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1 Introduction

The consumption capital asset pricing model (CCAPM) is one of the core models of modern

finance.1 It assumes that economic agents behave according to the expected utility theory.

The expected utility (EU) model has many well known limitations and it is perhaps not sur-

prising that poor empirical performance of the CCAPM often may be traced to preferences.2

The EU model has been under a lot of scrutiny and a vast amount of research is accumulated

developing new theories to better reflect human behavior under risk.3 This paper integrates

one of the leading models of preferences from this literature, the Rank-Dependent Expected

Utility (RDEU, Quiggin (1982) and Yaari (1987)), into the standard consumption-based

asset pricing framework and empirically tests the new model. The RDEU-based model per-

forms much better than the standard CCAPM and implies that consumers are averse to

downturns in consumption over and above the standard notion of risk aversion in the EU.

As a result asset prices reflect a risk premium for downside consumption risk.

The main difference of RDEU from EU is that the former is using decision weights instead

of objective probabilities. The weights are functions of the cumulative probabilities of ranked

outcomes and may be higher or lower than the corresponding subjective probabilities.4 Using

the transformation of probabilities to weights, the RDEU allows to model “attention” to

events separately from the level of utility associated with them. The decision weights provide

a mechanism for risk aversion which is independent from the marginal utility of wealth.5 This

1See Rubinstein (1976), Breeden (1979), Lucas (1978).
2Some of the early tests rejecting the model were done by Hansen and Singleton (1983). For an overview of

the issues with consumption-based asset pricing see a survey by Campbell (2003). Cochrane (2001) provides
a text book treatment.

3See Starmer (2000) for a recent survey.
4It is important not to confuse this with biased probability assessments or subjectively weighted utility.

The RDEU decision maker is unbiased and is fully aware of the underlying subjective probability distribution.
He or she chooses to direct more or less “attention” to the events depending on their rank. Because weights
here depend on the event’s rank they may change through the actions of the decision maker, unlike subjective
weights. For example, what is bad and what is good outcome depends on whether you have short or long
position in a particular asset. For the most recent axiomatization of RDEU see, for example, Abdellaoui
(2002).

5In fact, in Yaari’s (1987) model marginal utility is constant (linear utility is assumed) and the risk averse
behavior is generated only through the decision weights. In contrast, in the EU the only way to generate
risk averse behavior is to assume a concave utility function.
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turns out to be empirically important feature of the model for asset pricing implications.

I use RDEU in the otherwise standard consumption-based setting and derive joint re-

strictions on consumption, weighting function and returns, similar to the Euler equation

in the CCAPM. The closest theoretical counterpart of this model is the model in Epstein

and Zin (1991). They consider a two-state endowment economy with a recursive utility and

RDEU certainty equivalent and use it to study the effects of the first-order risk aversion on

asset prices.6 I suppress the recursivity here to focus on the risk aversion stemming from the

weighting function. The Euler equation is obtained using theorems from Carlier and Dana

(2003) and Ai (2005) which show the differentiability of the RDEU functional with respect

to continuously distributed random variables.

For estimation, the model is converted into a two-factor linear form with both factors

depending only on consumption.7 The model is estimated using GMM on the cross section

of 25 Fama and French portfolio sorted on market capitalization (size) and ratios of book

equity to market equity (book-to-market). I use various horizons to estimate the model and

find that the best performance is achieved between 4 and 6 quarters when, depending on

specification, the model explains between 70% and 50% of the cross sectional variation in

expected returns. The estimated decision weighting functions imply that the outcomes with

lower consumption growth are over-weighted relative to their probabilities and the outcomes

with higher consumption growth are underweighted. This corresponds to what I refer in this

paper as aversion to downside consumption risk: consumers “pay more attention” to events

in recessions than they do in normal or in good times. This main result of the model is

robust to various changes in specification and sample periods used for estimation. On the

other hand, the linearity of the decision weights (as in expected utility) is almost always

rejected.

The stochastic discount factor associated with the RDEU-based model exhibits a pro-

6They use the same structure as in Mehra and Prescott (1985). Since their model has only two states
for aggregate consumption, it does not take advantage of the properties of the RDEU beyond the first order
risk aversion (a kink in the indifference curves around riskless allocations).

7Strictly speaking the model is always nonlinear due to decision weighting function. However, for a given
parameterization of the weighting function it is a linear two-factor model.
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nounced counter-cyclical pattern: it is high in recessions and low in normal or high growth

periods. The main difference with the CCAPM appears to be in the ability of the RDEU

model to separate recession risk from the standard consumption fluctuations captured by

both models. I also use the model to derive a decomposition of risk premium into standard

consumption risk premium and a downside risk premium. Examining these components

across the 25 Fama-French portfolios I find that value stocks and small stocks have a larger

exposure to the downside risk than do growth stocks and big stocks.8 Thus, the value and

size premia are explained in part by the consumers’ aversion to downside risk.

The behavior of the stochastic discount factor (SDF) in the RDEU-based model bears im-

portant similarities with external habit formation model in Campbell and Cochrane (1999).

