

i 6=j

o2(ξi, ξj)

(Example: scalar two-body collision interaction potential) The non-zero matrix elements occurs between two

N -body states that differ at most in two single-particle states. So the non-zero elements are:

〈 ..., Ni, ...|O2|..., Ni, ...〉, (affecting no particle)

〈 ..., Ni − 1, ..., Nf + 1, ...|O2|..., Ni, ..., Nf , ...〉, (affecting only one particle)

〈 ..., Ni − 2, ..., Nf + 2, ...|O2|..., Ni, ..., Nf , ...〉
〈 ..., Ni − 2, ..., Nf + 1, ..., Ng + 1, ...|O2|..., Ni, ..., Nf , ..., Ng, ...〉
〈 ..., Ni − 1, ..., Nf − 1, ..., Ng + 2|O2|..., Ni, ..., Nf , ..., Ng, ...〉
〈 ..., Ni − 1, ..., Nj − 1, ..., Nf + 1, ..., Ng + 1|O2|..., Ni, ..., Nj , ..., Nf , ..., Ng, ...〉

Let us consider the last one as an example. Follow a similar procedure as in one-particle operator case, first

we notice that

〈O2〉 =
1
2

∑

i 6=j

〈o2(ξi, ξj)〉 =
N(N − 1)

2
〈o2(ξ1, ξ2)〉
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then

〈..., Ni − 1, ..., Nj − 1, ..., Nf + 1, ..., Ng + 1|o2|..., Ni, ..., Nj , ..., Nf , ..., Ng, ...〉

=
( · · · (Ni − 1)! · · · (Nj − 1)! · · · (Nf + 1)! · · · (Ng + 1)! · · ·

N !

)(1/2)

×
( · · ·Ni! · · ·Nj ! · · ·Nf ! · · ·Ng! · · ·

N !

)(1/2) (N − 2)!
· · · (Ni − 1)! · · · (Nj − 1)! · · ·Nf ! · · ·Ng! · · · o2

=

√
NiNj(Nf + 1)(Ng + 1)

N(N − 1)
o2

where

o2 = 〈fg|o2|ij〉+ 〈gf |o2|ij〉+ 〈fg|o2|ji〉+ 〈gf |o2|ji〉

We have in the above written explicitly all terms following from symmetrization and

〈fg|o2|ij〉 =
∫

dξ1

∫
dξ2 φ∗f (ξ1)φ∗g(ξ2) o2(ξ1, ξ2)φi(ξ2)φj(ξ1)

Finally we have

〈..., Ni − 1, ..., Nj − 1, ..., Nf + 1, ..., Ng + 1|O2|..., Ni, ..., Nj , ..., Nf , ..., Ng, ...〉 =

√
NiNj(Nf + 1)(Ng + 1)

2
o2

It is quite obvious that the operator must be of the form

O2 =
∑

m,n,p,q

Cmnpq a†ma†napaq (7.3)

Using

〈..., Ni − 1, ..., Nj − 1, ..., Nf + 1, ..., Ng + 1|a†ma†napaq|..., Ni, ..., Nj , ..., Nf , ..., Ng, ...〉
=

√
NiNj(Nf + 1)(Ng + 1)(δmfδngδpiδqj + δmgδnfδpiδqj + δmfδngδpjδqi + δmgδnfδpjδqi)

we have

Cmnpq =
1
2
〈mn|o2|pq〉

One can check that this is also the case for the rest of the matrix elements as well. Therefore, we have

O2 =
1
2

∑
m,n,p,q

〈mn|o2|pq〉 a†ma†napaq =
1
2

∫
dξ1

∫
dξ2 φ̂†(ξ1)φ̂†(ξ2) o2(ξ1, ξ2) φ̂(ξ2)φ̂(ξ1)

In general, an n-particle operator can be written as

On =
1
n!

∑

j1 6=j2 6=···6=jn

on(ξj1 , ξj2 , ..., ξjn)

=
1
n!

∫
dξ1

∫
dξ2 · · ·

∫
dξn φ̂†(ξ1)φ̂†(ξ2) · · · φ̂†(ξn) on(ξ1, ξ2, ..., ξn) φ̂(ξn) · · · φ̂(ξ2)φ̂(ξ1)

Notice the ordering of the field operators in the integral.
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7.3 fermions

From previous discussion, we know that no more than 1 fermion can occupy the same one-particle state.

Therefore, in state

ΦN1,N2,...
F (ξ1, ξ2, ..., ξN ) = |N1, N2, ...〉F =

1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φp1(ξ1) φp1(ξ2) · · · φp1(ξN )

φp2(ξ1) φp2(ξ2) · · · φp2(ξN )

· · · · · · · · · · · ·
φpN (ξ1) φpN (ξ2) · · · φpN (ξN )

∣∣∣∣∣∣∣∣∣∣∣∣

Ni’s can only take values of 0 and 1. For any one-particle state k, c†kc†k|Φ〉F = ckck|Φ〉F = 0, i.e.,
(
c†k

)2

= (ck)2 = 0

Let us try first to find out the matrix elements for creation and annihilation operators. Evidently,

c†j |N1, N2, ..., Nj−1, 1j , Nj+1, ...〉 = 0

Let us calculate c†j |N1, N2, ..., Nj−1, 0j , Nj+1...〉 (naively, one would think the obvious answer is |N1, N2, ..., Nj−1, 1j , Nj+1...〉,
but ...):

c†j |N1, N2, ..., Nj−1, 0j , Nj+1, ...〉 = c†j

[(
c†1

)N1
(
c†2

)N2 · · ·
(
c†j−1

)Nj−1
(
c†j+1

)Nj+1 · · ·
]
|0〉

= |1j , N1, N2, ..., Nj−1, Nj+1, ...〉
= (−1)

∑j−1
i=1 Ni |N1, N2, ..., Nj−1, 1j , Nj+1, ...〉

The factor of (−1)
∑j−1

i=1 Ni arises because we want to put the particle at j into the right order. So we have

the following matrix elements:

〈0j |cj |1j〉 = 〈1j |c†j |0j〉 = (−1)
∑j−1

i=1 Ni

where, for brevity, |Nj〉 = |N1, N2, ..., Nj−1, Nj , Nj+1, ...〉. Obviously, the number operator is still defined as

N̂j = c†jcj

as one can check that

N̂j |Nj〉 = Nj |Nj〉

Another important operator for fermions is the transmission operator or the particle-hole operator c†fci

(assume i < f). The only nonzero matrix element is given by

〈1f , 0i|c†fci|1i, 0f 〉 = 〈1f , 0i|c†f |0i, 0f 〉〈0f , 0i|ci|1i, 0f 〉
= (−1)

∑f−1
s=1 Ns−Ni (−1)

∑i−1
z=1 Nz

= (−1)Qif

where Qif =
∑f−1

s=i+1 Ns is the number of occupied state between i and f . On the other hand, for the

operator cic
†
f , we have

〈1f , 0i|cic
†
f |1i, 0f 〉 = 〈1f , 0i|ci|1i, 1f 〉〈1f , 1i|c†f |1i, 0f 〉

= (−1)
∑i−1

z=1 Nz (−1)
∑f−1

s=1 Ns−Ni+1

= (−1)Qif +1
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These results give us the Fermi anticommutation relations:

{ci, c
†
j} = δij , {ci, cj} = {c†i , c†j} = 0

Despite the different commutation relations obeyed by boson and fermion operators, the operators in

the second quantization representation have exactly same form. In particular, the one- and two-particle

operators are given by:

O1 =
∑

i,f

〈f |o1|i〉c†fci

O2 =
1
2

∑
m,n,p,q

〈mn|o2|pq〉c†mc†ncpcq

Remember that the order of the creation/annihilation operators in above expressions are important. Written

in terms of fermion field operators, we again have

On =
1
n!

∑

j1 6=j2 6=···6=jn

on(ξj1 , ξj2 , ..., ξjn
)

=
1
n!

∫
dξ1

∫
dξ2 · · ·

∫
dξn ψ̂†(ξ1)ψ̂†(ξ2) · · · ψ̂†(ξn) on(ξ1, ξ2, ..., ξn) ψ̂(ξn) · · · ψ̂(ξ2)ψ̂(ξ1)

where the field operators have a similar definition as in bosonic case, but they obey the equal-time anticom-

mutation relations:

{ψ̂(ξ, t), ψ̂†(ξ′, t)} = δ(ξ − ξ′), {ψ̂(ξ, t), ψ̂(ξ′, t)} = {ψ̂†(ξ, t), ψ̂†(ξ′, t)} = 0

7.4 Example: expectation value of a two-body operator

Let us calculate the expectation value of a two-body interaction operator U = (1/2)
∑

i 6=j u(ξi, ξj) with a

many-body state with definite number of particles |Φ〉 = |N1, N2, ...〉.
First we realize that

U =
1
2

∑
m,n,p,q

〈mn|u|pq〉a†ma†napaq

for both bosons and fermions. So we need to evaluate the expectation value of a†ma†napaq. Since the single-

particle states we work with are orthogonal, the expectation value of this operator vanishes unless the two

orbitals in which particles are annihilated are identical with those in which they are created. Let us discuss

the bosonic and fermionic case separately.

Bosons In this case, we have two possibilities:

Case 1: p = q. Then we must have m = n = p = q. And its contribution to 〈U〉 is

1
2

∑
m

〈mm|u|mm〉Nm(Nm − 1)

Case 2: p 6= q. There are two more situations. 1) m = q and n = p. We have

1
2

∑

m6=n

〈mn|u|nm〉NmNn
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This is called the direct or Hartree term. 2) m = p and n = q. We have

1
2

∑

m6=n

〈mn|u|mn〉NmNn

This is called the exchange or Fock term.

If the interaction has a contact potential, i.e., u(ξi, ξj) ∝ δ(ξi − ξj), then the direct term has the same

value as the exchange term since 〈mn|u|nm〉 = 〈mn|u|mn〉. So for this case

〈U〉 =
1
2

∑
m

〈mm|u|mm〉Nm(Nm − 1) +
∑

m 6=n

〈mn|u|nm〉NmNn

Fermions Obviously, for fermions, p 6= q. The direct term gives

1
2

∑

m6=n

〈mn|u|nm〉NmNn

But the requirement of anticommutation requires the exchange term has a minus sign:

−1
2

∑

m 6=n

〈mn|u|mn〉NmNn

For contact interaction, these two terms cancel each other.
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7.5 summary

• You can find discussions on Second Quantization in many books on quantum field theory. My notes

follow closely with the discussion on the book Quantum Theory of Many-Body Systems, by A. Z.

Zagoskin. You may also refer to the following books: Quantum Theory of Many-Particle Systems by

Fetter and Walecka; Quantum Many-Particle Systems by Negele and Orland; Many-Particle Physics

by G. D. Mahan.

• Quantum N -body wavefunction is symmetrized (boson) or anti-symmetrized (fermion).

• Fock states |N1, N2, ...〉 and the associated creation/annihilation operators (a†k, ak) only make sense

when you can identify the corresponding single-particle states ϕk(ξ), which you specify at the beginning.

E.g., Ni is the occupation number at single-particle state k with wavefunction ϕk(ξ), a†k creates a

particle in state k. The Fock state |N1, N2, ...〉 can be created from the vacuum state as (notice the

ordering)

|N1, N2, ...〉 =
√

1
N1!N2! · · ·

(
a†1

)N1
(
a†2

)N2 · · · |0〉

• Single-particle operator Ô1 =
∑

j o1(ξj), and two-particle operator Ô2 = (1/2)
∑

i6=j o2(ξi, ξj) can be

expressed using the creation/annihilation operators as

Ô1 =
∑

i,f

〈f |o1|i〉a†fai, Ô2 =
1
2

∑
m,n,p,q

〈mn|o2|pq〉a†ma†napaq

• Field operator φ̂†(ξ) =
∑

k ϕk(ξ)a†k creates a particle at a given point ξ, in other words, it creates a

particle with wavefunction δ(ξ − ξ′). In terms of the field operators, an n-particle operator can be

expressed as

On =
1
n!

∑

j1 6=j2 6=···6=jn

on(ξj1 , ξj2 , ..., ξjn)

=
1
n!

