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Correlation Risk

ABSTRACT

Investors hold portfolios of assets with different risk-reward profiles for diversification benefits.

Conditional on the volatility of assets, diversification benefits can vary over time depending on

the correlation structure among asset returns. The correlation of returns between assets has

varied substantially over time. To insure against future “low diversification” states, investors

might demand securities that offer higher payouts in these states. If this is the case, then

correlation would be a systematic risk factor, and investors would pay a premium for securities

that offer higher payouts in regimes in which the correlation is high. We empirically test this

hypothesis and find that correlation carries a statistically and economically significant negative

price of risk, after controlling for the volatility of the assets and other risk factors that have

been found to affect stock returns.

(Time-varying Correlation; Price of Correlation Risk)



Diversification benefits depend on the correlation structure among asset returns. There is now

considerable evidence that correlations among asset returns change over time, that they generally

increase during financial crises, and, more generally, they increase in bear markets.1 Li (2002)

finds that macroeconomic variables can account for a small but statistically significant portion

of the time varying correlation between asset returns. In particular, this correlation is positively

related to inflation risk. When inflation risk is high, asset returns tend to be more volatile, and in

such regimes investors have a stronger incentive to diversify. However, in these very regimes, Li’s

result implies that correlations are high and diversification opportunities are low, thus leading

him to Murphy’s Law of Diversification:“diversification opportunities are least available when

they are most needed.”

If diversification opportunities diminish in regimes when they are most needed, investors

could pay a premium to insure against such states. In other words, if correlation between assets

is a systematic risk factor, all things being equal, investors would pay a premium for securities

that offer higher payouts in states where asset correlations are high. This paper empirically tests

this hypothesis. Specifically, we investigate whether time varying correlation between individual

assets carries a significant price of risk in the cross-section of stock returns.

However, before we examine whether there exists a significant price of correlation risk in the

cross-section of stock returns, we are faced with the following important issues. First, we need

to determine an aggregate measure of correlation, or more specifically, correlation innovation.

Clearly, this measure is influenced by pair-wise correlations among securities, and there are

many asset classes to choose. Second, we need to be careful in relating increasing correlation

to reduced diversification benefits. An alternative explanation could be that correlation is just

a business cycle indicator. For example, correlations may be related to unanticipated inflation,

as Li’s result implies, to the market return, to T-bill rates and to industrial production, all

of which are business cycle variables that define the investment opportunity set. Any analysis

would clearly have to carefully control for or remove these business cycle effects, before assessing

whether correlation risk is priced. Third, increasing correlation, per se, does not necessarily

mean lower diversification benefits. Diversification opportunities increase when the correlations

among assets decrease, conditional on the volatility of assets remaining the same or increasing.

Indeed, Campbell, Lettau, Malkiel and Xu (2001) examine the 1962-1997 period and show

that the benefits of diversification among U.S. stocks changed because of two effects: changing

average standard deviation of the returns of individual stocks and changing average correlation

of returns between any two stocks. Thus, in any analysis for determining the price of correlation

risk, we need to control for volatility of assets.

Several strands of literature have examined correlation between asset returns. The first

strand, already alluded to, focuses on understanding the time varying nature of aggregate stock-

1See, for example, Bollerslev, Chou and Kroner (1992).

1



bond correlation and its link with macroeconomic factors. Beltratti and Shiller (1992), extending

Campbell and Shiller’s (1988) model, price stocks and bonds jointly and find that the result-

ing theoretical correlations are smaller than the empirical ones. Li (2002), and d’Addona and

Kind (2005) use affine asset pricing models to jointly value stocks and bonds that allow the

development of correlations endogenously. These models are helpful in explaining how macro-

economic factors influence the correlation between asset returns. These studies conclude that

uncertainty in expected inflation is a key determinant of correlation.2 Other studies, including

Rouwenhorst (1995), have examined the effects of business cycles on asset returns and concluded

that they are significant. Schwert (1989), for example, shows that they can explain much of the

time series variations in volatility. Therefore, a natural question to ask is how correlation varies

at different stages in the business cycle. Li (2002) examines this issue and finds that the busi-

ness cycle does not have any significant effect on this correlation, either in the US or in the

G7 economies. Li (2002) also documents significant variations in stock-bond correlations in G7

countries and concludes that correlations in the different countries appear to follow similar mean

reverting processes.

A second strand of literature focuses on understanding the covariances or correlations among

asset returns. Goetzmann, Li and Rouwenhorst (2005) examine the major world equity markets,

and find that correlations vary considerably through time, are highest during periods of economic

and financial integration such as the late 19th and 20th centuries, and, because of the time vary-

ing nature of correlations, diversification benefits are not constant. Moskowitz (2003) documents

the link between firm characteristics and the contemporaneous and future covariance structure

of returns, and examines the strength of this relationship across business cycles. He finds that a

size factor is most closely linked to covariance risk. Scruggs and Glabadanidis (2003) reject mod-

els with constant correlation restrictions on the covariance matrix between stocks and bonds.

They include a long-term Government bond index as an additional factor in the Intertemporal

Capital Asset Pricing Model (ICAPM) for the aggregate market return, and model the joint

time-series dynamics of the stock and bond markets. They find that intertemporal risk-reward

relationships are sensitive to the dynamic covariance matrix.

A third strand of research studies correlation risk in the equity market using derivatives.

Driessen, Maenhout and Vilkov (2005) develop a model for equity prices with priced correlation

risk, and empirically measure the magnitude of the risk premium. In their model, asset prices

follow geometric Wiener processes where the correlations are connected through a simple one

factor model. The dynamics of this common factor under the risk neutral measure are identified

by specifying the structure for the correlation risk premium. They show that incorporating

stochastic correlations in an option pricing model has the potential for removing many of the

2Additional studies along these lines include Campbell and Ammer (1993), Bekaert, Engstrom, and

Granadier (2004) and Mamaysky (2002).
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option pricing anomalies. They observe that the price of correlation risk is significantly negative

and plays an important role in removing well-known biases in option models.

The final strand of related literature examines, concurrently, the volatility of stocks and the

correlation between stocks. Campbell, Lettau, Malkiel and Xu (2001) show that firm level stock

variance shows an increasing trend in the period 1962-1997. However, the correlations between

the individual stocks decreased during this period, as a result of which the market as a whole did

not become more volatile. The implication of this study is that increasing correlations between

stocks by itself need not necessarily mean decreasing diversification opportunities because the

stock volatilities might have decreased concurrently to offset the effect of increasing correlations.

To the best of our knowledge no study has addressed whether time-varying correlation be-

tween individual stocks carries a significant price of risk in the cross-section of stock returns,

which is our objective in this paper. Of course, a number of studies have examined multi-factor

models in which risk is measured by covariances with common factors. The risk factors could be

extracted from the covariance matrix of returns, as in Roll and Ross (1980), be based on macro-

economic variables, as in Chen, Roll and Ross (1986), or be based on stock market and bond

market portfolios and characteristics. Fama and French (1992, 1993, 1995, 1996) show that

the market portfolio and portfolios related to size and book-to-market are important factors

for stock returns. Fama and French (1993) also show that stock returns have shared common

variation due to bond market factors related to maturity and default. Ang, Hodrick, Xing and

Zhang (2006) examine the pricing of market volatility risk. We claim that, in addition to the

market characteristics, the correlation between assets is also an important risk factor capturing

changing diversification opportunities.

What we need to make clear is that our objective in this paper is not to study correlation risk

as a replacement for covariance risk in a standard CAPM setting. Research along these lines,

including work on lower partial co-moments and downside risk, has been done by others. The

goal of our paper is unrelated to this literature; rather, we examine whether correlation between

individual stocks is a priced risk factor in a multifactor model that includes other well-known

risk factors such as liquidity and volatility factors.