The estimated model implies that decision weight part of the SDF rises sharply during bad

times acting similarly to the consumption surplus multiplier in the habit model. Habit util-

ity gives rise to time varying risk aversion so that risk aversion is higher in recessions than

in normal times. This in turn results in counter-cyclical variation of risk premia which is

consistent with stylized facts. The time varying risk aversion has rather appealing economic

intuition and works quite well in theoretical models, but linking empirically risk premia with

consumer’s risk attitude proved hard because the external habit process is unobservable.

Empirical studies of conditional CAPM and CCAPM (Jagannathan and Wang (1996), Let-

tau and Ludvigson (2000)) confirm that time variation in the coefficients of the SDF is very

important for explaining expected returns. However, these studies constitute only indirect

evidence for the idea of time-varying risk aversion because the conditioning variables are

not explicitly connected with risk preferences. In the context of the present paper the es-

timated decision weights function is theoretically tied to risk aversion. The RDEU-based

model therefore provides a direct connection between the dynamics of asset risk premia and

8The readers unfamiliar with this strand of finance literature may require a clarification of the terminology
originating from the sorting procedure introduced by Fama and French (1993). Value stocks are the ones
with higher book-to-market ratios and growth stocks have lower book-to-market ratios. Big and small refers
to market capitalization. The value premium is the difference in returns on a portfolio of value stocks and a
portfolio of growth stocks. Similarly size premium is the difference of returns on a portfolio of small stocks
and a portfolio of large stocks.
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consumer’s risk attitude.

As already mentioned, the performance of the model is not uniform across the decision

horizons chosen for estimation. Using horizons from 1 to 10 quarters I find that pricing

errors and cross-sectional R2’s are hump-shaped with the best performance concentrated

mainly between 4 and 6 quarters. The “horizon effect” is consistent with CCAPM’s better

performance at longer time intervals found by Jagannathan and Wang (2005) when testing

standard CCAPM on non-overlapping annual data. Unlike their paper, I use all available

observations with a given horizon. Similarly Parker and Julliard (2005) look at different

horizons but their “best” horizons are different (10-12 quarters), because of the different

specification. I must use the stochastic discount factor (SDF) which is contemporaneous

with returns due to state-nonseparability of RDEU. Parker and Julliard instead use the SDF

which leads returns by substituting future Euler equations into the current one.

The RDEU-based model does share a shortcoming common to almost all consumption-

based models: it can not fully explain the observed level of risk premia.9 While the RDEU-

based model does better than the standard CCAPM on this dimension, it does not eliminate

the problem completely. Many consumption-based models which use only non-durable con-

sumption seem to share this fate despite providing a good fit of the cross-section of returns,

for example Lettau and Ludvigson (2000), Parker Julliard (2005) and Jagannathan and

Wang (2005). For the RDEU specification of utility this result is consistent with the con-

clusion made by Epstein and Zin (1991) from their theoretical model that the first-order

risk aversion in the RDEU can not fully resolve the equity premium puzzle of Mehra and

Prescott (1985).

The rest of this paper is organized as follows. Section 2 develops CCAPM with RDEU

preferences. Sections 3 and 4 describe estimation methodology and data. Main estimation

results are presented in section 5 and their economic intuition is discussed in section 6.

Section 7 investigates robustness of results to model specification and sample choice and

section 8 concludes.

9The only exception to this drawback is the model in Yogo (2006) which is based on a nonlinear SDF
with durable and non-durable consumption.
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2 CCAPM with aversion to downside risk

The generalization of CCAPM considered in the present paper is based on the Rank-

Dependent Expected Utility. RDEU was originally proposed by Quiggin (1982) and in-

dependently discovered by Yaari (1987) in a special case with linear outcome utility. The

central idea of the RDEU is that utility is weighted by the decision weights which are trans-

formations of the cumulative objective probabilities of ranked events (from worst to best).

The value function may over- or under-weigh the events relative to their objective probabil-

ities based on how desirable the event is to a decision-maker. The idea of rank-dependent

weights is incorporated into other models of preferences such as Cumulative Prospect Theory

of Tversky and Kahneman (1991) and Recursive Utilities of Epstein and Zin (1989). Epstein

and Zin (1991) integrate the RDEU-based certainty equivalent into a dynamic framework

suitable for asset pricing. Their model of preferences, but without recursive feature, is used

in the present paper to derive the implications of CCAPM with aversion to downside risk.

I begin by describing RDEU in a static discrete-state setting to provide some intuition.

Let i = 1, ..., N index possible outcomes (wealth or consumption) ordered from lowest to

highest. Every outcome is assigned a decision weight wi. The RDEU function is given by:

V RDEU =
N∑

i=1

u(ci)wi,

where u(·) is the outcome utility defined on consumption ci in state i. The decision weights

wi are constructed using a strictly increasing and differentiable function Q(·) : [0, 1] → [0, 1],

s.t. Q(0) = 0 and Q(1) = 1, defined on the cumulative probability of outcomes Pi as follows:

w1 = Q (P1)

wi = Q (Pi) − Q (Pi−1) for i = 2, . . . , N − 1

wN = 1 − Q (PN−1) .