∫
dξ1

∫
dξ2 · · ·

∫
dξn φ̂†(ξ1)φ̂†(ξ2) · · · φ̂†(ξn) on(ξ1, ξ2, ..., ξn) φ̂(ξn) · · · φ̂(ξ2)φ̂(ξ1)

Notice the ordering of the field operators in the integral. The ordering doesn’t make any difference for

bosons, but they are important for fermions.

• The field operators are time dependent through the time-dependence of the creation/annihilation

operators a†k(t), ak(t) (Heisenberg picture) or the time-dependence of the single-particle wavefunctions

ϕk(ξ, t) (Schrödigner picture). Definite commutation relations exist only between field operators taken

at the same moment of time:

[φ̂(ξ, t), φ̂†(ξ′, t)] = δ(ξ − ξ′)), [φ̂(ξ, t), φ̂(ξ′, t)] = [φ̂†(ξ, t), φ̂†(ξ′, t)] = 0
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Chapter 8

BEC: mean-field theory

8.1 Hamiltonian

The Hamiltonian of a Bose-Einstein condensate is given by

H = H0 +
1
2

∑

i6=j

U(ri, rj)

where

H0 =
∑

i

[
p̂2

i

2m
+ V (ri)

]

is the single-particle Hamiltonian and U(ri, rj) represents the two-body interaction potential. We can write

the above Hamiltonian in the second quantized form using the boson field operator Ψ̂ as:

H =
∫

dr Ψ̂†(r)
[

p̂2

2m
+ V (r)

]
Ψ̂(r) +

1
2

∫
dr

∫
dr′ Ψ̂†(r)Ψ̂†(r′)U(r, r′)Ψ̂(r′)Ψ̂(r) (8.1)

We assume a contact two-body interaction such that

U(ri, rj) = gδ(ri − rj), g =
4π~2a

m

so that the Hamiltonian becomes

H =
∫

dr Ψ̂†(r)
[

p̂2

2m
+ V (r)

]
Ψ̂(r) +

g

2

∫
dr Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r) (8.2)

Since the average number of particles is conserved, then the number operator

N =
∫

dr Ψ̂†(r)Ψ̂(r)

is a constant of motion. For generalization of variational method of finding the ground state we need to

minimize not the Hamiltonian (14.1), but the quantity

K = H − µ

(∫
dr Ψ̂†(r)Ψ̂(r)−N

)

=
∫

dr Ψ̂†(r)
[

p̂2

2m
+ V (r)− µ

]
Ψ̂(r) +

g

2

∫
dr Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r) (8.3)

where the Lagrange multiplier µ is also called the chemical potential of the condensate. In the second line

of K, we have dropped the constant µN . K is also called the grand canonical Hamiltonian.
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8.2 Hartree mean-field approximation

In the fully condensed state, all bosons occupy the same single-particle state φ(r), i.e., the many-body wave

function is given by

Ψ(r1, r2, ..., rN ) = ΠN
i=1 φ(ri)

In the Hartree mean-field approximation, the single particle wave function φr is identified as the expectation

value of the boson field operator

〈Ψ̂(r)〉 =
√

Nφ(r)

the factor of
√

N is included so that φ(r) is normalized to unity. The mean-field energy functional (divided

by total number N) is obtained from Eq. (9.1) by replacing field operators with c-number wave function

E(φ)/N =
∫

dr
[
~2

2m
|∇φ(r)|2 + V (r)|φ(r)|2 +

Ng

2
|φ(r)|4

]

From the discussion above, we need to minimize not the energy functional directly, but the quantity K(φ) =

E(φ)−Nµ
∫

dr |φ(r)|2. Variations of φ and φ∗ yield the equation satisfied by the ground state wave function.

From δK(φ)/δφ∗ = 0, we have
[
− ~

2

2m
∇2 + V (r) + Ng|φ(r)|2

]
φ(r) = µφ(r) (8.4)

This equation is called the Gross-Pitaevskii Equation (GPE). Note that energy per particle is related to

the chemical potential by

E/N = µ− Eint/N

where Eint/N = (Ng/2)
∫

dr |φ(r)|4 is the interaction energy per particle (in other words, the interaction

energy is double counted in µ). The time-dependent version of the GPE is obtained by replacing µ at the

right hand side by i~∂/∂t.

The mean-field GPE neglects quantum fluctuations and correlations. More specifically, the derivation of

the equation implicitly makes the factorization ansatz

〈Ψ̂†Ψ̂Ψ̂〉 = 〈Ψ̂†〉〈Ψ̂〉〈Ψ̂〉

This is equivalent to say that the condensate is in a density-coherent state which is an eigenstate of the

annihilation field operator

Ψ̂ |φ〉 =
√

Nφ |φ〉

8.3 Bogoliubov treatment of fluctuations

To account for the quantum fluctuations above the mean field, we can decompose the field operator as

Ψ̂ = 〈Ψ̂〉+ ψ̂ =
√

Nφ + ψ̂

where the operator ψ̂ represents the fluctuations. Note that both Ψ̂ and ψ̂ obey the boson commutation

relations.
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We now put this decomposition back into the grand canonical Hamiltonian and keep terms up to second

order in ψ̂ and ψ̂†. The zeroth order term is nothing but the energy function E(φ); the first order terms

vanishes identically if φ satisfies the GPE; the second order terms are:

K2 =
∫

dr ψ̂†(r)
[
− ~

2

2m
∇2 + V (r) + 2Ng|φ(r)|2 − µ

]
ψ̂(r) +

Ng

2

∫
dr

[
φ2(r)ψ̂†ψ̂† + (φ∗(r))2ψ̂ψ̂

]
(8.5)

from which we can derive the equation of motion for ψ̂.
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Chapter 9

BEC in a uniform gas

9.1 Hamiltonian

Consider a uniform gas of interacting bosons contained in a box of volume V with periodic boundary

condition. The Hamiltonian of the system is

H =
∑

i

p̂2
i

2m
+

g

2

∑

i 6=j

δ(ri − rj)

Obviously it is most convenient to choose plane waves as our basis single-particle orbitals and we label these

plane waves by their momentum k:

φk(r) =
1√
V

eik·r

Now we can write the Hamiltonian in second quantized form as:

H =
∑

k,k′
〈k′|(p̂2/2m)|k〉a†k′ak +

g

2

∑

k,k′,q,q′
〈qq′|δ(ri − rj)|kk′〉a†qa†q′akak′

It is easy to see that 〈k′|(p̂2/2m)|k〉 = ε0kδk,k′ with ε0k = ~2k2/(2m), and

〈qq′|U(ri, rj)|kk′〉 =
g

V 2

∫
dri

∫
drj e−iq·rie−iq′·rj δ(ri − rj) eik·rjeik′·ri

=
g

V
δq+q′,k+k′

Therefore, we can write the second quantized Hamiltonian as

H =
∑

k

ε0p a†kak +
g

2V

∑

k,k′,q

a†k+qa†k′−qakak′ (9.1)

Alternatively, we can derive the above Hamiltonian from

H =
∫

dr Ψ̂†(r)
[

p̂2

2m
+ V (r)

]
Ψ̂(r) +

1
2

∫
dr

∫
dr′ Ψ̂†(r)Ψ̂†(r′)U(r, r′)Ψ̂(r′)Ψ̂(r) (9.2)

and using the definition of the field operator as

Ψ̂(r) =
1√
V

∑

k

eik·r ak
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For a condensate, the lowest lying state, here it is the zero-momentum state k = 0, is macroscopically

occupied. The condensate wave function is therefore

φ(r) = φk=0(r) =
1√
V

and is spatially uniform. According to the Gross-Pitaevskii equation (with vanishing trapping term), the

chemical potential is thus given by

µ = Ng/V = n0g

where n = N/V is condensate density.

The second order quadratic grand canonical Hamiltonian

K2 =
∫

dr ψ̂†(r)
[
− ~

2

2m
∇2 + V (r) + 2Ng|φ(r)|2 − µ

]
ψ̂(r) +

Ng

2

∫
dr

[
φ2(r)ψ̂†ψ̂† + (φ∗(r))2ψ̂ψ̂

]
(9.3)

therefore takes the form

K2 =
∑

k 6=0

(ε0k + n0g) a†kak +
n0g

2

∑

k 6=0

(a†ka†−k + ak a−k) (9.4)

where we have used

ψ̂(r) =
1√
V

∑

k 6=0

eik·rak

The first term in Hamiltonian (9.4) is the energy of N0 particles in the condensate. The second term

describes the independent excitations with energy ε0k + 2n0g, in which ε0k is the free energy of the excitation

with momentum k and 2n0g is the Hartree-Fock mean field energy produced by interactions with condensate

atoms. One half of this interaction comes from the direct term where a particle k is scattered off the

condensate; the other half of this interaction comes from the exchange term where the particle k is scattered

into the condensate, while a condensate atom is simultaneously scattered into k. For contact interaction, the

direct (Hartree) energy is equal to the exchange (Fock) energy. The last term in the Hamiltonian represents

pair process in which two condensate atoms are scattered into ±k and vice versa.

9.2 Bogoliubov transformation

Hamiltonian (9.4) is not diagonalized. So we need to find a transformation that transforms (ak’s) into some

other boson operators (bk’s) such that

K2 =
∑

k

εkb†kbk + ∆

where ∆ is some c-number constant.

Observation: K2 mixes only ak with a†−k. This suggests the following transformation:

bk = ukak + v∗ka†−k, b†k = u∗ka†k + vka−k (9.5)

From the symmetry of the system, the coefficients u and v shouldn’t depend on the direction of k, that’s why

we use uk and vk, instead of uk and vk. And now we need to find out the expressions of these coefficients.
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Now we require that bk’s also obey boson commutation relations. Since

[bk, b†k′ ] = δk,k′ [|uk|2 − |vk|2]

we have

|uk|2 − |vk|2 = 1 (9.6)

We can also check that the transformation automatically satisfies [b†k, b†k′ ] = [bk, bk′ ] = 0.

It is also instructive to write down the reverse transformation:

ak = u∗kbk − v∗kb†−k, a†k = ukb†k − vkb−k (9.7)

Using this transformation, we can calculate

K2 =
∑

k

εkb†kbk + ∆

=
∑

k

εk(a∗ka†k + vka−k)(ukak + v∗ka†−k) + ∆

=
∑

k

εk

[
(|uk|2 + |vk|2)a†kak + u∗kv∗ka†ka†−k + ukvkaka−k + |vk|2

]
+ ∆

Equating this with (9.4), we have

∆ = −
∑

k

εk|vk|2

and

εk(|uk|2 + |vk|2) = ε0k + n0g

εkukvk = εku∗kv∗k = n0g/2

This set of equations have real solutions. Using Eq. (9.6), we have

ε2k = ε2k(u2
k − v2

k)2

= ε2k
[
(u2

k + v2
k)2 − 4u2

kv2
k

]

= (ε0k + n0g)2 − (n0g)2

= ε0k(ε0k + 2n0g)

Therefore we obtain the Bogoliubov excitation spectrum as

εk =
√

ε0k(ε0k + 2n0g)

And the coefficients uk and vk are given by

uk =

√
1
2

(
ε0k + n0g

εk
+ 1

)
, vk =

√
1
2

(
ε0k + n0g

εk
− 1

)
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9.3 Discussion

We have now succeeded in diagonalize the second quantized Hamiltonian for a uniform interacting bosons.

We see that the diagonalized Hamiltonian looks like a summation of that for an ensemble of non-interacting

particles. These non-interacting particles are annihilated and created by operators bk and b†k, respectively.

From the Bogoliubov transformation, we know that bk does not really annihilate a particle unless the

coefficient vk = 0. On the other hand, bk behaves every way like an annihilation operator. So we call the

particle annihilated by bk is a quasiparticle or elementary excitation. The basic idea of the many-body

approach is that instead of following a large number of interacting real particles, we should try to get away

with considering a relatively small number of non-interacting (or weakly-interacting) quasiparticles.

• For a non-interacting system, i.e., g = 0, we see that uk = 1, vk = 0. Hence the quasiparticle

corresponds to the real one, which is rather intuitive.

• For attractive interaction, i.e., g < 0, we see that εk becomes imaginary at long wavelength when

ε0k < 2n0|g|. This signals a dynamical instability of the system.

