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ABSTRACT

Previous empirical studies find both evidence of jumps in asset prices and that returns standardized
by ‘realized volatility’ are approximately standard normal. These findings appear to be contradictory.
This paper resolves the apparent contradiction using high-frequency returns data for 20 heavily-
traded US stocks. We show that microstructure noise may bias kurtosis estimates for standardized
returns. When we apply a bias-corrected realized variance estimator we find that standardized
returns are platykurtotic and that the standard normal distribution is easily rejected. We show that
when daily returns are standardized using realized bipower variation, an estimator for integrated
volatility that is robust to the presence of jumps, the resulting series does appear to be approximately
standard normal. For many of the stocks we consider the standardized returns are statistically
indistinguishable from the standard normal distribution when confronted with a set of moment-
based hypothesis tests. Our results suggest that there is no empirical contradiction: jumps should
be included in stock price models.
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1. Introduction

Asset prices are frequently modeled as evolving according to a continuous diffusive pro-

cess. This class of models is both tractable and flexible. Indeed, by superimposing multiple

stochastic volatility diffusive processes, such models may accommodate many of the ob-

served features of asset returns, such as time-variation in both conditional volatility and

conditional kurtosis.1 Nevertheless, the assumption that prices exhibit continuous sample

paths is restrictive. It is certainly plausible that asset prices exhibit occasional jumps,

possibly related to the release of firm-specific or macroeconomic news. Such reasoning

suggests that asset prices may be more appropriately modeled as jump diffusions. While

jump diffusion models permit greater flexibility than continuous diffusive processes, there

are potential drawbacks to permitting jump behavior. Jump diffusions are more difficult

to estimate. Further, jumps may pose different risks for investors and such risks may be

difficult to price empirically using cross-sectional data.

Given the additional difficulties of incorporating jumps into asset price models, assess-

ing the empirical evidence regarding both the existence and importance of jumps in asset

prices is a crucial task. A number of recent papers address this question. Andersen, Ben-

zoni and Lund (2001) and Chernov, Gallant, Ghysels and Tauchen (2003) find evidence of

jumps based on parametric estimation of jump diffusion models. More recently, Andersen,

Bollerslev and Diebold (2004), Huang and Tauchen (2005), Tauchen and Zhou (2005) and

Barndorff-Nielsen and Shephard (2006, 2005) provide evidence of jumps using techniques

that exploit the information in high-frequency intraday asset returns.

On the other hand, a number of recent studies observe that daily returns are nearly

Gaussian when standardized by “realized volatility,” constructed using high-frequency in-

traday returns.2 As shown by Andersen, Bollerslev, Diebold and Labys (2003), this finding

is consistent with a simple continuous diffusion model for asset prices. The finding that

daily returns standardized by realized volatility are Gaussian appears starkly at odds with

the emerging body of literature that directly tests for jumps in asset prices.

This paper resolves the apparent empirical contradiction, at least for the case of re-

turns on 20 heavily-traded US stocks. We first show that daily returns for these stocks,

standardized by realized volatility, are in fact not Gaussian. In particular, the standardized

returns appear to be platykurtotic. We demonstrate that kurtosis statistics for standardized
1See, e.g., Chernov, Gallant, Ghysels and Tauchen (2003).
2For example, Andersen, Bollerslev, Diebold and Ebens (2001) find that stock returns standardized by

realized variance are approximately Gaussian and Andersen, Bollerslev, Diebold and Labys (2001) obtain a
similar finding for exchange rate returns.
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returns constructed using the standard realized variance estimator may be biased and mis-

leading. When microstructure effects induce negative serial correlation in high-frequency

returns, the corresponding upward bias in realized variance induces an associated upward

bias in the kurtosis estimate for standardized returns. We illustrate that the upward bias in

kurtosis estimates is due to the fact that microstructure effects tend to be weaker on days

that exhibit large returns. While the realized volatility is biased upward for all returns, it is

less biased upward for extreme returns, leading to an upward bias in the estimated kurtosis

for standardized returns.

When we base kurtosis estimates on a bias-corrected version of the realized variance,

we find that the normality assumption is resoundingly rejected for nearly all of the stocks.

Further, this result is robust to sampling frequencies from one minute to 30 minutes. While

we concur with Andersen, Bollerslev, Diebold and Ebens that standardized returns are

much closer to normally distributed than raw daily returns, we statistically reject that

standardized returns are in fact normal.

A natural explanation for the non-normality of returns standardized by realized vari-

ance is the presence of jumps. We explore whether accounting for jumps leads to stan-

dardized returns that do appear to be Gaussian. We apply the realized bipower variation

estimator suggested by Barndorff-Nielsen and Shephard (2006) to obtain an estimate of

integrated variance that is robust to the presence of jumps. We apply a ‘signature plot’

similar to that suggested by Andersen, Bollerslev, Diebold and Labys (2001) to identify a

sampling frequency at which realized bipower variation appears to be nearly unbiased for

most of the stocks in our sample. We then examine the statistical properties of returns

standardized by the square root of realized bipower variation.

