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Abstract

In corporate finance and asset pricing empirical work, researchers are often confronted with
panel data. In these data sets, the residuals may be correlated across firms or across time, and OLS
standard errors can be biased. Historically, the two literatures have used different solutions to this
problem. Corporate finance has relied on clustered standard errors, while asset pricing has used the
Fama-MacBeth procedure. This paper examines the different methods used in the literature and
explains when the different methods yield the same (and correct) standard errors and when they
diverge. The intent is to provide intuition as to why the different approaches sometimes give
different answers and give researchers guidance for their use.

I thank the Center for Financial Institutions and Markets at Northwestern University’s Kellogg
School for support. In writing this paper, | have benefitted greatly from discussions with John
Ammer, Robert Chirinko, Toby Daglish, Kent Daniel, Joey Engelberg, Gene Fama, Michael
Faulkender, Wayne Ferson, Mariassunta Giannetti, John Graham, William Greene, Chris Hansen,
Wei Jiang, Toby Moskowitz, Chris Polk, Joshua Rauh, Michael Roberts, Paola Sapienza, Georgios
Skoulakis, Doug Staiger, Jeff Wooldridge and Annette Vissing-Jorgensen as well as the comments
of seminar participants at the American Finance Association Meetings, Arizona State University,
Federal Reserve Bank of Chicago, Financial Management Association Meetings, Harvard Business
School, Duke University, Northwestern University, Stanford University, Stockholm School of
Economics, and the Universities of California at Berkeley, Chicago, Columbia, Florida, lowa,
Michigan, Pennsylvania (Wharton), Texas at Dallas and Washington. The research assistance of
Marie Grabinski, Nick Halpern, Casey Liang, Matt Withey, Sungjoon Park, and Amit Patel is greatly
appreciated.



1) Introduction

It is well known that OLS standard errors are unbiased when the residuals are independent
and identically distributed. When the residuals are correlated across observations, OLS standard
errors can be biased and either over or underestimate the true variability of the coefficient estimates.
Although the use of panel data sets (e.g. data sets that contain observations on multiple firms in
multiple years) is common in finance, the ways that researchers have addressed possible biases in
the standard errors varies widely and in many cases is incorrect. In recently published finance papers
which include a regression on panel data, forty-two percent of the papers did not adjust the standard
errors for possible dependence in the residuals.® Approaches for estimating the coefficients and
standard errors in the presence of within cluster correlation varied among the remaining papers.
Thirty-four percent of the remaining papers estimated both the coefficients and the standard errors
using the Fama-MacBeth procedure (Fama-MacBeth, 1973). Twenty-nine percent of the papers
included dummy variables for each cluster (e.g. fixed effects or within estimation). The next two
most common methods used OLS (or an analogous method) to estimate the coefficients but reported

standard errors adjusted for correlation within a cluster (e.g. within a firm or industry). Seven

1| searched papers published in the Journal of Finance, the Journal of Financial Economics, and the Review
of Financial Studies in the years 2001- 2004 for a description of how the coefficients and standard errors were estimated
in a panel data set. Panel data sets are data sets which contain multiple observations on a given unit. This can be multiple
observations per firm, per industry, per year, or per country. | refer to the unit (e.g. firm or industry) as a cluster. |
included both linear regressions as well as non-linear techniques such as logits and tobits in my survey. I included only
papers which report at least five observations in each dimension (e.g. firms and years). 207 papers met the selection
criteria. Papers which did not report the method for estimating the standard errors, or reported correcting the standard
errors only for heteroscedasticity (i.e. White standard errors which are not robust to within cluster dependence) are coded
as not having corrected the standard errors for within cluster dependence. Where the paper’s description was ambiguous,
| contacted the authors.

Although White or OLS standard errors may be correct, many of the published papers report regressions where
I would expect the residuals to be correlated across observations on the same firm in different years (e.g. bid-ask spread
regressed on exchange dummies, stock price, volatility, and average daily volume or leverage regressed on the market
to book ratio and firm size) or correlated across observations on different firms in the same year (e.g. equity returns
regresses on earnings surprises). In these cases, the bias in the standard errors can be quite large. See Section V1 for two
illustrations.



percent of the papers adjusted the standard errors using the Newey-West procedure (Newey and
West, 1987) modified for use in a panel data set, while 23 percent of the papers reported clustered
standard errors (Williams, 2000, Rogers, 1993, Andrews, 1991, Moulton, 1990, Arellano, 1987,
Moulton, 1986, Liang, and Zeger, 1986) which are White standard errors adjusted to account for
possible correlation within a cluster. These are also called Rogers standard errors in the finance
literature.

Although the literature has used a diversity of methods to estimate standard errors in panel
data sets, the chosen method is often incorrect and the literature provides little guidance to
researchers as to which method should be used. In addition, some of the advice in the literature is
simply wrong. Since the methods sometimes produce incorrect estimates, it is important to
understand how the methods compare and how to select the correct one. This is the paper’s
objective.?

There are two general forms of dependence which are most common in finance applications.
They will serve as the basis for the analysis. The residuals of a given firm may be correlated across
years (time series dependence) for a given firm. | will call this an unobserved firm effect (see
Wooldridge, 2002). Alternatively, the residuals of a given year may be correlated across different
firms (cross-sectional dependence). I will call this a time effect. | will simulate panel data with both
forms of dependence, first individually and then jointly. With the simulated data, | can estimate the

coefficients and standard errors using each of the methods and compare their relative performance.

2 To make it easier for researchers to implement the techniques discussed in this paper, | have posted the code
I used for each of the estimation methods discussed in the paper on my web page. | have also posted the basic program
which | used to simulate the data and estimate the coefficients and standard errors. This should allow researchers to
simulate data sets with their own customized data structure and size, and thus determine for their data sets the magnitude
of the biases which | have highlighted.



Section Il examines the sensitivity of standard error estimates to the presence of a firm fixed
effect, a feature common among many variables including financial leverage, dividends, and
investment. My results show that both OLS and the Fama-MacBeth standard errors are biased
downward. The Newey-West standard errors, as modified for panel data, are also biased but the bias
is small. Of the most common approaches used in the literature and examined in this paper, only
clustered standard errors are unbiased as they account for the residual dependence created by the
firm effect. In Section 11, the same analysis is conducted with an unobserved time effect instead of
a firm effect. A time effect may be found in equity returns and earnings surprises, for example. Since
the Fama-MacBeth procedure is designed to address a time effect, the Fama-MacBeth standard
errors are unbiased. The intuition of these first two sections carries over to Section 1V, were |
simulate data with both a firm and a time effect. | examine estimating standard errors which are
clustered on more than one dimension in this section.

I initially specified the firm effect as a constant (e.g. it does not decay over time). In practice,
the firm effect may decay and so the correlation between residuals declines as the time between them
grows. In Section V, | simulate data with a more general correlation structure. This allows me to
compare OLS, clustered, and Fama-MacBeth standard errors in a more general setting. Simulating
the temporary firm effect also allows me to examine the relative accuracy of three additional
methods for adjusting standard errors (and possibly improving the efficiency of the coefficient
estimates): fixed effects (firm dummies), generalized least squares (GLS) estimation of a random
effects model, and adjusted Fama-MacBeth standard errors. I show that including firm dummies or
estimating a random effects model with GLS eliminates the bias in the ordinary standard errors only

when the firm effect is fixed. | also show that even after adjusting Fama-MacBeth standard errors,



as suggested by some authors (Cochrane, 2001), they are still biased in many, but not all, cases.

Most papers do not report standard errors estimated by multiple methods. Thus in Section
VI, | apply the various estimation techniques to two real data sets and compare their relative
performance. This serves two purposes. First, it demonstrates that the methods used in some
published papers produce biases in the standard errors and t-statistics that are very large. This is why
using the correct method to estimate standard errors is important. Examining actual data also allows
me to show how differences in standard error estimates can provide information about the deficiency
in a model and directions for improving it.

i) Estimating Standard Errors in the Presence of a Fixed Firm Effect.

A) Clustered Standard Error Estimates.

To provide intuition on why the standard errors produced by OLS are incorrect and how
alternative estimation methods correct this problem, it is helpful to very briefly review the
expression for the variance of the estimated coefficients. The standard regression for a panel data
set is:

Yi =Xy B+& (D)
where we have observations on firms (i) across years (t). X and € are assumed to be independent of
each other and to have a zero mean and finite variance.® | have made the strong assumption that the
model is correctly specified. The zero mean is without loss of generality and allows us to calculate

variances as sums of the squares of the variable. The estimated coefficient is:

3 The simulations in the paper are based on linear regressions. However, my results generalize to non-linear
models such as probit and tobit. In simulated results, the clustered standard errors are unbiased and the regular (“OLS”)
standard errors are biased in these non-linear models. The magnitude of the biases are similar to what I report for linear
models (results available from the author).
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This is the standard OLS formula and is based on the assumption that the errors are independent and
identically distributed (Greene, 1990, page 148). The independence assumption is used to move
from the first to the second line in equation (3) (i.e., the covariance between residuals is zero). The
identical distribution assumption (e.g., homoscedastic errors) is used to move from the second to the

third line.* The independence assumption is often violated in panel data and is the focus of the paper.

# Clustered standard errors are robust to heteroscedasticity. Since this is not my focus, | assume the errors are
homoscedastic. | use White standard errors as my baseline estimates when analyzing actual data in Section V1, since the
residuals are not homoscedastic in those data sets (White, 1984).

5



In relaxing the assumption of independent errors, | initially assume the data has an
unobserved firm effect that is fixed. Thus the residuals consist of a firm specific component (y;) and
an idiosyncratic component that is unique to each observation (n,).° The residuals can be specified
as:

& =7 T 4
Assume that the independent variable X also has a firm specific component.

X = 1 + 0, )
Each of the components of X (u and v) and € (y and n) have zero mean, finite variance, and are
independent of each other. This is necessary for the coefficient estimates to be consistent.® Both the
independent variable and the residual are correlated across observations of the same firm, but are

independent across firms.

corr (X, X, )=1 fori=jandt=s
=py =0, /oy fori=jandallt=s
=0 foralli= j
. (6)
corr (&, )=1 fori=jandt=s
=p,=o.lo; fori=jandallt=s

=0 foralli= |

Given this data structure [equations (1), (4), and (5)], | can calculate the true standard error

®This language follows Wooldridge, 2002 (see Chapter 10). When | use the word fixed it means the unobserved
firm effect does not die away over time. Wooldridge calls this a time-constant unobserved effect. This means the
correlation between €;, and €;,, is a constant with respect to k. In Section V, | will examine cases where this correlation
does die away (decline) as k increases.

®1am assuming that the model is correctly specified. I do this to focus on estimating the standard errors. In
actual data sets, this assumption does not necessarily hold and would need to be considered and tested.

6



of the OLS coefficient. Since the residuals are no longer independent within cluster, the square of
the summed residuals is not equal to the sum of the squared residuals. The same statement can be
made about the independent variable. The covariances must be included as well. The asymptotic

variance of the OLS coefficient estimate is:
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I use the assumption that residuals are independent across firms in deriving the second line. Given
the assumed data structure, the within cluster correlations of both X and € are positive and are equal
to the fraction of the variance that is attributable to the firm effect. When the data have a fixed firm
effect, the OLS standard errors will understate the true standard error if and only if both p, and p.

are non-zero.” The magnitude of the error is also increasing in the number of years. To understand

" If the firm effect is not fixed, the variance of the coefficient estimate is a weighted sum of the correlations
between €, and €., times the correlation between X, and X, for all k<T (Wooldridge, 2002). It is equal to:
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k=1

Since, the autocorrelations can be positive or negative, it is possible for the OLS standard error to under or over-estimate
the true standard error. If the panel is unbalanced (different T for each i), the true standard error and the bias in the OLS
standard errors is even larger than specified by equation (7) (see Moulton, 1986).
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this intuition, consider the extreme case where the independent variables and residuals are perfectly
correlated across time (i.e. py =1 and p.=1). In this case, each additional year provides no additional
information and will have no effect on the true standard error. However, the OLS standard errors
will assume each additional year provides N additional observations and the estimated standard error
will shrink accordingly and incorrectly.