• For repulsive interaction, εk is always positive. In the long wavelength limit, i.e., when ε0k ¿ 2n0g, we

have

εk ≈ cs~k

Hence the quasiparticle energy becomes linear to its momentum (such excitations are called phonons),

and

cs =
√

n0g/m

is called the Bogoliubov sound velocity. In the short wavelength limit, when ε0k À 2n0g, we have

εk ≈ ε0k + n0g and vk ≈ 0, i.e., the quasiparticles become real ones (free particles).

• Each phonon excitation of a repulsive condensate involves an ensemble of atoms moving with opposite

momenta. This is confirmed in the experiment [Vogels et al., PRL 88, 060402 (2002)].

9.4 Depletion of the condensate

For a fully condensed system, i.e., a zero-temperature “pure” condensate, there is no excitation. So the

state, denoted by |G〉, must correspond to the quasiparticle vacuum state:

bk |G〉 = 0

But are there excited real particles?

For this purpose, let us calculate the number density for the excited atoms

nex =
Nex

V
=

∑
k 6=0〈a†kak〉

V
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with the expectation value calculated with respect to state |G〉. Using the inverse transformation (9.7), we

have

〈G|a†kak|G〉 = 〈G|(ukb†k − vkb−k)(ak = u∗kbk − v∗kb†−k)|G〉 = |vk|2

Therefore,

nex =

∑
k 6=0 |vk|2

V
=

1
(2π)3

∫
dk|vk|2 =

1
3π2

(mcs

~

)3

which can also be written as (using g = 4π~2a/m):

nex

n0
=

8
3
√

π

√
na3

Here we encounter an important parameter na3. The decomposition of boson field operators into a mean-

field part and small fluctuations won’t work unless the excitation above the mean field is small, which means

our theory is only valid under the condition

na3 ¿ 1

When this is satisfied, we can call our system weakly-interacting.

This calculation also shows that a “pure” condensate is not really pure as long as there is interac-

tions between atoms. The nonvanishing excitation density nex at zero-temperature is a result of quantum

depletion induced by interactions. At finite temperatures, besides this quantum depletion, there is also

thermal depletion resulted from quasiparticle excitations. In the framework of Bogoliubov treatment, the

quasiparticles form a non-interacting ideal Bose gas, so there numbers obey Bose statistics, i.e.,

〈b†kbk〉 =
1

eεk/(kBT ) − 1

9.5 Healing of condensate wave function

Consider the condensate is confined in a box with volume V . The boundary of the box represents an infinite

potential. Far away from the wall, the condensate is uniform and the discussions above apply. Obviously,

the wave function of the condensate must vanish at the wall. So in a region near the wall, the density of the

condensate drops from its bulk value n0 to zero. Let us find out the wave function near the wall.

The equation we need to solve is (consider 1D only, and the wall is located at x = 0)

− ~
2

2m

d2ψ(x)
dx2

+ Ng|ψ(x)|2ψ(x) = µψ(x)

and the boundary conditions are

ψ(0) = 0, ψ(∞) = 1/
√

V

The presence of the wall won’t change the chemical potential significantly, we can still use µ = Ng/V . And

we rewrite the nonlinear Schrödinger equation as

d2ψ(x)
dx2

= −2mNg

~2

[
1
V
− |ψ(x)|2

]
ψ(x)
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This equation can be solved analytically and the solution satisfying the boundary conditions above is

ψ(x) =
1√
V

tanh
(

x√
2ξ

)

where

ξ =

√
~2

2mn0g
=

1√
8πn0a

is the healing length or coherence length which is sometimes called. Therefore, the presence of the wall

suppress the condensate density, but the density recovers or “heals” to its bulk value over a length scale ∼ ξ.

The healing length can also be understood as follows: The shape of the condensate wave function results

from the competition between the kinetic energy and the nonlinear interaction energy. For a wave func-

tion varies spatially over a length scale ξ, the associating kinetic energy is ∼ ~2/(2mξ2). The mean-field

interaction energy is n0g. So the healing length is defined as when these two energies are equal.

The healing length sets the length scale over which the bulk density recovers in the presence of a localized

perturbation.
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Chapter 10

Static properties of trapped BEC

10.1 Gross-Pitaevskii Equation

We have learned that the ground state function satisfies the GPE:
[
− ~

2

2m
∇2 + V (r) + Ng|φ(r)|2

]
φ(r) = µφ(r) (10.1)

where V (r) represents the external trapping potential. Usually it is in the form of a harmonic potential, and

the most common ones uses in experiments have cylindrical symmetry.

For vanishing interaction, g → 0, the condensate ground state is just the ground state of the trapping

potential. But generally, the GPE has to be solved numerically to obtain the exact solution. Approximate

solution, however, can be obtained using, for example, variational method. When the interaction dominates

(g > 0), we can use the Thomas-Fermi approximation to obtain the ground state wave function.

10.2 Thomas-Fermi Approximation

Repulsive interaction between atoms tends to spread out the wave function, this has the effect of decreasing

kinetic energy. We can see this using the variational method.

Let the trapping potential have the form

V (x, y, z) =
1
2
m(ω2

1x2 + ω2
2y2 + ω2

3z2)

For a non-interacting system, the ground state is given by a Gaussian with width ai =
√
~/(mωi) along

i-direction. So we adopt the following as our trial wave function:

φ(x, y, z) =
1

π3/4(b1b2b3)1/2
e−x2/(2b21)−y2/(2b22)−z2/(2b23) (10.2)

with bi’s being the variational parameters. The energy functional per particle is

e(φ) = E(φ)/N =
∫

dr
[
~2

2m
|∇φ(r)|2 + V (r)|φ(r)|2 +

Ng

2
|φ(r)|4

]
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Putting in the trial wave function, we have

e(b1, b2, b3) = ekin + etrap + eint

ekin =
1
4

∑

i=x,y,z

~ωi
1
x2

i

etrap =
1
4

∑

i=x,y,z

~ωix
2
i

eint =
Ng

2(2π)3/2b1b2b3

with xi = bi/ai. Minimizing E(b1, b2, b3) with respect to bi yields three coupled equations:

~ωi(x2
i − 1/x2

i )−
Ng

(2π)3/2ā3

1
x1x2x3

= 0

where we have introduced ā =
√
~/(mω̄) and ω̄ = (ω1ω2ω3)1/3 is the geometric mean of the trapping

frequency.

Under the condition that xi À 1, we can neglect 1/x2
i terms in the above equations. This makes the

equations analytically solvable with solutions

xi =
(

2
π

)1/10 (
Na

ā

)1/5 (
ω̄

ωi

)1/2

So the condition xi À 1 can be satisfied as long as Na is sufficiently large. And the various energies scale as

ekin ∼ (Na)−2/5, etrap ∼ (Na)2/5, eint ∼ (Na)2/5

So the kinetic energy can be neglected when Na becomes large.

If we neglect the kinetic energy term from the GPE, the equation becomes an algebraic one

[V (r) + Ng|φ(r)|2] φ(r) = µφ(r)

and can be solved by

n(r) = |φ(r)|2 =
µ− V (r)

Ng

in the region where the right hand side is positive and n(r) = 0 outside this region. The boundary of the

cloud is given by

V (r) = µ

For the harmonic potential given above, the radius of the cloud is therefore:

Ri =

√
2µ

mω2
i

, i = 1, 2, 3

The value of µ is set by the normalization
∫

drn(r) = 1 which yields:

µ =
152/5

2

(
Na

ā

)2/5

~ω̄

Since µ = ∂E/∂N = ∂(Ne)/∂N , we have
E

N
=

5
7
µ
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Remark: under the Thomas-Fermi limit, the density profile is completely determined by the trapping

potential. For a axial-symmetric harmonic trap, the density has an inverted parabolic profile and the same

aspect ratio as the trap. By contrast, for a non-interaction system, the density has a Gaussian shape and

the aspect ratio is the square root of that for the trap.

10.3 Virial theorem for GPE

Let φ(r) be the ground state solution of the GPE. Define wave function

φλ(r) = λ3/2 φ(λr)

(The factor λ3/2 is necessary so that φλ(r) is also normalized bo unity, i.e.,
∫

dr|φλ(r)|2 = 1.) So the ground

state wave function corresponds to φλ=1(r).

The energies associated with φλ(r) are

Ekin(λ)/N = − ~
2

2m
〈φλ|∇2|φλ〉 = − ~

2

2m
λ3

∫
drφ∗(λr)∇2φ(λr) = λ2Ekin/N

Etrap(λ)/N =
1
2
mω2λ3

∫
drφ∗(λr)r2φ(λr) =

1
λ2

Etrap/N

Eint(λ)/N = = Ngλ6

∫
dr |φ(λr)|4 = λ3Eint/N

where Ekin, Etrap and Eint are energies associated with the ground state.

Since the ground state corresponds to λ = 1, we must have

d

dλ
E(λ)

∣∣∣∣
λ=1

= 0

where E(λ) = Ekin(λ) + Etrap(λ) + Eint(λ). This yields

2Ekin − 2Etrap + 3Eint = 0

For a gas in the Thomas-Fermi limit, Ekin is negligible. So we have

Eint

N
=

2
7
µ,

Etrap

N
=

3
7
µ

In a time of flight experiment, the trap is turned off, the cloud expands. Then the interaction energy is

converted into kinetic energy. The release energy per particle is then just 2µ/7.

10.4 Bogoliubov Equations

The condensate wave function satisfies the time-dependent GPE:

i~
∂Ψ(r, t)

∂t
=

[
− ~

2

2m
∇2 + V (r) + g|Ψ(r, t)|2

]
Ψ(r, t) (10.3)

Just as in the uniform case, we can calculate the excitation spectrum of a trapped condensate using a

Bogoliubov procedure: decompose the condensate wave function into the dominant mean-field part (which

is nothing but the ground state wave function) plus small fluctuations:

Ψ(r, t) = e−iµt/~√Nφ(r) + ψ(r, t)
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where the ground state wave function φ(r) satisfies the time-independent GPE (10.1).

Putting the above decomposition into (11.1), the linearized equation reads (only the first order terms in

ψ are kept):

i~
∂ψ(r, t)

∂t
=

[
− ~

2

2m
∇2 + V (r) + 2Ng|φ(r)|2

]
ψ(r, t) + e−2iµt/~ φ2(r)ψ∗(r, t) (10.4)

The excitation frequencies of the condensate are just the normal modes of ψ. To calculate the mode fre-

quencies, we want to find solutions of the form

ψ(r, t) = e−iµt/~ [
u(r)e−iωt − v∗(r)eiωt

]

The reason we need both positive and negative components is that in Eq. (10.4), ψ is coupled to ψ∗. Putting

the above equation in to Eq. (10.4), we obtain a set of two coupled equations for u and v:
[
− ~

2

2m
∇2 + V (r) + 2Ng|φ(r)|2 − µ

]
ui(r)−Ngφ2(r)vi(r) = ~ωi ui(r) (10.5)

[
− ~

2

2m
∇2 + V (r) + 2Ng|φ(r)|2 − µ

]
vi(r)−Ng[φ∗(r)]2ui(r) = −~ωi vi(r) (10.6)

where the index i labels different modes. These two equations are called the Bogoliubov Equations.

Now we want to derive certain properties of ui and vi. Multiplying both sides of (10.5) by u∗k, we have

u∗kLui −Ngφ2u∗kvi = ~ωiuiu
∗
k (10.7)

where

L = − ~
2

2m
∇2 + V (r) + 2Ng|φ(r)|2 − µ

is a Hermitian operator. Exchanging the indices i and k in (10.7), we have

u∗iLuk −Ngφ2u∗i vk = ~ωkuku∗i (10.8)

The phase conjugate of (10.8) reads

uiLu∗k −Ng(φ∗)2uiv
∗
k = ~ωku∗kui (10.9)

Subtracting (10.9) from (10.7) then integrating both sides of the resultant equation yields:

~(ωi − ωk)
∫

dru∗kui = Ng

∫
dr

[
(φ∗)2uiv

∗
k − φ2u∗kvi

]
(10.10)

where we have used ∫
dru∗kLui =

∫
druiLu∗k

a property of the Hermitian operator (alternatively, this can be easily approved using integral by parts).