Accounting for jumps in estimation of the daily integrated variance of returns yields

returns that are much closer to a standard normal distribution relative to returns standard-

ized by realized variance. Indeed, we are unable to reject the null hypothesis of normality

using standard and robust moment-based tests for many of the stocks in our sample. Our

results are robust to alternative sampling frequencies so long as these sampling frequencies

are not finer than 4 or 5 minutes, at which point microstructure effects begin to severely

contaminate our realized bipower variation estimates.

Our results provide useful empirical guidance regarding appropriate continuous time

models for asset prices. On the one hand, the results suggest that, at least for the US

stocks we consider, jumps are important and should not be ignored in constructing an

appropriate model for prices. On the other hand, we find that a Brownian semimartingale

model augmented by a finite activity jump component, where the volatility process evolves
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independently of innovations in prices, does not exhibit obvious signs of misspecification for

most of our stocks.

The empirical findings in this paper contrast with those of Thomakos and Wang (2003)

who test for normality of standardized returns for futures contracts on the Deutsche Mark,

the S&P 500 index, US Bonds and the Eurodollar and generally conclude that the null

hypothesis of standard normal returns cannot be rejected in those markets. Our study

is also related to recent work by Ait-Sahalia (2002, 2004). Ait-Sahalia (2002) proposes

a method for distinguishing between a Markov diffusion processes and a Markov processes

with jumps that is based on a fundamental positivity requirement for the transition function

of any Markov diffusion process. This approach does not require high-frequency returns.

Empirically, Ait-Sahalia (2002) finds that the transition density extracted from implied

volatilities on S&P 500 options is incompatible with an underlying diffusion model, i.e.,

jumps are needed. It is reassuring that the conclusion that jumps should be included in

stock price models obtains under both our approach using high-frequency data and that

of Ait-Sahalia (2002).3 Referring to the Ait-Sahalia’s research, Granger (2005) remarks

“If further evidence for [jump diffusions] is accumulated, the majority of current financial

theory will probably have to be rewritten with “jump diffusion” replacing “diffusion” and

with some consequent changes in theorems and results.” (p. 18) This paper finds precisely

this, in the sense that jump diffusions must be entertained.

The paper is organized as follows. In Section 2 we briefly review the relevant theory

to obtain testable implications for standardized returns from Brownian semimartingale and

Brownian semimartingale models with jumps. Section 3 discusses methods for measuring

variation in prices using high-frequency data that permit us to conduct feasible tests. Sec-

tion 4 describes the data and our approach to constructing high frequency intraday stock

returns. Section 5 considers whether daily returns standardized by the square return of

realized variance are Gaussian. Section 6 discusses our approach to extracting the jump

component from daily return variation and presents empirical results for tests of whether

returns, standardized by the square root of bipower variation, are standard normal. Section

7 concludes.

2. Theory

We consider a log stock price process pt that evolves continuously in time. Let rt,Δ =

pt − pt−Δ denote the stock’s Δ-period return ending at time t. We will consider intraday
3Ait-Sahalia (2004) shows that it is possible to distinguish between jumps and diffusion models even

when jumps are small and occur infinitely often in finite time interval.
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returns and variance measures, and these are indexed by n for each trading day. In a

frictionless market with no arbitrage opportunities pt must obey a semimartingale process

on some filtered probability space (Ω,F , (Ft)t≥0, P ), as detailed by Back (1991). Such a

process may be decomposed as follows

pt = At + Mt

where At is a (local) finite variation process and Mt is a (local) martingale. The most

familiar and most frequently applied process in the class of semimartingales is the Brownian

semimartingale

pt =
∫ t

0
μ(s)ds +

∫ t

0
σ (s) dW (s) (1)

where
∫ t
0 u(s)ds is a local finite variation process, σ is a cadlag volatility process, dW (s)

represents increments to a Brownian motion W (t). We note that the process in (1) has

continuous sample paths so that no jumps in stock prices are permitted.

Under the additional assumption that the conditional mean and volatility processes

μ(s) and σ (s) are independent of the innovation process W (s) over the period [t − Δ, t],

Andersen, Bollerslev, Diebold and Labys (2003) show that

rt,Δ |Ft−Δ,t ∼ N

(∫ t

t−Δ
μ(s)ds,

∫ t

t−Δ
σ2(s)ds

)
(2)

where Ft−Δ,t is shorthand for the σ-field generated by {μ(s), σ (s)} over the interval [t −
Δ, t].4 If we additionally rule out time variation in the conditional mean of returns, the

distributional result in (2) implies that discretely sampled returns are governed by a normal

mixture, where the mixture is governed by the daily integrated variance of returns. Con-

ditional mean variation is empirically an order of magnitude smaller than return variation

at short horizons, so ignoring potential time variation in the conditional mean should be

innocuous in practice. As ABDL (2003) point out, the distributional result in (2) conditions

on ex post sample path realizations of μ(s) and σ (s).

