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Abstract 

Statistical graphs are commonly used in scientific publications. 

Unfortunately, graphs in psychology journals rarely portray distributional 

information beyond central tendency and few graphs portray inferential 

statistics. Moreover, those that do portray inferential information generally 

do not portray it in a way that is useful for interpreting the data. We present 

several recommendations for improving graphs including: (1) bar charts of 

means with or without standard errors should be supplanted by graphs 

containing distributional information, (2) use good design to allow more 

information to be included in a graph without obscuring trends in the data, 

and (3) figures should include both (a) graphic images and (b) inferential 

statistics presented in words and numbers. 
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Designing Better Graphs by Including Distributional Information 

and Integrating Words, Numbers, and Images 

Statistical graphs are useful both for the discovery of knowledge 

(Larkin & Simon, 1987; Tukey, 1974, 1977) and communication of 

knowledge (Few, 2004; Kosslyn, 1985; Tversky, 1995; Wilkinson and the 

Task Force on Statistical Inference, APA Board of Scientific Affairs, 1999). 

Although graphs have been used since prehistoric times, statistical graphs 

are a relatively new phenomenon. Before the late 18th century, tabular data 

representations were popular and graphs were regarded as useless for 

analysis. This view changed when Playfair invented what are still the most 

commonly used graphs: the bar graph and line graph in 1786 and the pie 

chart in 1801 (Wainer, 2005). Herschel’s invention of the scatterplot in 1832 

further demonstrated the value of graphs (Friendly & Denis, 2005). 

Numerous studies have assessed the relative value of graphical versus 

tabular presentation of data. Based on an extensive review of research 

available at the time, Jarvenpaa and Dickson (1988) concluded that graphs 

are better at summarizing data, showing trends, and showing points and 

patterns whereas tables are better for point/value reading. More recent 

studies and literature reviews are consistent with these conclusions (Gelman 

& Stern, 2006; Gillan, Wickens, Hollands, & Carswell, 1988; Meyer, Shamo, 

& Gopher, 1999). A further benefit of graphs cited in the APA publication 

manual is that graphs can make it easy to perceive the “overall pattern of 

results” (APA, 2001). 
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Not surprisingly, graphs are used frequently in the reporting of results 

in psychology as well as in other fields, although the degree of use varies 

greatly across fields (Cleveland, 1984; Smith, Best, Stubbs, Archibald, & 

Robertson-Nay, 2002). For example, Cleveland (1984) found that the 

proportion of journal space devoted to graphs was higher in the natural 

sciences than in the social sciences. Best, Smith, and Stubbs (2001) found a 

positive relationship between perceived scientific hardness of psychology 

journals and the proportion of area devoted to graphs. Interestingly, Smith 

et al. (2002) found an inverse relationship between area devoted to tables 

and perceived scientific hardness. 

Despite advances in graphics and the availability of graphics software, 

graphs are often poorly constructed in practice. In a study of the graphs in 

the journal Science, Cleveland (1984) evaluated the frequencies of four types 

of errors: construction errors, degraded image errors, errors in the 

explanation, and discrimination errors (elements of a graph were difficult to 

distinguish). He found that 30% of the graphs contained at least one error. 

This proportion is surprisingly high considering that only major errors were 

included and smaller flaws ignored. 

Tufte (2001) sampled graphics from scientific and news publications 

between 1979 and 1980 and evaluated their data density. He found that the 

average published graphic had a low data density, although nearly every 

publication contained a few data-rich graphs. 

We consider how to portray three types of information in graphs: 

shapes of distributions (Wilkinson et al., 1999), trends (Gelman, Pasarica, & 
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Dodhia, 2002), and inferential statistics (Cumming & Finch, 2005; Masson & 

Loftus, 2003; Wilkinson et al., 1999). We focus on how to include and 

juxtapose these types of information so as to support correct interpretations 

of the data. We do not discuss perceptual considerations for creating graphs 

such as label placement, scaling of axes, aspect ratio, and contrast in detail 

since these topics have been covered very well in previous works (Cleveland, 

1994; Gillan et al, 1998; Kosslyn, 1985, 1993). However, we do refer to 

these and related works in our section on general principles for graph 

construction. 

Distributional Information 

Graph use in psychology has been criticized for focusing on the 

depiction of central tendency to the neglect of other distributional 

information. For example, Wilkinson et al. (1999) argued strongly that a 

common deficiency of graphs in psychology journals is their lack of 

information regarding the shape or distribution of the data, and that this lack 

of information hinders scientific evaluation. 

Sándor and Lane (2007) conducted a survey of graph use in two 

leading psychology journals and obtained results consistent with Wilkinson et 

al.’s conclusions: The majority of the graphs were bar charts and only about 

10% of the graphs showed distributional information beyond central 

tendency. Although bar charts are useful for displaying counts or 

percentages, we believe that there are few if any situations in which it would 

not be better to replace bar charts of means with box plots since box plots 
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take up no more space and provide summary information about distributions 

(See the Appendix for more information about box plots).  

Consider how to graph the results from a hypothetical experiment with 

a Condition (A, B, and C) x Group (Control and Experimental) between-

subjects design and 12 cases per cell in which Condition is a categorical 

variable. As would be typical in a design such as this, assume the 

(hypothetical) experimenter was interested in the difference between the 

experimental and control groups as well as whether this difference varies 

across conditions. Figure 1 shows a graph typical of those appearing in 

psychology journals. Although it is clear that the difference between the 

control and experimental means was large in Condition A, small in Condition 

B, and medium-sized in Condition C, there is no information about the 

variability or shape of the distributions. The “data density” of the figure is 

very low since it portrays very few values. 