The correlation of the residuals within cluster is the problem the clustered standard errors
are designed to correct.? By squaring the sum of X, e, within each cluster, the covariance between
residuals within cluster is estimated (see Figure 1). This correlation can be of any form; no
parametric structure is assumed. However, the squared sum of Xe;, is assumed to have the same
distribution across the clusters. Thus these standard errors are consistent as the number of clusters
grows (Donald and Lang, 2001; and Wooldridge, 2002). | will return to this issue in Section IlI.

B) Testing the Standard Error Estimates by Simulation.

I simulated a panel data set and then estimated the slope coefficient and its standard error.
By doing this multiple times we can observe the true standard error as well as the average estimated

standard errors.® In the first version of the simulation, I include an unobserved firm effect that is

8 The exact formula for the clustered standard error is:
N T 2
(NT-1)D | D X &
i=1\ t=

-

=1 t=1

AVar ()=

% Each simulated data set contains 5,000 observations (500 firms and 10 years per firm). The components of
the independent variable (u v) and the residual (y ) are independent of each other and normally distributed with zero
means. For each data set, | estimated the coefficients and standard errors using each method described below. The means
and standard deviations reported in the tables are based on 5,000 simulations.
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fixed, but no time effect in the independent variable and the residual. Thus the data are simulated
as described in equations (4) and (5). Across simulations | assumed that the standard deviation of
the independent variable and the residual are both constant at one and two respectively. This will
produce an R? of 20 percent. Across different simulations, | altered the fraction of the variance in
the independent variable which is due to the firm effect. This fraction ranges from zero to seventy-
five percent in twenty-five percent increments (see Table 1). | did the same for the residual. This
allows me to demonstrate how the magnitude of the bias in the OLS standard errors varies with the
strength of the firm effect in both the independent variable and the residual.

The results of the simulations are reported in Table 1. The first two entries in each cell are
the average value of the slope coefficient and the standard deviation of the coefficient estimate. The
standard deviation is the true standard error of the coefficient and ideally the estimated standard
error will be close to this number. The average standard error estimated by OLS is the third entry
in each cell and is the same as the true standard error in the first row of the table. When there is no
firm effect in the residual (i.e. the residuals are independent across observations), the standard error
estimated by OLS is correct (see Table 1, row 1). When there is no firm effect in the independent
variable (i.e. the independent variable is independent across observations), the standard errors
estimated by OLS are also unbiased, even if the residuals are highly correlated (see Table 1, column
1). This follows from the intuition in equation (7). The bias in the OLS standard errors is a product
of the dependence in the independent variable (py) and the residual (p.). When either correlation is
zero, OLS standard errors are unbiased.

When there is a fixed firm effect in both the independent variable and the residual, then the

OLS standard errors underestimate the true standard errors, and the magnitude of the



underestimation can be large. For example, when fifty percent of the variability in both the residual
and the independent variable is due to the firm effect (p, = p. = 0.50), the OLS estimated standard
error is one half of the true standard error (0.557 = 0.0283/0.0508).%° The standard errors estimated
by OLS do not rise as the firm effect increases across either the columns (i.e. in the independent
variable) or across the rows (i.e. in the residual). The true standard error does rise.

When | estimate the standard error of the coefficient using clustered standard errors, the
estimates (the fifth entry in each cell) are very close to the true standard error. These estimates rise
along with the true standard error as the fraction of variability arising from the firm effect increases.
The clustered standard errors correctly account for the dependence in the data common in a panel
data set and produce unbiased estimates.

An alternative way to examine the magnitude of the bias is to examine the empirical
distribution of the simulated t-statistics (see Skoulakis, 2005). The fraction of OLS t-statistics which
are statistically significant at the one percent level (i.e. greater than 2.58) are reported as the fourth
entry in each cell of Table 1. The t-statistics based on the OLS standard errors are too large in
absolute value (see Figure 2-A and Table 1). As you move down the diagonal in Table 1, the percent
of t-statistics which are statistically significant at the 1 percent level rises. For example 15.3%
percent of the OLS t-statistics are statistically significant at the 1 percent level when p, = p. =0.50.

The clustered standard errors are unbiased (see Table 1) and the empirical distribution of the t-

10 All of the regressions contain a constant whose true value is zero. The intuition carries over to the intercept
estimation. The estimated intercept averages -0.0003 with a standard deviation of 0.0669, when p, = p_=0.50. The OLS
standard errors are biased (0.0283) and the clustered standard errors are unbiased (0.0663).

The simulated residuals are homoscedastic, so calculating standard errors which are robust to heteroscedasticity
is unnecessary. When | estimated White standard errors in the simulation they have the same bias as the OLS standard
errors. For example, the average White standard error of the slope is 0.0283 compared to the OLS estimate of 0.0283
and a true standard error of 0.0508 when p, = p. = 0.50.

10



statistics are also correct (see Figure 2-B). 0.9 percent of the clustered t-statistics are significant at
the one percent level. The reason the t-statistics give us the same intuition as the standard errors is
the standard errors are estimated very precisely. For example, the mean OLS standard error is 0.0283
with a standard deviation of 0.0007 and the mean clustered standard error is 0.0508 with a standard
deviation of 0.0027 (when py =p. =0.50)."

The bias in OLS standard errors is highly sensitive to the number of time periods (years)
used in the estimation as well. As the number of years doubles, OLS assumes a doubling of the
information. However, if both the independent variable and the residual are serially correlated within
the cluster, the amount of information increases by less than a factor of two. The bias rises from
about 30 percent when there are five years of data per firm to 73 percent when there are 50 years
(when py=p.=0.50, see Figure 3). The robust standard errors are consistently close to the true
standard errors independent of the number of time periods (see Figure 3).

C) Fama-MacBeth Standard Errors: The Equations.

An alternative way to estimate the regression coefficients and standard errors when the
residuals are not independent is the Fama-MacBeth approach (Fama and MacBeth, 1973). In this
approach, the researcher runs T cross sectional regressions. The average of the T estimates is the

coefficient estimate:

1| do not report the mean squared error (MSE) of the standard error estimates, since they add no additional
information beyond what is reported in the tables and the figures in most instances. This is because the variances of the
standard error estimates is extremely small. The MSEs are essentially equal to the bias squared. The one exception |
found was the adjusted Fama-MacBeth standard errors which are discussed in Section V-D. Tables of MSEs are available
from the author.

11
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and the estimated variance of the Fama-MacBeth estimate is calculated as:
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The variance formula assumes that the yearly estimates of the coefficient (3,) are independent of
each other. This is only correct if X;, €; is independent of X, €, for t # s. As discussed above, this
is not true when there is a firm effect in the data (i.e. py p. # 0). Thus, the Fama-MacBeth variance
estimate is too small in the presence of a firm effect. In this case, the asymptotic variance of the

Fama-MacBeth estimate is:
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Given our specification of the data (equations 4 and 5), the covariance between the coefficient

estimates of different years is independent of t-s (which justifies the simplification in the last line

of equation 10) and can be calculated as follows for t = s:
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Combining equations (10) and (11) gives us the expression for the asymptotic variance of the Fama-

MacBeth coefficient estimates.
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This result is the same as our expression for the variance of the OLS coefficient (see equation
7). The Fama-MacBeth standard error are biased in exactly the same way as the OLS estimates. In
both cases, the magnitude of the bias is a function of the serial correlation of both the independent
variable and the residual within a cluster and the number of time periods per firm (or cluster).

D) Simulating Fama-MacBeth Standard Errors.

To document the bias of the Fama-MacBeth standard error estimates, | calculate the Fama-
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MacBeth estimate of the slope coefficient and the standard error in each of the 5,000 simulated data
sets which were used in Table 1. The results are reported in Table 2. The Fama-MacBeth estimates
are consistent and as efficient as OLS (the correlation between the two is consistently above 0.99).
The standard deviation of the two coefficient estimates is also the same (compare the second entry
in each cell of Table 1 and 2). These results demonstrate that both OLS and Fama-MacBeth standard
errors are biased downward (see Table 2). However the Fama-MacBeth standard errors have a larger
bias than the OLS standard errors. For example, when both p, and p. are equal to 75 percent, the
OLS standard error has a bias of 60% (0.595 = 1 - 0.0283/0.0698, see Table I) and the Fama-
MacBeth standard error has a bias of 74 percent (0.738 =1 - 0.0183/0.0699, see Table Il). Moving
down the diagonal of Table 2 from upper left to bottom right, the true standard error increases but
the standard error estimated by Fama-MacBeth actually shrinks. Remember, the estimated OLS
standard errors did not change as we moved down the diagonal of Table 1. As the firm effect
becomes larger (py p. increases), the OLS bias grows, and the Fama-MacBeth bias grows even
faster.’ The incremental bias of the Fama-MacBeth standard errors is due to the way in which the
estimated variance is calculated. To see this we need to expand the expression of the estimated

variance (equation 9).

12 The distribution of empirical t-statistics is even wider for the Fama-MacBeth than for OLS (compare Figures
2-A and 2-C). 25 percent of the Fama-MacBeth t-statistics are statistically significant at the 1 percent level compared
to 15 percent of the OLS t-statistics when py = p. = 0.50 (see Table 1 and 2).

14
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The true variance of the Fama-MacBeth coefficients is a measure of how far each yearly coefficient
estimate deviates from the true coefficient (one in the simulations). The estimated variance,
however, measures how far each yearly estimate deviates from the sample average. Since the firm
effectinfluences both the yearly coefficient estimate and the sample average of the yearly coefficient
estimates, it does not appear in the estimated variance. Thus increases in the firm effect (increases
in py pe) actually reduce the estimated Fama-MacBeth standard error at the same time it increases
the true standard error of the estimated coefficients. To make this concrete, take the extreme
example where p, p, is equal to one; the true standard error is(o/Naoy)” while the estimated Fama-
MacBeth standard error is zero. This additional source of bias shrinks as the number of years
increases since the estimated slope coefficient will converge to the true coefficient (see Figure 3).

E) Incorrect Standard Error Estimates in Published Papers.

Although I have just demonstrated that the Fama-MacBeth standard errors are biased in the
presence of a firm effect, they are often used to measure statistical significance in published papers
when the underlying regression contains a firm effect. As part of my literature survey, | looked for

papers which ran a regression of one persistent firm characteristic on other persistent firm
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characteristics (i.e. the serial correlation of the variables is large and dies away slowly as the lag
between observations increases). This is the type of data where Fama-MacBeth (and OLS) standard
errors will be biased. Since I am not able to replicate each of the studies, I will discuss a few
examples where Fama-MacBeth standard errors have been used with such data.

The first example is a logit estimate of whether a firm pays a dividend (a highly persistent
variable) on firm characteristics such as the firm’s market to book ratio, the earnings to assets ratio,
and relative firm size (Fama and French, 2001). A second example are the papers which examine
how the market values firms by regressing a firm’s market to book ratio on firm characteristics such
as the firm’s age, a dummy for whether it pays a dividend, leverage, and firm size (Pastor and
Veronesi, 2003, and Kemsley and Nissim, 2002).** A third example are papers which run capital
structure regressions. In these papers, the authors try to explain a firm’s use of leverage by
regressing the firm’s debt to assets ratio on firm characteristics such as the firm’s market to book
ratio, the ratio of property, plant, and equipment to total assets, the earnings to assets, depreciation
to asset ratio, R&D to assets ratio, and firm size (see for example Baker and Wurgler, 2002, Fama
and French, 2002, and Johnson, 2003).* As | will show in Section VI, the serial correlation among

these variables is quite large (usually greater than 0.95 after ten years). Since both the left and right

13 Both of these papers correct the Fama-MacBeth standard errors for the first order autocorrelation of the
estimated slopes. Pastor and Veronesi (2003) report that this does not change their answer. | will show in Section VV-D
that this correction still produces biased standard errors and this may explain Pastor and Veronesi’s finding that the
adjustment has little effect on their estimated standard errors.

14 Baker and Wurgler (2002) estimate both White and Fama-MacBeth standard errors but do not report the
Fama-MacBeth standard errors since they are the same as the White standard errors. This is not surprising given the
results of Section Il. In the presence of a firm effect, the bias in White and Fama-MacBeth standard errors will be very
similar with longer panel data sets (see Figure 3). Fama and French (2002) acknowledge that Fama-MacBeth standard
errors may understate the true standard errors and so report adjusted Fama-MacBeth standard errors (“We use a less
formal approach. We assume the standard errors of the average slopes... should be inflated by a factor of 2.5"). I will
discuss this method in Section VV-D and show it can generate biased standard errors as well.
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hand side variables in these three regressions are highly persistent, this is the kind of data where
Fama-MacBeth standard errors are biased. In Section VI-B, | will estimate a capital structure
regression and show that the magnitude of the bias is indeed large. Despite the potential for biased
standard errors and thus incorrect inferences, Fama-MacBeth standard errors are still used in the
literature.