Thus, the decision weight of each outcome depends both on the ranking of the outcome

and on the transformation of its cumulative probability by the function Q. A special case

Q(P ) = P coincides with expected utility. The form of Q (·) determines how the decision
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maker transforms objective probabilities into subjective decision weights. In particular,

concave Q corresponds to a form of risk aversion when consumer over-weighs bad outcomes

and under-weighs good outcomes. Note that this form of risk aversion does not rely on the

curvature in the utility function u, in fact in Yaari’s model u is linear to underscore this

point.10 The continuous-state version of the RDEU functional is given by:

V RDEU =
∫

u(c)dQ(Pc),

where Pc is the cdf of consumption. If the outcomes have a continuous cdf then the integration

can be done using the original probability Pc. Denoting Z(P ) ≡ Q′(P ) ≥ 0 we can write

value function as follows:

V RDEU =
∫

u(c)Q′(Pc)dPc ≡
∫

u(c(w))Z(Pc)dPc

The outcomes with Z > 1 are weighted heavier than their objective probability and vice

versa. Note that decision weights integrate to 1 so that EZ = 1.

Using the RDEU certainty equivalent Epstein and Zin (1991) study the effects of first-

order risk aversion on asset prices. They use recursive utility which separates the effect of

the intertemporal substitution from the curvature of the utility u. While this is a flexible

and generally desirable feature of preferences, the empirical implementation of the recursive

model requires the (unobservable) return on total wealth of the consumer. Empirical studies

therefore must use a proxy for this variable, typically a stock market index. To keep the

model parsimonious and focus on the role of the aversion to downside risk, I suppress the

recursivity here. Note that aggregation of preferences is similar to the expected utility and

requires homogeneous utility functions and complete markets.11

10This separation of risk aversion from the marginal utility of wealth is one of the main contributions of
the RDEU. Concavity of Q is a sufficient condition for risk aversion under linear or concave utility u, in
general risk aversion only requires Q(P ) ≥ P , see Quiggin (1993).

11See Epstein and Zin (1989) for the derivations of representative agent under recursive preferences with
general certainty equivalent, including RDEU. Homogeneity of utilities is not required for the existence of
the representative agent. However, similarly to the expected utility, in order for the representative agent
preferences to have the same structure as the individual preferences, it is necessary to assume homogeneous
preferences, see Chapman and Polkovnichenko (2006) for an analysis of static economies with RDEU agents.
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Consider an infinitely-lived representative consumer who receives endowment et and has

access to N securities with returns vector Rt. Denote wt the value of the securities held by

the consumer at the beginning of period t. Every period the consumer chooses consumption

ct > 0 and the value of portfolio holdings θt ∈ RN subject to the budget constraints:

ct + θ′t1 ≤ et + wt, and wt+1 = θ′tRt+1

The value function of the consumer is given by:

V RDEU
t = max

ct,θt

{
u(ct) + δEt{V RDEU

t+1 (ct+1, θt) Z(PV RDEU
t+1

)}
}

Assuming that value function Vt is monotone in optimal consumption, the ranking of possible

outcomes may be equivalently done by observing consumption choice:

V RDEU
t = max

ct,θt

{
u(ct) + δEt{V RDEU

t+1 (ct+1, θt) Z(Pct+1)}
}

(1)

To obtain the first order optimality conditions for the value function in (1) it is necessary

to differentiate RDEU functional with respect to continuous random variables. Two recent

papers, Carlier and Dana (2003) and Ai (2005), provide the solution. Consider adding

a random variable αR to consumption c. Assuming c and R are random variables with

continuous densities, the derivative of the RDEU value functional is given by:

∂V RDEU

∂α
(c + αR) |α=0 =

∫
u′(c)RZ(Pc)dPc

To obtain the Euler equation, differentiate (1) with respect to θi,t, take unconditional expec-

tation and note that ranking on consumption level coincides with ranking on consumption

growth:

δE

{
u′(ct+1)

u′(ct)
Z(Pct+1/ct)Ri,t+1

}
= 1,

where Pct+1/ct is the cdf of consumption growth. We can rewrite the Euler equation for an

arbitrary excess return Re
t = Ri,t − Rj,t as follows:

E

{
u′(ct+1)

u′(ct)
Z(Pct+1/ct)R

e
t+1

}
= 0 (2)
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To estimate the model, more structure has to be imposed on the functions Q and u. I as-

sume that Q(P ) = P φ and therefore Z(P ) = Q′(P ) = φP φ−1. This allows for over-weighting

of outcomes either in the left tail (φ < 1) or in the right tail (φ > 1) of the distribution.

The special case φ = 1 coincides with the standard CCAPM. Therefore CCAPM is nested

in a general model specification and its restriction can be formally tested. The case φ < 1

corresponds to “aversion to downside risk”, i.e. this is risk aversion beyond that captured

by the declining marginal utility. I also assume that u′ is homogeneous and log-linearize the

Euler equation in consumption growth:

E
{(

b0 + b1 log
(

ct+1

ct

))
Z(Pct+1/ct)R

e
t+1

}
= 0 (3)

The linearization is preferred for the estimation because it does not impose much structure

on utility and makes the restricted specification with φ = 1 comparable to the literature on

linear factor models. The equation (3) is the basis for empirical investigation. Note that for a

given parameter φ the model is linear with two factors Z and Z × log
(

ct+1

ct

)
which collapses

into a single factor model for φ = 1. This simplifies the estimation since non-linearity is

confined to the decision weights function.