--------------------------------------------------- 
Please insert Figures 1 and 2 about here 

---------------------------------------------------- 

Figure 2 shows the same data portrayed by box plots. In recognition of 

the fact that the mean is often of great importance, a variation of box plots 

that displays the mean (indicated by a plus sign) was chosen. Figure 2 is 

much richer in information than is Figure 1: In addition to the differences in 

means shown in Figure 1, Figure 2 shows (1) that the range and interquartile 

range in the experimental group are larger than in the control group in all 

three conditions; (2) the distributions overlap greatly in Condition B, 
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somewhat in Condition C, and very little in Condition A; and (3) that there 

are no outliers. 

If other aspects of the distribution were theoretically relevant, then 

three sets of back-to-back stem-and-leaf displays would be a good 

alternative. If the sample sizes were much larger, then back-to-back 

histograms could be shown (See the Appendix for more information about 

back-to-back stem-and-leaf displays and back-to-back histograms). 

We stress that there is room for subjective opinions in the choice of 

graph type and the details of graph construction. Our point is not that graphs 

should be constructed precisely in the manner shown here. Rather, it is that 

the kinds of information contained in Figure 2 and subsequent example 

graphs should be routinely depicted in graphs appearing in psychology 

journals and other scientific publications. 

One possible objection to including more distributional information is 

that this information may distract readers from what is typically the main 

objective of the graph: portraying the pattern of means. The tradeoff 

between including more information and obscuring important patterns is a 

general one, and can often be dealt with effectively by emphasizing graphic 

elements that show the important pattern. A good example is provided by 

Tufte (2006, p. 116-121) in his discussion of a graph showing the 

relationship between the body weight and brain weight of animals. In the 

original version of the graph presented by Sagan (1977), the animal names 

were printed next to the points in the scatterplot. Cleveland (1994) argued 

that these labels cluttered the graph and should have been omitted. 
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However, Tufte disagreed noting that with the proper design, clutter can be 

reduced without a content reduction. Accordingly, Tufte presented two 

excellent redesigns of the graph, each containing the information about the 

identities of the individual points while clearly showing the pattern of the 

relationship. In the first, the points in the scatterplot were dark whereas the 

labels for the points were light grey. In the second, drawings of the animals 

replaced the points themselves. 

The idea that a design solution is preferable to a content reduction can 

be applied to the statistical graphs discussed here. For example, if one 

wished to emphasize differences among means in parallel box plots, one 

could, as shown in Figure 3, make the representation of the means more 

prominent and the other elements of the box plot less prominent. 

Alternatively, if one wished to emphasize differences in variability among 

conditions, one could make the range and the interquartile range of each 

distribution more prominent as in Figure 4. 

--------------------------------------------------- 
Please insert Figures 3 and 4 about here 

---------------------------------------------------- 

There is an understandable desire on the part of researchers to show 

their data in a positive light. As a result, some may resist showing 

distributional data that reveal the variability and possible irregularities not 

apparent in a plot of means. However, this is clearly not a justifiable basis on 

which to omit distributional information (Wilkinson et al., 1999). 
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Trends and Distributional Information 

------------------------------------------- 
Please insert Figure 5 about here 

------------------------------------------- 

Portraying distributional information and trends in the same figure can 

be difficult. For example, consider a hypothetical experiment in which the 

researcher is interested in differences in the rate of learning as a function of 

condition. Figure 5 displays the means in order to show the trends and the 

standard deviations to show the most basic kind of distributional information, 

variability. There are several problems with this graph. First, the lines 

showing the standard deviations are distracting and make it more difficult to 

view the trends. Moreover, it is difficult to tell which bar goes with which 

condition. Second, the standard deviations are misleading since they are 

based on between-subjects error whereas the tests of the trends and 

Condition x Trend interactions are based on the within-subjects error term 

(See Loftus & Masson, 1994 for a discussion of this issue). Third, and 

probably most important, the distribution of scores at specific combinations 

of condition and trial are not likely to be the distributions most relevant to 

the research question. For example, if the researcher were interested in 

whether performance increased across trials and whether there were 

differences among conditions in the rate of increase, the distributions of the 

linear components of trend (computed by applying linear trend coefficients to 

the raw scores for each subject) for the various conditions would be more 

relevant. 
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Figure 6 shows the trend information in the lower portion and box 

plots of the linear components of trend in the upper portion1. Although one 

could show the distribution of the linear components of trend in a separate 

figure, we believe a single figure showing both graphs communicates the 

results more effectively. 

------------------------------------------- 
Please insert Figure 6 about here 

------------------------------------------- 

The box plots in Figure 6 provide important distributional information 

that is not available in either Figure 4 or 5. First, one can see that there are 

no outliers and that none of the distributions have substantial skew. Second, 

one can see that the within-group variances do not differ greatly. Finally, one 

can get a good sense of the size of the effect. For example, it can be seen 

that the 25th percentile of Condition A is approximately the same as the 

median of Condition B, which is slightly above the 75th percentile of Condition 

C. Also evident is the fact that the difference between the means of 

Conditions A and B as well as the difference between the means of 

Conditions B and C are approximately one standard deviation (d ≈ 1).  

We believe that it would be valuable to supplement most graphs 

showing trend with a graph showing the distributions of one or more 

components of the trend. The construction of the graph would, of course, 

depend on the details of the data being portrayed. 
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Inferential Statistics 

The descriptive statistics shown in graphs, no matter how well 

presented, do not stand on their own. Wainer (1996) argued convincingly 

that an effective display of data must (1) reveal the uncertainty in the data, 

(2) characterize the uncertainty as it relates to inferences to be made from 

the data, and (3) help prevent the drawing of incorrect conclusions due to 

lack of appreciation of the precision of the information conveyed. Consistent 

with Wainer, many authors have recommended that graphs contain 

information relevant for inferential statistics (Belia, Fidler, Williams, & 

Cumming, 2005; Cumming & Finch, 2005; Loftus, 1993; Wilkinson et al., 

1999). Cumming et al. (2007) found that the percentage of graphs 

containing inferential statistics is increasing: The mean percentage of 

psychology articles with figures containing inferential information increased 

from 11% in 1998 to 25% in 2003-2004, and to 38% in 2005-2006. Even 

with this increase, it is clear that many graphs do not include inferential 

information. Similarly, Sándor and Lane (2007) found that inferential 

statistics are more often omitted than included in graphs. 