Multiplying both sides of (10.6) by v∗k and following a similar procedure, we have

~(ωi − ωk)
∫

dr v∗kvi = Ng

∫
dr

[
(φ∗)2uiv

∗
k − φ2u∗kvi

]
(10.11)

As we see that the right hand sides of (10.10) and (10.11) are identical, so we have

~(ωi − ωk)
∫

dr (u∗kui − v∗kvi)



52

which shows that ui and vi obey the following orthonormal condition:
∫

dr (u∗kui − v∗kvi) = δik

Multiplying Eq. (10.5), (10.6) by vk and uk, respectively, following the same procedure, we have
∫

dr (uivk − ukvi) = 0

Remark: We have assumed in the above derivation that the excitation frequencies ωi are real. If ωi

becomes complex with finite imaginary part, then the system is dynamically unstable. For these modes, the

mode functions satisfy ∫
dr (u∗i ui − v∗i vi) = 0

10.5 attractive condensate

The Thomas-Fermi approximation is valid only for repulsive interaction. For attractive interaction, i.e.,

g < 0, things are completely different. Due to the attraction, the condensate tends to shrink in size. In a

homogeneous system, an attractive condensate is unstable against collapse. This also shows in the existence

of imaginary excitation modes we encountered earlier. For a trapped condensate, a metastable state can

be achieved as long as the attractive interaction (as measured by |Ng|) is not sufficiently strong, such that

its effect can be balanced by the kinetic energy. For large |Ng|, the kinetic energy is not able to hold the

attraction, so the condensate will collapse. This means there exists a critical value of |Ng|, below which an

attractive condensate exists in a trap. We want to find out what this critical value is.

We will achieve this using the variational method. For simplicity, let us consider an isotropic harmonic

potential:

V (r) =
1
2
mω2

0r2

The harmonic oscillator length is given by a0 =
√
~/(mω0). The trial wave function has the same form as

in (10.2), but now with b1 = b2 = b3 = b. The total energy is given by

E(x) =
3
4
~ω0

(
1
x2

+ x2

)
+

Ng

2(2π)3/2a3
o

1
x3

where x = b/a0 and the three terms at the right hand side correspond to kinetic, trapping and interaction

energy, respectively.

It is obvious that E(x) is not bound below since E(x) → −∞ as x → 0. But it might happen that a

local minimum exists at a certain x0 which is finite, i.e., x0 > 0. The condition for this to happen is

∂E(x)
∂x

∣∣∣∣
x=x0

= 0,
∂2E(x)

∂x2

∣∣∣∣
x=x0

> 0

which yields

f(x0) = x5
0 − x0 + β = 0 (10.12)

x5
0 + 3x0 − 4β > 0 (10.13)
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where

β = − Ng

2(2π)3/2a3
o~ω0

> 0

f(x) has a single minimum which occurs at xmin = (1/5)1/4 and the minimum value is fmin = β − 4/55/4.

In order for function f(x) has a root at positive x, fmin must be negative, which yields

β <
4

55/4
(10.14)

When this is satisfied, there must exist a root x0 > xmin for f(x0) = 0, and the f(x) is an increasing function

at x = x0, hence the inequality (10.13) is automatically satisfied at that point. Therefore we obtain the

condition when an attractive condensate exists in a harmonic trap. Condition (10.14) can be rewritten as

N |a|
a0

<
2
√

2π

55/4
≈ 0.67
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Chapter 11

Hydrodynamic approach and

self-similar solutions

The dynamical equations of a weakly-interacting condensate generally have to be solved numerically. But

under certain situations, (approximate) analytical solutions can be found. One example is certain excitation

modes under Thomas-Fermi limit, using a hydrodynamic approach. Another example is the so-called self-

similar solution where the spatial density of the condensate can be characterized by three scling factors which

allow a classical interpretation of the dynamics.

11.1 Hydrodynamic equations

The hydrodynamic equations are completely equivalent to the ordinary (nonlinear) Schrödinger equations.

But under certain situations, the hydrodynamic equations may be easier to solve, and/or give a more intuitive

physical picture.

Once again, let us start with the time-dependent GPE:

i~
∂Ψ(r, t)

∂t
=

[
− ~

2

2m
∇2 + V (r) + Ng|Ψ(r, t)|2

]
Ψ(r, t) (11.1)

Writing Ψ in terms of its amplitude f and phase φ (both of these quantities are real):

Ψ = feiφ (11.2)

The density and velocity field associated with the wave function Ψ is defined as

n = N |Ψ|2, v =
N~

2mni
(Ψ∗∇Ψ−Ψ∇Ψ∗)

which can be related to f and φ as

n = Nf2, v =
~
m
∇φ

Provided that the condensate phase φ is not singular, we have

∇× v =
~
m
∇×∇φ = 0
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which means that condensate is irrotational.

Putting (11.2) into the GPE, and separating the real and imaginary parts, we obtain two equations,

called the continuity and Euler equation, respectively,

∂n

∂t
+∇ · (nv) = 0 (11.3)

m
∂v
∂t

= −∇
(

µ̃ +
1
2
mv2

)
(11.4)

where

µ̃ = V + ng − ~2

2m
√

n
∇2
√

n (11.5)

Eq. (11.3) is the continuity equation for particle density. The last term at the right hand side of (11.5) is

the so-called quantum pressure term. It arises from the kinetic energy term in the GPE.

For a condensate in ground state, the phase is a constant, so we have

n = n0, v = v0 = 0

If the system is perturbed slightly, i.e.,

n = n0 + δn, v = v0 + δv = δv

We can linearize Eqs. (11.3) and (11.4) by treating δn and δv as small quantities. The linearized equations

are given by:

∂

∂t
δn = −∇ · (n0δv) (11.6)

m
∂δv
∂t

= −∇δµ̃ (11.7)

where

δµ̃ = δn g +
~2

4m
√

n0

(
δn

n0
∇2√n0 −∇2 δn√

n0

)

Combining (11.6) and (11.7) we have

m
∂2

∂t2
δn = ∇ · (n0∇δµ̃) (11.8)

11.2 Uniform case

For a uniform condensate, n0 is spatial independent. Looking for travelling wave solutions δn ∼ exp(ik · r−
iωkt), we have

δµ̃ =
(

g +
~2k2

4mn0

)
δn

then Eq. (11.8) becomes

mω2
kδn =

(
n0gk2 +

~2k4

4m

)
δn

which gives rise to the Bogoliubov spectrum

~ωk =
√

ε0k(ε0k + 2n0g)

with ε0k = ~2k2/(2m).
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11.3 Trapped case under Thomas-Fermi limit

Under the Thomas-Fermi limit, the kinetic or quantum pressure term is neglected. Hence

δµ̃ = gδn

and

m
∂2

∂t2
δn = g∇ · (n0∇δn)

To find the excitation frequency, we look for solutions with time dependence δn ∝ e−iωt, then

−ω2δn =
g

m
(∇n0 · ∇δn + n0∇2δn) (11.9)

The density under the Thomas-Fermi limit is given by

n0 = [µ− V (r)]/g

therefore, we have

mω2δn = ∇V · ∇δn− (µ− V )∇2δn (11.10)

11.3.1 spherical trap

For a isotropic harmonic trap

V (r) =
1
2
mω2

0r2

Working in spherical coordinate system (r, θ, ϕ), we have

ω2δn = ω2
0r

∂

∂r
δn− 1

2
ω2

0(R2 − r2)∇2δn (11.11)

where R is the Thomas-Fermi radius of the condensate which is given by

µ =
1
2
mω2

0R2

Due to the symmetry, Eq. (11.11) has solutions with a form

δn = D(r)Ylm(θ, ϕ)

and the radial funciton D(r) can be solved using hypergeometric functions. And the excitation frequencies

are given by

ω = ω0

√
l + 3n + 2nl + 2n2

where n, l = 0, 1, 2, 3, .... This should be compared to the excitation frequencies of a non-interacting system

ω = ω0(2n + l)

The n = 0 modes are the surface modes since they don’t have radial nodes. Their spectrum is given by

ω =
√

lω0. For l = 1, we have the dipole modes where the condensate’s center of mass oscillates in the trap

as a whole, hence the interactions do not play a role, and ω = ω0.

The monopole or breathing mode is given by n = 1 and l = 0 which has frequency
√

5ω0. This mode is

spherically symmetric (l = 0) and the radial velocity has the same sign everywhere.
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11.3.2 cylindrical trap

In a cylindrical trap, things become a little more complicated. Now the third component of the angular

momentum, m, is still a good quantum number, and the mode frequencies in general depends on m also.

11.4 Self-similar behavior

Suppose we have a time-dependent harmonic trapping potential

V (r, t) =
1
2
m

3∑

j=1

ω2
j (t)r2

j (11.12)

with r1,2,3 = x, y, z. At t = 0, the condensate is in its ground state whose wave function satisfies the GPE
[
− ~

2

2m
∇2 + V (r, 0) + Ng|φ(r)|2

]
φ(r) = µφ(r)

At t = 0, we start to modulate the trapping potential. The condensate wave function from there on obey

the time-dependent GPE

i~
∂

∂t
φ(r, t) =

[
− ~

2

2m
∇2 + V (r, t) + Ng|φ(r, t)|2

]
φ(r, t)

To cast the problem into a classical from, the condensate can be treated as a classical gas in which each

particle moves in an effective potential

Veff(r, t) = V (r, t) + gρ(r, t)

where ρ(r, t) = N |φ(r, t)|2 is the condensate density. The force exerted on the condensate is then

F (r, t) = −∇Veff(r, t)

At t = 0, the condensate is in equilibrium and we assume the Thomas-Fermi limit is reached, thus

ρ(r, 0) =
µ− V (r, 0)

g
, F (r, 0) = 0

For t > 0, the exact solution for the classical model can be obtained for the class of potentials (11.12): In

this case, the gas merely experiences a dilatation, any infinitesimally small fraction of the expanding cloud

mocing along a trajectory

Rj(t) = λj(t)Rj(0) (11.13)

from which we obtain the spatial density as

ρ(r, t) =
1

λ1(t)λ2(t)λ3(t)
ρ({rj/λj(t)}, 0)

From Newton’s law mR̈j(t) = Fj(R(t), t), we have

mλ̈j(t)Rj(0) = − ∂rj V (r, t)
∣∣
R(t)

+
1

λ1λ2λ3
∂rj V ({rj/λj(t)}, 0)

∣∣
R(t)

(11.14)

where we have used

g∇ρ({rj/λj(t)}, 0) = −∇V ({rj/λj(t)}, 0)
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Using potential (11.12), we have

∂rj
V (r, t)

∣∣
R(t)

= mω2
j (t)Rj(t) = mω2

j (t)λj(t)Rj(0)

∂rj V ({rj/λj(t)}, 0)
∣∣
R(t)

=
mω2

j (0)
λ2

j (t)
Rj(t) =

mω2
j (0)

λj(t)
Rj(0)

Therefore, we obtain equations of motion for the scaling parameters λj as

λ̈j =
ω2

j (0)
λjλ1λ2λ3

− ω2
j (t)λj (11.15)

The initial conditions for the λj are

λj(0) = 1, λ̇j(0) = 0 (11.16)

Below, let us apply this theory to two specific examples.

11.4.1 free expansion

Consider the situation of free expansion: at t = 0, the trap is turned off, i.e., ωj(t > 0) = 0. Let us consider

an axial symmetric trap:

ω1(0) = ω2(0) = ω⊥, ω3(0) = ωz = εω⊥

In this case, the condensate remains axially symmetric:

λ1(t) = λ2(t) = λ⊥(t), λ3(t) = λz(t)

According to (11.15), we have
d2

dτ2
λ⊥ =

1
λ3
⊥λz

,
d2

dτ2
λz =

ε2

λ2
⊥λ2

z

(11.17)

where τ = ω⊥t. If initially the condensate has a cigar shape, i.e., ε ¿ 1, to the zeroth order in ε, we have

λz(τ) = 1, λ⊥(τ) =
√

1 + τ2

This means that to zeroth order in ε, the condensate expands along the radial direction, but the width in

z remains the same. Eventually a cigar-shaped condensate becomes pancake-shaped. If we go beyond the

zeroth order, generally we have to solve Eqs. (11.17) numerically. The condensate will also expand along

z-direction. But still the condensate aspect ratio will cross 1. By contrast, due to the anisotropic momentum

distribution, the aspect ratio of a free-expanding cloud of thermal atoms will approach 1, but never cross it.