The literature is a teaching tool. Authors read published papers to learn which econometric
methods are appropriate in which situations. Thus when readers see published papers using Fama-
MacBeth (or OLS) standard errors in the kinds of regressions I have listed, they believe (incorrectly)
that this approach is correct. The problem is actually worse. The published finance literature has not
only used incorrect methods but has gone on to provide (incorrect) advice which states that the
Fama-MacBeth approach corrects the standard errors for the residual correlation in the presence of
a firm effect (e.g. pyx # 0 and p. # 0). Wu (2004) uses “...the Fama and MacBeth (1973) method to
account for the lack of independence because of multiple yearly observations per company.” Denis,
Denis, and Yost (2002) argue that the “...pooling of cross-sectional and time-series data in our tests
creates a lack of independence in the regression models. This results in the deflated standard errors
and, therefore, inflated t-statistics. To address the importance of this bias we estimate the regression
model separately for each of the 14 calendar years in our sample... The coefficients and statistical
significance of the other control variables are similar to those in the pooled cross-sectional time
series data.” Finally, Choe, et. al. (2005) explain that “The Fama-McBeth regressions take into
account the cross-correlations and the serial correlation in the error term, so that the t-statistics are
much more conservative.”

Fama-MacBeth standard errors do account for cross correlation (e.g. correlations between
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€; and €,,), but they are not robust to serial correlation (e.g. correlation between €, and €, ). In the
presence of a firm effect, Fama-MacBeth and OLS standard errors are both biased, and as discussed
above the estimates can be quite close to each other even when the bias is large (compare equations
7 and 12). The problem isn’t with the Fama-MacBeth method, only with its use. It was developed
to account for correlation between observations on different firms in the same year, not to account
for correlation between observations on the same firm in different years. It is now being used and
recommended in cases where it produces biased estimates and overstated significance levels. Given
the Fama-MacBeth approach was designed to deal with time effects in a panel data set, not firm
effects, | will turn to this data structure in Section IlI.

F) Newey-West Standard Errors.

An alternative approach for addressing the correlation of errors across observations is the
Newey-West procedure (Newey and West, 1987). This procedure was initially designed to account
for serial correlation of unknown form in the residuals of a single time series. It has been modified
for use in a panel data set by estimating only correlations between lagged residuals in the same
cluster (see Bertrand, Duflo, and Mullainathan, 2004, Doidge, 2004, MacKay, 2003, Brockman and
Chung, 2001). The problem of choosing a lag length is simplified in a panel data set, since the
maximum lag length is one less than the maximum number of years per firm.** To examine the
relative performance of the Newey-West, | simulated 5,000 data sets where the firm effect is fixed

and assumed to account for twenty-five percent of the variability of both the independent variable

3 n the standard application of Newey-West, a lag length of M implies that the correlation between €,and €,
are included for k running from -M to M. When Newey-West has been applied to panel data sets, correlations between
lagged and leaded values are only included when they are drawn from the same cluster. Thus a cluster which contains
T years of data per firm uses a maximum lag length of T-1 and would include t-1 lags and T-t leads for the t™ observation
where t runs from1to T.
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and the residual.

The standard error estimated by the Newey-West is an increasing function of the lag length
in the simulation. When the lag length is set to zero, the estimated standard error is numerically
identical to the White standard error, which is only robust to heteroscedasticity (White, 1984). This
is the same as the OLS standard error in my simulation. Not surprisingly, this estimate significantly
underestimates the true standard error (see Figure 4). As the lag length is increased from 0 to 9, the
standard error estimated by the Newey-West rises from the OLS/White estimate of 0.0283 to 0.0328
when the lag length is 9 (see Figure 4). In the presence of a fixed firm effect, an observation of a
given firm is correlated with all observations for the same firm no matter how far apart in time the
observations are spaced. Thus having a lag length of less than the maximum (T-1), will cause the
Newey-West standard errors to underestimate the true standard error when the firm effect is fixed.
However, even with the maximum lag length of 9, the Newey-West estimates still eliminate only
60 percent of the bias that OLS/White standard errors produce [(0.0328-0.0283)/(0.0358-0.0283)].

Unlike clustered standard errors, the Newey-West approach to estimating standard errors in
a panel data set produces biased estimates. The source of the bias is the weighting function. When
estimating standard errors, Newey-West multiplies the covariance of lag j (e.g. €, €,;) by the weight
[1-j/(M+1)], where M is the specified maximum lag. If | set the maximum lag equal to T-1, then the

central matrix in the variance equation of the Newey-West standard error is:
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This is identical to the clustered standard error formula except for the weighting function [w(j)]. The
clustered standard errors use a weighting function of one for all covariances. Since the Newey-West
procedure was originally designed for a single time-series, the weighting function was necessary to
make the estimate of this matrix positive semi-definite. For fixed j, the weight w(j) approaches one
asymptotically. Newey and West show that if M is allowed to grow at the correct rate with the
sample size (T), then their estimate is consistent. However, in the panel data setting, the number of
time periods may be small. The consistency of the clustered standard error is based on the number
of clusters (N) being large, as opposed to the number of time periods (T). Thus the Newey-West
weighting function is unnecessary and leads to standard error estimates which have a small bias in
a panel data setting.*

I11)  Estimating Standard Errors in the Presence of a Time Effect.

16 Although the bootstrap method of estimating standard errors was rarely used in the articles which I surveyed,
it is another alternative for estimating standard errors in a panel data set (see for example Kayhan and Titman, 2004 and
Efron and Tibshirani, 1986). To test its relative performance, | drew 100 samples with replacement and re-estimated the
regression for each simulated data set. When | drew observations independently (e.g. | drew 5,000 firm-years), the
estimated standard errors are the same as the OLS standard errors reported in Table I (e.g. 0.0282 for the bootstrap versus
0.0283 for OLS when py = p. = 0.50). When | drew observations as a cluster (e.g. | drew 500 firms with replacement
and took all 10 years for any firm which was drawn), the estimated standard errors are the same as the clustered standard
errors (e.g. 0.0505 for bootstrap versus 0.0508 for clustered). An example with real data can be found in Cheng, Nagar,
Rajan (2005). They find that bootstrapped standard errors (when a state opposed to a single observation is drawn) are
almost identical to the standard errors clustered by state.
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To demonstrate how the technigques work in the presence of a time effect, | generated data
sets which contain only a time effect (observations on different firms within the same year are
correlated). This is the data structure for which the Fama-MacBeth approach was designed (see
Fama-MacBeth, 1973). If | assume that the panel data structure contains only a time effect, the
equations | derived above are essentially unchanged. The expressions for the standard errors in the
presence of only a time effect are correct once | exchange N and T.

A) Clustered Standard Error Estimates.

Simulating the data with only a fixed time effect means the dependent variable will still be
specified by equation (1), but now the error term and independent variable are specified as:

Eit :é‘t + 77 (15)

X =8, +0y
As before, | simulated 5,000 data sets of 5,000 observations each. | allowed the fraction of
variability in both the residual and the independent variable which is due to the time effect to range
from zero to seventy-five percent in twenty-five percent increments. The OLS coefficient, the true
standard error, the OLS and clustered standard errors, as well as the fraction of OLS and clustered
t-statistics that are greater than 2.58 are reported in Table 3. There are several interesting findings
to note. First, as with the firm effect results, the OLS standard errors are correct when there is no
time effect in either the independent variable (Var({)=0) or the residual (Var(d)=0). As the time
effect in the independent variable and the residual rise, so does the magnitude by which the OLS
standard errors underestimate the true standard errors. When half of the variability in both comes

from the time effect, the true standard error is eleven times the OLS estimate [10.7 = 0.3015/0.0282,

see Table 3] and 81 percent of t-statistics are significant at the 1 percent level.
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The clustered standard errors are much more accurate, but unlike our results with the firm
effect, they underestimate the true standard error. The magnitude of the underestimate is small,
ranging from 13 percent [1-0.1297/0.1490] when the time effect accounts for 25 percent of the
variability to 19 percent [1-0.3986/0.4927] when the time effect accounts for 75 percent of the
variability. The problem arises due to the limited number of clusters (e.g. years). When | estimated
the standard errors in the presence of the firm effects, | had 500 firms (clusters). When | estimated
the standard errors in the presence of a time effect, | have only 10 years (clusters). Since the
clustered standard error places no restriction on the correlation structure of the residuals within a
cluster, its consistency depends on having a sufficient number of clusters. Based on these results,
10 clusters is too small and 500 is sufficient (see Kezdi, 2004 and Hansen, 2005).

To explore this issue, | simulated data sets of 5,000 observations with the number of years
(or clusters) ranging from 5 to 100. In all of the simulations, 25 percent of the variability in both the
independent variable and the residual is due to the time effect [i.e. py = p. = 0.25]. The bias in the
clustered standard error estimates declines with the number of clusters, dropping from 27 percent
when there are 5 years (or clusters) to 3 percent when there are 40 years to 1 percent when there are
100 years (see Figure 5). The standard deviation of the standard error estimates also declines as the
number of clusters increases (holding the total sample size constant). Thus the mean squared error
(MSE), which is a sum of the variance of the standard error estimate and the bias squared, declines
with cluster size for both reasons.

B) Fama-MacBeth Standard Errors.

When there is only a time effect, the correlation of the estimated slope coefficients across

years is zero and the standard errors estimated by Fama-MacBeth are unbiased (see equation 12).
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This is what I find in the simulation (see Table 4). The estimated standard errors are extremely close
to the true standard errors and the number of statistically significant t-statistics is close to three
percent across the simulations (using a 1 percent critical value).

IV)  Estimating Standard Errors in the Presence of a Fixed Firm and Time Effect.

The best method for estimating standard errors in a panel data set depends on the source of
dependence in the data. For panel data sets with only a firm effect, standard errors clustered by firm
produce unbiased standard errors. If the data has only a time effect, the Fama-MacBeth estimates
are better than standard errors clustered by time when there are few years (clusters) and equally good
when the number of years (clusters) is sufficiently large. These methods allow us to be agnostic
about the form of the correlation within a cluster. The cost, however, is the residuals must be
uncorrelated across clusters. For example if we cluster by firm, we must assume there is no cross-
sectional correlation (no time effect). As this assumption may be incorrect in some situations, | next
consider a data structure with both a firm and a time effect.