A frequently-used method to portray inferential information is to 

display means with standard error bars. Figure 7, which is based on the 

same fictitious data as Figures 1 and 2, is typical of these graphs. The 

problem with Figure 7 is that the only inferences directly supported by the 

graph involve individual cell means. For example, the graph shows that the 

mean for the control group in Condition C is approximately seven with the 
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error bar stretching somewhat more than one in each direction. Since a 95% 

confidence interval is approximately the mean plus and minus two standard 

errors, the graph provides meaningful information about the precision of the 

estimate of the population mean. 

------------------------------------------- 
Please insert Figure 7 about here 

------------------------------------------- 

The problem is that estimates of individual means are rarely the critical 

issue. More relevant here is, for example, the difference between the 

experimental and control groups in Condition C. 

Figure 7 shows that the difference between group means in Condition 

C is approximately five. The standard error of the difference between means 

can be computed using the following formula: 

  

� 

s
Mean Difference

=
2MSE

n
where MSE is the Mean Square Error or average variance 

within the groups and n is the sample size. Although considerable mental 

gymnastics would be required to obtain a rough approximation of this 

standard error of the difference between means, it could be done by using 

the average standard error as an estimate of 

� 

MSE

n
 and 1.4 as an 

approximation of the square root of 2. Since the standard error for the 

control group is a little above 1.0 and the standard error of the experimental 

group is about 2.5, the average standard error is about 1.8. Multiplying by 

1.4, one obtains a value approximately equal to 2.5. Therefore, the 95% 
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confidence interval on the difference between means ranges from about 0 to 

about 10 (i.e. 5 ± 2 x 2.5).  

Since the main purpose of published graphs is to communicate, it is 

important to consider how well the target audience understands the graphs. 

Belia, Fidler, Williams, and Cumming (2005) investigated how well authors in 

psychology, behavioral neuroscience, and medical journals understand the 

relationship between standard error bars, confidence intervals, and 

significance tests. Participants were shown a graph of two means and either 

standard error bars or confidence intervals depending on the experiment. 

Their task was to adjust the difference between means so that the difference 

would be just statistically significant at the .05 level. The results were 

dramatic: Fewer than a quarter of the subjects set the means so that the p 

value was between half the target value (.025) and twice the target value 

(.10). 

It is clear that the calculations to make a theoretically-meaningful 

inference from a graph containing means with standard error bars are not 

easy to do in one’s head and not well understood by most authors (not to 

mention readers) of journals. Therefore, including standard error bars is 

often not sufficient for communicating inferential information. 

Figure 8 shows an alternative method of displaying inferential 

information. Although easy to interpret, we believe that graphs specifying the 

means that are significantly different from each other have several 

drawbacks. First, by marking differences as either significant or not, this type 

of graph encourages the “all or none” rejection of a null hypothesis, a 
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practice that has been widely and severely criticized (Gelman & Stern, 2006; 

Loftus, 1993; Tukey, 1991; Wilkinson et al., 1999).  

Second, this type of graph emphasizes hypothesis testing and neglects 

confidence intervals. Finally, this type of graph may distract visually from the 

pattern of means if several means are being compared. 

------------------------------------------- 
Please insert Figure 8 about here 

------------------------------------------- 

Cumming and Finch (2005) proposed ways to design graphs so that 

they would show inferential statistics in a more meaningful way. Specifically, 

they gave examples of how graphs could display confidence intervals 

relevant to the inference in question. As noted previously, standard error 

bars and confidence intervals are typically drawn around condition means 

even though the relevant inference pertains to the difference between 

means. Cumming and Finch suggested that in a two-condition experiment, 

one should include a graph showing the difference between means and a 

confidence interval on this difference in addition to the group means and 

their respective confidence intervals. Figure 9 shows an example of this type 

of graph.  

------------------------------------------- 
Please insert Figure 9 about here 

------------------------------------------- 

For between-group designs, this type of graph has the advantage of 

showing the relevant confidence interval directly. It has an even bigger 

advantage for within-subjects designs because the error term for these 

designs is often much smaller than the error terms for the groups individually 
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and cannot be computed from the confidence intervals on individual means. 

Although the type of graph suggested by Cumming and Finch (2005) is 

valuable and represents a significant improvement over typical methods of 

portraying confidence intervals graphically, it does not represent a general 

solution to the problem of graphing confidence intervals. As acknowledged by 

Cumming and Finch, “However, if more than a few effects are of interest, the 

graphical challenge is very great, and no convincing and proven graphical 

designs have yet emerged” (p. 178). Moreover, it is often desirable to 

present inferential information more precisely than is practical to do with 

graphs. For example, the recommendation to report the exact p levels (APA, 

2001 p. 25; Wilkinson et al., 1999) implies that at least some kinds of 

inferential information should be presented with text rather than graphically. 

The failure of graphs to portray inferential information successfully is a 

serious problem since inferential statistics are important for interpreting a 

graph. A graph showing only means does not provide sufficient information 

for the reader to know how seriously to take sample differences or to judge 

the likely size of the difference in the population. One solution is to refer the 

reader to the text for the inferential statistics. Although this is not entirely 

unsatisfactory, it would be preferable for the reader to see the graph and the 

inferential statistics without having to jump back and forth between the text 

and the graph, which may even be on different pages. As described in the 

following section, we believe a much better solution is to create figures that 

integrate graphics and text. 
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The Archaic Separation of Graphics and Text 

Wainer (1997) and more recently Tufte (2006) have bemoaned the 

separation of graphics and text that is now typical in scientific journals 

including those in psychology. Tufte (2006) argued that displays of evidence 

should bring together verbal, visual, and quantitative information and that 

the process of publishing causes these elements to be segregated 

unnecessarily. 