3 Empirical method

To estimate the model in (3) I use Generalized Method of Moments (GMM). As the test

assets I use 25 Fama-French portfolios sorted on size and book-to-market ratios. The model

is estimated using different frequencies, denoted as h. Recent work by Parker and Julliard

(2005) and Jagannathan and Wang (2005) suggests that CCAPM performance is better at

longer horizons because consumption may be responding slowly to returns. Motivated by

their evidence I experiment with the time period over which consumer makes decisions. In

my specification the returns and the SDF are always contemporaneous because the general

RDEU model is not state-separable.12

12Parker and Julliard (2005) use a consumption-based SDF which leads returns. This is possible because
we can substitute future consumption growth into the SDF under the expected utility assumption. In RDEU
this substitution is not possible.



Downside Consumption Risk 9

When the planning horizon h is longer than the data intervals we have to make a choice

of how to compute returns and consumption growth. I use two approaches to make sure the

estimation is robust to this choice. First is to use the “averaging” method. Second is to use

growth and return from the last quarter of the current planning period to the last quarter of

the next planning period.13 In the averaging method I compute average consumption over

the planning interval and compute the growth of this average as follows:

Ch
t+h

Ch
t

=
1
h

∑h
k=1 ct+k

1
h

∑h−1
k=0 ct−k

The returns are first converted from monthly to quarterly to match consumption and then

the average returns are computed as follows:

Rh
t+h =

1

h

h∑
k=1

Rt−h+k,t+k , where

Rt−h+k,t+k = (1 + Rt−h+k,t−h+k+1) × . . . × (1 + Rt+k−1,t+k)

In the alternative without averaging I use last-to-last quarter consumption growth and re-

turns as follows:

Ch
t+h

Ch
t

=
ct+h

ct

Rh
t+h = (1 + Rt,t+1) × . . . × (1 + Rt+h−1,t+h)

The excess returns vector (25 × 1) for a horizon h is given by Re,h
t+h = Rh

t+h − Rf,h
t+h125×1

where Rh
t+h and Rf,h

t+h are respectively the returns of Fama-French portfolios and the t-bill

rate computed by applying the above formulae. The moment function g is defined as follows:

gh(b0, b1, α, φ) =

⎡
⎢⎢⎢⎢⎣

mh
t+h(b0, b1, φ)Re,h

t+h − α125×1

mh
t+h(b0, b1, φ) − 1

⎤
⎥⎥⎥⎥⎦ , where

mh
t+h = m0,h

t+h × Zt+h = m0,h
t+h × Q′(PCh

t+h
/Ch

t
, φ)

13This is simply a matter of convention as long as returns and consumption growth are appropriately
aligned. I can also use any other quarter, say, middle or first in each period. This does not affect the results
in any way since all available observations with horizon h are used. Also I leave enough data at the end of
the sample so that returns and consumption up to horizon h are available and the last time period is the
same (2002Q4) across all samples with different h.
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m0,h
t+h = b0 + b1 log

(
Ch

t+h

Ch
t

)

PCh
t+h

/Ch
t

=
1

T

T∑
k=1

I

(
Ch

k+h

Ch
k

≤ Ch
t+h

Ch
t

)
, Q(P ) = P φ,

and where I(·) is the indicator function.14 Note that the second equation in g normalizes the

mean of mh
t+h to 1 because the mean of the SDF is not identified when using excess returns

(see Cochrane (2001)). It is preferable to normalize m rather than the coefficient b0 because

for various Z’s the mean of the SDF may change making pricing errors incomparable across

the models.15 Note that g is linear in the parameters b0, b1 and α, and nonlinear in φ. The

parameter α in the first equation allows for a non-zero intercept in the characteristic line.

It evaluates how well the model fits the level of excess returns separately from the fit of the

variation in risk premia. The moment condition used to identify the model is:

Egh(b0, b1, α, φ) = 0

To estimate the model I minimize the distance function which is the square root of a weighted

average mean squared error:

dh(b0, b1, α, φ) =
√

Egh(b0, b1, α, φ)′WEgh(b0, b1, α, φ),

where W is 26×26 weighting matrix. In the first-stage GMM the weighting matrix is a unit

matrix for the 25 return moments and a large number for the last (normalization) moment.16

In the iterated (efficient) GMM the weighting matrix is equal to the inverse of the estimated

variance-covariance matrix of the moment errors.
14This is the simplest way of estimating consumption growth cdf without imposing any distributional

assumptions. A possible alternative would require an assumption about the distribution, e.g. log-normality,
and estimation of the parameters of the distribution along with the asset pricing parameters of the model.
While such a method would yield the parameters estimates for consumption growth distribution, it also is
more complicated due to nonlinearity in the moment function. Because the model is already nonlinear in φ
and requires search to estimate, I use a simpler method without distributional assumptions.

15In addition, during the estimation the values of Q′(P ) are computed to insure theoretical normalization
EQ′ = EZ = 1. For that I use numerical counterpart to the derivative of the decision weighting function
Q′(Pi) = (Q(Pi) − Q(Pi−1)/(Pi − Pi−1) where i and i − 1 denote two adjacent ranked outcomes. Since
Q(0) = 0 and Q(1) = 1 this insures that the multiplier function Z integrates to 1 in any sample and for any
value of φ.