One way empirical finance researchers can address two sources of correlation is to
parametrically estimate one of the dimensions — for example by including dummy variables. Since
many panel data sets have more firms than years, acommon approach is to include dummy variables
for each time period (to absorb the time effect) and then cluster by firm (Lamont and Polk, 2001,
Anderson and Reeb, 2004, Gross and Souleles, 2004, Sapienza, 2004, and Faulkender and Petersen,
2005). If the time effect is fixed (e.g. equation), the time dummies completely remove the correlation
between observations in the same time period. In this case, we have only a firm effect left in the
data. As we saw in Section I, OLS and Fama-MacBeth standard errors are biased in this case, while

standard errors clustered by firm are unbiased (results available from the author).
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The parametric approach only works when the dependence is correctly specified. If the time
effect is not fixed, then time dummies will not remove the dependence and even standard errors
clustered by firm can be biased. I will return to this issue in more detail in Sections V and VI. Since
researchers do not always know the precise form of the dependence, a less parametric approach may
be preferred. A solution is to cluster on two dimensions (e.g. firm and time). Thompson (2006) and
Cameron, Gelbach, and Miller (2006) proposed the following estimate of the variance-covariance
matrix

VeimeTime =Veirm + Vrime ~ Vinite (16)
which combines the standard errors clustered by firm with the standard errors clustered by time. The
standard errors clustered by firm (the first term) captures the unspecified correlation between
observations on the same firm in different years (e.g. correlations between €;, and €;). The standard
errors clustered by time (the second term) captures the unspecified correlation between observations
on different firms in the same year (e.g. correlations between €;, and €,,). Since both the firm and
time clustered variance-covariance matrix include the diagonal of the variance-covariance matrix,
the White variance-covariance matrix is subtracted off to avoid double counting these terms.*

This method allows for both a firm and a time effect, although observations on different
firms in different years are assumed to be uncorrelated (see Figure 6). As with standard errors
clustered on one dimension, this approach is unbiased as long as there are a sufficient number of
clusters, in this case both enough firms and enough time periods (see Thompson, 2006). To illustrate

the performance of standard errors clustered by firm, year, or both, | simulated data sets with a fixed

71n some settings (e.g. clustering by industry and year), there can be multiple observations (firms) in a single
cluster (e.g. industry-year). In this case, the third matrix which is subtracted off in equation (16) is the variance-
covariance matrix clustered by industry-year (see Cameron, Gelbach, and Miller, 2006).
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firm and time effect.'®

£y =V +O, +1, a7
X =1+ &+,

One third of the variability of the residual and the independent variable is due to the firm effect and
one third of the variability is due to the time effect [e.g. V(y)=V(d)=Var(n) and Var(p)=
V({)=V(v)]. I then simulated nine data sets where the number of firms and time periods range from
10 to 1,000 so that the total number of observations is always 10,000 (e.g. 250 firms and 40 time
periods, see Figure 7). Standard errors clustered by only one dimension are biased downward and
produce confidence intervals that are too small. The magnitude of this bias varies widely depending
upon the number of clusters. For example, if we examine the t-statistics clustered by time, the
fraction of t-statistics that are statistically significant at the one percent level (greater than 2.58)
ranges from 73% when there are 1,000 time periods (and 10 firms) to 5% when there are only 10
time period (and 1,000 firms).

Clustering by two dimensions produces less biased standard errors. However, clustering by
firm and time does not always yield unbiased estimates. When there are 100 firms and 100 years,
one percent of the t-statistics are greater then 2.58. As the number of clusters — firms or years —
declines, the standard errors clustered by firm and time are biased although the magnitude of the bias

is not large. In my simulations, the number of t-statistics which are greater than 2.58 rises to 5%

18 Although the firm and time effect are assumed to be fixed in the simulation, this is only for illustration.
Clustered standard errors, whether we cluster on one or more dimensions, are robust to any form of within cluster
correlation. In Section V, | will examine the performance of clustered standard errors when the firm effect is temporary
(dies away as the time between observations grows). The reader can also refer to Thompson (2006) and Cameron,
Gelbach, and Miller (2006) for results on standard errors clustered on more than one dimension when the firm and/or
time effects are not fixed. Cameron, Gelbach, and Miller (2006) also generalize the procedure to allow for clustering on
more than two dimensions.
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when the number of firms or time periods falls to 10 (see Thompson (2006) and Colin, Gelbach, and
Miller (2006) for additional results). When there are only a few clusters in one dimension, clustering
by the more frequent cluster yields results that are almost identical to clustering by both firm and
time. For example, in the simulation with 1,000 firms and 10 years of data, the percent of t-statistics
that are greater than 2.58 is 5% whether | cluster only by firm or when | cluster by firm and time
(see Figure 7).

V) Estimating Standard Errors in the Presence of a Temporary Firm Effect.

The analysis thus far has assumed that the firm effect is fixed. Although this is common in
the literature, it may not always be true in the data. The dependence between residuals may decay
as the time between them increases (e.g. p(€, , €.) may decline with k). In a panel with a short time
series, distinguishing between a permanent and a temporary firm effect may be impossible.
However, as the number of years in the panel increases, it may be feasible to empirically identify
the permanence of the firm effect. In addition, if the performance of the different standard error
estimates depends on the permanence of the firm effect, researchers need to know this.

A) Temporary Firm Effects: Specifying the Data Structure.

To explore the performance of the different standard error estimates in a more general
context, | simulated a data structure that includes both a permanent component (a fixed firm effect)
and a temporary component (non-fixed firm effect) that | assume is a first-order auto-regressive
process. This allows the firm effect to die away at a rate between a first order auto-regressive decay
and zero. To construct the data, | assumed that the non-firm effect portion of the residual (n; from

equation 4) is specified as:
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M =Cit if t=1
:¢77it—1+\/1_7¢24/it if t>1 wo
¢ is the first order auto correlation between m;, and n,.,, and the correlation between n, and n;,, is
¢*.* Combining this term with the fixed firm effect (y; in equation 4) means that the serial
correlation of the residuals dies off over time, but more slowly than implied by a first order auto-
regressive process and asymptotes to p. (from equation 6). By choosing the relative magnitude of
the fixed firm effect (p.) and the first order auto correlation (), | can alter the pattern of auto

correlations in the residual. The correlation of lag length K is:

- COV( 7, +7 17 Ty )
\/Var (74 +1, )Var (7 +,7i’t_k)

2 k _2
o, +¢"0o, (19)

Corr (&,

ol +o;
=p,+(1-p,)¢"

The same data structure is specified for the independent variable in the first three columns.?® The

correlation structures range from a fixed firm effect (p=0.50 and ¢=0.00) to a standard AR1 process

19 multiply the ¢ term by v1 - $? to make the residuals homoscedastic. From equation (18),
2 -
Var () =0 if t=1

42 2 2 2 2

=¢"o; +(1—¢ )Ug =o;if t>1
where the last step is by recursion (if it is true for t=m, it is true for t=m+1). Assuming homoscedastic residuals is not
necessary since the Fama-MacBeth and clustered standard errors are robust to heteroscedasticity (Williams, 2000,
Jagannathan and Wang, 1998, Rogers, 1993, Andrews, 1991, Moulton, 1990, Arellano, 1987, Moulton, 1986, Liang,

and Zeger, 1986). However, assuming homoscedasticity makes the interpretation of the results simpler. Any difference
in the standard errors | find is due to the dependence of observations within a cluster not heteroscedasticity.

20 |n column 1V, 1 use a different data generating processes for the independent variable and the residual. The
parameters were chosen to match the first and tenth-order autocorrelation of the residuals and the independent variables
from the capital structure regression which | examine in Section VI (see Table 7). These autocorrelations are graphed
in Figure 10.
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(p=0.00 and $=0.90).

B) Fixed Effects — Firm Dummies.

A significant minority of the papers in the survey include firm dummies in their regressions.
Using the simulations, | can compare the relative performance of OLS and clustered standard errors
both with and without firm dummies. The results are reported in Table 5, Panel A. The fixed effect
estimates are more efficient in this case (e.g. 0.0299 versus 0.0513), although this is not always true.
Once we include the firm effects, the OLS standard error are unbiased (see Table 5 - Panel A,
column1).# The clustered standard errors are unbiased with and without the fixed effects (see Kezdi,
2004, for examples where the clustered standard errors are too large in a fixed effect model). This
conclusion, however, depends on the firm effect being fixed. If the firm effect decays over time, the
firm dummies no longer fully capture the within cluster dependence and OLS standard errors are still
biased (see Table 5 - Panel A, columns 11-1V). In these simulations, the firm effect decays over time
(in column 11, 61 percent of the firm effect dissipates after 9 years). Once the firm effect is
temporary, the OLS standard errors again underestimate the true standard errors even when firm
dummies are included in the regression (Wooldridge, 2003, Baker, Stein, and Wurgler, 2003). The
magnitude of the underestimation depends on the magnitude of the temporary component of the firm
effect (i.e. ¢), ranging from 33 percent in column 11 to 42 percent in column II.

C) Generalized Least Squares Estimates of the Random Effects Model.

When the residuals of a panel regression are correlated, not only are OLS standard error

2L | have assumed the model is correctly specified [i.e. Corr( X;,, €,) =0 ]. In this case, the only purpose of
including firm dummies is to correct the standard errors. In practice, the model may not be correctly specified [i.e. Corr(
Xi;, €¢) # 0], and so including fixed effects would also be necessary to test the model’s specification (see Hausman,
1978). Instead of including firm dummies, we could have first differenced the data within firm. However, it would still
be necessary to use clustered opposed to OLS standard errors, since the residuals would be correlated.
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estimates biased, but the coefficient estimates are inefficient (the estimates do not exploit all of the
information in the data). Researchers can improve efficiency by estimating a random effects model
using a generalized least squares approach (i.e. a panel data set with an unobserved firm effect, see
Wooldridge, 2002). This is rarely done in the finance literature. Less than 3 percent of the papers
in my survey used this method (for examples see Maksimovic and Phillips, 2002, Gentry, Kemsley,
and Mayer, 2003, and Almazan, Brown, Carlson, and Chapman, 2004). To test the performance of
this model, | estimated the random effects model estimated with feasible generalized least squares
(FGLS) in each of the four simulations reported in Table 5 (see Panel B).

The GLS estimates are more efficient than the OLS estimates (both with or without firm
dummies) when the residuals are correlated (compare Table 5 — Panels A and B). The standard
errors produced by GLS, however, are unbiased only when the firm effect is permanent (e.g. column
1). When the residuals are correlated, but the correlation dies away, the GLS coefficient estimates
are still more efficient than the OLS estimates, but the standard errors are no longer unbiased (see
Table 5 - Panel B - columns 11-1V). As with the OLS standard errors, the GLS standard errors are
too small, although the magnitude of the bias is smaller. Thus, it is necessary to estimate standard
errors clustered by firm even when using GLS (except when the firm effect is fixed ).%

D) Adjusted Fama-MacBeth Standard Errors.

22 7o understand why the regular GLS standard errors are biased we need to examine how the GLS estimator
of the random effects model is constructed. The GLS estimates are a matrix weighted average of the between and within
estimates (Greene, 1990). The between estimates are obtained by running the regression on firm means [e.g. regress the
mean value of Y for each firm on the mean value of X for each firm, Y ;.= Byinin X~ + € +]. Since the between
regression contains only one observation per firm there is no within cluster correlation. The within estimates are obtained
by running the regression on the deviations from firm means [.9. Y ;- Y i «= Bgewween Xit= X;*) + (€4~ €;+)]. This'is
identical to including firm dummies. If the firm effect is entirely fixed, then there is no within cluster correlation in this
regression either. However, if the firm effect is temporary, then the residuals are still correlated within cluster and this
is the source of the bias in the standard errors. This is why the regular GLS standard errors are correct only when the firm
effect is fixed. The intuition is exactly the same as with the firm dummy estimates (compare Table 5 — Panel A to Panel
B).
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As | showed in Section |1, the presence of a firm effect causes the Fama-MacBeth standard
error to be biased downward. Many authors have acknowledged the bias and have suggested
adjusting the standard errors for the estimated first order autocorrelation of the estimated slope
coefficients (Graham, Lemmon, and Schallheim, 1998; Christopherson, Ferson, and Glassman,
1998; Chen, Hong, and Stein, 2001; Cochrane, 2001; Lakonishok, and Lee, 2001; Fama and French,
2002; Kemsley and Nissim, 2002; Bakshi, Kapadia, and Madan, 2003; Pastor and Veronesi, 2003;
Chakravarty, Gulen, and Mayhew, 2004; Nagel, 2005; Schultz and Loughran, 2005). The proposed
adjustment is to estimate the correlation between the yearly coefficient estimates (i.e. Corr[B , B.,
] = 0), and then multiply the estimated variance by (1+ 0)/(1-0) to account for serial correlation of
the Bs (see Chakravarty, Gulen, Mayhew, 2004 and Fama and French, 2002, footnote 1).” This
would seem to make intuitive sense since the presence of a firm effect causes the yearly coefficient
estimates to be serially correlated.

To test the merits of this idea, | use the same four simulated data structures as above (see
Table 5). In each data set, | estimated ten slope coefficients and the first-order autocorrelation of the
slope coefficients. | then calculate the original and an adjusted Fama-MacBeth standard error. In the
first column, the fixed firm effect accounts for 50 percent of the variance. The autocorrelation is
estimated very imprecisely as noted by Fama and French (2002). The 90" percentile confidence

interval ranges from -0.91 to 0.91 and the mean autocorrelation is -0.12 (see Table 5 - Panel C -

23 The literature has used two alternatives which are conceptually similar. Instead of using the infinite period
adjustment (e.g. [(1+0)/(1-0)]), some papers have used a finite period adjustment. Given T years per firm, the correction
is:

T-1
Variance correction=|1+2> (T —k)6"

k=1
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column 1). Since the average first-order auto-correlation is negative, the adjusted Fama-MacBeth
standard errors are even more biased than the unadjusted standard errors. The fraction of t-statistics
which are greater than 2.58 in absolute value rises from 25 to 32 percent.