11.4.2 breathing oscillation

Consider a spatially isotropic condensate, i.e.,

ωj(0) = ω0, λj(t) = λ(t)

Consider we disturb the trap (changing trapping frequency) briefly, but then return back to the original

trap, i.e., ω(t > T ) = ω0. The condensate will then breathe. The scaling parameter satisfies:

λ̈ =
ω2

0

λ4
− ω2

0λ (11.18)
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If we regard λ as a spatial coordinate, then Eq. (11.18) describes a particle with mass m moving in a

potential

V (λ) =
1
2
mω2

0λ2 +
m

3
ω2

0

λ3
(11.19)

which has a minimum at λ0 = 1. For small oscillations, we can expand λ around this minimum, i.e., λ = 1+ε.

Then keeping terms up to second order in ε, we have

λ2 = 1 + 2ε + ε2, λ−3 = 1− 3ε + 6ε2

And

V (λ) =
5
6
mω2

0 +
1
2
m(5ω2

0)ε2

So the particle is like moving in a harmonic potential with trapping frequency ω =
√

5ω0, in agreement with

the hydrodynamic result.
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Chapter 12

Quantum Vortices

Quantum vortices is an important concept for superfluid. The special properties of quantum vortices are a

consequence of their motions being constrained by the fact that the velocity of the condensate is proportional

to the gradient of the phase of the wave function.

12.1 potential flow and quantized circulation

We have seen that the velocity of the condensate is directly related to the phase of the condensate wave

function feiφ:

v =
~
m
∇φ

Thus, as long as the phase φ is not singular, the condensate is irrotational, i.e.,

∇× v = 0

Since the wave function is single-valued, the change of the phase ∆φ around any closed contour must be a

multiple of 2π, i.e.,

∆φ =
∮
∇φ · dl = 2π`

where ` is an integer and is called the winding number. Thus the circulation Γ around the same contour

is given by

Γ =
∮

v · dl =
~
m

2π` = `
h

m

12.2 a single vortex in a uniform condensate

An example: consider purely azimuthal flow in a trap invariant under rotation about the z-axis. The single-

valuedness of the condensate wave function requires that the wave function varies as ei`ϕ [we use cylindrical

coordinates: (z, ρ, ϕ)]. Then the velocity is along ϕ-direction with a magnitude

vϕ = `
~

mρ
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The circulation is thus `~/m if the contour encloses the axis, and zero otherwise.

Let us take this simple example a step further. We write the wave function as

ψ(r) = f(ρ, z)ei`ϕ

the mean-field energy functional is then

E =
∫

dr

{
~2

2m

[(
∂f

∂ρ

)2

+
(

∂f

∂z

)2
]

+
~2

2m
`2

f2

ρ2
+ V (ρ, z)f2 +

1
2
Ngf4

}

from which we can derive the GPE satisfied by f as

− ~
2

2m

[
1
ρ

d

dρ

(
ρ

df

dρ

)
+

d2f

dz2

]
+

~2

2mρ2
`2f + V (ρ, z)f2 + Ngf3 = µf

It therefore seems that the only effect of the circulation is the addition of the 1/ρ2 term, which is called the

centrifugal barrier term.

For a uniform condensate, we take V (ρ, z) = 0. The ground state of the condensate must be z-

independent. Away from the circulation axis (or vortex core) ρ = 0, the centrifugal is unimportant. Hence

f takes its bulk value f = f0. Near the region of the core, the centrifugal term is balanced by the kinetic

energy term. The solution regular on the axis varies as ρ|`|. The crossover between the two regions occurs

at the length scale determined by the healing length ξ = ~/
√

2mn0g where n0 = Nf2
0 is the bulk density of

the condensate.

Now consider the case ` = 1. Suppose the condensate is confined radially in a cylinder with radius R

(R À ξ). Then the energy per unit length (along z) of the vortex is

ε = N

∫ R

0

2πρdρ

[
~2

2m

(
df

dρ

)2

+
~2

2m

f2

ρ2
+

1
2
Ngf4

]

We want to compare this with the energy per unit length of a uniform condensate, ε0, for the same number

of particles per unit length, which is given by

ε0 =
1
2
g

ν2

πR2

where ν = N
∫ R

0
2πρdρ f2 is the number of particles per unit length. The difference between these two,

εv = ε − ε0 is therefore the excitation energy per unit length associated with a single vortex. Numerical

results give

εv = πn0
~2

m
ln

(
1.464

R

ξ

)

This result can also be derived in the following. The wave function of the condensate with a vortex can

be thought of homogeneous everywhere (with a value of
√

n0/N) except for the core region which is given

by ρ ≤ ξ. Therefore the kinetic energy associated with the vortex is

εv =
1
2
mn0

∫ R

ξ

2πρdρ v2

with v = ~/(mρ), we have

εv = πn0
~2

m
ln

(
R

ξ

)
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which agrees with the numerical results with logarithmic accuracy.

Generalize to a vortex with arbitrary winding number `, the core size becomes |`|ξ and we have εv(`) =

`2εv(1). Now let us calculate the interaction energy between two vortices with winding numbers `1 and

`2, respectively. Suppose the first vortex is located at the origin and the second one at x-axis with x = d

(ξ ¿ d ¿ R). The total velocity field is the superposition of the two fields produced by the two vortices

individually: v = v1 + v2, where

v1 = `1
~

mρ
ϕ̂ = `1

~
m

−yx̂ + xŷ

x2 + y2
, v2 = `2

~
m

−yx̂ + (x− d)ŷ
(x− d)2 + y2

The total energy for these two vortices is

εv =
1
2
mn0

∫ ∫
dxdy |v1 + v2|2 = εv(`1) + εv(`2) + εint(`1, `2)

where εint(`1, `2) = mn0

∫ ∫
dxdy v1 ·v2 can be identified as the interaction energy between the two vortices

and it can calculated explicitly if we go back to the polar coordinate:

εint(`1, `2) = mn0

∫ ∫
dxdy v1 · v2

= `1`2n0
~2

m

∫ R

0

ρdρ

∫ 2π

0

dϕ
ρ2 − dρ cos ϕ

ρ2(ρ2 + d2 − 2dρ cos ϕ)

= `1`2n0
~2

m

∫ R/d

0

dr

∫ 2π

0

dϕ
r − cos ϕ

r2 − 2r cos ϕ + 1
, (r = ρ/d)

Do the angle integral first
∫ 2π

0

dϕ
r − cosϕ

r2 − 2r cosϕ + 1
=

∫ 2π

0

dϕ
r

r2 − 2r cosϕ + 1
−

∫ 2π

0

dϕ
cosϕ

r2 − 2r cos ϕ + 1

Using integral tables, the two integrals are

∫ 2π

0

dϕ
r

r2 − 2r cosϕ + 1
=





2πr
1−r2 , (r < 1)
2πr

r2−1 , (r > 1)
,

∫ 2π

0

dϕ
cosϕ

r2 − 2r cos ϕ + 1
=





2πr
1−r2 , (r < 1)

2π
r(r2−1) , (r > 1)

Therefore we have ∫ 2π

0

dϕ
r − cosϕ

r2 − 2r cos ϕ + 1
=





0, (r < 1)
2π
r , (r > 1)

Finally we have

εint(`1, `2) = 2π`1`2n0
~2

m
ln

(
R

d

)

Two observations: 1) If the two vortices rotate along the same direction (i.e., `1 and `2 have the same sign),

then the interaction energy between them is positive, signalling a repulsive interaction; vice versa. 2) Since

ξ ¿ d, we see that the total energy for the two vortices is less than the energy for one vortex with winding

number `1 + `2 when `1 and `2 have the same sign. This means that a multiply-quantized vortex tends to

disintegrate into several singly-quantized vortices.
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12.3 a vortex in a trap

Consider a axial symmetric harmonic trap, with z-axis being the symmetry axis. There is a vortex whose

core is situated along z. Assume we are under the Thomas-Fermi limit.

Consider a 2D problem first, i.e., the z-dimension is infinite. The radius of the condensate is R and the

density of the condensate varies radially as n(ρ) = n(0)(1 − ρ2/R2) where n(0) is the density at the trap

center. The vortex energy can be decomposed into two parts: the first part is the energy out to a radius ρ1

intermediate between the core size and R (i.e., ξ ¿ ρ1 ¿ R), and the second part is the rest. The first part

can be approximated with the energy calculated for a uniform system since the condensate wave function

does not vary significantly for ρ ¿ R. Then the total energy per unit length is

εv = πn0
~2

m
ln

(
1.464

ρ1

ξ

)
+

1
2

∫ R

ρ1

2πρdρ mn(ρ)v2(ρ)

= πn0
~2

m

[
ln

(
1.464

ρ1

ξ

)
+

∫ R

ρ1

ρdρ

ρ2

(
1− ρ2

R2

)]

≈ πn0
~2

m

[
ln

(
1.464

R

ξ

)
− 1

2

]
= πn0

~2

m
ln

(
0.888

R

ξ

)

The total angular momentum per unit length L is ~ times the total number of particles per unit length

L = n0~
∫ R

0

2πρdρ

(
1− ρ2

R2

)
=

1
2
n0πR2~

For the 3D case under Thomas-Fermi limit, we just need to integrate the above results along z to obtain

the total vortex excitation energy and total angular momentum, using

n0(z) = n0(1− z2/Z2), R(z) = R(1− z2/Z2)1/2, ξ(z) = ξ[n0/n0(z)]1/2

Here R and Z are the radial and axial width, respectively, n0 and ξ are density and healing length at the

trap center without vortex. Finally we get

Ev =
π~2

m

∫ Z

−Z

dz n0(z) ln
[
0.888

R(z)
ξ(z)

]
=

4πn0Z

3
~2

m
ln

(
0.671

R

ξ

)
(12.1)

Lz = ~N = ~
8π

15
n0R

2Z (12.2)

I write Lz instead of L, because the angular momentum is along z.

12.4 rotating trap

From Eq. (12.1) we see that it takes energy to create a vortex. So the ground state can not have vortex in

it. But this is only true for a non-rotating trap.

Suppose the trap is rotated along z-axis with angular frequency Ω. It will be convenient to work in the

rotating frame so that the trapping potential is time-independent. The energy functional E′ in the rotating

frame is related to that in the lab frame E by

E′ = E − 〈L ·Ω〉 = E − ΩLz
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Therefore a state with finite Lz and energy EL (in the lab frame) will be favored over the non-rotating state

if the angular frequency of the trap exceeds a critical value given by

Ωc =
EL − E0

Lz

The numerator is just the vortex excitation energy given by Eq. (12.1) under the Thoma-Fermi limit. Using

(12.1) and (12.2) we can calculate the critical frequency as

Ωc =
5
2
~

mR2
ln

(
0.671

R

ξ

)

For faster and faster rotation, more and more vortices will be created. These vortices form a triangular

Abrikosov lattice.