We analyze correlations between assets over a 40-year period from 1963 to 2003. We first se-

lect assets that represent different risk-return profiles. As the first set of representative assets, we

use 5 of the 25 Fama-French portfolios that have been sorted by size and book-to-market. These

5 portfolios include the four extremes in the double sort, namely, small-value, small-growth,

large-value, and large-growth, as well as the medium size-medium book-to-market portfolio. In

an alternate selection of representative stock portfolios, we include 5 industry portfolios based on

broad industry definitions—consumer goods, manufacturing, hi-tech, health care, and others. For

each of the alternative sets of representative assets, we compute the time series of monthly pair-

wise correlations, from which we compute the monthly correlation innovations and purge them
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of the effects of macrovariables to obtain correlation innovations. We use the same procedure

to obtain the asset volatility innovations. We then examine whether the principal components

that account for most of the variability in pair-wise correlation innovations are priced in the

cross-section of returns, after controlling for the effect of asset volatility innovations.

We find that, controlling for asset volatility, correlation between assets carries a significantly

negative price of risk. The negative price of correlation risk suggests that investors prefer stocks

that have higher payouts in states in which a portfolio is effectively less diversified. The demand

for such stocks is then reflected in lower expected returns. The explanatory power of correlation

for stock returns is robust to the presence of the market return, size factor, book-to-market

factor, default premium, aggregate market volatility innovation, liquidity and other risk factors,

and to controlling for the effects of macroeconomic variables. We find that the significantly

negative market price of correlation risk persists even after we allow for time variation in the

factor loadings of assets or if we use different sets of representative assets to compute correlations.

We continue to find significantly negative market price of correlation risk if we use the average

correlation innovation residual rather than the principal components of correlation innovations.

The remainder of the paper is organized as follows. In section 1, we describe our data and

extract the time series of correlations. In section 2, we test our factor model using cross-sectional

regressions. In section 3, we perform several robustness checks. Section 4 concludes.

1 Data

Our sample period is from July 1963 to December 2003. We begin in July 1963 so as to examine

the same period as the Fama-French (1992, 1993) papers and other papers in this literature.

This would make our results comparable to studies that have found other factors to be important

for explaining the cross-section of expected stock returns.

We use three sets of data. The first set consists of broad asset classes that we use to

measure the correlation risk. These are 5 stock portfolios sorted by size and book-to-market:

the small-growth, small-value, medium, large-growth, and large-value portfolios within the set of

25 Fama-French portfolios sorted on the same basis. The daily returns of these asset classes come

form Ken French’s web site.3 Alternatively, as a robustness check, we include 5 industry-sorted

stock portfolios to the 5 stock portfolios sorted by size and book-to-market.

The second data set consists of test assets that we use to examine our factor model. These

are the 25 Fama-French portfolios sorted by size and book-to-market. Their monthly returns

are obtained from Ken French’s web site as well. We choose these portfolios since they have

become the benchmark in testing competing asset pricing models. In addition, these portfolios

3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data-library.html
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are amongst the most challenging set of assets for existing models.

The third data set consists of variables that we use as risk factors in our model. These

include:

Fama-French Factors

We collect data on the Fama-French (1993) book-to-market and size factors, HML and SMB.

These factors are very successful at explaining the cross-section of returns sorted by size and

book-to-market. The monthly returns of HML and SMB come from Ken French’s web site.

Default Risk Premium

Following Fama and French (1993), who show that bond returns have explanatory power for

stock returns, we collect data on a variable that controls for the returns on Government and

risky corporate bonds. The variable is the default risk premium, DEF, defined as

DEFt = RLG,t −RLT,t,

where RLG,t is the total return on a low grade corporate bond and RLT,t is the total return on

a long term Treasury bond from the Ibbotson database.

Unanticipated Inflation

Following Chen, Roll and Ross (1986) and Brennan, Wang, and Xia (2004), we collect data on

unanticipated inflation as an additional risk factor. We first obtain the Consumer Price Index

(CPI) data from the FRED database of the Federal Reserve Bank of St. Louis. Then, we define

unanticipated inflation as

UIt = It −Et−1(It),
where It is the realized monthly first difference of the natural logarithm of CPI for period t, and

Et−1(It) is the date t− 1 expected inflation. The expected inflation series are the fitted values
of an AR(3) process on monthly CPI.

Growth in Industrial Production

Vassalou (2003) uses GDP as an explanatory variable for stock returns. However, the data on

GDP is available only quarterly, while we conduct our analysis on a monthly basis. Therefore,

we collect data on the growth rate of US industrial production, GIP. This data is obtained

from the FRED database of the Federal Reserve Bank of St. Louis. If IPt denotes the rate of

industrial production in month t, then the monthly growth rate is

GIPt = ln(IPt)− ln(IPt−1).
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Aggregate Market Volatility

Ang, Hodrick, Xing, and Zhang (2006) examine the pricing of aggregate volatility risk in

the cross-section of stock returns. In our tests, we also control for a factor related to market

volatility. We follow French, Schwert, and Stambaugh (1987) and calculate the monthly volatil-

ity of the CRSP value-weighted portfolio, s, by using the daily returns of the index within each

month. Schwert (1989) relates stock market volatility to a number of economic variables, includ-

ing inflation rates and industrial production growth. To remove the effects of macroeconomic

variables on volatility, we first regress s on a vector of variables, including the market return,

inflation, growth rate of industrial production, the real rate, and past volatility realizations.

The residual from the regression, MVOL, which represents innovations in volatility, is used as

a control factor in our cross-sectional tests. That is, we remove the effects of macroeconomic

variables and then focus on the innovations in volatility.

Liquidity

Pastor and Stambaugh (2003) show that stocks with high liquidity betas have higher average

returns. Since they show that liquidity is a systematic risk factor, we control for this factor

in our cross-sectional analysis. We use the monthly returns of the aggregate liquidity measure,

LIQ.4

In addition, we collect monthly data on real rates, defined as the one-month T-bill rate minus

expected inflation. The CRSP value-weighted portfolio is our proxy for the market portfolio.

Whenever we use excess returns we define them as simple total returns minus the nominal rate

of one-month T-Bills.

Our test of whether aggregate correlation is priced in the cross-section of returns proceeds

in three main steps. The first step involves estimating the time-series of pair-wise correlations

between different assets, and then constructing an aggregate correlation measure. The second

step involves estimating individual asset’s loadings with respect to correlation risk. The third

step examines whether asset loadings with respect to correlation risk are important determinants

of average returns.

1.1 Constructing An Aggregate Correlation Measure

This section describes three separate steps involved in computing the aggregate correlation

measure. First, we compute the time series of sample correlations between individual assets.

Second, we purge the estimated sample correlations from the effects of different control variables

and thus derive correlation innovation series. Third, we perform a principal component analysis

on the set of correlation innovations to derive one aggregate measure of asset correlation. Below

4We thank Rob Stambaugh for providing the data.
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we describe these steps.

We need to construct an aggregate measure of correlation. Since computing the correlation

between each pair of stocks and then taking the average is virtually impossible, we reduce

the dimensionality of the problem by choosing a set of 5 representative portfolios. We use

the daily returns of 5 stock portfolios sorted by size and book-to-market to compute monthly

pair-wise correlations. More specifically, the correlation number for each month between a pair

of portfolios is computed as the sample correlation between the daily return series within the

month. The advantage of this method is that the correlation number each month is not model-

dependent. We compute all (52) = 10 time series of correlations. Rather than work with these

values, which, by construction, are bounded by [−1, 1], we transform them to Fisher correlations
defined by:

FCorr = 0.5ln[(1 + Corr)/(1− Corr)]. (1)

This function is continuous and monotonic, and there is a one-to-one mapping between the

actual and Fisher-transformed correlations.