16The weight is large enough so that across different h the mean of SDF is 1 and the variation in the
weight does not affect any of the results.
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To find the optimal coefficients I confine φ in the interval between 0 and 1 and search

over a fine grid. The search is necessary because there is no guarantee that distance function

is globally convex in φ and, indeed, in some cases it was not. For every φ the system is linear

in the remaining parameters and solution can be found analytically (see Cochrane (2001)).

There are economic reasons to confine φ to be below 1.17 The values above 1 may imply

risk-seeking behavior so that the total SDF m may be increasing in consumption growth

when there is not “enough” concavity in the utility of outcomes u (when the coefficient b1 in

the linearized version is not sufficiently negative). On the other hand, φ ≤ 1 is a sufficient

condition for risk aversion (Quiggin 1993) provided u is non-convex. Since risky assets are

typically observed to carry a risk premium, it is reasonable to assume that risk aversion is a

representative behavior under “normal” circumstances. Despite this restriction the estimates

of almost all specifications fall in the interval strictly between 0 and 1 with a few exceptions

in the efficient GMM estimation when the constraint at 1 is binding.

4 Data

The consumption is real quarterly series obtained from NIPA (Table 7.1) from the Bureau of

Economic Analysis web site (www.bea.gov). I combine non-durables and services consump-

tion in one series running from 1947Q1 to 2005Q4. I also compute a weighted average of

the corresponding deflators from NIPA (Table 2.3.4) to be used for adjusting returns to real.

Returns for 25 Fama-French portfolios and t-bill returns are obtained from Kenneth French

data library on his web page at Dartmouth College.18 The returns are for portfolios of stocks

sorted into five quintiles by the value of market equity and by the value of book-to-market

equity ratios. The returns are converted from monthly to quarterly to match consumption

frequency.

Throughout the paper I use the numbering of portfolios using their quintiles on size and

17On the lower bound I use a small number since putting actual 0 forestalls the estimation because in this
case Z is degenerate. In no case but one this constraint was binding (in the first stage estimation for h = 2
and the last-to-last quarter method).

18http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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book-to-market ratio, for example S2B3 corresponds to second quintile on size and third

quintile on book-to-market ratio. I also follow conventional terminology when referring to

quintiles. Stocks in quintile B1 are growth stocks and those in quintile B5 are value stocks.

Stocks in quintile S1 are small stocks and those in quintile S5 are big stocks. Returns are

adjusted to real by using appropriate price deflators from NIPA. For estimation the samples

of returns and consumption were cut-off at 2002Q4 so that the last observation is in the

same quarter regardless of the horizon h.

5 Estimation results

One of the traditional ways to evaluate a linear asset pricing model is to use the R2 in the

cross-sectional regression of average realized returns vs. predicted expected returns based

on covariances with factors. We can easily compute such a measure here from the model’s

moment conditions as follows (omitting subscripts for simplicity):

Em0ZRe = α

E{m0Z}ERe + E{(m0Z − E{m0Z})Re} = α

ERe = α − E{(m0Z − 1)Re}

where the last equation obtains because of the normalization. We can use the estimated

excess returns from the last equation for portfolios i = 1, . . . , 25 and compute the R2 for the

cross-sectional regression as follows:

R2
h = 1 − σ2(ER̂e,h

i − ERe,h
i )

σ2(ERe,h
i )

where ER̂e,h
i and ERe,h

i are, respectively, predicted and realized average excess returns on

portfolio i. I report these R2’s along with the estimated coefficients of the model.

In this section I focus on the results using a fixed weighting matrix which is a unit matrix

on the first 25 portfolio moments. There are two main reasons to focus on the estimation

using fixed matrix rather than iterated GMM. First of all, the unit matrix evaluates the

model on its ability to explain value and size premia which are economically interesting
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characteristics of the Fama-French portfolios. Alternative weighting matrices, while may

be efficient from the statistical point of view, do not convey anything about the economic

intuition underlying the results (Lettau and Ludvigson (2000)). Another reason is the econo-

metric problem of small sample because the data in this study is quarterly and the number

of moment conditions is relatively large compared to the time series dimension. However,

for robustness check, all specifications of the model were estimated with efficient (iterated)

GMM procedure until convergence. For brevity, these results are not reported in this section.

The results for iterated procedure are reported for several specifications later in the paper

in the robustness analysis.

Table 1 provides the first-stage GMM estimates of the model for horizons from 1 to 10

quarters for the “average” returns and consumption method. Table 2 reports the results when

consumption and returns are computed from last-to-last quarter in the period h. Columns

(1-6) provide results for the unrestricted model and columns (7-11) show the restricted case

φ = 1 (CCAPM). The last column (12) reports χ2(1) statistic for a test that CCAPM is true,

φ = 1. Under the estimates, in parenthesis, the tables report standard errors and, in square

brackets, the p-values of the distance tests dh = 0 and χ2(1) for the test φ = 1. Standard

errors are computed using Newey-West estimator for moment errors variance-covariance

matrix with h+2 lags.19 Distance test p-values for fixed weighting matrix are computed

using the method in Jagannathan and Wang (1996).20

Examining the cross-sectional R2’s in table 2 we see that they initially increase with

horizon h and then decline. This is consistent with the point emphasized by Jagannathan

and Wang (2005) and Parker and Julliard (2005) that consumption-based model performs

better at longer horizons, perhaps because consumption does not immediately adjust to

returns. For all horizons above 1 quarter we see that the RDEU-based model performs

significantly better than the CCAPM: it has higher R2’s and the distances (pricing errors)

are lower. The R2 peaks at 4 quarters at 69% for the model with averaging method and 62%

for the end-to-end method.