12.5 vortex lattice in fast rotating trap

Let us consider a 2D case. The condensate is confined in the xy-plane by a harmonic trap V = mω2
⊥ρ2/2,

and rotates along the symmetry z-axis with angular momentum Ω. The energy functional E′ in the rotating

frame is related to that in the lab frame E by

E′ = E − 〈ΩLz〉 =
∫

d2ρ

[
ψ∗(h⊥ − ΩLz)ψ +

1
2
Ng|ψ|4

]

where

h⊥ = −p2
⊥

2m
+ V =

p2
x

2m
+

p2
y

2m
+

1
2
mω2

⊥(x2 + y2)

Since L = r× p, we have Lz = xpy − ypx, therefore

H⊥ = h⊥ − ΩLz =
P2
⊥

2m
+ Veff(ρ) =

(p−mΩẑ × ρ)2

2m
+

1
2
m(ω2

⊥ − Ω2)ρ2 (12.3)

Two observations. 1) The rotating frequency Ω cannot exceed the trapping frequency ω⊥. Otherwise, the

trap cannot balance the centrifugal force. 2) If we rewrite H⊥ as H⊥ = h⊥−ΩLz = HL +(ω⊥−Ω)Lz where

HL = h⊥ − ω⊥Lz =
(p⊥ −mω⊥ẑ × ρ)2

2m

Recall that the Hamiltonian describing an electron of charge e and mass m moving in the xy-plane under

the influence of a magnetic field B = Bẑ with vector potential A = B× ρ/2 is given by

He =
(p⊥ − eA)2

2m

Therefore if we make the identification

ω⊥ =
eB

2m

, then the two Hamiltonian are completely equivalent. The eigenstates and eigenvalues of He (hence HL)are

well-known. The eigenstates are called Landau levels with wave function

hn,m(ρ) =
e|u|

2/(2a2
⊥)∂m

+ ∂n
−e−|u|

2/a2
⊥

√
πa2

⊥n!m!
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and the associated eigenenergy is

En,m = ~ω⊥(2n + 1)

where

u =
x + iy

a⊥
, a⊥ =

√
~

mω⊥
, ∂± =

a⊥
2

(∂x ± i∂y)

Since hn,m are also eigenstates for Lz with eigenenergy ~(m − n), they are also eigenstates for H⊥ with

eigenfrequency

ωn,m = n(ω⊥ + Ω) + m(ω⊥ − Ω) + ω⊥

In the limit Ω → ω⊥, the states with same n but different m become degenerate. In particular, the lowest

Landau level (LLL) with n = 0 should be dominantly occupied and we reach the 2D quantum Hall regime.
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Chapter 13

Spinor BEC

13.1 Two-component BEC

Consider a two-component condensate with collision interactions between them. The energy functional of

the system reads E = E1 + E2 + E12 where

Ei = Ni

∫
d3r

[
~2

2mi
|∇ψi|2 + Vi|ψi|2 +

Nigi

2
|ψi|4

]

E12 = N1N2g12

∫
d3r |ψ1|2 |ψ2|2

where gi = 4π~2ai/mi and g12 = 2π~2a12/mr with mr being the reduced mass. Both N1 and N2 are

conserved independently. And the chemical potentials are in general different for the two components.

13.1.1 miscible and immiscible states

Let us consider a homogeneous system with gi > 0, trapped within volume V . One obvious choice for the

ground state is that both components have uniform density distribution spread over the whole volume, the

so-called miscible state. Hence we have ni = Ni/V . The energy of the miscible state is

Eho =
N2

1

2V
g1 +

N2
2

2V
g2 +

N1N2

V
g12

For sufficiently large and positive g12, the two components want to stay away from each other (i.e., phase-

separated). So they may occupy non-overlapping volumes V1 and V2 = V − V1, respectively, in the so-called

immiscible state. Thus we have ni = Ni/Vi and the energy of the system becomes (there is no inter-species

interaction energy)

Ein =
N2

1

2V1
g1 +

N2
2

2V2
g2 =

N2
1

2V1
g1 +

N2
2

2(V − V1)
g2

which can be minimized with

V1 =
N1
√

g1

N1
√

g1 + N2
√

g2
V, V2 =

N2
√

g2

N1
√

g1 + N2
√

g2
V

The minimized energy is given by

Ein =
N2

1

2V
g1 +

N2
2

2V
g2 +

N1N2

V

√
g1g2
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Compare Eho and Ein, we find that the phase-separated system has a lower energy (i.e., Ein < Eho) when

g12 >
√

g1g2

With the inclusion of trapping potentials, the above phase separation criterion still serves as a good

estimate.

13.1.2 dynamical instability of the miscible state

When the condition g12 >
√

g1g2 is satisfied, we know that the miscible state is energetically unstable, i.e.,

it is no longer the lowest energy state. We will now show that under the same condition, the miscible state

is also dynamically unstable, i.e., it possesses excitation modes with complex excitation frequencies.

The two coupled GPEs are given by

i~ψ̇1 = − ~
2

2m
∇2ψ1 + N1g1|ψ1|2ψ1 + N2g12|ψ2|2ψ1 (13.1)

i~ψ̇2 = − ~
2

2m
∇2ψ2 + N2g2|ψ2|2ψ2 + N1g12|ψ1|2ψ2 (13.2)

Decompose the wave functions as

ψi(r, t) =
[

1√
V

+ δi(r, t)
]

e−iµit/~

with µ1 = g1n1 + g12n2 and µ1 = g2n2 + g12n1 being the two chemical potentials for the miscible state.

Putting this decomposition into the GPEs, keeping up to the linear fluctuation terms, we have

i~δ̇1 = − ~
2

2m
∇2δ1 + g1n1(δ1 + δ∗1) + g12n2(δ2 + δ∗2)

i~δ̇2 = − ~
2

2m
∇2δ2 + g2n2(δ2 + δ∗2) + g12n1(δ1 + δ∗1)

Seeking solutions with the form

δi(r, t) = ui eik·r+iωt + v∗i eik·r−iωt

we have

−~ωu1 = ε0ku1 + g1n1(u1 + v1) + g12n2(u2 + v2)

~ωv1 = ε0kv1 + g1n1(u1 + v1) + g12n2(u2 + v2)

−~ωu2 = ε0ku2 + g2n2(u2 + v2) + g12n1(u1 + v1)

~ωv2 = ε0kv2 + g2n2(u2 + v2) + g12n1(u1 + v1)

with ε0k = ~2k2/(2m). Define the following quantities

f± = u1 ± v1, h± = u2 ± v2

we have

−~ωf− = (ε0k + 2g1n1)f+ + 2g12n2h+

−~ωf+ = ε0kf−

−~ωh− = (ε0k + 2g2n2)h+ + 2g12n1f+

−~ωh+ = ε0kh−
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Eliminate f− and h−, we have

~2ω2f+ = ε0k(ε0k + 2g1n1)f+ + 2g12n2ε
0
kh+

~2ω2h+ = ε0k(ε0k + 2g2n2)h+ + 2g12n1ε
0
kf+

The condition for the above equations to have non-trivial solutions is
∣∣∣∣∣∣
~2ω2 − ε0k(ε0k + 2g1n1) −2g12n2ε

0
k

−2g12n1ε
0
k ~2ω2 − ε0k(ε0k + 2g2n2)

∣∣∣∣∣∣
= 0

which can be solved as

~2ω2
± = ε0k(ε0k + g1n1 + g2n2)±

√
(ε0k)2 (ε0k + g1n1 + g2n2)2 + 4g2

12n1n2 (ε0k)2 − (ε0k)2 (ε0k + 2g1n1)(ε0k + 2g2n2)

The argument of the square root is non-negative, hence ω2
+ is always positive. However, when g2

12 > g1g2,

ω2
− becomes negative for long-wavelength excitations, i.e., the miscible state becomes dynamically unstable.

13.2 Spin-1 condensate

In magnetic traps usually only one internal state (weak-field seeking state) can be trapped, therefore the

atomic spin degrees of freedom is not available. Such a condensate is called the scalar condensate. The JILA

group first created a spinor BEC in a magnetic trap by trapping two states of 87Rb of different hyperfine

levels. The bare energy of these two states are separated by about 7 GHz, hence the two spin components

are not free to convert into each other without external couplings (RF field).

Here we want to study a spinor condensate made possible by optical trapping. When a condensate

is transferred to an optical dipole trap, all magnetic sublevels experience essentially the same trapping

potential. Thus the spin degrees of freedom are fully released. Here we focus on a condensate with hyperfine

angular quantum number f = 1. The three magnetic sublevels (spins) have spin projection quantum number

mf = −1, 0 and +1.

13.2.1 Hamiltonian

Let us first derive the second-quantized Hamiltonian of the system.

The two-body interaction potential is given by

U(r1, r2) = δ(r1, r2)
2∑

F=0

gFPF

Here F is the total spin of the two spin-1 particles, hence F can take values 0, 1 and 2.

PF =
F∑

mF =−F

|F, mF 〉〈F, mF |

is the projection operator which projects the two spin-1 atoms into a state with total spin F . gF = 4π~2aF /m

is the interaction strength in F -channel. For bosonic atoms, the total wave function has to be symmetrized.

Due to the δ contact potential, the spatial wave function is symmetric. Therefore the spin wave function
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has to be symmetric too. This means only even-F channels contribute and we can thus neglect F = 1 spin

channel. Hence we have

U(r1, r2) = δ(r1, r2)(g0P0 + g2P2)

In quantum mechanics, the most usual way to describe the interaction between two spins f1 and f2 has

a form f1 · f2, which can be written in the form

f1 · f2 =
∑

F

1
2
[F (F + 1)− f1(f1 + 1)− f2(f2 + 1)]PF

Now using F = 0, 2 and f1 = f2 = 1, we have

f1 · f2 = P2 − 2P0

Together with P0 + P1 = 1, we have finally

U(r1, r2) = δ(r1, r2) (c0 + c2 f1 · f2)

with

c0 =
g0 + 2g2

3
, c2 =

g2 − g0

3

We can then write the total Hamiltonian as

Hsp =
∫

dr ψ̂†α(r)
(
−~

2∇2

2m
+ V

)
ψ̂α(r) +

c0

2

∫
dr ψ̂†α(r)ψ̂†β(r)ψ̂α(r)ψ̂β(r)

+
c2

2

∫
dr ψ̂†α(r)ψ̂†α′(r)fαβ · fα′β′ ψ̂β(r)ψ̂β′(r) (13.3)

where all the repeated indices are summed over, ψ̂α represents the field operator for magnetic sublevel

mf = α, and fαβ is the density matrix of angular momentum operator with f = 1. Explicitly, we have (in

the basis of mf = 1, 0,−1)

fx =
1√
2




0 1 0

1 0 1

0 1 0


 , fy =

1√
2




0 −i 0

i 0 −i

0 i 0


 , fz =




1 0 0

0 0 0

0 0 −1




13.2.2 single mode approximation

For alkali atoms, the values of a0 and a2 are very close to each other and both are positive. Hence |c2| ¿ c0.

This suggests that in the mean-field treatment, the spatial wave function of the condensate is determined by

the first and second term in (14.1). Since these two terms are spin-symmetric, we expect the spatial wave

functions are the same for different mf . So we can invoke the single mode approximaiton (SMA)

ψ̂α(r) = φ(r)aα

where the wave function φ(r) satisfies
(
−~

2∇2

2m
+ V + c0N |φ|2

)
φ = µφ



70

Under the SMA, we can write (14.1) as

Hsp = µN − c′0N(N − 1) + c′2 a†αa†α′fαβ · fα′β′aβaβ′ (13.4)

where N = a†αaα and

c′F =
cF

2

∫
dr |φ(r)|4

Let us take a look at the last term in (13.4).

a†αa†α′fαβ · fα′β′aβaβ′ = a†αfαβ · a†α′aβfα′β′aβ′

= a†αfαβ · (aβa†α′ − δα′β)fα′β′aβ′

= a†αfαβaβ · a†α′fα′β′aβ′ − a†αfαβ · fββ′aβ′

= L2 − 2N

where

L = a†αfαβaβ

is the total many-body angular momentum operator of the system whose components are

Lz = a†1a1 − a†−1a−1, L− = Lx − iLy =
√

2 (a†0a1 + a†−1a0), L+ = Lx + iLy =
√

2 (a†1a0 + a†0a−1)

which satisfy the commutation relations

[L+, L−] = 2Lz, [Lz, L±] = ±L±

The total Hamiltonian under the SMA is therefore:

Hsp = µN − c′0N(N − 1) + c′2(L
2 − 2N)

13.2.3 ground state

In an isolated system, the total particle number operator N is a constant of motion. Hence we can neglect

terms proportional to N in the Hamiltonian, since these terms only give the wave function a constant phase.

Therefore the Hamiltonian has the following simple form:

H = c′2L
2

It is instructive to write down L2 in the form:

L2 = N + (N1 −N−1)2 + N0 + 2N0N1 + 2N0N−1 + 2a†0a
†
0a1a−1 + 2a0a0a

†
1a
†
−1

The first two terms at the r.h.s. are constants of motion, the last two terms represent the spin-exchange

interactions, which are the source of all kinds of interesting behaviors (spin mixing, spin entanglement, etc.)

of spinor BEC.