Next, we perform a principal component analysis on the pair-wise correlations between assets.

Such an analysis uncovers the weights assigned to each pair-wise correlation in an aggregate

measure that best captures the variation in correlations. We are interested in the principal

components that explain a significant portion of the variation in correlations. The first principal

component explains 61 percent, while the second principal component explain an additional

13 percent. Panels A and B of Figure 1 plot the first two principal components derived from

the matrix of pair-wise portfolio correlations. Correlation, on average, increases in recessionary

periods. In Panel A, the difference, on average, in correlation between the recessionary and

non-recessionary periods is 0.40, which is statistically significant with a t-statistic of 4.52.

Figure 1 here

Our objective is to test whether aggregate correlation risk is priced in the cross-section of

returns. The first two principal components based on Fisher correlations are good candidates

to represent correlation risk. However, we first need to purge them from the effects of variables

that are known to affect asset correlation. That is, we need to derive correlation innovations.

To do this, we regress the Fisher correlation for each asset pair on its lagged value, the market

return, expected inflation, unanticipated inflation, the growth rate of industrial production, and

the real rate as in the following time series regression

ρi,t = bi,0 + bi,1ρi,t−1 + bi,2Rm,t + bi,3Et−1(It) + bi,4UIt + bi,5GIPt + bi,6RealRatet + ui,t, (2)

where i represents an individual asset pair. The first variable in the equation above, ρi,t−1,
controls for autocorrelation effects in the correlation time-series. We include the market return,
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Rm,t, since other studies have shown that correlations among assets tend to increase in bad mar-

ket states. Finally, we control for unexpected and expected inflation, as well as the real interest

rate, motivated by Li (2002), who shows that these variables affect stock-bond correlations.

Since there are 10 different time-series of pair-wise correlations, we have 10 different regres-

sions corresponding to equation (2). Table 1 reports the F -statistics and the adjusted R2s from

the regressions described above. We present estimates for the model with and without the lagged

correlation term, to examine the effect of the macroeconomic variables alone on correlations.

When lagged correlation is excluded from the model, the average adjusted R2 across all 10 re-

gressions is around 10.81%. The effect of macroeconomic variables on the correlations between

assets is statistically significant but economically small. When lagged correlation is included in

the model, the adjusted R2s increase in all cases and the average is 22.40%. Therefore, lagged

correlation adds a substantial explanatory power to the model over and above the macroeco-

nomic variables. However, the portion of the variation in asset return correlations not explained

by macroeconomic variables and by lagged correlation remains large.

Table 1 here

Next, we store the 10 time-series of residuals, ui,t from equation (2). They represent inno-

vations in the realized correlation series for each pair of assets. If correlation is a systematic

risk factor, then innovations in this factor should be priced in the cross-section of returns. Next

we conduct a principal-components analysis on these pair-wise correlation innovations. We are

interested in the principal components that explain a significant portion of the variation. We

find that the first principal component explains 55 percent, the second principal component an

additional 14 percent, with a big drop-off thereafter.

Panels A and B of Figure 2 show the time-series of the first two principal components based on

the correlation innovations. Panel A shows that the variation in the first principal component of

correlation innovations is reduced once we purge them of the effects of macroeconomic variables

(comparing Panel A of Figure 2 with Panel A of Figure 1). For instance, for the recessionary

periods, the difference, on average, between the non-purged correlation in Panel A of Figure 1

and the purged correlation in Panel A of Figure 2 is 0.26, which is significant with a t-statistic

of 2.35. In other words, once purged of macroeconomic variables that are related to the business

cycle, high values of correlation in recessionary periods gets somewhat muted. Nevertheless,

correlation still shows a time-varying pattern even after controlling for macroeconomic effects.

Figure 2 here

Table 2 shows the sample correlations of different risk factors with correlation risk. The

factors include the market return, MKT, HML, SMB, default premium, DEF, unanticipated
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inflation, UI, growth rate of industrial production, GIP, the NBER recession dummy, CYCLE,

aggregate market volatility innovations, MVOL, and liquidity, LIQ. The first 2 rows of the

table correspond to the principal components based on Fisher correlations. The results indicate

that asset correlations tend to go up in recessions (the correlations with the CYCLE variable

are positive). The next 2 rows of the table correspond to the principal components based on

correlation innovations. They show that once the effects of macroeconomic variables have been

removed, the correlation measures are generally uncorrelated with the CYCLE variable. This

suggests that correlation innovations carry information independent of the business cycle. The

last two rows of the table correspond to the principal components based on asset volatility

innovations. The first principal component has relatively high correlations with the market

return and market volatility.

The last two columns of Table 2 report the adjusted R2s and F-statistics from multiple

regressions of each correlation and volatility measure on the set of risk factors. The results

show that while the effects of the variables on the first principal components of correlation are

significant (rows 1 and 3), their explanatory power is relatively small. This indicates that the

correlation factor contains information not spanned by the set of well-known risk factors and

therefore, it might represent a separate risk factor in the cross-section of returns.

Table 2 Here

1.2 Asset Volatility Measure

The principal components based on correlation innovations represent our summary measures

of aggregate correlation risk in the economy. It is a measure that conveys information about

the diversification benefits facing investors. Increasing correlation, per se, however does not

necessarily mean lower diversification benefits. Diversification opportunities increase when the

correlations among assets decrease, conditional on the volatility of assets remaining the same or

increasing. Therefore, in our empirical analysis for determining the price of correlation risk we

need to control for the average volatility of assets. Next, we describe how the asset volatility

measure is constructed.

We follow French, Schwert, and Stambaugh (1987) and calculate the monthly volatility of

each of the 5 asset classes by using the daily returns within each month. To remove the effects

of macroeconomic variables on volatility, we first regress each volatility series on a vector of

variables, including the market return, inflation, growth rate of industrial production, real rate,

and past volatility. We run 5 such regressions since there are 5 asset classes under consideration.

Next, we perform a principal component analysis on the residuals from these regressions. The

first principal component explains 83 percent of the variation in asset volatility innovations, while

the second one explains 13 percent. Therefore, the way we derive asset volatility innovations is
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consistent with the way we derive the correlation innovations. We use the first two principal

components as control variables in our subsequent tests. We denote the volatility factors with

AV OL.

2 The Basic Factor Model

If investment opportunities change over time, then factor models like the Intertemporal CAPM

(ICAPM) of Merton (1973) and the Arbitrage Pricing Theory Model(APT) of Ross (1976)

predict that there should be risk premia associated with assets’ exposures to state variables that

describe time-variation in investment opportunities.5 Time-varying correlation between assets

proxies for changing diversification benefits and, thus, affect the investment opportunity set

available to investors. Risk-averse investors want to hedge against changes in the investment

opportunity set, as in Merton (1973). However, the effect of time-varying inter-asset correlation

on the investment opportunity set depends on the asset volatilities. For instance, if the asset

volatilities are low, the effect of changing inter-asset correlation on the investment opportunity

set would also be low. So, we examine whether inter-asset correlation, after controlling for the

volatility of assets, is a systematic risk factor. The model specification that we consider is:

Ri,t = αi + βi,FFt + βi,AV OLPCAV OL,t + βi,ρPCρ,t + 6i,t, (3)

where Ri,t is the return on asset i in excess of the risk-free rate at the end of period t, Ft is a

vector of realizations for the other risk factors at the end of period t (which we specify below),

PCρ,t is the correlation factor based on the principal component measure and PCAV OL,t is the

asset volatility factor based on the principal component measure, as described above,. 6 The

betas are the slope coefficients from the above return-generating process.