Unlike modern scientific journals that separate graphics, text, and 

quantitative analyses, Leonardo da Vinci’s notebooks (see Wainer, 1997, p. 

145) integrated text and graphics. For example, “Studies of Embryos” 

published in the early 16th century contains pages that integrate sketches, 

geometric diagrams, and text. Similarly, Galileo’s “The Starry Messenger” 

(Galileo, 1610) is 30% images and diagrams all fully integrated in the text 

(Tufte, 2006, p. 83).  

The modern practice of separating these types of information is 

unfortunate since it often requires the reader to skip back and forth between 

figures, tables, and text in order to interpret the data. Gillan et al. (1998) 

recognized this problem and its importance for graph design. They argued 

that graph design should take into account the cognitive demands on the 

reader including the task of integrating the meaning of the graph with the 

text. Cognitive demands are lower if the various modes of information are 

displayed together in an integrated format. 

Strong empirical support for integrating graphics and text was 

obtained by Sweller, Chandler, Tierney, and Cooper (1990). Based on a 
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series of six experiments they concluded that the conventional method of 

separating graphics and text leads to poorer performance than presenting 

material in a way that does not require learners to split their attention. 

As is evident from the casual inspection of any psychology journal and 

documented more formally by Sándor and Lane (2007), data presentations in 

psychology predominantly use a split-source format in which the numerically-

presented details of the statistical analysis such as significance tests, 

confidence intervals, and measures of effect size are presented in text 

separated spatially from the figure. Design principles (Tufte, 2006; Wainer, 

1997), theoretical considerations (Gillan et al., 1998) and empirical evidence 

(Sweller et al., 1990) all support the proposition that figures should integrate 

both graphical and numerical information2.  

In the following section we present examples of how graphics and text 

can be integrated in figures. The inferential statistics included in these 

examples are in line with the recommendations of Wilkinson et al. (1999). 

However, they should be considered only as examples since our purpose is to 

demonstrate how graphics and text can be integrated rather than to 

advocate any particular approach to inferential statistics. Our argument is 

applicable to non-parametric, resampling, Bayesian, and other approaches to 

inference.  

Examples Integrating Graphics and Text 

 A reader examining the box plots in Figure 2 would likely wonder how 

seriously to take the finding of a larger difference between the control and 

experimental groups in Condition A than in the other two conditions. Figure 
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10 adds inferential statistics to this figure including the results of an analysis 

of variance that shows that the interaction is significant, p = .012. 

------------------------------------------------------- 
Please insert Figure 10 about here 

------------------------------------------------------- 

An advantage of integrating graphics and inferential information is that 

the graphics display distributional information relevant to the assumptions of 

the inferential statistics. Since differences in interquartile ranges between the 

control and experimental conditions shown in Figure 10 indicate a violation of 

the assumption of homogeneity of variance, it would be incumbent on the 

author to justify the use of ANOVA. In this case, a comment about the 

robustness of ANOVA to violations of the assumption of homogeneity of 

variance when the sample sizes are equal would probably suffice. In other 

cases a more extended discussion might be required. 

Since an interaction means that the simple effects differ, tests of 

differences between simple effects are often informative. The upper right-

hand portion of the figure shows the p values for the three differences 

between simple effects. Effect size estimates, confidence intervals, and 

significance tests for each simple effect are shown at the bottom of the 

figure. Note that a graphical scheme that indicated only whether or not an 

effect was significant would not reveal that the simple effect at C approached 

significance and would subtly hint that this possible simple effect should be 

ignored. 

------------------------------------------------------- 
Please insert Figure 11 about here 

------------------------------------------------------- 
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A graph integrating distributional, trend, and inferential information is 

shown in Figure 11. This figure adds inferential information to Figure 6, which 

shows distributional and trend information. Figure 12 shows how one might 

integrate the display of bivariate data and relevant inferential statistics. The 

inferential statistics in this figure consist of tests showing that the slopes and 

correlations for the two conditions are significantly different as well as being 

significantly different from zero in each condition. Confidence intervals for all 

statistics reported are included. 

------------------------------------------------------- 
Please insert Figure 12 about here 

------------------------------------------------------- 

Our next example is a bit more complex. In a hypothetical experiment, 

a researcher is interested in the relationship between the independent 

variables X1, X2, X3, and the dependent variable (DV). Although the 

researcher did not necessarily anticipate an interaction between X1 and X2, 

the regression analysis found a significant X1(linear) x X2(linear) interaction with 

no test involving a quadratic term or other interaction term approaching 

significance. The regression equation after centering X1 and X2 (i.e., 

transforming them to deviation scores) is: 

DV’ = 0.533 X1 + 0.370 X2 + 0.427 X3 -0.37 X1 X2 + 92.826 

This equation indicates that the slope of the relationship between X1 and DV 

decreases by 0.37 for each increase of one in X2. The question is how to 

construct a graph to describe the interaction. A method suggested by Aiken 

and her colleagues (Aiken & West, 1991; Cohen, Cohen, West, & Aiken, 

2003) is to graph the regression line for the prediction of DV by X1 
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separately for three levels of X2: the mean of X2, one standard deviation 

below the mean of X2 and one standard deviation above the mean of X2. For 

these (fictitious) data, these three values (after centering) are -10, 0, and 

10. The three regression lines are shown in Figure 13. 

------------------------------------------------------- 
Please insert Figure 13 about here 

------------------------------------------------------- 

This method of graphing the interaction is valuable in that it shows the form 

of the interaction clearly. For these data it is easy to see that the slope is 

high for the low level of X2 and decreases linearly as X2 increases. However, 

we do not believe that this method of graphing should be the only one used 

to depict the interaction since it produces a graph of a model of the data 

rather than a graph of the actual data. As such, it contains no distributional 

data and highlights the regularities in the data without revealing any possible 

irregularities. 