The eigenstates and eigenenergies of this Hamiltonian are

L2|l, ml〉 = l(l + 1)|l, ml〉, Lz|l, ml〉 = ml|l, ml〉
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The allowed values of l are l = 0, 2, 4, ..., N if N is even and l = 1, 3, 5, ..., N if N is odd; and the allowed

values of ml are ml = 0,±1,±2, ...,±l.

The ground state |G〉 is completely determined by the sign of c′2 (assume N even):

|G〉 =




|0, 0〉, if c′2 > 0

|N,mN 〉, if c′2 < 0

The interaction is anti-ferromagnetic for c′2 > 0, and ferromagnetic for c′2 < 0.

In a classical picture, the ground state of a ferromagnetic spinor condensate is like a spin with maximum

length, pointing to any arbitrary direction, which can be fixed by any magnetic field.

The ground state of an antiferromagnetic spinor condensate is a spin singlet state (assume even total

number), which can be expanded onto the Fock state basis |N1, N0, N−1〉 as

|0, 0〉 =
∑

k

ck

∣∣∣∣
1
2
(N − 2k), 2k,

1
2
(N − 2k)

〉

where the coefficients are given by

ck = (−1)k

√
(2k − 1)!!N !!

(2k)!!(N + 1)!!

from which we can show that in this state, all three spin states are equally populated with 〈N1〉 = 〈N0〉 =

〈N−1〉 = N/3. It can also be shown that this state is a fragmented state. This is an extremely fragile state:

a very week external field will destroy it. The spin Hamiltonian including the effect of a magnetic field along

z-direction reads:

H = c′2L
2 − hLz

with h = γB (γ is the gyromagnetic ratio). Without loss of generality, we take h > 0. For antiferromagnetic

condensate (c′2 > 0), the ground state now becomes |G〉 = |`0, `0〉 with `0 = [h/(2c′2) + 0.5].
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Chapter 14

Atomic Diffraction

14.1 Elements of linear atom optics

Collimators, lens, mirrors... very simple

14.2 Atomic diffraction

Consider an atomic beam propagating along x-direction with velocity vx, there is a standing wave laser light

along z-direction. Assume that vx is sufficiently large such that the atom-light interaction does not affect

vx, but changes the atomic velocity along z. So we only need to treat the problem as a 1D system. Further

assume the atom is a two-level atom with ground state |g〉 and excited state |e〉. The light is detuned from

the atomic transition by ∆. The Hamiltonian for the system in the interaction region (in the rotating frame)

is

H =
p2

z

2m
− ~∆|e〉〈e|+ ~Ω

2
cos(kz)(|e〉〈g|+ |g〉〈e|) (14.1)

The problem can be divided into three regimes according to the relations among three length scales:

the width of the atomic beam along z, wz; the period of the standing laser light, λ; and the width of the

interaction region, L.

14.2.1 Raman-Nath Regime

In the Raman-Nath regime, we have wz À λ (so the atom experiences the full periodic structure of the light

potential) and L is sufficiently small such that during the interaction, the kinetic energy (along z) of the

atom does not change very much. Hence we can simply neglected in the Hamiltonian. The Hamiltonian in

the rotating frame becomes

H = −~∆|e〉〈e|+ ~Ωcos(kz)(|e〉〈g|+ |g〉〈e|)

Express the state vector of the atom in momentum space,

|Ψ(p, t)〉 = ψe(p, t)|e〉+ ψg(p, t)|g〉
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Here is p is the momentum along z. We can then derive the equations of motion for the amplitudes ψe and

ψg as

iψ̇e(p, t) = −∆ψe(p, t) +
Ω
2

[ψg(p + ~k, t) + ψg(p− ~k, t)]

iψ̇g(p, t) =
Ω
2

[ψe(p + ~k, t) + ψe(p− ~k, t)] (14.2)

Since the momentum state p is only coupled to states p± ~k, we can do the following expansion:

ψe(p, t) =
∑

n

ψn
e (t) δ(p− n~k), ψg(p, t) =

∑
n

ψn
g (t) δ(p− n~k)

If initially the atom is in the ground state with momentum p = 0, then the initial condition is

ψn
e (0) = 0, ψn

g (0) = δn0

• On-resonance case From Eqs. (14.2), we have (∆ = 0)

iẋn =
Ω
2

(xn−1 + xn+1)

where xn = ψn
e for odd n and xn = ψn

g for even n. The solution for the above equation is the nth-order

Bessel functions of the the first kind:

xn = (−i)nJn(α)

with α(t) =
∫ t

0
dt′Ω(t′), and Jn being the Bessel function of the first kind.

• Far-off-resonance case In this case, we can adiabatically eliminate the excited state as ψe(p, t) =

(Ω/2∆)[ψg(p + ~k, t) + ψg(p − ~k, t)], then the equation of motion for the ground state amplitude

becomes

iψ̇g(p, t) =
Ω2

4∆
[ψg(p + 2~k, t) + 2ψg(p, t) + ψg(p− 2~k, t)]

The ground state atom changes its momentum in units of 2~k. Let ψg(p, t) =
∑

m ψm
g (t)δ(p− 2m~k)

with initial condition ψm
g (0) = δm0, then we have

ψm
g (t) = (−1)m ei(−α+mπ/2) Jm(α)

with α(t) =
∫ t

0
dt′Ω2(t′)/(2∆).

The treatment above neglects the photon recoil and the spontaneous emission, which tend to wash out

the diffraction pattern.

14.2.2 Bragg Regime

In the Bragg Regime, we still have wz À λ. But here L is sufficiently large that the interaction with laser

light significantly changes the kinetic energy of the atom, so we can no longer neglect it in the Hamiltonian.

With the kinetic energy term included, the equations of motion becomes

iψ̇e(p, t) =
p2

2m
ψe(p, t) +

Ω
2

[ψg(p + ~k, t) + ψg(p− ~k, t)]−∆ψe(p, t)

iψ̇g(p, t) =
p2

2m
ψg(p, t) +

Ω
2

[ψe(p + ~k, t) + ψe(p− ~k, t)] (14.3)
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For far-off resonance light, ~∆ ¿ ~Ω, p2/(2m), we can adiabatically eliminate the excited state amplitude

using the first of Eqs. (14.3),

ψe(p, t) =
Ω
2∆

[ψg(p + ~k) + ψg(p− ~k)]

Putting this into the second equation, we have

iψ̇g(p, t) =
(

p2

2m
+

Ω2

2∆

)
ψg(p, t) +

Ω2

4∆
[ψg(p + 2~k, t) + ψg(p− 2~k, t)] (14.4)

The above equation shows that momentum conservation requires that an atom with initial momentum

pi is connect to final momentum state pf = pi + 2n~k through a 2n-photon process. The energy difference

between these two states are

∆E =
1

2m

[
(pi + 2n~k)2 − p2

i

]

The only two states that satisfy both momentum and energy conservation (phase matching) are

pi = −pf = −n~k

In this case, we can neglect all other off-resonant momenta states and keep only these two resonant states.

The resulting coupled equation can be easily solved. Let pi = ~k, denote g±n(t) = ψg(±n~k, t), then

g−n(t) = exp[−i(n2ωrt + 2θ)] cos(θ), g+n(t) = i exp[−i(n2ωrt + 2θ)] sin(θ)

with ωr = ~k2/(2m) and θ(t) =
∫ t

0
dt′Ω2(t′)/(4∆). Hence the atom oscillates between n~k and −n~k.

To resonantly connect an arbitrary pi to pf = pi + 2n~k, we have to apply for the energy mismatch ∆E.

This can be done by detuning the frequency of the two laser beams that form the standing wave. Suppose

the two beams are detuned by ∆ω. The 2n-photon process involves absorbing n-photon from one beam and

emitting n-photon to the other beam. Each absorption-emission cycle will add an extra energy ~∆ω to the

atom. Therefore to make the state pi and pf resonance with the 2n-photon process, we need to have

n~∆ω = ∆E (14.5)

We can also view this laser detuning from the following perspective: The two beams detuned from each other

by ∆ will form a moving standing wave which moves at the velocity v = ∆ω/(2k). In this moving frame, the

initial momentum of the atom is shifted to p′i = pi −mv. When the resonance condition (14.5) is satisfied,

p′i = −n~k which becomes resonant with the final state p′f = pf −mv = n~k through a 2n-photon process.

Bragg diffraction can also be performed on a condensate [J. Stenger et al., PRL 82, 4569 (1999)]. A

Bragg pulse is applied to create excitation with k > cs, so the excitation is free-particle excitation with energy

ε0k + n0g, the second term being the mean-field interaction energy. The signal is plotted as a function of

laser detuning, by comparing it with the result of a non-interacting condensate (Bragg pulse is applied after

the cloud is released from the trap and the interaction energy has converted to the kinetic energy), one can

deduce the value of n0g. The width of the signal, which is determined by the momentum width of the sample)

can also be used to detect the condensation phase transition. For a thermal cloud at temperature T , the

momentum width is about (∆p)thermal ∼
√

2mkT , whereas for a condensate, it is given by (∆p)BEC ∼ ~/R

with R being the size of the condensate. For non-interacting condensate confined in harmonic trap, R is
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about the harmonic oscillator length, hence (∆p)BEC ∼ √
~mω. The ratio of the thermal and condensate

width is
(∆p)BEC

(∆p)thermal
=

√
~ω
2kT

which is about 5% for ω = 2π × 100Hz and T = 1µK (typical critical temperature). For a repulsive

condensate, the size is larger than the harmonic oscillator length, this ratio is smaller still. Experimentally,

it was shown that the Bragg width is indeed inversely proportional to the size of the condensate. This is

Heisenberg uncertainty principle at work at a macroscopic level! For this reason, a condensate is truly a

macroscopic quantum mechanical object.

14.2.3 Stern-Gerlach Regime

In the Stern-Gerlach regime, wz ¿ λ, i.e., the atomic beam is localized in z-direction such that the atom

sees a local potential rather than the full periodic potential.

Again, we assume the laser light is on-resonant with the atomic transition, i.e., ∆ = 0. The eigenstates

of the interaction Hamiltonian is the dressed states

|±〉 =
1√
2
(|g〉 ± |e〉)

with associated energy

E± = ±~Ω
2

cos(kz)

If initially the atom is in its ground state |ψ(0)〉 = |g〉, which in terms of the dressed states can be decomposed

as |ψ(0)〉 = (|+〉+ |−〉)/√2, then the two components will experience opposite forces with equal magnitude:

F± = −∇E± = ∓(~Ωk/2) sin(kz). Hence the atomic wavepacket splits into two spatial components, just as

in the original Stern-Gerlach experiment atoms split into several spatial components in an inhomogeneous

magnetic field due to different magnetic spin components.
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Chapter 15

Four Wave Mixing in BEC

15.1 mixing of matter waves

The wave function of a scalar condensate satisfies the GPE

i~
∂

∂t
φ(r, t) =

[
− ~

2

2m
∇2 + V (r) + Ng|φ(r, t)|2

]
φ(r, t) (15.1)

which has the same form as a Schrödinger equation with a cubic nonlinear term. The same type of non-

linearity appears in many other physical system. In particular, in nonlinear optics, where a light beam

going through a Kerr nonlinear medium, the equation governing the propagation of the light has the same

mathematical form.

It is well-known, in the context of nonlinear optics, that such nonlinear term gives rise to wave-mixing.

Therefore it is rather intuitive to expect same phenomenon also occurs in condensate. In 1999, W. D.

Phillips’ group at NIST successfully demonstrated four-wave mixing in an atomic condensate [Nature 398,

218 (1999)]. In that experiment, a condensate is first released from the trap, then optical pulses are applied

to Bragg scatter part of the original condensate in momentum state k1 = 0 into finite momenta states

k2 = k(x̂ + ŷ) and k3 = 2kx̂. These three modes initially overlap with each other and interact nonlinearly

to produce a fourth mode at momentum k4 = k1 − k2 + k3 = k(x̂− ŷ).

The time it takes to create states k2 and k3 using the Bragg pulses is very short, and it can thus be

taken to be instantaneous. As a result, all different momentum modes have the same spatial distribution.