If the price process follows (1) with σ(s) and μ(s) independent of W (s) and assuming it

were possible to observe the intraday integrated variance, then intraday returns standard-

ized by the square root of intradaily integrated variance should follow a standard normal

distribution. We might conduct a statistical test to determine whether this implication
4Henceforth the authors Andersen, Bollserslev, Diebold and Labys will be referenced as “ABDL,” while

Andersen, Bollerslev, Diebold and Ebens will be similarly referenced as “ABDE.”
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appears to be empirically valid. Rejection of the null hypothesis that standardized returns

are Gaussian is thus implicitly a rejection of the model (1) with the additional independence

restrictions.

The assumptions underlying (2) rule out features of stock prices that may be important

empirically. It is possible that stock prices exhibit jumps resulting from the sudden arrival

of firm-specific or macroeconomic news. Further, the assumption that both the mean and

volatility process are independent of the increment to returns rules out the so-called leverage

effect, whereby innovations to returns and volatility are contemporaneously correlated. As

an alternative to (1), we also consider a continuous-time semimartingale jump diffusion

process:

pt =
∫ t

0
μ(s)ds +

∫ t

0
σ (s) dW (s) +

N(t)∑
j=1

κj (3)

where N is a counting process, κj are the associated nonzero jump increments and all other

components are as in (1). The process in (3) may be characterized as a Brownian semi-

martingale with finite jump activity. It is worth emphasizing that the process (3) is quite

general. The drift component μ(s) is simply assumed to be a locally finite variation process,

thus a time-varying drift is acceptable so long as the finite variation condition is satisfied. All

that is required of the volatility process σ(s) is that it be cadlag. Again, much flexibility is

permitted, such as multi-factor volatility processes as studied by Chernov, Gallant, Ghysels

and Tauchen (2003). Finally, little is specified regarding the jump component save that an

infinite number of jumps in a ‘small’ period is forbidden. In particular, the jump intensity

and jump size may evolve over time.

Suppose that both the integrated variance process and jump process
∑N(t)

j=1 κj were

observable. We could then construct the following adjusted price process and associated

intradaily return series:

p∗t = pt −
N(t)∑
j=1

κj (4)

r∗n ≡ p∗nC − p∗nO = rn −
N(nC)∑

j=N(nO)+1

κj. (5)

where nO and nC denote the times corresponding to the market open and close on trading

day n. The series in (5) is simply the daily returns less the return component arising from

5



jumps. The process p∗t is a Brownian semimartingale with continuous sample paths. If

we maintain the assumption that the conditional mean and volatility processes μ(s) and

σ (s) are independent of the innovation process and we again ignore time variation in the

conditional mean, then daily returns r∗n, standardized by the square root of daily integrated

variance should follow a standard normal distribution. We could again test whether this

implication holds empirically. Given the generality of the process (3), the most empiri-

cally relevant restriction on the price process is the assumption of independence between

{σ(s), μ(s)} and W (s), which is indeed restrictive. This assumption rules out the lever-

age effect and more generally rules out any type of dependence between evolution in the

mean and variance process and evolution of the Brownian motion governing return incre-

ments. This includes, for example, volatility “feedback” effects in which future increments

to returns depend on the past evolution of volatility.

Of course, since neither the integrated variance series nor the jumps series in the case

of the process (3) are observed, the tests described above are infeasible. Making use of

recent econometric results that rely on high-frequency intraday price data, however, we

will be able to construct feasible versions of these tests. The following subsections briefly

summarize recent results that will permit us to decompose the total variation in prices into

integrated variance and a variation attributable to jumps in asset prices.

3. Constructing Feasible Tests

We begin with the fundamental notion of the quadratic variation (QV) of the price process

pt, defined as

[p]t ≡ p lim
m→∞

ti≤t∑
i=1

(pti−pti−1)
2 (6)

for any (deterministic) sequence of partitions 0 = t0 < t1 < ... < tm = t with supi{ti+1 −
ti} → 0 for m → ∞. Under the assumption that pt is a semimartingale the quadratic

variance [p]t is assured to exist. For the process in (3), the quadratic variation of pt may

be decomposed as

[p]t =
∫ t

0
σ2(s)ds +

N(t)∑
j=1

κ2
j . (7)

where
∫ t
0 σ2(s)ds is the integrated variance of the price process and

∑N(t)
j=1 κ2

j is simply the

sum of squared jumps. The increment in the quadratic variation process during trading day
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n is given by

[p]nC − [p]nO =
∫ nC

nO

σ2(s)ds +
N(nC)∑

j=N(nO)+1

κ2
j . (8)

Intuitively, the day n increment in the quadratic variation of the price process captures

the total intraday variation in the price process, which may be decomposed into the sum of

the integrated variance for the nth trading day plus the sum of squared jumps occurring on

the nth day.