The unconditional expected excess return on asset is given by:

E(Ri) = γFβi,F + γAV OLβi,AV OL + γρβi,ρ, (4)

where γF is a vector of risk prices associated with factors that have been documented to signifi-

cantly affect asset returns, and γρ is the price of risk for the correlation factor. The implication of

the factor model in equation (4) is that assets with different loadings with respect to correlation

risk have different average returns.

5The following is a short list of papers that examine empirically the predictions of ICAPM or APT-type

models: Chen, Roll, and Ross (1986), Shanken (1990), Campbell (1996), Fama and French (1993, 1995, 1996),

Chen (2003), Brennan, Wang, and Xia (2004), Campbell and Vuolteenaho (2004), Ang, Hodrick, Xing, and Zhang

(2006). These papers examine the price of risk associated with a range of different risk factors.
6Initially, we check whether the first two principal components are both priced, and after showing the second

principal component of correlation innovations in not priced in the cross section of asset returns, we focus only

on the first principal component.
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We proceed to test the basic model defined in equations (3) and (4). In the first specification

that we use, the vector F contains the following variables: the excess market return, Rm, HML,

and SMB. The other variables in the model are the first 2 principal components based on pair-

wise correlation innovations, and the first 2 principal components of asset volatility innovations.

This model assumes away time variation in the factor loadings of the assets. We relax this

assumption later in the paper and examine time-varying risk loadings.

We conduct our tests in two steps: first, we examine a time-series regression for each test

asset to estimate the factor loadings; second, we conduct cross-sectional regressions to compute

the factor prices of risk. We use the standard Fama-MacBeth (1973) regression analysis.

We begin with the following equation, in which the test assets are the 25 Fama-French

portfolios sorted by size and book-to-market. Specifically, for portfolios i = 1, ..., 25:

Ri,t = αi+βi,mRm,t+βi,HMLRHML,t+βi,SMBRSMB,t+βi,AV OLPCAV OL,t+βi,ρPCρ,t+6i,t, (5)

where the left-hand sight variable represents a return in excess of the riskfree rate and PCρ is a

vector of the first two principal components for correlation innovations and PCAV OL is a vector

of the first two principal components variance innovations, derived as discussed before.

The second step of the Fama-MacBeth procedure involves relating the average excess returns

of all assets to their exposures to the risk factors in the model. We specify the cross-sectional

relation:

Ri,t = γ0 + γmβi,m + γHMLβi,HML + γSMBβi,SMB + γAV OLβi,AV OL + γρβi,ρ + ei,t, (6)

for all i = 1, ..., 25 and for each month. If assets’ loadings with respect to the risk factors are

important determinants of average returns, then the γ terms that represent the prices of risk

for each factor should be significant.

Since the betas are estimated from the time-series regression in equation (5), they represent

generated regressors in equation (6). This is the classical errors-in-variables problem, arising

from the two-pass nature of this approach. Following Shanken (1992), we use a correction

procedure that accounts for the errors-in-variables problem. Shanken’s correction is designed to

adjust for the overstated precision of the Fama-MacBeth standard errors. It assumes that the

error terms from the time-series regression are independently and identically distributed over

time, conditional on the time-series of observations for the risk factors. Jagannathan and Wang

(1998) argue that if the error terms are heteroskedastic, then the Fama-MacBeth procedure does

not necessarily result in smaller standard errors of the cross-sectional coefficients.

Table 3 presents the results from the estimation of equation (6). As the table shows, the

price of risk associated with the first principal component of correlation innovations is nega-

tive in magnitude and statistically significant. This result is robust to the errors-in-variables
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adjustment. The price of risk for the second principal component of correlation innovations is

not significant. The risk premium associated with the value factor, HML, is significant and its

magnitude is positive. Neither of the first 2 principal components of asset volatility innovations

is significant. The adjusted R2 value shows that the basic model is able to explain a large portion

of the cross-sectional variation in average returns.

Table 3 Here

Based on the observation that the second principal component of correlation innovations is

not priced in the cross-section of returns, we do not consider the second principal component in

further analysis. Table 3 reports the basic specification in the absence of the second principal

component of both the correlation innovations and the asset volatility innovations. The results

show that the explanatory power of the model is very similar to our previous specification. The

price of correlation innovation risk for the first principal component continues to be negative

and significant.

Since the dependent variables in the cross-sectional regression are excess returns, the in-

tercept term, γ0, should be equal to zero, for a well-specified model. This hypothesis cannot

be rejected in the case of the model presented in equation (6). Overall the results from our

basic model indicate that correlation risk is priced in the cross-section of average returns. The

estimated negative price for correlation risk suggests that assets that pay more when the general

level of correlation is high are valued more and hence, have lower expected returns.

2.1 Including Additional Risk Factors in the Basic Model

Does the price of correlation risk continue to be significantly negative even in the presence

of other known risk factors? To examine this, we include additional risk factors in the basic

model. These are risk factors that have been shown to be important determinants of the cross-

section of returns. They include market volatility innovations (MVOL), default premium (DEF),

unexpected inflation (UI), and growth rate of industrial production (GIP). We examine the

following specification:

Ri,t = γ0 + γmβi,m + γHMLβi,HML + γSMBβi,SMB + (7)

γMVOLβi,MV OL + γDEFβi,DEF + γUIβi,UI + γGIPβi,GIP +

γAV OLβi,AV OL + γρβi,ρ + ei,t,

for all i = 1, ..., 25 and for each time period. The results are presented in Table 4.

Table 4 Here
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The results are presented in Table 4. The price of correlation innovation risk is still negative

in magnitude and significant after the Shanken adjustment. The risk premium of HML is positive

and significant. The intercept term from the regression is not significant and the adjusted R

square indicates that the explanatory power of the model has increased.

Next, we include Pastor and Stambaugh (2003) liquidity factor, LIQ, as an additional risk

factor in the above regression specification. As discussed before, correlation tends to be high

in bear markets, and these are the very times when liquidity tends to be low. Therefore,

high aggregate correlation could potentially capture the price of liquidity risk. Hence, in our

tests we explicitly control for the presence of the aggregate liquidity factor. We present the

corresponding results in a separate table, Table 5, since the sample period used to test the

expanded specification is from July 1968 to December 2003.

Table 5 Here

The price of correlation innovation risk continues to be negative in magnitude and significant

after the Shanken adjustment. In the presence of the liquidity factor, only the risk premium of

HML is positive and significant. The intercept term from the regression is not significant and

the adjusted R square indicates that the explanatory power of the model is very high.

Overall, the results thus far show that correlation innovation risk is significantly priced in

the cross-section of expected returns. This result is robust to the presence of other well-known

risk factors and macroeconomic variables and to the errors-in-variables adjustment.