The problem is the correlation being estimated (the within sample autocorrelation of 3s) is
not the same as the one which is causing the bias in the standard errors (the population
autocorrelation of s). The covariance that biases the standard errors and that | can estimate across
the 5,000 simulations is:

Cov(f, 1) =E (B~ Prue) (Bis = Prue)] (20)
To see how the presence of a fixed firm effect influences this covariance, consider the case where
the realization for firm i is a positive value of w,y; (i.e. the realized firm effect in the independent
variable and the residual). This positive realization will result in an above average estimate of the
slope coefficient in year t, and because the firm effect is fixed it will also result in an above average
estimate of the slope coefficient in year t-1 (see equations 4, 5, and 8). The realized value of the firm
effect (u; and ;) in a given simulation does not change the average 3 across samples. The average
(3 across data samples is the true 3 (one in the simulations). Thus when | estimate the true correlation
between {3, and [, the firm effect causes this correlation to be positive and the Fama-MacBeth
standard errors to be biased downward.?

Researchers, however, are given only one data set. They must calculate the serial correlation

of the Bs within the sample they are given. This covariance is calculated as:

24 In the simulation the covariance between B, and B, ranged from 0.0018 to 0.0023 and did not decline as the
difference between t and s increased (py = p . =0.50). The theoretical value of the covariance between {3, and 3, should
be 0.0020 (according to equation 11) and would imply a true standard error of the Fama-MacBeth estimate of 0.0510
(according to equation 12). This matches the number | report in Table 11,
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Cov (ﬂt ! /Btfl ) =E [(lgt _ENithinsample ) (ﬂt—l _ENithinsample ):| (21)

The within sample serial correlation measures the tendency of 3, to be above the within sample mean
when {3, is above the within sample mean. To see how the presence of a fixed firm effect influences
this covariance, consider the same case as above. A positive realization of ;y; will raise the estimate
of 3, through B+, as well as the average of the s by the same amount. Thus a fixed firm effect will
not influence the deviation of any B, from the sample average 3. The estimated serial correlation is
asymptotically zero when the firm effect is constant and adjusting the standard errors based on this
estimated serial correlation will still lead to biased standard error estimates (see Pastor and VVeronesi
(2003) for an example).®

The adjusted Fama-MacBeth standard errors do better when there is an auto-regressive
component in the residuals (i.e. ¢ > 0). In the three remaining simulations (Table 5 — Panel C), the
estimated within sample auto correlation is positive, but the adjusted Fama-MacBeth standard errors
are still biased downward. For example, in column 11, adjusting the standard errors reduces the bias
from72t041% (e.g. from 1-0.0187/0.0660 to 1-0.0389/0.0660). 29 percent of the t-statistics are still
significant at the 1 percent level (Table 5, Panel C, column I1). The adjusted Fama-MacBeth
standard errors do best when the firm effect dies off fast enough and the researcher has a sufficient
number of time periods per firm. To show this, | re-ran the simulations for the data structures in
Table 5, but varied the number of time periods per firm from 5 to 50. When the firm effect is fixed,
the adjusted Fama-MacBeth standard errors do no better than the unadjusted standard errors even

as the number of time periods grow (see Figure 8). When the firm effect is a first-order auto-

% The average within sample serial correlation | estimate is actually less than zero, but this is due to a small
sample bias. With only ten years of data per firm, I have only nine observations to estimate the serial correlation. To
verify that this is correct, | re-ran the simulation using 5 to 50 years of data. As the number of years increases, the
adjusted Fama-MacBeth standard error converges to the standard Fama-MacBeth standard error (see Figure 8).
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regressive process (e.g. Table 5, column I1), then the adjusted Fama-MacBeth standard errors do
very well. The percent of t-statistics that are significant at the one percent level drops to 7 percent
when there are fifty time periods per firm. When the firm effect has both a temporary and a fixed
component (as we will find in the real world examples | discuss in the next section), the adjusted
Fama-MacBeth standard errors are still biased, but significantly less biased than the unadjusted
Fama-MacBeth standard errors. With fifty time periods per firm, 28 percent of the t-statistics are
significant at the one percent level (see Figure 8).

VI)  Empirical Applications.

I used simulated data in the previous sections. Thus, | had the advantage of knowing the data
structure, which made choosing the method for estimating standard errors much easier. In real world
applications, we may have priors about the data’s structure (are firm effects or time effects more
important, are they permanent or temporary), but we do not know the data structure for certain. Thus
in this section, I will apply several of the techniques for estimating standard errors to two real data
sets. This way | can demonstrate how the different methods for estimating standard errors compare,
confirm that the methods used by some published papers have produced significantly biased results,
and show what we can learn from the different standard errors estimates.

For both data sets, | first estimate the regression using OLS, and report White standard errors
as well as standard errors clustered by firm, by time, and by both (Tables 6 and 7, columns I-1V).
By using White standard errors as my baseline, differences across columns are due only to within
cluster correlations, not to heteroscedasticity. If the standard errors clustered by firm are
dramatically different than the White standard errors, then we know that there is a significant firm

effect in the data [e.g. Corr( X, €;; » Xix €ix ) #0]. | then estimate the slope coefficients and the
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standard errors using Fama-MacBeth (Tables 6 and 7, columns V). Each of the OLS regressions
include time dummies. This makes the efficiency of the OLS and Fama-MacBeth coefficients
similar.?

A) Asset Pricing Application.

For the asset pricing example, | used the equity return regressions from Daniel and Titman
(2006, “Market Reactions to Tangible and Intangible Information”). To demonstrate the effect of
equity issues on future equity returns, they regress monthly returns on annual values of the lagged
book to market ratio, historic changes in book and market values, and a measure of the firm’s equity
issuance. The data is briefly described in Appendix | and in detail in their paper. Each observation
of the dependent variable is a monthly equity return. However, the independent variables are annual
values (based on the prior year). Thus for the twelve observations in a year, the dependent variable
(equity returns) changes each month, but the independent variable (e.g. past book value) does not,
and is therefore highly persistent.

The White standard errors are essentially the same as standard errors clustered by firm
(ranging from three percent larger to one percent smaller). This occurs because the autocorrelation
in the residuals is effectively zero (see Figure 9 - Panel A). The autocorrelation in the independent
variable is large and persistent, starting at 0.98 the first month and declining to between 0.49t0 0.75
by the 24™ month depending on the variable examined. However, since the adjustment in the

standard error, and the bias in White standard errors, is a function of the monthly autocorrelation in

% The reported R%s do not include the explanatory power attributable to the time dummies. This is done to make
the R? comparable between the OLS and the Fama-MacBeth results. Although the Fama-MacBeth procedure estimates
a separate intercept for each year, the constant is calculated as the average of the yearly intercepts. Thus the Fama-
MacBeth R? does not include the explanatory power of time dummies. Procedurally, | subtracted the yearly means off
of each variable before running the OLS regressions.
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the Xs (alarge number) times the autocorrelation in the residuals (zero), the standard errors clustered
by firm are equal to the White standard errors.

The story is very different when | clustered by time (month). The standard errors clustered
by month are two to four times larger than the White standard errors. For example, the t-statistic on
the lagged book to market ratio is 7.2 if we use the White standard error and 1.9 if we cluster by
month. This means there is a significant time effect in the data (see Figure 9 - Panel B), even after
including time dummies. Any constant time effect (i.e. one which raises the monthly return for every
firm in a given month by the same amount) has already been removed from the data and will not
affect the standard errors. The remaining correlation in the time dimension must vary across
observations (e.g. Corr[ €;, €;, ] varies across i and j).

Understanding a temporary firm effect is straightforward. The firm effect is temporary (dies
off over time) if the 1980 residual for firm A is more highly correlated to the 1981 residual for firm
A than to the 1990 residual. This is how | simulated the data in Section V. Understanding a non-
constant time effect is more difficult. For the time effect to be non-constant, it must be a shock in
1980 has a large effect on firm A and B, but has a significantly smaller effect on firm Z. If the time
effect influenced each firm in a given month by the same amount, the time dummies would absorb
the effect and clustering by time would not change the reported standard errors. The fact that
clustering by time does change the standard errors, means there must be a non-constant time effect.

If we know the data, we can use our economic intuition to determine how the data should
be organized and predict the source of the dependence within a cluster. For example, since this data
contains monthly equity returns we might consider how a systematic (macro) shock would effect

firm’s returns differently. If the economy booms in a given month, firms in the durable goods
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industry may have more positive returns than firms in the non-durable goods industry. This can
create a situation where the residuals of firms in the same industry are correlated (within the month)
with each other but less correlated with firms in another industry. When | sort the data by month and
then industry (4 digit), | see evidence of this in the autocorrelation for the residuals and the
independent variables within each month (see Figure 9 - Panel B). The autocorrelations of the
residual is much larger than when | sorted by firm then month (compare Figure 9 - Panels A and B)
and they die away as we consider firms in more distant industries.?’

When calculating the standard errors clustered by time, we don’t need to make an assumption
about how to sort the data to obtain unbiased standard errors. However, if researchers are going to
understand what the standard errors are telling them about the structure of the data, they need to
consider the source of the dependence in the residuals. By examining how standard errors change
when we cluster by firm or time (i.e. compare columns I to Il and I to I11), we can determine the
nature of the dependence which remains in the residuals and this can guide us on how to improve
our models.

I also estimated standard errors clustered by both firm and month (see Table 6, column V).
The standard errors clustered by firm and month are essentially identical to the standard errors
clustered by month alone. These two standard errors will be close when there are few firms per

month (see for example Figure 7) or when there is no firm effect. Given the data set has many firms

2T A non-constant time effect can be generated by a random coefficient model (Greene, 1990). For example,
if the firm’s return depends on the firm’s  times the market return, but only the market return or time dummies are
included in the regression, then the residual will contain the term { [ B, -Average(j3;)] Market return,}. Firms which have
similar Bs will have highly correlated residuals within a month, and firms which have very different fs will have
residuals whose correlation is smaller. This logic suggests that | should instead sort by month and then . When | sort
this way, the autocorrelations are smaller but die away more slowly (declining from 0.030 to 0.028 at a lag of 24) than
when | sorted by month and industry (declining from 0.096 to 0.042 at a lag of 24).
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per month (at least 1000), we can conclude the data does not contain a significant firm effect. The
fact that the serial correlation in the residuals is effectively zero (see Figure 9) and that the standard
errors clustered by firm are the same as the White standard errors are both consistent with this
interpretation.

According to results in Sections Il and 111, the Fama-MacBeth standard errors perform better
in the presence of a time effect than a firm effect, and so given the above results, they should do well
here. The Fama-MacBeth coefficients and standard errors are reported in column V (they are a
replica of those reported by Daniel and Titman, 2006, Table 3, row 8). The coefficient estimates are
similar to the OLS coefficients, and the standard errors are much larger than the White standard
errors (2.0 to 3.4 times) as we would expect in the presence of a time effect. The Fama-MacBeth
standard errors are close to the standard errors when we cluster by time, as both methods are
designed to account for dependence in the time dimension. The Fama-MacBeth standard errors are
consistently smaller than the clustered standard errors, but the magnitude of the difference is small
(twelve to eighteen percent, compare columns 11l and V of Table 6).

B) Corporate Finance Application.

For the corporate finance illustration, | used a capital structure regression since this is an
example of where OLS, White, and Fama-MacBeth standard errors have been used incorrectly (see
Section 11-E). The independent variables are those which are common from the literature (firm size,
firm age, asset tangibility, and firm profitability). The sample contains NYSE firms that pay a
dividend in the previous year for the years 1965-2003. | lagged the independent variables one year
relative to the dependent variable. The results are reported in Table 7.

The relative importance of the firm effect and the time effect can be seen by comparing the
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standard errors across the first four columns. The standard errors clustered by firm are dramatically
larger than the White standard errors (3.1 to 3.5 times larger). For example, the t-statistic on the
profit margin variable is -3.1 when | use the White standard errors and -0.9 when I use the standard
errors clustered by firm. This is not surprising, since the autocorrelation of the profit margin is
extremely high as is the autocorrelation in the residuals (see Figure 10). Even after 10 years it
remains above 40 percent.