An additional way of graphing the interaction is to divide the data into 

groups based on X2 and to examine the relationship between X1 and DV for 

each of these groups. Since X2 and X3 are controlled in the statistical 

analysis, they should also be controlled in the graph. Figure 14 shows the 

relationship between X1 and DV separately for four levels of X2 with both X2 

and X3 controlled. The first steps were to compute the residuals in X2 after 

being regressed on X3 (X2.3) and the residuals in X1 after being regressed 

on X2 and X3 (X1.23). Next, the data were divided into quartiles based on 

the values of X2.3. Finally, DV was regressed on X1.23 within each of these 

quartiles. The slopes in these four regressions show how the partial slope of 
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X1 (in predicting DV) decreases as a function of X2. Unlike Figure 13, Figure 

14 shows that the decrease in the slope from Quartile 1 to Quartile 2 is larger 

than the decrease from Quartile 2 to Quartile 3 or from Quartile 3 to Quartile 

4. Since the X1(linear) x X2(quadratic) interaction did not approach significance, 

this change in the difference in slopes should not serve as a basis for 

concluding that the interaction is not strictly linear x linear. However, it is 

important because it provides a hint that the model may not be correct and 

that some caution in interpretation is warranted. The distributional 

information in Figure 14 allows the reader to see that the data are generally 

well behaved and no points appear to exert undo influence. 

------------------------------------------------------- 
Please insert Figure 14 about here 

------------------------------------------------------- 

Figure 14 also contains significance tests and confidence intervals for 

each quartile. These tests are essentially simple effects tests following the 

significant linear x linear interaction and reveal that one can make a strong 

conclusion that there is a positive relationship between X1 and DV for low 

levels of X2 but leave the relationship for higher levels of X2 in doubt. The 

confidence intervals in Quartiles 3 and 4 make clear that a range of values of 

the slope other than zero are plausible and, as is always the case, a point 

null hypothesis should not be accepted. 

In our final example, we consider how to display distributional 

information in an analysis of covariance (ANCOVA) design. As noted 

previously, a bar chart showing group means lacks distributional information. 

The alternative of using graphs such as box plots to portray group differences 



Designing better graphs 

22 

has two potential problems when used in an ANCOVA design. One is that 

since inferential tests are done on differences among adjusted means 

(controlling for the covariate), differences in means portrayed in the graph 

would not reflect the differences tested in ANCOVA. Second, the variability of 

the distribution shown in the graph would include the variability potentially 

controlled by the covariate and would therefore be greater than it should be. 

As a result, differences among means relative to this variability would appear 

smaller than they really are. 

The solution proposed here is to remove the effect of the covariate 

from the data before creating the box plots. As an example, consider a 

hypothetical experiment designed to assess the difference between an 

experimental condition and a control condition. A total of 50 participants was 

randomly divided between the two conditions and a covariate thought to be 

related to the criterion was measured for each subject. Subsequently, the 

experimental procedures were administered.  

Before conducting an ANCOVA, the assumptions of linearity and 

homogeneity of regression slopes should be assessed. Figure 15 shows 

separate regression lines for the two conditions. It is clear from the graph 

that the slopes of the lines are very similar and the inferential statistics 

shown on the graph indicate that the difference in slopes did not approach 

significance. Figure 15 also shows that the covariate is strongly related to the 

criterion and that the relationship is at least approximately linear. 

------------------------------------------------------- 
Please insert Figure 15 about here 

------------------------------------------------------- 
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As noted previously, constructing box plots without regard to the 

covariate would portray the effects as being smaller (relative to variability) 

than they actually are. Therefore, the following procedure was used to 

eliminate variance due to the covariate from the graph:  

1. A linear model was developed to predict the dependent variable 

(DV) from the covariate and from “condition.” 

2. The adjusted means for each condition (sometimes called “least 

squares means” or “estimated marginal means”) were 

computed. The adjusted means are estimates of what the 

sample means on the dependent variable would have been if all 

group means on the covariate had been the grand mean on the 

covariate. Most if not all major statistics packages have an 

option to report adjusted means. 

3. The residuals from the model were saved. The means for each 

condition’s residuals are necessarily 0. 

4. The adjusted mean for each condition was added to the residual 

score of every subject in the condition thus making the 

condition means equal to the adjusted means. 

5. Box plots were constructed based on the scores computed in 

Step 4.  

It is interesting to note that if one were to do an ANCOVA on these derived 

scores, the results would be the same as on the raw scores except that the 

slope and sums of squares for the covariate would be zero. This reflects the 

fact that variation related to the covariate was removed from the data.  
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The box plots created following these steps are shown in Figure 16 and 

reveal a clear treatment effect. Specifically, the box plots show that (1) the 

25th percentile of the experimental group is approximately equal to the 

median of the control group and (2) the median of the experimental group is 

approximately equal to the 75th percentile of the control group. The 

variability shown in the box plots is considerably less than it would have been 

if the scores had not been adjusted for the covariate. For example, the 

difference between the top and bottom of the box plots (the range when 

there are no outliers as is the case here) is approximately 26 whereas it is 

about 36 for the raw data. Similarly, the height of the box (the H-Spread or 

interquartile range) is about 11 whereas it is about 14 for the raw data. 

 Figure 16 also shows that the effects of the covariate and of condition 

are both significant and that the mean difference is 0.81 standard deviations. 

Thus, one can draw a confident conclusion that the experimental treatment 

leads to higher scores than does the control treatment. 