3 Robustness Checks

3.1 Incorporating Time-Varying Information

The models examined so far assume that the betas with respect to the risk factors remain

unchanged over the entire sample period. As shown by Jagannathan and Wang (1996), Lettau

and Ludvigson (2001), and Ferson and Harvey (1999), among others, asset betas tend to vary

over time. As a result, we relax the assumption of constant betas by estimating factor loadings

that vary through time. The time-varying betas are estimated using a standard approach. With

this approach, we account for time variation in the factor loadings of the assets by following

Shanken (1990) and Ferson and Harvey (1999). They impose a simple structure on the time

variation of the assets’ factor loadings. In particular, let

αi,t−1 = ai0 + ai1Zt−1,

βi,t−1 = bi0 + bi1Zt−1,
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where Zt−1 is a conditioning variable available to investors at time t. Our conditioning variable
is the term premium, TERM , defined as the spread in yields between a 10-year and a 1-year

Treasury bond (taken from the Federal Reserve Bank of St. Louis web site). The choice of this

variable is motivated by the time-series literature on return predictability. Fama and French

(1989), for example, show that the term spread predicts that the expected market returns are

low during expansions and high during recessions. They document that the term spread is able

to track the short-term fluctuations in the business cycle.7

Substituting the expressions for alpha and beta above in equation (5) and excluding the

SMB factor (as it is not found to be significant), we get the following return-generating process

Ri,t = ai0 + ai1Zt−1 + bi0,mRm,t + bi1,m∗Z(Rm,tZt−1) +

bi0,HMLRHML,t + bi1,HML∗Z(RHML,tZt−1) + bi0,AV OLRAV OL,t +

bi1,AV OL∗Z(RAV OL,tZt−1) + bi0,ρPCρ,t + bi1,ρ∗Z(PCρ,tZt−1) + 6i,t, (8)

over all time periods and for each test portfolio i = 1, 2.., 25. This return-generating process

corresponds to the following cross-sectional regression:

Ri,t = γ0 + γZZt−1 + γmbi0,m + γmzbi1,m∗Z +

γHMLbi0,HML + γHMLzbi1,HML∗Z + γAV OLbi0,AV OL + γV ARzbi1,AV OL∗Z +

γρbi0,ρ + γρzbi1,ρ∗Z + ei,t, (9)

for all test portfolios i = 1, 2, ..., 25 and for each time period, t. We use term premium as a

proxy for Z. We focus only on the first principal component of correlation residuals in these

regressions. Likewise, AV OL is also the first principal component of volatility residuals.

The results are presented in Table 6. The price of correlation risk continues to be negative

in magnitude and statistically significant. The interaction term between correlation and default

premium is also significant, which indicates that there is time-variation in assets’ loadings with

respect to correlation risk. The two terms pertaining to correlation innovation risk are jointly

significant, as indicated by the small p-value shown in the last row of the table. The book-to-

market factor is also significant. The terms associated with asset volatility innovations are not

significant. Overall, the conclusion that emerges from Table 6 is that the price of correlation risk

is negative and significant. Furthermore, assets’ exposures to correlation risk vary over time.

Table 6 Here

7Also see Keim and Stambaugh (1986) and Campbell (1987).
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3.2 Using a Different Set of Base Assets to Measure Aggregate Correlation

As a different robustness check, we change the initial set of assets that span the risk-return

spectrum. So far we have used a set of 5 “extreme” portfolios of the 25 Fama-French portfolios

sorted by size and book-to-market. In this section, we include 5 industry portfolios to the 5

stock portfolios. The industry groups are defined as Consumer, Manufacturing, Hi-Tech, Health,

and Other, and their daily returns come from Ken French’s web site. Therefore, we evaluate

whether our results are sensitive to the choice of the initial set of stock portfolios used to compute

pair-wise correlations.

Table 7 reports the results for the case in which correlation risk is derived from the set of

industry and size & book-to-market portfolios. The specification in the table allows for time-

variation in the assets’ loadings with respect to correlation risk. The price of correlation risk is

significant, the price of time-varying correlation risk is negative, and these two terms pertaining

to correlation innovation risk are jointly significant, as indicated by the small p-value shown in

the last row of the table. Therefore, our previous results are not driven by the choice of base

equity asset classes.

Table 7 Here

3.3 Using Average Correlation Innovations

We examine 3 different specifications of the following model:

Ri,t = γ0 + γmβi,m + γHMLβi,HML + γSMBβi,SMB + (10)

γMVOLβi,MV OL + γLIQβi,LIQ + γDEFβi,DEF + γUIβi,UI +

γGIPβi,GIP + γAV OLβi,AV OL + γρβi,ρ + ei,t,

for all i = 1, ..., 25 and for each time period, where we now use the average correlation innovations

instead of the first principal component of the correlation innovations, as the correlation factor.

Correspondingly, we use the average asset volatility innovation instead of the first principal

component of the asset volatility innovations. The results are presented in Table 8.

Table 8 Here

The results show that in all 3 specifications examined, the price of correlation innovation

risk is still negative and significant after the Shanken adjustment. The risk premium of HML

is positive and significant. The intercept term from the regression is not significant.
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3.4 Portfolio Returns Sorted by Market and Correlation Loadings

How do the returns of portfolios sorted by correlation-risk loadings look? To examine this, we

construct a set of risk-sorted portfolios as follows. Each month, each stock’s risk loadings are

computed from a multiple regression of excess returns over the previous 60 months on the factors

in the factor model over the same 60 months. The factors are the excess market return and the

excess return on a portfolio that mimics correlation risk.

A simple way to construct a mimicking portfolio is to regress aggregate correlation (the first

principal component of correlation innovations) on a set of base asset returns, as suggested in

Breeden, Gibbons and Litzenberger (1989). We use this approach in creating the correlation-

mimicking factor, Rρ,t:

ρmb,t = c
IBt + et. (11)

Here Bt represents the set of base portfolio returns in excess of the risk free rate. The return on

the mimicking portfolio, Rρ,t , is then equal to c
IBt. The base assets are the six value-weighted

portfolios, constructed by Fama and French, from the intersection of two size and three book-

to-market portfolios. These portfolios are created from a separate sorting of the assets relative

to the 25 size and book-to-market test portfolios.

Our objective in this section is to form portfolios that have a large spread in their betas with

respect to the market and the correlation factor. To accomplish this, we perform a double sort

on market beta and on the beta with respect to correlation risk. That is, we first form 5 groups

by sorting all stocks on market beta, and then sort stocks in each market beta group into 5

groups on correlation beta. This produces a total of 25 portfolios. The value-weighted returns

of these portfolios are then recorded, for the period from July 1968 to December 2003.

Figure 3 shows the bar plots of the average returns of our new set of 25 portfolios of stocks.

In this figure, the five major groups of bars are based on market returns loadings, and five

bars in each major group are based on correlation loadings. The average returns of stocks with

different correlation loadings follow a very regular pattern: within each market beta group,

average returns of firms are almost always decreasing in their correlation loadings.

Figure 3 Here

Within each beta-sorted portfolio group, we compute the return difference between the ex-

treme portfolios that are based on correlation loadings. Each return difference represents the

monthly return on a zero-investment strategy that is based on aggregate correlation. We then

regress these returns on the monthly returns of the HML and SMB portfolios and find that
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the resulting time-series alphas are positive and strongly significant. On average, the monthly

return from this zero-investment strategy that is not explained by the size or value factors is

almost 7% per annum. This result is interesting because the market and correlation loadings

have been estimated without a look-ahead bias: they have been estimated from the information

investors have at the beginning of each month. Thus, firms that are most exposed to aggregate

correlation provide the best hedges against states with poor diversification benefits for portfolio

managers, are more valuable, and therefore, have lower average returns.

4 Conclusion

We address the following research questions in this paper: are innovations in return correlations

an important determinant of expected returns? Is the correlation factor, purged of macroeco-

nomic factors, priced even in the presence of loadings with respect to well-known risk factors?

The answer to these two research questions is an emphatic yes. Controlling for asset volatility,

correlation carries a statistically and economically significant negative price of risk that cannot

be explained by the market return, size, book-to-market, volatility, default spread, unexpected

inflation, liquidity, and other risk factors. The market price of correlation risk is significant

after accounting for macroeconomic variables that are known to influence the dynamics of asset

correlations. The market price of correlation risk is significant whether we construct the aggre-

gate correlation factor as the first principal component based on correlation innovations or as

the average correlation innovation. The market price of correlation risk is significantly negative

when we allow for time variation in the factor loadings of the assets. Finally, the market price of

correlation risk is robust to the choice of the set of initial assets for which we compute pair-wise

correlations.