The importance of the time effect (after including time dummies) is small in this data set.
One can see this in two ways. First, the standard errors clustered by year are only slightly larger than
the White standard errors (except for the market to book ratio). Second, the standard errors clustered
by firm and year are almost identical to the standard errors clustered by just firm (the standard error
on market to/book is still larger but now by only 16 percent). Clustering by time has little effect on
the standard errors since the correlation of the residuals within a year is small. When | sort by year
then industry, the first-order autocorrelation of the residuals is less than 12 percent (see Figure 10-
B).
In my two examples, clustering standard errors by both firm and time appears unnecessary.
In the asset pricing example, these standard errors were identical to the standard errors clustered by
time, since there was no firm effect (Table 6). In the corporate finance example, they were identical
to the standard errors clustered by firm, since the time effect is small (Table 7). This pattern may not
generalize. Thus the standard errors clustered by firm and time are a useful check on a researcher’s
results, as future research will likely demonstrate.

The Fama-MacBeth standard errors (Table 7, column V) are close to the standard errors

clustered by year and the White standard errors. For example, the Fama-MacBeth t-statistic on the
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profit margin is -3.1, the same as the White t-statistic. The results are similar for firm size, firm age,
asset tangibility (the ratio of property, plant, and equipment to assets), and R&D expenditure. The
White and Fama-MacBeth t-statistics are significantly larger than the t-statistics clustered by firm.
This was the conclusion of Section Il. In the presence of a firm effect, as in a capital structure
regression, White and Fama-MacBeth standard errors are significantly biased.

VII)  Conclusions.

Itis well known from first-year econometrics classes that OLS and White standard errors are
biased when the residuals are not independent. What has been less clear is how researchers should
estimate standard errors when using panel data sets. The empirical finance literature has proposed
and used a variety of methods for estimating standard errors when the residuals are correlated across
firms or years. In this paper, | show that the performance of the different methods varies
considerably and their relative accuracy depends on the structure of the data. Simply put, estimates
that are robust to the form of dependence in the data produce unbiased standard errors and correct
confidence intervals; estimates that are not robust to the form of dependence in the data produce
biased standard errors and confidence intervals that are often too small. The two illustrations in
Section VI, demonstrate that the magnitude of the biases can be very large.

Although it may seem obvious that choosing the correct method is important, the absence
of good advice in the literature means the correct decision has not always been made, as my
literature survey demonstrates. The purpose of this paper is to provide such guidance. In the
presence of a firm effect [e.g. Cov( X;, €;, Xi.x € ) # O], Standard errors are biased when estimated

by OLS, White, Newey-West (modified for panel data sets), Fama-MacBeth, or Fama-MacBeth
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corrected for first-order autocorrelation.?® Despite this, these methods are often used in the literature
when the regressions being estimated contain a firm effect. The standard errors clustered by firm are
unbiased and produce correctly sized confidence intervals whether the firm effect is permanent or
temporary. The fixed effect and random effects model also produces unbiased standard errors but
only when the firm effect is permanent.

In the presence of a time effect [e.g. Cov( X, €, X\, € ) # 0], Fama-MacBeth produces
unbiased standard errors and correctly sized confidence intervals. This is not surprising since it was
designed for just such a setting. Standard errors clustered by time also produce unbiased standard
errors and correctly sized confidence intervals, but only when there are a sufficient number of
clusters. When there are too few clusters, clustered standard errors are biased even when clustered
on the correct dimension (see Figures 5 and 7). When both a firm and a time effect are present in the
data, researchers can address one parametrically (e.g. by including time dummies) and then estimate
standard errors clustered on the other dimension. Alternatively, researchers can cluster on multiple
dimensions. When there are a sufficient number of clusters in each dimension, standard errors
clustered on multiple dimensions are unbiased and produce correctly sized confidence intervals
whether the firm effect is permanent or temporary.

Knowing that the OLS standard errors are biased means that there is information in the
residual that the researcher is not using (i.e. the residuals are correlated). This suggests that
researchers can improve the efficiency of their estimates (using a technique such as fixed effects,

GLS or GMM) and may also use these techniques to test whether their model is correctly specified.

28 Skoulakis (2005) proposes applying the logic of Fama-MacBeth to each firm, instead of each year. He
demonstrates that running N time series regressions and using the standard deviation of the N coefficients produces an
estimate that is correct in the presence of a firm effect. Pesaran, and Smith (1995) make a similar suggestion but their
focus is on coefficient estimation and they do not cite Fama-MacBeth. | found only one paper in the literature that has
used the Fama-MacBeth approach in the way suggested by Skoulakis (see Coval and Shumway, 2005).
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Thus in addition to providing a guide to the correct estimation of standard errors, the techniques in
this paper can be used to help researchers diagnose potential problems with their models. By
comparing the different standard errors, one can quickly observe the presence and magnitude of a
firm and/or a time effect. As we saw in Section VI, when the standard errors clustered by firm are
much larger than the White standard errors (three to four times larger), this indicates the presence
of a firm effect in the data (Table 7). When the standard errors clustered by time are much larger
than the White standard errors (two to four times larger), this indicates the presence of a time effect
in the data (Table 6). When the standard errors clustered by firm and time are much larger than the
standard errors clustered by only one dimension, this can indicate the presence of both a firm and
a time effect in the data. Which dependencies are most important will vary across data sets and thus
researchers must consult their data. This information can provide researchers with guidance in
selecting the standard error estimation method that is most appropriate, intuition as to the deficiency

of their models, and guidance for improving their models.
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Appendix |: Data Set Constructions.
A) Asset Pricing Application.

The data for the regressions in Table 6 are taken from Daniel and Titman’s paper “Market
Reactions to Tangible and Intangible Information” (2006). A more detailed description of the data
can be found in their paper. The dependent variable is monthly returns on individual stocks from
July, 1968 to December, 2001. The independent variables are:

Log(Lagged book to market) is the log of the total book value of the equity at the end of the

firm’s fiscal year ending anywhere in year t-6 divided by the total market equity on
the last trading day of calendar year t-6.

Log(Book return) measures changes in the book value of the firm’s equity over the previous
five years. It is calculated as the log of one plus the percentage change in book value
over the past five years. Thus if you purchased one percent of book value five years
ago, and neither invested additional cash or nor took any cash out of the investment,
book return is the current percentage ownership divided by the initial one percent.

Log(Market return) measures changes in the market value of the firm over the previous five
years. It is calculated as the log of one plus the market return from the last day of
year t-6 to the last day of year t-1.

Share issuance is a measure of net equity issuance. It is calculated as minus the log of the
percentage ownership at the end of five years, assuming the investor started with 1
percent of the firm. Thus if investor purchases 1 percent of the firm and five years
later they own 0.5 percent of the firm, then share issuance is equal to -log(0.5/1.0)
=0.693. Investors are assumed to neither take money out of their investment nor add
additional money to their investment. Thus any cash flow which investors receive
(e.g. dividends) would be reinvested. For transactions such as equity issues and
repurchases, the investor is assumed not to participate and thus these will lower or
raise the investor’s fractional ownership.

To make sure that the accounting information is available to implement a trading strategy,
the independent variables are lagged at least six months. Thus the independent variables for a fiscal
year ending anytime during calendar year t-1, are used to predict future monthly returns from July
of year t through June of year t+1. The independent variables are annual measures and are thus
constant for each of the twelve monthly observations during the following year (July through June).
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B) Corporate Finance Application.

The data for the regressions in Table 7 are constructed from Compustat and include data
from 1965 to 2003. The dependent variable, the market debt ratio, is defined as the book value of
debt (data9 + data34) divided by the sum of the book value of assets (data6) minus the book value
of equity (data60) plus the market value of equity (data25 * datal199). The independent variables are
lagged one year and I only include observations where the firm paid a dividend (data21>0) in the
previous year (see Fama and French, 2002). To reduce the influence of outliers, | capped ratio
variables (e.g. profits to sales, tangible assets, advertising to sales, and R&D to sales) at the one and
99" percentile. The independent variables are:

Ln(Market Value of Assets) is the log of the sum of the book value of assets (data6) minus

the book value of equity (data60) plus the market value of equity (data25 * datal199).

Ln(1 + Firm Age). Firm age is calculated as the number of years the firm’s stock has been

listed. Firm age is calculated as the current year (fyenddt) minus the year the stock
began trading (linkdt).

Profits / Sales is defined as operating profits before depreciation (datal3) divided by sales

revenue (datal2).

Tangible assets is defined as property, plant, and equipment (data8) divide by the book value

of total assets (data6).

Advertising / Sales is defined as advertising expense (data45) divided by sales (datal?2).

R&D / Sales is defined as R&D expenditure (data46) divided by sales (datal2). If R&D is

missing, it is coded as zero.

R&D > 0 is a dummy variable equal to one if R&D expenditure is positive, and zero

otherwise.
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Table 1: Estimating Standard Errors with a Firm Effect

OLS and Clustered Standard Errors

Avg( Bors) Source of Independent Variable Volatility
Std( Bovs)
Avg( SEqs)
% Sig(Tovs) 0% 250 50% 75%
Avg( SE.)
% Sig(Tc)
0% 1.0004 1.0006 1.0002 1.0001
0.0286 0.0288 0.0279 0.0283
0.0283 0.0283 0.0283 0.0283
[0.0098] [0.0088] [0.0094] [0.0094]
0.0283 0.0282 0.0282 0.0282
[0.0108] [0.0092] [0.0096] [0.0098]
| 2% 1.0004 0.9997 0.9999 0.9997
£ 0.0287 0.0353 0.0403 0.0468
5 0.0283 0.0283 0.0283 0.0283
S [0.0116] [0.0348] [0.0678] [0.1174]
= 0.0283 0.0353 0.0411 0.0463
3 [0.0120] [0.0064] [0.0112] [0.0118]
¢ | 50% 1.0001 1.0002 1.0007 0.9993
S 0.0289 0.0414 0.0508 0.0577
3 0.0283 0.0283 0.0283 0.0283
§ [0.0124] [0.0770] [0.1534] [0.2076]
0.0282 0.0411 0.0508 0.0590
[0.0128] [0.0114] [0.0088] [0.0102]
75% 1.0000 1.0004 0.9995 1.0016
0.0285 0.0459 0.0594 0.0698
0.0283 0.0283 0.0283 0.0283
[0.0128] [0.1090] [0.2230] [0.2906]
0.0282 0.0462 0.0589 0.0693
[0.0128] [0.0114] [0.0094] [0.0112]
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Notes:

The table contains estimates of the coefficient and standard errors based on 5,000 simulated
panel data set each of which contains 500 firms and 10 years per firm. The true slope coefficient is
1, the standard deviation of the independent variable is 1 and the standard deviation of the error term
is 2 (see equation 1). The independent variable X and the residual are specified as:

Xy = 1 + Uy

(22)
Ex =V T

where the fraction of X’s variance which is due to a firm specific component [Var(u)/Var(X)] varies
across the columns of the table from 0 percent (no firm effect) to 75 percent and the fraction of the
residual variance which is due to a firm specific component [Var(y)/Var(e)] varies across the rows
of the table from O percent (no firm effect) to 75 percent. Each cell contains the average slope
coefficient estimated by OLS and the standard deviation of this estimate. This is the true standard
error of the estimated coefficient. The third entry is the average standard error estimated by OLS.
The percent of OLS t-statistics which are significant at the one percent level (e.g. [t|>2.58) is
reported in square brackets. The fifth entry is the average standard error clustered by firm (i.e.
accounts for the possible correlation between observations of the same firm in different years). The
percent of clustered t-statistics which are significant at the one percent level is reported in square
brackets. For example, when fifty percent of the variability in both the residual and the independent
variable is due to the fixed firm effect (py = p. = 0.50), the true standard error of the OLS coefficient
i$ 0.0508. The OLS standard error estimate is 0.0283 and the clustered standard error is 0.0508. 15.3
percent of the OLS t-statistics are greater than 2.58 in absolute value (only one percent should be),
while 0.9 percent of the clustered t-statistics are greater than 2.58 in absolute value.
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Table 2: Estimating Standard Errors with a Firm Effect