------------------------------------------------------- 
Please insert Figure 16 about here 

------------------------------------------------------- 

We believe that the examples shown here that integrate graphs with 

inferential information do a better job communicating experimental findings 

than the procedure of artificially separating text, tables, and graphs typically 

used in journal articles. Since integrating text and graphics is no longer 

difficult or expensive for either publishers or authors, we suggest that 

authors follow the excellent examples of da Vinci and Galileo and create 

figures integrating words, numbers, and images. 
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Creating figures that integrate text and graphics is not technically 

difficult. The first step is to create the statistical graph using one of the many 

widely available statistics packages. One should be flexible in the choice of 

software rather than rely exclusively on one program. A spreadsheet 

program is often sufficient to create simple graphs such as line graphs. For 

more complex graphs, one could choose the graphing program or statistical 

package best suited for the specific graph to be created. 

The integration of text and graphics can be best accomplished by 

graphics-editing programs such as Adobe Illustrator or CorelDRAW that 

provide considerable control and flexibility. However, even programs with 

basic page-layout capabilities such as Microsoft's PowerPoint, Microsoft Word, 

Apple's Keynote, and Apple's Pages can produce excellent integrated figures.  

Principles for Constructing Good Graphs 

Although the focus of this article has been on suggestions for including 

distributional and inferential information in graphs, we understand that other 

aspects of graphs are also of great importance. Since there is a sizeable 

literature relevant to the construction of effective graphs (e.g., Kosslyn, 

1989, 1993; Cleveland, 1993, 1994; Few, 2004; Gelman, Pasarica & Dodhia, 

2002; Gillan et al., 1988; Tufte, 2001, 2006; Wainer, 1997), space 

limitations preclude a comprehensive review of this literature. Therefore we 

present only some of the more important themes. 

Well-constructed graphs help focus on important aspects of data, 

provide visual clarity, and make interpretation easy. Accordingly, one should 

normally avoid shaded backgrounds that reduce contrast, eliminate 
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unnecessary or redundant elements, and use sufficiently dark lines and 

points. It is usually not necessary to include horizontal lines to extend tick 

values on the Y axis. When it is necessary, these lines should be made lighter 

than other graphical elements. 

One should be careful to avoid apparent inconsistencies between the 

graph and the results of the statistical analysis. For example, in a within-

subjects design, the graph should control for variation due to subjects just as 

the statistical analysis does (see Loftus & Masson, 1994 and Figure 11 of this 

article for examples of how to do this). Similarly if variance due to a 

covariate is controlled in the statistical analyses, it should also be controlled 

in the graph (see Figure 16). Special care should be taken in graphing means 

from designs containing both between- and within-subjects variables since 

the error terms for various comparisons between means are different. 

Graphs should be designed to minimize mental load. For example, 

consider how to designate the conditions in a line graph such as the one 

shown in the lower portion of Figure 11. In graphs such as this, it is better to 

place the condition information next to each line as shown rather than to 

have a separate caption since having a separate caption would require the 

reader to remember which symbol represents which condition. For more 

complex designs, the choice of symbols should be consistent. For example, 

consider an Age (2) x Condition (2) design in which conditions are designated 

by two levels of shape (circle and square) and two levels of “fill color” (white 

and black). It is important that the assignment of symbols to conditions be 
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consistent, as in the left portion of Figure 17 rather than inconsistent as in 

the right portion of the figure. 

------------------------------------------------------- 
Please insert Figure 17 about here 

------------------------------------------------------- 

The design of a graph should be informed by the well-established 

Gestalt laws of perceptual grouping including good continuation (objects 

following a line or smoothed curve tend to be grouped together), proximity 

(objects near each other tend to be grouped together), similarity (similar 

objects tend to be grouped together), common fate (lines going in the same 

direction tend to be grouped together), and good form (enclosed shapes tend 

to be seen as single units). See Kosslyn (1993) for examples of how the 

application of these laws can result in more easily apprehended graphs. 

Finally, place graphical elements that are likely to be compared near each 

other. 

It is important to consider the amount of information contained in the 

graph: Too much information can make a graph difficult to interpret whereas 

two little information can waste space and fail to provide the benefits 

typically associated with graphs. As noted earlier, bar graphs provide 

relatively little information for the amount of space they take up. Box plots 

and stem-and-leaf displays are among the types of graphs that contain more 

information in roughly the same amount of space.  

Graphs can be used to mislead rather than to inform. Although the 

blatant use of misleading graphs in scientific publications is rare due to the 

review process and the sophistication of the readership, one should always 
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be on guard against creating a graph that is unintentionally misleading. It is 

well known that group differences can be obscured or exaggerated by the 

scaling of the Y-axis. Therefore, both the Y-axis origin and the scaling of the 

units should be chosen carefully and in accordance with theoretical notions of 

what constitutes small and large effect sizes for a particular domain. Graphs 

such as box plots that show the minimum and maximum values put 

constraints on the scale of the Y-axis and normally lead to good choices. For 

example, the box plots in Figure 10 lead naturally to a sensible Y-axis scale.  

The use of double Y-axis graphs can be very misleading as is described 

in the following example. Wainer (1997, p. 93-94) shows three ways to 

portray the relationship between per-pupil expenditures for education and 

SAT using a double Y-axis graph. Year (from 1978-1990) is graphed on the 

X-axis. The graph contains two lines: one for per-pupil expenditures and one 

for SAT. Since these two variables are measured on vastly different scales 

two Y-axes are used: the per-pupil expenditures scale shown on the left Y-

axis and the SAT scale shown on the right Y-axis. In the original graph 

published in Forbes magazine, the Y-axes were scaled so that it appeared 

that there was a large increase in expenditures over time with little change in 

SAT. In one of Wainer’s alternate versions of the graph differing in the 

scaling of the Y-axes, it appears that both expenditures and SAT increased 

greatly. In a second alternative scaling, it appears that expenditures 

increased only slightly while SAT scores increased greatly over time. 