The implication of our result is as follows. When investment opportunities are changing, risk

premia should reflect how assets covary with portfolios that best hedge changes in investment

opportunities. Controlling for other risk factors and for asset volatility, we find that as the

correlation between assets that span the risk-return spectrum increases, investors lose at least

part of the diversification benefit. Stocks that pay out more in states where asset correlations

are high are more attractive and the expected returns on these securities are lower. Thus, the

market price of correlation risk is significantly negative.
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Table 1 

Correlation Innovations 
 

This table reports the F-statistic and the adjusted R2 for the following model 
itt6,it5,it4,it3,it,m2,i1t,i1,i0,it,i ualRateRebGIPbUIb)I(EbRbbb ++++++ρ+=ρ − , 

where t,iρ  is the Fisher-transformed correlation time-series for an individual asset pair. There are 10 such 
pair-wise correlations based on 5 portfolios sorted by size and book-to-market (small-growth, small-value, 
medium, large-growth, and large-value). The independent variables in the regression are the past level of the 
correlation, the excess market return, Rm,t, expected inflation, E(It), unanticipated inflation, UIt, the growth 
rate of industrial production, GIPt, and the real interest rate. The time-series of monthly correlations for any 
asset pair are computed using daily returns. The sample period is from July 1963 to December 2003. We 
report the F-statistic and the adjusted R2 for the model with and without 1t,i −ρ . 

 
 

Model without 1t,i −ρ  
 

Full model 
 

Asset Pairs  
F-value Adjusted 

R2 

 
F-value 

 
Adjusted R2 

 
small-growth, small-value 

 

 
21.58*** 

 
17.36 

 
31.65*** 

 
27.68 

small-growth, medium  
 

26.99*** 
 

21.00 
 

32.64*** 
 

31.54 

small-growth, large-growth 
 

10.33*** 
 

8.60 
 

14.76*** 
 

18.86 

small-growth, large-value 
 

17.30*** 
 

14.24 
 

17.30*** 
 

23.74 

small-value, medium 
 

19.74*** 
 

16.05 
 

17.22*** 
 

25.73 

small-value, large-growth 
 

6.02*** 
 

4.73 
 

9.26*** 
 

16.69 

small-value, large-value 
 

11.72*** 
 

9.78 
 

10.95*** 
 

20.80 

medium, large-growth 
 

5.65*** 
 

 
4.38 

 

 
9.18*** 

 
19.22 

medium, large-value 
 

10.92*** 
 

9.10 
 

8.78*** 
 

19.73 

large-growth, large-value 4.00*** 2.81 8.31*** 20.00 

 
Average 

 
 10.81 

 
22.40 

      *, **, and *** denote p-value is significant at the 10%, 5% and 1% levels respectively. 



  

Table 2 
Factor Correlations 

This table reports the correlations between well-known risk factors and different measures of aggregate correlation. To compute the aggregate correlation we start with a 
base set of 5 portfolios sorted by size and book-to-market (small-growth, small-value, medium, large-growth, and large-value). We consider the following measures of 
correlation: (a) the first principal component of the 10 Fisher-transformed correlations (first row), (b) the second principal component of the 10 Fisher-transformed 
correlations (second row), (c) the first principal component of the matrix of Fisher correlation innovations, which are obtained after removing the effects of macroeconomic 
variables (market return, expected inflation, unexpected inflation, real rate, growth rate of industrial production, past correlation levels) from each pair-wise Fisher-
transformed correlation (third row), and (d) the second principal component of the matrix of Fisher correlation innovations  (fourth row). The variables that we consider in 
the different columns of the table are the excess market return, MKT, the Fama-French factors (HML and SMB), market volatility (MVOL), liquidity factor return (LIQ), 
default premium, DEF (defined as a low grade bond return minus a long term Treasury bond return), unexpected inflation, UI, the monthly growth rate of industrial 
production, GIP, and the NBER recession dummy, CYCLE. The last two columns show the adjusted R2 values and the F-statistics from multiple regressions of each 
correlation measure on MKT, HML, SMB, LIQ, MVOL, DEF, UI, GIP, and CYCLE.  
 

 

MKT HML SMB LIQ MVOL DEF UI GIP CYCLE R2 F 

1st Principal Component based on Fisher 
Correlations 0.04 -0.05 -0.02 0.00 0.05 0.24 0.03 -0.11 0.18 4.90     3.40*** 

2nd Principal Component based on Fisher 
Correlations 0.00 0.04 0.00 -0.02 0.08 0.05 -0.04 -0.04 0.09 -0.40    0.78 

1st Principal Component based on Fisher 
Correlation Innovation 0.00 -0.10 -0.10 0.01 0.24 0.20 0.00 0.00 0.05 10.03    6.24*** 

2nd Principal Component based on Fisher 
Correlation Innovation 0.00 0.03 -0.09 0.02 0.13 0.03 0.00 0.00 0.00 0.00     1.01 

   *, **, and *** denote p-value is significant at the 10%, 5% and 1% levels respectively. 



  

Table 3 
Cross-Sectional Prices of Risk: The Basic Model  

 
This table reports cross-sectional γ coefficients of 2 specifications of the following Fama-MacBeth 
regression 

t,i,iAVOL,iAVOLSMB,iSMBHML,iHMLm,im0t,i eˆˆˆˆˆR +βγ+βγ+βγ+βγ+βγ+γ= ρρ  
that uses the excess returns on 25 portfolios sorted by book-to-market and size as the dependent variables, 
where mγ  is the market risk premium, HMLγ  and SMBγ  are the risk premia associated with HML and SMB, 

AVOLγ is/are the coefficient(s) associated with asset volatility innovations, and ργ  is/are the coefficient(s) 
associated with correlation innovations. To compute asset correlations, we use a base set of 5 portfolios 
sorted by size and book-to-market (small-growth, small-value, medium, large-growth, and large-value). Our 
measure of correlation is the first two principal components of the matrix of asset correlation innovations 
(after removing the effects of macroeconomic variables from each pair-wise Fisher-transformed correlation). 
The full-sample factor loadings, which are the independent variables in the regressions, are computed in one 
multiple time-series regression. The coefficients are expressed in decimals per month. The adjusted R2 
follows Jagannathan and Wang (1996) and is reported in decimals. The t-statistics are adjusted for errors-in-
variables, following Shanken (1992), and are reported in parenthesis. Bold numbers denote t-statistics that 
are significant at the 5 percent level. The sample period is from July 1963 to December 2003. 
 

 Specification 1 Specification 2 

Risk Factor Price of Risk Price of Risk 

 
MKT 

 

-0.0050 
(-0.78) 

-0.0052  
(-0.93)    

 
HML 

 

0.0046 
(3.25) 

0.0045     
(3.21) 

 
SMB 

 

0.0026 
(1.72) 

  0.0025 
(1.65)   

AVOL  
1st Principal Component 

0.7434 
(1.67) 

0.6974 
(1.77) 

AVOL  
2nd Principal Component 

0.3882 
(1.29)  

ρ 
1st Principal Component 

-0.8718  
(-2.61) 

-0.7726 
(-2.93) 

ρ 
2nd Principal Component 

0.0819 
(0.49)  

 
Intercept 

 

0.0090 
(1.43) 

0.0097 
(1.82) 

 
Adjusted R2 

 
81.64 82.14 

      
 

 

 



  