Fama-MacBeth Standard Errors

AVa( Bem) Source of Independent Variable Volatility
Std( Peu )
Avg( SEgy) 0% 25% 50% 75%
% Sig(Tew)
0% 1.0004 1.0006 1.0002 1.0001

0.0287 0.0288 0.0280 0.0283
0.0276 0.0276 0.0277 0.0275

> [0.0288] [0.0304] [0.0236] [0.0294]

B | 25% 1.0004 0.9997 0.9998 0.9997

S 0.0288 0.0354 0.0403 0.0469

- 0.0275 0.0268 0.0259 0.0250

S [0.0336] [0.0758] [0.1202] [0.1918]

& | 50% 1.0000 1.0002 1.0007 0.9993

S 0.0289 0.0415 0.0509 0.0578

3 0.0276 0.0259 0.0238 0.0219

US) [0.0330] [0.1264] [0.2460] [0.3388]

75% 1.0000 1.0004 0.9995 1.0016

0.0286 0.0460 0.0595 0.0699
0.0277 0.0248 0.0218 0.0183
[0.0310] [0.1778] [0.3654] [0.4994]
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Notes:

The table contains estimates of the coefficient and standard errors based on the same 5,000
simulated panel data sets which are used in Table 1. Each data set contains 500 firms and 10 years
per firm. The true slope coefficient is 1, the standard deviation of the independent variable is 1 and
the standard deviation of the error term is 2 (see equation 1). The independent variable X and the
residual are specified as:

X = 14 + 0,

& =i T
where the fraction of X’s variance which is due to a firm specific component [Var(u)/Var(X)] varies
across the columns of the table from 0 percent (no firm effect) to 75 percent and the fraction of the
residual variance which is due to a firm specific component [Var(y)/Var(€)] varies across the rows
of the table from O percent (no firm effect) to 75 percent. The first entry is the average slope
coefficient based on a Fama-MacBeth estimation (e.g. a regression is run for each of the 10 years
and the estimate is the average of the 10 estimated slope coefficients). The second entry is the
standard deviation of the coefficient estimated by Fama-MacBeth. This is the true standard error of
the Fama-MacBeth coefficient. The third entry is the average standard error estimated by Fama-
MacBeth (see equation 9). The percent of Fama-MacBeth t-statistics which are significant at the one
percent level (e.g.[t}>2.58) is reported in square brackets. For example, when fifty percent of the
variability in both the residual and the independent variable is due to the firm effect (py = p. = 0.50),

the true standard error of the Fama-MacBeth coefficient is 0.0509. The Fama-MacBeth standard
error estimate is 0.0238, and 24.6 percent of t-statistics are greater than 2.58 in absolute value.

(23)
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Table 3: Estimating Standard Errors with a Time Effect

OLS and Clustered Standard Errors

Avg( Bors) Source of Independent Variable Volatility
Std( Pors)
'?‘Vg( SEois)
ﬁf&%gé’gs)) 0% 25% 50% 75%
% Sig(Tc)
0% 1.0004 1.0002 1.0006 0.9994
0.0286 0.0291 0.0293 0.0314
0.0283 0.0288 0.0295 0.0306
[0.0098] [0.0094] [0.0088] [0.0114]
0.0277 0.0276 0.0275 0.0270
[0.0330] [0.0304] [0.0348] [0.0520]
> | 25% 1.0006 1.0043 0.9962 0.9996
= 0.0284 0.1490 0.2148 0.2874
s 0.0279 0.0284 0.0289 0.0300
3 [0.0114] [0.6064] [0.7270] [0.7874]
E 0.0268 0.1297 0.1812 0.2305
= [0.0320] [0.0360] [0.0506] [0.0736]
()
E 50% 0.9996 0.9997 0.9919 1.0079
o 0.0276 0.2138 0.3015 0.3986
g 0.0274 0.0278 0.0282 0.0292
3 [0.0100] [0.7298] [0.8096] [0.8536]
0.0258 0.1812 0.2546 0.3248
[0.0294] [0.0458] [0.0596] [0.0756]
75% 1.0002 0.9963 0.9970 0.9908
0.0273 0.2620 0.3816 0.4927
0.0267 0.0271 0.0276 0.0284
[0.0110] [0.7994] [0.8586] [0.8790]
0.0244 0.2215 0.3141 0.3986
[0.0322] [0.0402] [0.0588] [0.0768]
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Notes:

The table contains estimates of the coefficient and standard errors based on 5,000 simulated
panel data set each of which contains 500 firms and 10 years per firm. The true slope coefficient is
1, the standard deviation of the independent variable is 1 and the standard deviation of the error term
is 2 (see equation 1). The independent variable X and the residual are specified as:

Xit :é’t + Uy

(24)
Eq =0, +1;

where the fraction of X’s variance which is due to a time specific component [Var({)/Var(X)] varies
across the columns of the table from 0 percent (no time effect) to 75 percent and the fraction of the
residual variance which is due to a time specific component [Var(8)/Var(e)] varies across the rows
of the table from O percent (no time effect) to 75 percent. Each cell contains the average estimated
slope coefficient from OLS and the standard deviation of this estimate. This is the true standard error
of the estimated coefficient. The third entry is the average standard error estimated by OLS. The
percent of OLS t-statistics which are significant at the one percent level (e.g. |t|>2.58) is reported
in square brackets. The fifth entry is the average standard error clustered by year (i.e. accounts for
the possible correlation between observations on different firms in the same year). The percent of
clustered t-statistics which are significant at the one percent level (e.g. |t}>2.58) is reported in square
brackets.
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Table 4: Estimating Standard Errors with a Time Effect

Fama-MacBeth Standard Errors

AVa( Bem) Source of Independent Variable Volatility
Std( Peu )
Avg( SEgy) 0% 25% 50% 75%
% Sig(Tew)
0% 1.0004 1.0004 1.0007 0.9991
0.0287 0.0331 0.0396 0.0573
0.0278 0.0318 0.0390 0.0553
E [0.0310] [0.0312] [0.0252] [0.0338]
‘—E 25% 1.0005 1.0003 1.0006 0.9999
> 0.0252 0.0284 0.0343 0.0496
[ 0.0239 0.0276 0.0338 0.0480
% [0.0376] [0.0296] [0.0284] [0.0294]
% 50% 1.0000 1.0002 1.0006 1.0007
g 0.0200 0.0231 0.0280 0.0394
5 0.0195 0.0227 0.0276 0.0387
A [0.0254] [0.0304] [0.0272] [0.0278]
75% 1.0001 0.9996 1.0000 0.9999
0.0142 0.0161 0.0200 0.0285
0.0138 0.0159 0.0196 0.0276
[0.0308] [0.0302] [0.0284] [0.0300]
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Notes

The table contains estimates of the coefficient and standard errors based on the same 5,000
simulated panel data sets which are used in Table 3. Each data set contains 500 firms and 10 years
per firm. The true slope coefficient is 1, the standard deviation of the independent variable is 1 and
the standard deviation of the error term is 2 (see equation 1). The independent variable X and the
residual are specified as:

Xit :gt + Uy

(25)
Ey =0, +1;

where the fraction of X’s variance which is due to a time specific component [Var(¢)/Var(X)] varies
across the columns of the table from 0 percent (no time effect) to 75 percent and the fraction of the
residual variance which is due to a time specific component [Var(d)/Var(e)] varies across the rows
of the table from 0 percent (no time effect) to 75 percent. The first entry is the average slope
coefficient based on a Fama-MacBeth estimation (e.g. the regression is run for each of the 10 years
and the estimate is the average of the 10 estimated slope coefficients). The second entry is the
standard deviation of the coefficient estimated by Fama-MacBeth. This is the true standard error of
the Fama-MacBeth coefficient. The third entry is the average standard error estimated by the Fama-
MacBeth procedure (e.g. equation 9). The percent of Fama-MacBeth t-statistics which are significant
at the one percent level (e.g.|t|>2.58) is reported in square brackets.
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Table 5: Estimated Standard Errors with a Non-Fixed Firm Effect

Panel A: OLS and Clustered Standard Errors

Avg(Bovs)
Std(Bo.s) | 1 11 AV
AVY(SE,s)
% Sig(Toys)
Avg( SE.)
% Sig(T.)
Px ! Pe 0.50/0.50 0.00/0.00 0.25/0.25 0.60/0.35
Oy ! P, 0.00/0.00 0.90/0.90 0.75/0.75 0.99/0.81
OLS 0.9994 1.0001 1.0009 0.9991
0.0513 0.0659 0.0566 0.0677
0.0283 0.0283 0.0283 0.0253
[0.1578] [0.2746] [0.1996] [0.3302]
0.0508 0.0668 0.0569 0.0670
[0.0114] [0.0086] [0.0104] [0.0098]
OLS with 1.0007 1.0003 1.0013 1.0046
firm dummies 0.0299 0.0517 0.0442 0.1881
0.0298 0.0298 0.0298 0.1101
[0.0096] [0.1382] [0.0802] [0.1288]
0.0298 0.0516 0.0441 0.1886
[0.0100] [0.0098] [0.0092] [0.0108]
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Panel B: GLS Estimates with and without Clustered Standard Errors

AVY(BoLs)
Std(Bg.s) I I i v
AVQ(SEgs)
% Sig(Teys)
AVg_(SEGLs-c)
% Sig(Ters.c)
Px ! pe 0.50/0.50 0.00/0.00 0.25/0.25 0.60/0.35
Oy ! O, 0.00/0.00 0.90/0.90 0.75/0.75 0.99/0.81
GLS 1.0005 1.0003 1.0012 1.0006
0.0284 0.0475 0.0408 0.0731
0.0283 0.0283 0.0283 0.0580
[0.0090] [0.1240] [0.0730] [0.0388]
0.0282 0.0474 0.0408 0.0721
[0.0090] [0.0100] [0.0090] [0.0112]
Panel C: Fama-MacBeth Standard Errors
AVY(Bew)
Std(Bey) | I i v
AVY(SEqy)
% Sig(Tey)
AVg_(SEFM-ARl)
% Sig(Tem.art)
Px ! Pe 0.50/0.50 0.00/0.00 0.25/0.25 0.60/0.35
by 1 P, 0.00/0.00 0.90/0.90 0.75/0.75 0.99/0.81
Fama-MacBeth 0.9995 1.0001 1.0008 0.9991
0.0514 0.0660 0.0567 0.0667
0.0239 0.0187 0.0221 0.0138
[0.2510] [0.4696] [0.3350] [0.6094]
0.0224 0.0389 0.0376 0.0289
[0.3222] [0.2876] [0.2098] [0.3900]
Avg(1* order -0.1157 0.4395 0.3250 0.4389

auto-correlation)
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Notes:

The table contains estimates of the coefficient and standard errors based on 5,000 simulated
panel data sets each of which contains 500 firms and 10 years per firm. The true slope coefficient
is 1, the standard deviation of the independent variable is 1 and the standard deviation of the error
term is 2. Across the columns the magnitude of the fixed firm effect (p) and the first order auto-
correlation () varies. py (p.) is the fraction of the independent variable’s (residual’s) variance
which is due to the fixed firm effect. ¢, (¢.) is the first order auto-correlation of the non-fixed
portion of the firm effect of the independent variable (residual). Combining equations (4) with
equation (18), the residual is specified as:

Ea=Vi+M =7+ &, if t=1
(26)
:7i+¢g77it—1+\/1_¢2 G Ift>1

The independent variable is specified in a similar manner.

Panel A contains coefficients estimated by OLS. In the first row only the independent
variable (X) is included; in the second row firm dummies are also included in the regression. The
first two entries in each cell contain the average slope estimated by OLS and the standard deviation
of the coefficient (i.e. the true standard error). The third entry is the average standard error estimated
by OLS. The percent of OLS t-statistics which are significant at the one percent level (e.g. [t[>2.58)
is reported in square brackets. The fifth entry is the average standard error clustered by firm. The
percent of clustered t-statistics which are significant at the one percent level is reported in square
brackets.

Panel B contains coefficients and standard errors estimates of the random effects model using
feasible generalized least squares (FGLS). The first two entries in each cell contain the average slope
estimated by GLS and the standard deviation of the coefficient (i.e. the true standard error). The
third entry is the regular standard error estimated by GLS (i.e. not clustered). The percent of regular
GLS t-statistics which are significant at the one percent level (e.g. |t|>2.58) is reported in square
brackets. The fifth entry is the average standard error clustered by firm. The percent of clustered t-
statistics which are significant at the one percent level is reported in square brackets.