19For lags from h to 2h the results are very similar to those reported.
20Parker and Julliard (2005) prove and adopt this method for non-linear models.
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The estimates of φ are below 1 for all specifications with h > 1 and they are statistically

different from 1 as indicated by the χ2 tests in column 12. These estimates indicate that

decision weighting function is concave and emphasizes outcomes in the left tail of the con-

sumption growth distribution. Consumers therefore are averse to “bad” events, or recessions,

and are paying more attention to these events. This feature of the utility corresponds to

a form of risk aversion independent of the curvature in the utility. It also gives rise to an

interesting time series behavior of the SDF which will be discussed later.

The coefficients b1 are almost always negative and this sign is consistent with declining

marginal utility of u.21 Interestingly, the absolute value of these coefficients, which are linked

to the curvature (second derivative) of u, is lower in the RDEU-based model than in the

CCAPM. This is because the decision weights function Q provides additional channel for

risk aversion and the curvature in the outcome utility does not have to be as strong. Despite

relatively high R2’s the models have statistically significant pricing errors and the p-values of

the distance tests are small in almost all specifications. The intercepts α are sizable and this

suggests that the risk premium puzzle persists: neither RDEU-based model nor CCAPM

can fully explain the levels of risk premia on stocks relative to T-bills. For RDEU this is

consistent with the conclusion in Epstein and Zin (1991) that the first order risk aversion in

the RDEU can only partially resolve the risk premium puzzle.

Table 3 shows pricing errors for 25 Fama-French portfolios for RDEU-based and standard

CCAPM for the horizon of 4 quarters using estimates from Table 1 (for average returns

and consumption method). The table also reports the averages of absolute pricing errors

within quintiles. The errors are generally lower for the RDEU model than for CCAPM.

The improvement is especially considerable for small growth portfolios B1S1, B1S2 and

B1S3. Pricing value stocks in quintile 5 is also better under RDEU except for large value

stocks in B5S5. Figure 1 plots the realized average returns against predicted returns for the

two models. As evident from the figure and indicated by the R2, the RDEU-based model

makes more consistent predictions about excess returns than CCAPM. The figure also shows

21The high standard errors indicate that value function is relatively flat around the estimates. Formal
tests (not reported) reject b1 = 0 in almost all specifications.
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considerable improvement in pricing smaller growth stocks (the two portfolios with the lowest

average realized returns).

The results presented so far indicate that RDEU-based CCAPM performs considerably

better than the standard CCAPM. The pricing errors, either measured by the cross-sectional

R2 or by the value of Hansen-Jagannathan distance are lower for the RDEU model. The

estimates indicate that it is important to allow for the risk aversion to downside risk which

goes beyond the standard mechanism of declining marginal utility in the expected utility. In

the rest of the paper I investigate the economic intuition behind the success of the RDEU-

based model and also demonstrate the robustness of main findings.

6 Exploring the results: Downside risk

In this section I explore the economic intuition behind the results for the RDEU-based model

and consider time variation of the associated SDF and its implications for cross-sectional risk

premia. Consider the stochastic discount factor in the RDEU-based model:

m =
u′(ct+1)

u′(ct)
Z
(
P
(

ct+1

ct

))
= m0Z

This SDF is a product of the standard consumption-based SDF m0 from the CCAPM and

a multiplier Z which depends on the cdf of consumption growth. A successful candidate

SDF must be sufficiently volatile, be sufficiently negatively correlated with stock returns

and must exhibit time-varying risk aversion provided that we accept that consumption risk

does not exhibit substantial predictable variation over time. The model of Campbell and

Cochrane (1999) is perhaps the most parsimonious theory that satisfies these requirements

via the mechanism of external habit. It is useful to draw parallels to their model.

In Campbell and Cochrane (1999) the SDF for the power utility function is determined

as a function of consumption and external habit process xt:

m =
(

ct+1

ct

)−γ (st+1

st

)−γ

= m0 ×
(

st+1

st

)−γ

, where st =
ct − xt

ct

Note that similar to the RDEU case, the habit SDF is also a product of the standard

consumption-based SDF m0 and another function. All the action in the external habit model



16 Downside Consumption Risk

comes from the variation in the consumption surplus ratio st. First of all, the multiplier

function increases the volatility of the SDF. More importantly however, it helps to generate

the right time series properties for the SDF. In particular, the surplus ratio falls during

recessions because habit stock responds with lag to consumption changes. As a result, the

SDF increases in recessions well beyond the increase implied in the marginal utility m0. This

provides the mechanism for cyclical variation in risk premia. The intuition provided by the

habit model is elegant and consistent with the behavior of asset prices, but it is not testable

directly because the habit process xt is unobservable.

Consider now what happens in the RDEU when consumption falls in recessions. The

cumulative probability of low consumption realizations is small, i.e. when ranked relative

to other possible outcomes these are “bad” events. Rank-dependency in the utility function

allows for such events to be “singled out” by the consumers through the weighting trans-

formation. The function Z acts as a multiplier on the probabilities of the events: it is high

where consumers pay more attention and low where they pay less attention to their utility.