Table 4 
Cross-Sectional Prices of Risk: Controlling for Other Risk Factors 

 
This table reports cross-sectional γ coefficients from the following Fama-MacBeth regression 

t,i,iAVOL,iAVOLGIP,iGIPUI,iUI

DEF,iDEFMVOL,iMVOLSMB,iSMBHML,iHMLm,im0t,i

eˆˆˆˆ

ˆˆˆˆˆR

+βγ+βγ+βγ+βγ+

βγ+βγ+βγ+βγ+βγ+γ=

ρρ
 

that uses the excess returns on 25 portfolios sorted by book-to-market and size as the dependent variables, 
where mγ  is the market risk premium, HMLγ , SMBγ , DEFγ , MVOLγ are the risk premia associated with 
HML, SMB, default, and market volatility innovations, AVOLγ is the coefficient associated with asset 
volatility innovations, and ργ is the coefficient associated with correlation innovations. To compute the 
aggregate correlation we start with a base set of 5 portfolios sorted by size and book-to-market (small-
growth, small-value, medium, large-growth, and large-value). Our measure of correlation is the 1st principal 
components of the matrix of asset correlation innovations (after removing the effects of macroeconomic 
variables from each pair-wise Fisher-transformed correlation). The full-sample factor loadings, which are the 
independent variables in the regressions, are computed in one multiple time-series regression. The 
coefficients are expressed in decimals per month. The adjusted R2 follows Jagannathan and Wang (1996) and 
is reported in decimals. The t-statistics are adjusted for errors-in-variables, following Shanken (1992), and 
are reported in parenthesis. Bold numbers denote t-statistics that are significant at the 5 percent level. The 
sample period is from July 1963 to December 2003. 
 
 

 
Risk Factor 

 
Price of Risk 

 

MKT -0.0037 
(-0.52) 

HML 0.0045 
(3.15) 

SMB 0.0029 
(1.88) 

MVOL -0.0010 
(-0.46) 

 
DEF 

-0.0010 
(-1.06) 

 
UI 

-0.0008 
(-1.50) 

GIP 0.0012 
(0.64) 

AVOL 
1st Principal Component 

0.4527 
(1.01) 

ρ 
1st Principal Component 

-0.7478 
(-2.26) 

Intercept 0.0073 
(1.07) 

Adjusted R2 89.74 



  

Table 5 
Cross-Sectional Prices of Risk: Controlling for Liquidity Risk as Well 

 
This table reports cross-sectional γ coefficients from the following Fama-MacBeth regression 

t,i,iAVOL,iAVOLGIP,iGIPUI,iUI

DEF,iDEFLIQ,iLIQMVOL,iMVOLSMB,iSMBHML,iHMLm,im0t,i

eˆˆˆˆ

ˆˆˆˆˆˆR

+βγ+βγ+βγ+βγ+

βγ+βγ+βγ+βγ+βγ+βγ+γ=

ρρ
 

that uses the excess returns on 25 portfolios sorted by book-to-market and size as the dependent variables, 
where mγ  is the market risk premium, HMLγ , SMBγ , DEFγ , MVOLγ , LIQγ are the risk premia associated 
with HML, SMB, default, market volatility innovation, and liquidity risk, AVOLγ is the coefficient associated 
with asset volatility innovations, and ργ is the coefficient associated with correlation innovations. To 
compute the aggregate correlation we start with a base set of 5 portfolios sorted by size and book-to-market 
(small-growth, small-value, medium, large-growth, and large-value). Our measure of correlation is the 1st 
principal components of the matrix of asset correlation innovations (after removing the effects of 
macroeconomic variables from each pair-wise Fisher-transformed correlation). The full-sample factor 
loadings, which are the independent variables in the regressions, are computed in one multiple time-series 
regression. The coefficients are expressed in decimals per month. The adjusted R2 follows Jagannathan and 
Wang (1996) and is reported in decimals. The t-statistics are adjusted for errors-in-variables, following 
Shanken (1992), and are reported in parenthesis. Bold numbers denote t-statistics that are significant at the 5 
percent level. The sample period is from July 1968 to December 2003. 
 
 

 
Risk Factor 

 
Price of Risk 

 
 

MKT 
-0.0028 
(-0.42) 

 
HML 

0.0048 
(2.81) 

 
SMB 

0.0016 
(0.90) 

LIQ 0.0061 
(0.80) 

MVOL 0.0002 
(0.08) 

 
DEF 

-0.0011 
(-1.21) 

 
UI 

-0.0007 
(-1.43) 

 
GIP 

0.0004 
(0.19) 

AVOL  
1st Principal Component 

0.2413 
(0.60) 

ρ 
1st Principal Component 

-0.5067 
(-2.18) 

Intercept 0.0064 
(1.02) 

 
Adjusted R2 86.37 

 
 
 
 



  

Table 6 
Cross-Sectional Prices of Risk: The Conditional Beta Approach 

This table reports cross-sectional γ coefficients from the following Fama-MacBeth regression: 

t,i1tZ*,iz,i1tZ*AVOL,iAVOLzAVOL,iAVOL

1tZ*HML,iHMLzHML,iHML1tZ*m,imzm,im1tz0t,i

eˆˆˆˆ

ˆˆˆˆZR

+βγ+βγ+βγ+βγ+

βγ+βγ+βγ+βγ+γ+γ=

−ρρρρ−

−−−  

that uses the excess returns on 25 portfolios sorted by book-to-market and size as the dependant variables, 
where 1tZ −  is a conditioning variable known to the market at time t, mzγ is the price of risk related to time-
variation in the market risk premium, HMLzγ is the price of risk related to time-variation in HML, AVOLzγ is 
the coefficient associated with time-variation in asset volatility innovations, ργ  is the measure of price of 

correlation innovation risk, and zργ  is the price of risk related to time-variation in correlation innovations. 
To compute the aggregate correlation we start with a base set of 5 portfolios sorted by size and book-to-
market (small-growth, small-value, medium, large-growth, and large-value). We use the first principal 
component of the matrix of asset correlation innovations (after removing the effects of macroeconomic 
variables from each pair-wise Fisher-transformed correlation). Our conditioning variable, Z t-1, is TERM, 
defined as the yield spread between a 10-year and a 1-year Government bond. The full-sample factor 
loadings, which are the independent variables in the regressions, are computed in one multiple time-series 
regression. The coefficients are expressed in decimals per month. The adjusted R2 follows Jagannathan and 
Wang (1996) and is reported in decimals. The t-statistics are adjusted for errors-in-variables, following 
Shanken (1992), and are reported in parenthesis. Bold numbers denote t-statistics that are significant at the 5 
percent level. The last row reports the p-value for the test that ργ  and zργ  are jointly equal to zero. The 
table examines the sample period from July 1963 to December 2003. 
 

Risk Factor Price of Risk 

MKT -0.0013 
(-0.20) 

MKT* Z t-1 
-0.0000 
(-0.03) 

HML 0.0046 
(3.24) 

HML* Z t-1 
0.0001 
(0.82) 

AVOL  
1st Principal Component 

0.4410 
(1.33) 

AVOL* Z t-1 
0.0086 
(1.34) 

ρ 
1st Principal Component 

-0.6709 
(-2.33) 

ρ * Z t-1 
-0.0074 
(-2.00) 

Zt-1 
0.0065 
(1.71) 

 
Intercept 

 

0.0057 
(0.93) 

Adjusted R2 83.93 

p-value 0.03 

 



  

Table 7 
Cross-Sectional Prices of Risk: The Conditional Beta Approach 

(Including Industry Portfolios) 
 