The perceptual aspects of graphs can mislead in unexpected ways. As 

an example, Kosslyn (1993) presented a bar chart showing the results for 
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three conditions. The heights of the bars increased from left to right, as did 

the darkness of the shading of the bars. This change in the darkness of the 

shading made the largest bar the most salient, a change that has been 

shown by previous research by Kosslyn to lead the reader to overestimate 

the size of the increase.  

As noted previously, a comprehensive review of the work on designing 

effective graphs is beyond the scope of this article. Readers wishing to 

produce effective graphs are strongly encouraged to consult among others 

(a) Kosslyn (1993) for concrete recommendations for applying perceptual 

principles to the design of graphs, (b) Gillan et al. (1988) for numerous 

research-based guidelines and a set of rules for determining which type of 

graph to select and whether to use a figure or a table, (c) Wainer (1997) for 

an insightful analysis of many aspects of graphs and their design, and (d) 

Tufte (2001, 2006) for practical principles of designing good graphs and 

elegant examples of how to communicate quantitative information. 
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Appendix 

Box Plots 

The first step in creating a box plot is to determine the 25th percentile, 

the median, and the 75th percentile. For the box plot shown in Figure 1 

Appendix these values are 15, 20, and 23 respectively. A box is then drawn 

from the 25th to the 75th percentile with a line representing the median drawn 

inside the box. The mean is then drawn as a “+” sign. Next, the values of the 

inner and outer fences are computed. Defining a “step” as 1.5 times 

difference between the 75th and 25th percentiles (12 in this example), the 

upper inner fence is 1 step above the 75th percentile, the upper outer fence is 

2 steps above the 75th percentile, the lower inner fence is 1 step below the 

25th percentile and the lower outer fence (not shown) is 2 steps below the 

25th percentile. The fences are drawn in Figure 1 Appendix for illustrative 

purposes only and do not appear in box plots. 

-------------------------------------------------- 
Please insert Figure 1 Appendix about here 

-------------------------------------------------- 

Lines are then drawn from the 25th percentile to the lowest value 

inside the fences and from the 75th percentile to the highest value inside the 

fences. Values between the inner and outer fences are each represented by 

the letter “o” whereas values outside the outer fences are represented by 

asterisks. 

There are many variations of box plots (Frigge, Hoaglin, & Iglewicz, 

1989). As stated in the text, we prefer versions that include the mean. 
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Although many statistics programs do not provide this option, the Statistical 

Analysis System (SAS) is one that does. 

Stem-and-Leaf Displays 

Stem-and-leaf displays can be used to display a relatively small 

dataset to two decimal places. Figure 2A Appendix contains a stem-and-leaf 

plot of the same data shown in Figure 1 Appendix. The “stems” are located 

on the left and range from 0 to 5 and represent the 10’s place. The “leaves” 

are located on the right and represent the 1’s place. The highest number in 

the data (55) is represented by a stem of 5 and a leaf of 5. The second 

highest number (37) is represented by a stem of 3 and a leaf of 7. The 

lowest number (6) is represented by a stem of 0 and a leaf of 6. Notice that 

there are two rows for each value of the stems: the higher is for leaves from 

5-9 and the lower is for leaves from 0-4. The place represented by the stems 

(10’s, 100’s, etc.), the number of stem repetitions, and the sequence of 

stems can differ as a function of the details of the data. 

-------------------------------------------------- 
Please insert Figure 2 Appendix about here 

--------------------------------------------------- 

Figure 2B Appendix compares two distributions. The distribution on the 

right is the same as the distribution in Figure 2A Appendix. This type of 

graph is called a “back-to-back” stem-and-leaf display. 

Back-to-Back Histograms 

Creating a back-to-back histogram is a good way to portray 

differences between the distributions of two relatively large data sets. As in 
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the example shown in Figure 3 Appendix, it is usually desirable to display the 

histograms vertically rather than horizontally. 

--------------------------------------------------- 
Please insert Figure 3 Appendix about here 

--------------------------------------------------- 
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Footnotes 

1. The scale of coefficients for a component of trend does not affect its 

significance test. To maximize interpretability, we scaled the 

coefficients so that the pooled standard deviation across cells is 1.0. 

The coefficients to accomplish this are: -0.15, -0.09, -0.03, 0.03, 0.09, 

0.15 

 

2. Ironically, an example of an error occurring because of the artificial 

separation of text and graphics was made by a reader of a previous 

version of this article. This reader apparently failed to relate the graph 

in Figure 8 to the text and thought we were presenting this graph as a 

positive example rather than as an example of what not to do. In the 

present version, we followed or own advice about integrating text and 

graphics in constructing Figure 8. 
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Figure Captions 

1. A graph typical of those that appear in psychology journals. Note that the 

data are fictitious. 

 

2. The data graphed in Figure 1 portrayed by box plots. Considerably more 

distributional information is revealed in approximately the same amount of 

space. Specifically, the medians are shown by the horizontal lines inside the 

boxes, the 25th and 75th percentiles are shown as the bottoms and tops of 

the boxes, and the minimum and maximum values are shown as the small 

horizontal lines below and above the boxes (if there were outliers they would 

be shown individually). The ranges are therefore the differences between the 

lower and upper horizontal lines and the interquartile ranges are the 

differences between the lower and upper portions of the boxes. 

 

3. Parallel box plots emphasizing differences among means by making the 

representation of the means more prominent and the other elements of the 

box plot less prominent. As a result, the pattern of differences among means 

is easier to perceive. 