We write the wave function for different momentum states as

ψi(r, t) = ϕi(r, t) ei(ki·r−ωit)

with ωi = ~k2
i /(2m). In the above expression, the envelope function ϕi(r, t) is assumed to be slowly varying

in space and time on the scales of 1/ki and 1/ωi, respectively, and are normalized as
∫

dr
∑

i |ϕi(r, t)|2 = 1.

Different modes are approximately orthogonal to each other. Such slowly varying envelope approximation

is necessary to restrict the momentum components only to those around the central momentum of each of

the wave packets and allows efficient numerical simulations as it separates out explicitly the fast oscillating
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phase factors representing the central momentum. The total wave function is therefore

φ(r, t) =
4∑

i=1

ϕi(r, t) ei(ki·r−ωit)

Put this into the GPE (V = 0), collecting terms with the same phase factors, eliminating rapidly varying

terms and keeping only the phase-matched terms, we finally have

i

(
∂

∂t
+
~ki

m
· ∇ − i

~
2m

∇2

)
ϕi(r, t) =

Ng

~
∑

j,m,n

δki+kj ,km+knδωi+ωj ,ωm+ωnϕ∗j (r, t)ϕm(r, t)ϕn(r, t), (15.2)

The indices take any value from 1 to 4. The two δ-functions ensure momentum and energy conservations,

respectively. They are automatically satisfied if i = j = m = n, which gives rise to the so-called self-phase

modulation terms; or if i = m 6= j = n or i = n 6= j = m, which gives rise to the cross-phase modulation

terms. These two types of terms do not generate new modes as they do not involve particle exchange between

different modes. The term responsible for four-wave mixing must involve all four different modes. To gain

more insight, let us write down the explicit form for i = 4, the mode which is created by the nonlinear

interaction:

i

(
∂

∂t
+
~k4

m
· ∇ − i

~
2m

∇2

)
ϕ4(r, t) =

Ng

~
(|ϕ4|2 + 2|ϕ1|2 + 2|ϕ2|2 + 2|ϕ3|2

)
ϕ1 + 2

Ng

~
ϕ∗2ϕ1ϕ3

The last term at the r.h.s. is the wave-mixing term that generates this mode. In general, Eqs. (15.2) have

to be solved numerically.

15.2 mixing between light and matter waves

Nonlinear wave mixing can also occur between light and matter waves. The first demonstration on this

was reported by Ketterle’s group [PRL 82, 4569 (1999)]. A cigar-shaped condensate is illuminated by an

off-resonant laser beam with wave number kL propagating perpendicular to its long axis z. After absorbing

the photon from the laser beam, the atom gets a recoil momentum along y, the laser propagation direction.

Subsequent spontaneous emission gives the atom another momentum kick. Normally the spontaneous emis-

sion is isotropic. However it can shown that for a cigar-shape atomic ensemble, spontaneous emission occurs

preferentially along the z-axis, the so-called end-fire modes. After one such absorption-emission cycle, the

atom is now in momentum state k = kL(ŷ ± ẑ). Now we have two light waves (the laser and the spon-

taneously emitted light) and two matter waves (the original zero-momentum condensate and the recoiled

atoms). The two lights waves interfere with each other and form a grating which scatters condensate atoms

into the recoil mode; while the two matters waves also form a grating which scatters the light waves. The

two gratings thus strengthen each other until the condensate gets sufficiently depleted. Successive atomic

momentum side modes are being built up by this process.
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Chapter 16

Solitons

16.1 Discovery of the solitary wave and the soliton

The first documented observation of a solitary wave wave was made by a Scottish engineer, John Scott

Russel, in 1834, when he saw a rounded smooth heap of water detach itself from a boat and propagate

without change of shape or speed for over two miles along the canal (he chased the wave on horseback).

After that, he went back and performed some wave-tank experiments. In 1895, Korteweg and de Vries

derived a model equation which describes the unidirectional propagation of long waves in shallow water.

This equation has become much celebrated and is now known as the KdV equation, and can be written as

∂h

∂t
+ h

∂h

∂z
+

∂3h

∂z3
= 0

The second and third term describe nonlinearity and dispersion, respectively. KdV found both a periodic

and a localized solution to the equation.

In the 1960’s, inspired by the Fermi-Pasta-Ulam recursion problem, Zabusky and Kruskal reinvestigated

the KdV equation numerically, and found that robust pulse-like waves can propagate in a system modelled

by such an equation. These solitary waves, which can pass through each other and preserve their shapes and

speed after the collision, are called solitons. The soliton solution of the KdV equation is given by

h(t, z) = 3v sech2

√
v

2
(z − vt)

16.2 The soliton concept in physics

A solitary wave, as discovered by Russel, is a localized wave that propagates along one space direction

with undeformed shape.

A soliton, as discovered numerically by Zabusky and Kruskal, is a large-amplitude coherent pulse or

very stable solitary wave, the exact solution of a wave equation, whose shape and speed are not altered by

a collision with other solitary waves.

Thus, to a mathematician the word soliton has a quite specific and ideal connotation in the context

of systems with exact analytical solutions (such systems are called integrable systems). There are roughly
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about 100 different types of partial differential equations that support soliton solutions. Physicists, on the

other hand, normally use the word soliton in a much loose sense. In the dictionary of a physicist, soliton

and solitary wave are usually inter-changeable.

Qualitatively, the solitary wave or soliton can be understood as representing a balance between the effect

of dispersion and that of nonlinearity.

16.3 Bright soliton for an attractive condensate

Consider an attractive condensate in a uniform 1D geometry. After rescaling, the GPE reads

i
∂ψ

∂t
+

1
2

∂2ψ

∂z2
+ |ψ|2ψ = 0 (16.1)

16.3.1 modulational instability of a plane wave

The above equation has a solution with constant density:

ψ(z, t) = u0 eiu2
0t

where u0 is a constant. Let’s check if this state is stable. To this end we add small perturbation to both

amplitude and phase:

ψ(z, t) = [u0 + a(z, t)]eiu2
0t+iφ(z,t)

Put this back into the equation and linearized with respect to small variables a(z, t) and φ(z, t), to obtain

the linearized equations as

φ̇− 2u0a− 1
2u0

a′′ = 0, ȧ +
1
2
u0φ

′′ = 0

It has the solution with form

a(z, t) = a0e
i(kz−ωt), φ(z, t) = φ0e

i(kz−ωt)

Putting this into the equations for a and φ, we have
(

k2

2u0
− 2u0

)
a0 − iωφ0 = 0

iωa0 +
k2

2
u0φ0 = 0

Nontrivial solutions exist only when ∣∣∣∣∣∣

k2

2u0
− 2u0 −iω

iω k2

2

∣∣∣∣∣∣
= 0

or

ω2 =
k2

2

(
k2

2
− 2u2

0

)

Hence the long wavelength excitations with k < 2u0 possess complex frequencies, and are therefore dynam-

ically unstable. Such instability is called modulational instability. Note that the above dispersion relation is

nothing but the excitation frequency of a uniform condensate.
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16.3.2 localized soliton solution

We want to find the localized stationary solution of the GPE with the form

ψ(z, t) =
√

ρ(z)e−iµt

Put this into the GPE, we have

−1
8

1
ρ2

(ρ′)2 +
1
4ρ

ρ′′ + ρ + µ =
1
8

d

dρ

[
4ρ2 +

1
ρ

(ρ′)2
]

+ µ = 0

where ρ′ = dρ/dz. Integrate over ρ, we have (ρ′)2 = −4ρ3 − 8µρ2 + cρ, where c is an integral constant.

The condition of localization means that when z → ∞, ρ and its derivatives should all vanish. Take

derivative w.r.t. z for the above equation, we have 2ρ′ρ′′ = −12ρ2ρ′ − 16µρρ′ + cρ′ or

2ρ′′ = −12ρ2 − 16µρ + c

The boundary condition at ∞ requires that c = 0. Hence we have (ρ′)2 = −4ρ3 − 8µρ2 or

ρ′ = 2ρ
√

ρ0 − ρ

with ρ0 = −2µ, which gives

ρ(z) = ρ0 sech2(
√

ρ0z)

In general, the equation also supports solutions stationary in a moving frame:

ψ(z, t) = η sech [η(z − vt− θ0)] exp
[
ivz +

i

2
(η2 − v2)t− iσ0

]

The parameter η represents the amplitude and width of the solitary wave, v represents its speed, and θ0 and

σ0 are two phase constants. It can be shown that these localized solutions are dynamically stable.

16.3.3 discussion

The existence of stable soliton solutions suggests the fate of the uniform system under molulational instability.

For an initially uniform system, any localized disturbance will seed the unstable modes. The most unstable

one (the one with largest Im(ω)) occurs at k0 =
√

2u0. In real condensate parameters, this is k0 =
√

8πn0|a|.
Thus, one may expect that in vicinity of the disturbance arises the region of oscillations with a wavelength on

the order of λ0 = 2π/k0 (For a scattering length of −1.4nm, n0 = 1014/cm3, the most unstable wavelength is

about 3.3µm). Formation of this oscillation region will saturate the instability and a condensate with length

L will eventually break into a train of solitons with the number of solitons ∼ L/λ0.

Indeed, such experiments have been carried out: K. E. Strecker et al., Nature (London) 417, 150 (2002);

L. Khaykovich et al., Science 296, 1290 (2002). In both experiments, a condensate of 7Li is created with the

help of Feshbach resonance such that the scattering length of the condensate is tuned to be positive in the

beginning. Then the scattering length is changed to be negative, and out come solitons. The former shows

a soliton train, while the latter creates a single soliton.
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16.4 Dark soliton for a repulsive condensate

Consider a repulsive condensate in a uniform 1D geometry. After rescaling, the GPE reads

i
∂ψ

∂t
+

1
2

∂2ψ

∂z2
− |ψ|2ψ = 0 (16.2)

We look for a solution such that the density approaches a constant value but its derivatives tend to zero for

|z| → ∞.

16.4.1 general solution

The general non-normalized solutions are

ψ(z, t) =
{

iv −
√

1− v2 tanh
[√

1− v2(z − vt)
]}

e−it

where the real parameter v is the velocity of the dark soliton and takes values from 0 to 1. v also determines

both the width (= 1/
√

1− v2) and the “darkness” of the soliton since the minimum density at the center of

soliton (occurs at z = vt) is v2. The density approaches the constant 1 far away from the minimum.

• v = 0, this is a stationary dark soliton, and the wave function is simplified as ψ(z, t) = tanh(z)e−it.

The width of the dark soliton is the healing length (in our units, =1).

• 0 < v < 1, this is also called the grey soliton.

• v = 1, in this case, ψ(z, t) = ie−it, hence the density is uniform and this is actually the homogeneous

ground state of the system. Note that in our units, the Bogoliubov sound velocity is given by cs = 1.

So cs is the maximum speed of the dark soliton.

• The function tanh(x) changes signs across x = 0, hence the phase of the wave function changes across

the density minimum. This phase slip is 2 tan−1(
√

1− v2/v) which is π for v = 0. This phase change

is continuous for finite v, discontinuous for v = 0.

16.4.2 energy of a dark soliton

In our units, the chemical potential is fixed to µ = 1. We need to calculated the free energy K = E −
µ

∫
dz |ψ|2 = (1/2)

∫
dz [|ψ′|2 + |ψ|4 − 2|ψ|2] which can be found to be

K = K0 +
4
3
(1− v2)3/2

where K0 = −(1/2)
∫

dz is the free energy of the ground state with wave function ψ = ie−it.

• The free energy of a dark soliton with 0 ≤ v < 1 is higher than that of the ground state, as expected.

• The free energy of a dark soliton decreases as its velocity increases. In this sense, one may say that

dark solitons have negative kinetic energy!
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• The above property suggests the fate of a dark soliton in realistic experiment. The inelastic collisions

between the dark soliton and background atoms accelerates the former towards the sound velocity and

the dark soliton continuously transforms itself into the ground-state condensate. So dark solitons decay

via acceleration. But at sufficiently low temperature, the lifetime of a dark soliton should be quite long

such that it can be observed experimentally.

• Experimental observation of dark soliton was report by Burger et al. in PRL 83, 5198 (1999). The

dark soliton was created using the phase imprinting method: a far-off-resonant laser light is applied

over half of the condensate, which imprints a phase difference ∼ π between the two halves.