Panel C contains coefficients and standard errors estimated by Fama-MacBeth. The first two
entries in each cell contain the average slope estimated by Fama-MacBeth and the standard deviation
of the coefficient (i.e. the true standard error). The third entry is the average standard error estimated
by the Fama-MacBeth procedure (see equation 9). The percent of t-statistics which are significant
at the one percent level (e.g. |t}>2.58) is reported in square brackets. The fifth and sixth entry are the
Fama-MacBeth standard error corrected for first order auto-correlation and the percent of t-statistics
which are significant at the one percent level. | adjust the standard error by multiplying the
traditional Fama-Macbeth standard error (equation 9) by the square root of (1+ 0)/(1-0)) where 6
is the first-order auto-correlation of B, and B, ;. The average first-order auto-correlation is reported
in the last row of Panel C.
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Table 6: Asset Pricing Application
Equity Returns and Asset Tangibility

I I 1l v V
Log( B/M), 0.18831 0.18831 0.1883% 0.1883% 0.1728°
(0.0261) (0.0270) (0.1007) (0.1009) (0.0824)
Log(Book Return) 0.1946! 0.1946! 0.1946° 0.1946° 0.1691°
(last 5 years) (0.0421) (0.0433) (0.0973) (0.0979) (0.0848)
Market Return -0.3177* -0.3177* -0.3177* -0.3177* -0.3002*
(last 5 years) (0.0283) (0.0292) (0.1092) (0.1094) (0.0957)
Share issuance -0.5012* -0.5012* -0.5012* -0.5012* -0.5172*
(0.0471) (0.0466) (0.1529) (0.1527) (0.1275)
R? 0.0006 0.0006 0.0006 0.0006 0.0006
Coefficient Estimates OLS OLS OLS OLS FM
Standard Errors White CL-F CL-T CL-F&T FM

Notes:

The table contains coefficient and standard error estimates of the equity return regressions
from Daniel and Titman (2005). The data is briefly described in Appendix | and in detail in their
paper. The sample runs from July, 1968 to December, 2001 and contains 699,707 firm-month
observations. The estimates in columns I-1V are OLS coefficients and the regressions contain time
(month) dummies. Standard errors are reported in parenthesis. White standard errors are reported
in column I, standard errors clustered by firm in column I1, by month in column 111, and by firm and
month in column IV. Column V contains coefficients and standard errors estimated by Fama-
MacBeth.

19 significant at 10%; ° significant at 5%; * significant at 1%
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Table 7: Corporate Finance Application
Capital Structure Regressions (1965-2003)

I I 1l v V
Ln(MV Assets) 0.0460* 0.0460° 0.0460* 0.0460° 0.03941
(0.0055) (0.0184) (0.0074) (0.0191) (0.0076)
Ln(1+Firm Age) -0.04321 -0.0432 -0.04321 -0.0432 -0.0479*
(0.0084) (0.0297) (0.0067) (0.0293) (0.0077)
Profits / Sales -0.0330! -0.0330 -0.0330! -0.0330 -0.0299!
(0.0107) (0.0359) (0.0098) (0.0357) (0.0097)
Tangible assets 0.1043! 0.1043! 0.1043! 0.1043! 0.1158!
(0.0057) (0.0197) (0.0083) (0.0206) (0.0096)
Market to book -0.0251* -0.0251* -0.0251* -0.0251* -0.0272*
(Assets) (0.0006) (0.0020) (0.0013) (0.0023) (0.0016)
Advertising / Sales -0.3245! -0.3245 -0.3245! -0.3245 -0.3965°
(0.0841) (0.2617) (0.0814) (0.2609) (0.1712)
R&D / Sales -0.3513 -0.3513° -0.3513* -0.3513° -0.3359!
(0.0469) (0.1544) (0.0504) (0.1555) (0.0501)
R&D >0 0.0177* 0.0177° 0.0177* 0.0177° 0.0126!
(=1 if yes) (0.0024) (0.0076) (0.0025) (0.0077) (0.0034)
R-squared 0.1360 0.1360 0.1360 0.1360 0.1300
Coefficient Estimates OLS OLS OLS OLS FM
Standard Errors White CL-F CL-T CL-F&T FM
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Notes:
The table contains coefficient and standard error estimates of a capital structure regressions.

The dependent variable is the market debt ratio (book value of debt divided by the sum of the book
value of assets minus the book value of equity plus the market value of equity). The data is annual
observations between 1965 and 2003. The sample contains NY SE firms which pay a dividend in the
previous year. There are 24,286 firm-years in the sample. The independent variables are lagged one
year and are defined in Appendix I. The estimates in columns I-1V are OLS coefficients and the
regressions contain time (year) dummies. Standard errors are reported in parenthesis. White standard
errors are reported in column I, standard errors clustered by firm in column I1, by month in column
I11, and by firm and month in column IV. Column V contains coefficients and standard errors
estimated by Fama-MacBeth.

9 significant at 10%; ° significant at 5%; * significant at 1%
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Figure 1: Residual Cross Product Matrix
Assumptions About Zero Covariances
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Notes:

The figure shows a sample covariance matrix of the residuals. Assumptions about elements
of this matrix and which are zero is the source of difference in the various standard error estimates.
The standard OLS assumption is that only the diagonal terms are non-zero. Standard errors clustered
by firm assumes that the correlation of the residuals within the cluster may be non-zero (these
elements are shaded). This cluster assumption assumes that residuals across clusters are
uncorrelated. These are recorded as zero in the above matrix.
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Figure 2: Distribution of Simulated T-Statistics
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Notes:

The figures contain the theoretical t-distribution (the line), and the distribution of t-statistics
produced by the simulation (the bars) when fifty percent of the variability in the independent
variable and the residual is due to a fixed firm effect. The top figure is the distribution of the t-
statistics based on the OLS standard errors, the middle figure is the distribution of t-statistics based
on the standard errors clustered by firm, and the bottom figure is the distribution of t-statistics based
on Fama-MacBeth standard errors. When the standard errors estimates are too small (as with OLS
and Fama-MacBeth) there are too many t-statistics which are large in absolute value.
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Figure 3: Bias in Estimated Standard Errors
as a function of years per cluster
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Notes:

The figure graphs the percentage by which OLS (triangles), clustered (squares) and Fama-
MacBeth (diamonds) standard errors underestimate the true standard error in the presence of a fixed
firm effect. The results are based on 5,000 simulations of a data set with 5,000 observations. The
number of years per firm ranges from five to fifty. The firm effect is assumed to comprise fifty
percent of the variability in both the independent variable and the residual. The underestimates are
calculated as one minus the average estimated standard error divided by the true standard deviation
of the coefficient estimate. For example, the standard deviation of the coefficient estimate was
0.0406 in the simulation with five years of data (T=5). The average of the OLS estimated standard
errors is 0.0283. Thus the OLS underestimated the true standard error by 30% (1 - 0.0283/0.0406).
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Figure 4: Relative Performance of OLS, Clustered, and Newey-West Standard Errors
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Notes:

The figure contains OLS standard errors, standard errors clustered by firm, and Newey-West
standard errors, as well as the true standard error. Estimates are based on 5,000 simulated data sets.
Each data set contains 5,000 observations (500 firms and 10 years per firm). In each simulation,
twenty-five percent of the variability in both the independent variable and the residual is due to a
firm effect [i.e. px = p. = 0.25]. The true standard error (shaded squares), the OLS standard error
estimates (empty diamonds), and the clustered standard errors (empty squares) are plotted as straight
lines as they do not depend upon the assumed lag length. The Newey-West standard error estimates,
which rise with the assumed lag length, are plotted as triangles.
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Figure 5: True Standard Errors and Clustered Standard Errors
as a function of cluster size (T)
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Notes:

The figure graphs the bias (squares) and mean squared error (diamonds) as a function of the
number of years (clusters) used in each simulation. The bias is the estimated clustered standard error
minus the true standard error. The mean squared error (MSE) is the average value of the squared
difference between the estimated standard error and the true standard error.

o~ 2
MSE =E [(SE ~ S J
—E [(SAE —S_E)2 +(s_E—SEtmeﬂ (27)

=Var(S/E)+ Bias(S/,E)2

The MSE is equal to the variance of the standard error plus the bias squared. Both the bias and the
MSE are divided by the true standard error and thus are expressed as a percent. Each simulated data
set has 5,000 observations. In each simulation, twenty-five percent of the variability in both the
independent variable and the residual is due to the time effect [i.e. pyx = p. = 0.25]. The standard
errors are averaged across 5,000 simulations. In these simulations, underestimation of the standard
errors ranges from 27 percent when there were 5 years in the simulated data set to 1 percent when
there were 100 years in the simulated data set.
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Figure 6: Residual Cross Product Matrix
Firm and Time Effects
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Notes:
This figure shows a sample covariance matrix of the residuals. When standard errors

clustered by both firm and time, residuals of the same firm in different year as well as residuals of
the same year but on different firms may be non-zero. Observations on different firms and different
years are assumed to be zero and are reported as zero in the above matrix.
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Figure 7: Rejection Rates in the Presence of a Firm and a Time Effect
for T-Statistics Clustered by Firm, by Time, or Both
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Notes:

The figure graphs the fraction of t-statistics which are statistically significant at the one
percent level (greater than 2.58 in absolute value). The number of firms and time periods range from
10 to 1,000 so that the total number of observations is always 10,000. The number of firms increase
from 10 to 1,000 as we move left to right across the figure, while the number of time periods
decreases from 1,000 to 10 as we move left to right across the figure. Thus the number of firms and
the number of years in each of the nine simulations are: (10,1000), (20,500), (40,250), (50,200),
(100,100), (200,50), (250,40), (500,20), (1000,10). In each simulation, I estimated OLS standard
errors (stars), standard errors clustered by firm (triangles), standard errors clustered by year
(squares), and standard errors clustered by firm and year (diamonds).
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Figure 8: Rejection Rates based on Standard and Adjusted Fama-MacBeth Standard Errors
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Notes:

The figure graphs the fraction of t-statistics which are statistically significant at the one
percent level (greater than 2.58 in absolute value) as a function of number of time periods per firm.
The rejection rates are graphed for both standard Fama-MacBeth t-statistics and Fama-MacBeth t-
statistics adjusted for first-order serial correlation. The rejection rates are based on three data
structures from Table 5. The rejection rates for data with only a fixed firm effect (p = 0.50 and ¢
=0.00, column I in Table 5) are graphed with diamonds. Rejection rates for data with only a first-
order auto-correlation (p = 0.00 and ¢ = 0.90, column Il in Table 5) are graphed with triangles. A
data structure with both a fixed firm effect and an auto-regressive firm effect (py = 0.60, ¢ =0.99,
p.=0.35, ¢.=0.81, column 1V in Table 5) is graphed with circles. The symbols with solid lines are
the rejection rates based on standard Fama-MacBeth t-statistics, while the symbols with dotted lines
are the rejection rates based on adjusted Fama-MacBeth t-statistics.
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Figure 9: Residuals and Independent Variables Auto-Correlation: Asset Pricing Example
Panel A: Within Firm
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Notes:

The auto-correlations of the residual and the four independent variables are graphed for one
to twelve lags. In Panel A, the correlations are within firm and are only calculated for observations
of the same firm [i.e. Corr ( €;, €. ) for k equal one to twelve]. In Panel B, the correlations are
within month and are only calculated for observations in the same month [i.e. Corr ( €;, € ., ) for
k equal one to twelve]. The data was sorted by month and then industry (4 digit) in Panel B.
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Figure 10: Residuals and Independent Variables Auto-Correlation: Corporate Finance Example
Panel A: Within Firm
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Notes:

The auto-correlations of the residual and four of the eight independent variables are graphed
for one to twelve lags. In Panel A, the correlations are within firm and are only calculated for
observations of the same firm [i.e. Corr ( €, €, ) for k equal one to twelve]. In Panel B, the
correlations are within year and are only calculated for observations of the same year [i.e. Corr ( €
it €kt ) for k equal one to twelve]. The data was sorted by month and then industry (4 digit) in Panel
B. The independent variables are described in Appendix I. The graph for the remaining four
variables are similar and are available from the author.
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