The estimates of the model imply that the transformation is such that “bad” events in the

left tail receive more weight at the expense of the “good” events in the right tail. Therefore,

the estimates imply that the multiplier Z in the SDF must rise during recessions and decline

during “normal” or “good” times. This dynamics is akin to the habit model just reviewed

but with an advantage that all components of the model depend on observable consumption.

Figure 2 shows the time series behavior of the SDF for the RDEU (solid line) and CCAPM

(dashed line) using estimates of both models for 4 quarters horizon from table 1.22 Note that

both the SDF and the multiplier function Z on the lower panel have a pronounced business-

cycle pattern. They increase considerably during recessions and then decline and remain low

during the periods of expansions with average or high consumption growth. The comparison

with the corresponding SDF from CCAPM (dashed line) indicates that the main differences

occur during recessions. Therefore the key to better pricing exhibited by the RDEU-based

22The graphs are similar across various specifications of the model estimated in tables 1 and 2. The SDFs
for the models using last-to-last quarter method are somewhat more volatile but exhibit the same cyclical
patterns.
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model is that it can distinguish bad times in a more refined way than does the standard

CCAPM. The downside consumption risk is important to consumers and it is reflected in

asset returns.

We can further explore the economic intuition of the downside risk now relating it to the

cross-section of returns. Consider again the pricing equation implied by the RDEU model:

E

{
u′(ct+1)

u′(ct)
Z
(
P
(

ct+1

ct

))
Re

t+1

}
= 0 , or supressing time subscripts:

E {m0ZRe} = 0

Denote µ0 = Em0 and recall that EZ ≡ 1. We can write a decomposition of excess returns

starting from the above pricing equation as follows:

0 = E {m0ZRe}

0 = E {((m0 − µ0) + µ0)((Z − 1) + 1)Re}

0 = µ0ERe + E {(m0 − µ0)R
e} + µ0E {(Z − 1)Re} + E {(m0 − µ0)(Z − 1)Re}

The last equation implies the following decomposition of excess return:

ERe = −(1/µ0)E {(m0 − µ0)R
e}︸ ︷︷ ︸

Consumption risk

−E {(Z − 1)Re}︸ ︷︷ ︸
Downside risk

−(1/µ0)E {(m0 − µ0)(Z − 1)Re}

The first term is the familiar covariance of excess return with consumption-based SDF m0.

In the case of CCAPM this is the only term that determines expected returns. For CCAPM

with downside risk two more terms appear. The first one is a covariance of the return with

Z. Recall that Z is always positive and is higher during recessions in the estimated model.

Therefore stocks that tend to have low returns in recessions (negative excess returns) will

have a negative covariance with Z and a positive downside risk premium. The third term is

a partially centered third moment which does not appear to have immediate economic inter-

pretation. It captures the comovements of excess return with the product of the demeaned

SDF components.
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Using the estimates of the model we can compute the implied consumption risk premium

and downside risk premium for 25 test portfolios. Table 4 shows the components of risk

premium for the model estimated over 4 quarters horizon. Note that growth stocks typically

have slightly negative downside risk component (except big companies in portfolio B1S5).

On the other hand, value stocks have a more negative covariance with Z and command

a higher downside risk premium. The change in average risk premium going from growth

quintile (1) to value quintile (5) is roughly 4.8%. Consumption risk premium captures only

a small fraction of the variation in risk across value and growth portfolios, the same change

in the average consumption risk premium is only 0.4%. Consumption risk exhibits slightly

more variation than downside risk within some quintiles when it comes to explaining the size

premium.

The RDEU-based model emphasizes the distinction between value and growth stocks in

their correlation with downside risk. Value stocks do relatively poorly in recessions and must

have a higher risk premium. This intuition is consistent with previous empirical research

on conditional CCAPM by Lettau and Ludvigson (2000). Unlike the conditional model

however, the model with downside risk aversion explicitly links risk premia on assets with

consumer aversion towards recession risk.

In summary, the successful performance of the CCAPM with aversion to downside risk

has intuitive economic interpretation. The time series of the SDF of this model show strong

counter-cyclical patterns similar to the external habit formation model but relying only

on observable components. The risk premia on test portfolios are explicitly linked to the

consumer risk attitude and the differences in returns are justified in part by their different

exposure to the downside consumption risk.

7 Some robustness checks

In this section I verify that the main results are robust to the choice of portfolios and sample

period. I first estimate the model on a subset of 9 portfolios from the original 25. I select

9 portfolios that represent value and size premium: B1S1, B1S3, B1S5, B3S1, B3S3, B3S5,
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B5S1, B5S3, B5S5. Table 5 reports the results for these portfolios using the average of the

returns and consumption over the planning period.23 Panel A shows first stage estimation

with unit matrix and panel B shows the efficient estimates. From Panel A we can see that

with fewer portfolios the cross-sectional R2’s became even slightly better and the distances

are lower which indicates somewhat lower pricing errors for this subset of portfolios. The

coefficient estimates are consistent with those in Table 1. The iterated GMM estimates are

quite stable across various horizons but their R2 are lower. This is not surprising because

the weighting matrices in the iterated GMM do not necessarily emphasize the risk premium

across growth and value stocks. Another issue with iterated GMM is a small sample problem

of estimating variance-covariance of the moment errors when the number of moments is

relatively large compared to the time series dimension (see Altonji and Segal (1996) and

discussion in Lettau and Ludvigson (2000) and references therein). For this reason, the

estimation reported in previous section with the unit matrix is preferred to the estimates

with an estimated weighting matrix.