This table reports cross-sectional γ coefficients from the following Fama-MacBeth regression: 

t,i1tZ*,iz,i1tZ*AVOL,iAVOLzAVOL,iAVOL

1tZ*HML,iHMLzHML,iHML1tZ*m,imzm,im1tz0t,i

eˆˆˆˆ

ˆˆˆˆZR

+βγ+βγ+βγ+βγ+

βγ+βγ+βγ+βγ+γ+γ=

−ρρρρ−

−−−  

that uses the excess returns on 25 portfolios sorted by book-to-market and size as the dependant variables, 
where 1tZ −  is a conditioning variable known to the market at time t, mzγ is the price of risk related to time-
variation in the market risk premium, HMLzγ is the price of risk related to time-variation in HML, AVOLzγ is 
the coefficient associated with time-variation in asset volatility innovations, ργ  is the measure of price 

associated with correlation innovation risk, and zργ  is the price of risk related to time-variation in 
correlation. To compute the aggregate correlation we start with a base set of 10 assets: 5 portfolios sorted by 
size and book-to-market (small-growth, small-value, medium, large-growth, and large-value) and 5 industry 
portfolios (consumer goods, manufacturing, hi-tech, healthcare, and others). We use the first principal 
component of the matrix of asset correlation residuals (after removing the effects of macroeconomic 
variables from each pair-wise Fisher-transformed correlation). Our conditioning variable, Z t-1, is TERM, 
defined as the yield spread between a 10-year and a 1-year Government bond. The full-sample factor 
loadings, which are the independent variables in the regressions, are computed in one multiple time-series 
regression. The coefficients are expressed in decimals per month. The adjusted R2 follows Jagannathan and 
Wang (1996) and is reported in decimals. The t-statistics are adjusted for errors-in-variables, following 
Shanken (1992), and are reported in parenthesis. Bold numbers denote t-statistics that are significant at the 5 
percent level. The last row reports the p-value for the test that ργ  and zργ  are jointly equal to zero.  
     

Risk Factor Price of Risk 

MKT -0.0027 
(-0.52) 

MKT* Z t-1 
0.0001 
(0.35) 

HML 0.0041 
(2.90) 

HML* Z t-1 
0.0001 
(0.73) 

AVOL 
1st Principal Component 

0.7464 
(1.71) 

AVOL* Z t-1 
0.0088 
(1.10) 

ρ 
1st Principal Component 

-0.9645 
(-2.01) 

ρ* Z t-1 
-0.0096 
(-1.64) 

Zt-1 
0.0069 
(1.88) 

Intercept 0.0075 
(1.49) 

Adjusted R2 81.19 

p-value 0.05 

 
 



  

Table 8 
Cross-Sectional Prices of Risk: Using Average Correlation Innovations 

 
This table reports cross-sectional γ coefficients of 3 specifications from the following Fama-MacBeth 
regression: 

t,i,iAVOL,iAVOLGIP,iGIPUI,iUI

DEF,iDEFLIQ,iLIQMVOL,iMVOLSMB,iSMBHML,iHMLm,im0t,i

eˆˆˆˆ

ˆˆˆˆˆˆR

+βγ+βγ+βγ+βγ+

βγ+βγ+βγ+βγ+βγ+βγ+γ=

ρρ
 

that uses the excess returns on 25 portfolios sorted by book-to-market and size as the dependent variables, 
where mγ  is the market risk premium, HMLγ , SMBγ , DEFγ , MVOLγ , LIQγ are the risk premia associated 
with HML, SMB, default, market volatility innovation, and liquidity risk, AVOLγ is the coefficient associated 
with asset volatility innovations, and ργ is the coefficient associated with correlation innovation risk. To 
compute the aggregate correlation we start with a base set of 5 portfolios sorted by size and book-to-market 
(small-growth, small-value, medium, large-growth, and large-value). Our measure of correlation is based on 
the average correlation residuals (after removing the effects of macroeconomic variables from each pair-wise 
Fisher-transformed correlation). The full-sample factor loadings, which are the independent variables in the 
regressions, are computed in one multiple time-series regression. The coefficients are expressed in decimals 
per month. The adjusted R2 follows Jagannathan and Wang (1996) and is reported in decimals. The t-
statistics are adjusted for errors-in-variables, following Shanken (1992), and are reported in parenthesis. Bold 
numbers denote t-statistics that are significant at the 5 percent level. The sample period for the first 2 
specifications is from July 1963 to December 2003, and for the 3rd specification is from July 1968 to 
December 2003. 
 
 

 Specification 1 Specification 2 Specification 3 

 
Risk Factor 

 
Price of Risk 

 
Price of Risk Price of Risk 

 
 

MKT 
-0.0043 
(-0.80) 

-0.0047 
(-0.62) 

-0.0025 
(-0.39) 

 
HML 

0.0048 

 (3.40) 
0.0046 
(3.18) 

0.0049 
(2.88) 

SMB 0.0022 
(1.43) 

0.0029 
(1.90) 

0.0018 
(0.99) 

MVOL  -0.0014 
(-0.68) 

0.0000 
(0.01) 

 
DEF  -0.0010 

(-0.97) 
-0.0009 
(-1.08) 

 
UI  -0.0007 

(-1.31) 
-0.0007 
(-1.52) 

 
GIP  0.0012 

(0.57) 
-0.0001 
(0.06) 

LIQ   0.0096 
(1.18) 

AVOL  
Average 

-0.3695 
(-1.17) 

-0.4197 
(-0.93) 

-0.4895 
(-1.36) 

ρ  
Average  

-0.2786 
(-2.46) 

-0.3762 
(-2.26) 

-0.2071 
(-2.18) 

Intercept 0.0088 
(1.74) 

0.0083 
(1.12) 

0.0066 
(1.08) 

 
Adjusted R2 76.62 86.58 80.47 

 



  

 
 

Figure 1 
Correlation Plots 

 
This figure shows the time-series plots of the first two principal components based on the correlation matrix 
of asset returns. The asset classes include 5 portfolios sorted by size and book-to-market (small-growth, 
small-value, medium, large-growth, and large-value). The principal component analysis is performed on the 
matrix of Fisher-transformed asset correlations. Panel A plots the resulting 1st principal component, while 
Panel B plots the resulting 2nd principal component. The vertical lines indicate recession periods as defined 
by NBER. The sample period is from July 1963 to December 2003. 
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Panel B 

Second Principal Component based on Fisher Correlations
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Figure 2 
Correlation Innovation Plots 

 
This figure shows the time-series plots of the first two principal components based on the correlation 
innovation matrix of asset returns. The asset classes include 5 portfolios sorted by size and book-to-market 
(small-growth, small-value, medium, large-growth, and large-value). The principal component analysis is 
performed on the matrix of Fisher-transformed correlation residuals. Correlation residuals are obtained after 
removing the effects of macroeconomic variables (market return, expected inflation, unexpected inflation, 
real rate, growth rate of industrial production, past correlation levels) from each pair-wise Fisher-transformed 
correlation. Panel A plots the resulting 1st principal component, while Panel B plots the resulting 2nd 
principal component. The vertical lines indicate recession periods as defined by NBER.  The sample period is 
from July 1963 to December 2003. 
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Panel B 

Second Principal Component based on Correlation Innovations
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Figure 3 
Portfolio Returns Sorted by Market and Correlation Loadings 

 
This figure shows plots of the average returns of 25 portfolios of stocks for the period from July 1968 to 
December 2003. These 25 portfolios are constructed as follows. Each month, each stock's risk loadings are 
computed from a multiple regression of returns over the previous 60 months on the factors over the same 60 
months. The factors are the excess market return, and the excess return on a portfolio that mimics the first 
principal component of correlation residuals. The assets used to obtain the mimicking portfolio returns are 
the 6 Fama-French portfolios double-sorted on size and book-to-market. 5 groups are formed by sorting 
stocks on market beta. Each market beta group is further sorted into 5 groups based on correlation betas. 
Thus, the 5 major groups of bars in the figure below are based on market returns loadings, while the 5 bars in 
each major group are based on correlation loadings. 
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