 

4. Parallel box plots that emphasize differences in variability by making the 

ranges and interquartile ranges more prominent than the means and 

medians. 
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5. A line graph showing the standard deviations for each combination of 

condition and trial. This method of combining trend and distributional 

informational information does not work well. Note that the data are 

fictitious. 

 

6. A graph showing the trend information in the lower portion and box plots 

of the linear components of trend for the three conditions in the upper 

portion. The trend coefficients applied to the raw scores were scaled so that 

the mean within-group standard deviation is 1.0. Note that the data are 

fictitious. 

 

7. A typical bar graph showing standard error bars. Note that the data are 

fictitious. 

 

8. A graph showing significant differences among pairs of means with 

asterisks. 

 

9. The type of graph recommended by Cumming and Finch (2005) to show 

confidence intervals in a two-group between-subjects design. Confidence 

intervals for the mean of Condition A, the mean of Condition B, and the 

difference between means are shown. The axis on the left represents raw 

scores and the axis on the right represents differences from the mean of 

Condition A. Note that the data are fictitious. 
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10. This graph shows box plots of the six combinations of condition and 

group. The upper-left hand portion of the figure shows the analysis of 

variance results. The box in the upper right shows the p values for the 

differences among the three simple effects of Group. Cohen’s d for the 

difference between Control and Experimental groups and the 95% confidence 

interval on the difference between means are presented below each 

condition. Note that the data are fictitious. 

 

11. A graph showing distributional, trend, and inferential information. The 

box plots show the distribution of the linear components of trends for the 

three conditions; the table shows inferential statistics for the linear 

component computed by applying the linear trend coefficients to the scores 

for each subject. In the pairwise comparisons, ts stands for the studentized t. 

Note that the data are fictitious. 

 

12. A graph showing a scatterplot of variables X and Y separately for 

Conditions A and B. Precise information such as the values of correlations 

and slopes as well as inferential information is presented in text. The data 

themselves and the least-squares regression lines are shown graphically. 

 

13. The regression of DV on X1 for three levels of X2. This graph shows the 

shape of the linear x linear interaction clearly but does not contain any 

distributional information. Note that the data are fictitious. 
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14. The regression of DV on the part of X1 independent of both X2 and X3 

(X1.23) as a function of the portion of X2 independent of X3 (X2.3). The 

upper-left portion of the figure contains a significance test of the linear x 

linear interaction. The full regression equation is shown to the right. The 

scatterplot for each quartile of X2.3 includes the regression line, the slope of 

the line, a 95% confidence interval on the slope of the line and the 

probability value. Note that the data are fictitious. 

 

15. The regression of the dependent variable (DV) on the covariate 

separately for the experimental and the control conditions. The inferential 

statistics in the lower right show the R2 for the model in which the slopes of 

the two lines are allowed to differ and the R2 assuming a common slope. The 

common slope and a significance test for the difference between the slopes 

are also shown. Note that the data are fictitious. 

 

16. Box plots and inferential statistics relevant to the comparison of the 

experimental and the control conditions. The box plots were created based 

on residual scores computed by removing variability linearly related to the 

covariate. 

 

17. Consistent and inconsistent assignment of symbols to conditions. For the 

consistent assignment, the level “young” is represented by circles whereas 

the level “old” is represented by squares. The level “control” is represented 
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by a filled symbol whereas the level “experimental” is represented by an 

unfilled symbol. 

 

1 Appendix. An example of a box plot. The fences are included for illustrative 

purposes only and should not be shown in the final version of a box plot. 

 

2 Appendix. Examples of stem-and-leaf displays. Graph A shows the 

distribution of one variable. The data values are equal to 10 times the stem 

plus the leaf. Graph B shows back-to-back stem-and-leaf displays. 

 

3 Appendix. An example of back-to-back histograms. 
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Linear ComponentsBox Plots of Linear Components of Trend
Trials (Lin) X Condition:  
   F(2,42) = 12.14, p < 0.001

Simple Effects on linear component:
 A: t(14) = 10.18, p < .001
 B: t(14) = 4.96, p < .001
 C: t(14) = 2.02, p = .063 

Pairwise Comparisons on linear
component (Tukey HSD):
 A vs B: ts(42) = 3.53, p = .043
 95% CI: 0.00 to 0.28
 A vs C: ts(42) = 6.97, p < .001
 95% CI: 0.14 to 0.42
 B vs C:  ts(42) = 3.44, p = .050
 95% CI: 0.00 to 0.27
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 Slope 1.07 0.87 to 1.27 <.001
 Intercept 33.71 30.7 to 36.7 <.001
 r 0.90 0.79 to 0.95 <.001

 Condition B (solid line, closed circles)
 Statistic Value 95% CI p
 Slope 1.91 1.72 to 2.09 <.001
 Intercept 21.73 18.7 to 24.7 <.001
 r 0.97 0.94 to 0.99 <.001
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95% CI: 0.64 to 1.84
p < 0.001

X2.3 Quartile1
M = -12.00

X2.3 Quartile 2
M = -3.14

X2.3 Quartile 3
M = 3.07

X2.3 Quartile 4
M = 12.21

X1 (linear) x X2 (linear) Interaction
b = -0.037
95% CI: -0.562 to -0.018
Incremental R2 = .039
p < .001

Regression Equation
Term Value
b1 0.533
b2 0.370
b12 -0.037
b3 0.427
A  92.826

Note: X1 and X2 were 
centered before interaction 
predictor was created.
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Y’ = 0.73X + 18.75

Y’ = 0.68X + 15.57
Control

R2 separate slopes: .453
R2 common slope: .452
Common slope: .702
Test of difference between slopes:
t(46) = 0.21, p = .84
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Covariate: F(1,47) = 31.17, p < .001 
Condition: F(1,47) = 8.23, p = .006
Pooled SD: 7.24
Mean Difference: 5.88, 95% CI: 1.75 to 10.00
d: 0.81 
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