Another robustness exercise is to consider an alternative subsample. Several earlier stud-

ies of CAPM and conditional CCAPM have considered a shorter time period from 1963Q3 to

1999Q4 (Fama and French (1993), Lettau and Ludvigson (2000) and Parker Julliard (2005)).

This is a much shorter sample than is used in the present paper and it does not include the

returns from the bust of the “dot com” bubble. Table 6 shows the results of this estima-

tion. Due to shorter sample the R2 and distances deteriorate somewhat. This is particularly

apparent in the iterated GMM where the weighting matrix has to be estimated and there

are only 147 observations available for 25 moment conditions. The results from the iterated

GMM estimation are therefore the least reliable here. The first stage estimates appear to be

consistent with previous results.

Several other robustness checks were attempted and results were consistent with the

original specification. I considered alternative Fama-French portfolios with 3 groups on

book-to-market and 2 groups on size, the above two robustness checks were also performed

23The results for last-to-last quarter returns and consumption are similar (not reported) and available
upon request.
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using last-to-last quarter computation of returns and consumption growth. I conclude that

overall the aversion to downside risk appears to be a very robust result found across different

specifications and samples.

8 Conclusions

Aversion to bad events is a natural response of human choice in risky situations. The

standard expected utility model does not separate risk aversion from satiation in the absence

of risk because concavity of the utility function is the only feature which implies risk aversion.

The RDEU model disentangles these distinct aspects of behavior and it turns out to be

important in modeling risk premia of assets. The consumption asset pricing model based

on the RDEU performs considerably better than the standard CCAPM. The model implies

that aversion to consumption downturns, modeled separately from the declining marginal

utility, represents an empirically relevant feature.

The success of the model is important for two reasons. First the model provides a directly

observable and intuitive economic link between the consumer risk attitude and the variation

in risk premia over time and in the cross-section. Second, the results demonstrate that a

non-expected utility model like RDEU may be successfully applied in an empirical study

in finance outside of experimental laboratory settings. This will hopefully encourage more

work on such applications.
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Table 3: Pricing errors for 25 Fama-French portfolios. Pricing errors are in percentage points
computed as average realized return minus the return predicted by the model using estimates
from Table 1 for the horizon of 4 quarters. Averages are computed using absolute value of
pricing errors in a given quintile.

A: RDEU-based CCAPM

Small 2 3 4 Big Abs. Average
Growth -2.54 -1.02 1.08 1.63 -1.90 1.64

2 0.24 1.22 0.36 -0.65 -0.96 0.69
3 0.58 0.27 -0.52 1.68 -0.57 0.72
4 1.86 1.78 0.76 -2.43 -1.48 1.66

Value 2.39 1.63 0.04 0.09 -3.54 1.54

Abs. Average 1.52 1.18 0.55 1.29 1.69

B: CCAPM

Small 2 3 4 Big Abs. Average
Growth -8.08 -4.32 -1.92 -0.51 -1.83 3.33

2 -1.40 -0.02 0.22 -0.23 -0.38 0.45
3 0.21 1.04 0.41 2.39 0.61 0.93
4 2.75 2.69 1.79 -0.22 -0.55 1.60

Value 2.89 2.69 2.21 1.08 -1.54 2.08

Abs. Average 3.06 2.15 1.31 0.89 0.98
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Table 4: Components of the risk premium. This table shows the components of excess
return (in percentage points) due to exposure to downside risk and consumption risk for 25
Fama-French portfolios for the horizon of 4 quarters using estimates from Table 1.

A: Downside Risk Premium

Small 2 3 4 Big Average
Growth -0.06 -0.36 -0.92 -0.44 2.06 0.06

2 2.60 1.06 2.20 1.37 1.23 1.69
3 2.93 3.79 3.20 2.08 2.16 2.83
4 4.12 3.31 3.57 5.30 2.99 3.86

Value 4.80 4.49 5.15 4.26 4.97 4.73

Average 2.88 2.46 2.64 2.51 2.68

B: Consumption Risk Premium

Small 2 3 4 Big Average
Growth 1.51 0.90 0.67 0.60 0.82 0.90

2 1.39 0.84 0.92 0.54 0.46 0.83
3 1.18 1.18 0.96 0.68 0.60 0.92
4 1.24 1.00 1.05 1.28 0.90 1.09

Value 1.54 1.31 1.25 1.26 1.23 1.32

Average 1.37 1.05 0.97 0.87 0.80
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Figure 1: Fitted vs average realized returns. The predicted returns are computed using the
estimates from table 1 for the horizon of 4 quarters.
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Downside risk multiplier z
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Figure 2: Stochastic discount factors. The figure shows the time series of stochastic discount
factors (upper panel) and downside risk multiplier funciton Z (lower panel). Solid line on
upper panel indicates SDF of the unrestricted model with downside risk and dashed line is
the standard CCAPM. The SDFs are constructed using corresponding estimates from table
1 for the horizon of 4 quarters. Shaded areas indicate NBER recession quarters.