3.1 Realized Variance

Econometric measurement of the increments in quadratic variation is typically based on

the realized variance. The standard definition of the realized variance on day n is obtained

by dividing the trading day into m subperiods of length Δ = 1/m and then summing the

squared returns for each subperiod,

RVm
n =

m−1∑
i=0

r2
nC−iΔ,Δ. (9)

ABDL (2001) and Barndorff-Nielsen and Shephard (2001, 2002) show that under weak

regularity conditions, the theory of quadratic variation implies that RVm
n − IVn → 0 almost

surely as Δ → 0. In the absence of jumps, the decomposition in (7) implies that the

quadratic variation is simply equal to the integrated variance. Thus, by using high-frequency

intradaily returns, we can potentially construct nonparametric estimates of the integrated

variance that are consistent and vastly more efficient than estimates obtained using daily

squared returns. Realized variance sampled at sufficiently high frequencies (e.g., every 5

seconds) theoretically yields an effectively error-free measure of quadratic variation. The

realized variance estimator, along with the availability of high-frequency intraday returns,

thus permits a feasible test of the normal mixture hypothesis for standardized daily returns.

3.2 Bipower Variation

Related to the quadratic variation process is the bipower variation process, defined as5

{p}t = p- lim
δ→0

�t/δ�∑
i=2

|pi−1| |pi|. (10)

5Bipower variation may be defined more generally (see, e.g., Barndorff-Nielsen and Shephard (2005)).
However, we will not need this additional generality in this paper.
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Unlike the quadratic variation process, which is assured to exist for semimartingales, the

bipower variation process is not guaranteed to exist. The limit in (10) does exist, however,

when log prices follow the process (3). Barndorff-Nielsen and Shephard (2006, hereafter

“BNS”) show that, if log prices follow (3) with mild additional restrictions and under the

additional assumption that σ is independent of W (s) (this rules out the leverage effect),

then

{p}t →
2
π

∫ t

0
σ2(s)ds.

The crucial implication of this result is that π
2 {p}t and quadratic variance are identical

when there are no jumps (i.e., under process (1)), but differ precisely when jumps occur.

Again dividing the trading day into m subperiods of length 1/Δ, BNS show that a consistent

estimator for the daily increment in the bipower variation process is

m∑
i=2

∣∣rnC−iΔ,Δ

∣∣ |rnC−(i+1)Δ,Δ|.

Multiplying the above estimator by π/2, we obtain a consistent estimator for quadratic

variance in the presence of jumps. Following the literature, we will define realized bipower

variation (BV ) as

BVm
n =

π

2
m

m − 1

m∑
i=2

∣∣rnC−iΔ,Δ

∣∣ |rnC−(i+1)Δ,Δ| (11)

where the m
m−1 term is a finite sample correction that delivers unbiased estimates in the

Brownian motion case (see BNS).

With sufficiently finely sampled data, BV provides a highly accurate estimate of the

daily integrated variance in returns in the presence of jumps. By using the BV series to

standardize returns, we make progress toward a feasible test of the normal mixture hy-

pothesis when returns exhibit jumps. The remaining obstacle is the need to construct a

feasible estimator for the jump component in returns,
∑N(nC)

j=N(nO)+1
κj. Extracting the jump

component from returns is a difficult endeavor. To appreciate this, note that while a com-

parison of the difference RV m
n −BV m

n yields a consistent estimate of the daily contribution

of jumps to total return variation,
∑N(nC)

j=N(nO)+1
κ2

j , such a comparison does not directly

provide information regarding the number, sign, or magnitude of jumps in asset prices. We

defer further consideration of this issue until Section 6 of the paper where we discuss the

specifics of our approach to testing whether standardized returns ‘adjusted’ for jumps are

Gaussian.
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3.3 Microstructure effects and realized variance

In practice, realized variances constructed according to equation (9) are often biased because

the true price process is unobservable and the variances must be estimated from observed

prices. For returns constructed from transaction prices, serial correlation is induced by

bid-ask bounce, price discreteness, and price reporting errors. For returns constructed from

bid-ask midpoints, serial correlation is induced by the second of these effects, as well as the

economics driving dealer revisions of their bid-ask quotes. Using either approach, the serial

correlation tends to be more pronounced with more frequent sampling (i.e., increasing m),

which suggests that the bias can potentially offset the efficiency gains associated with more

frequent sampling.6

Given the trade-off between bias and efficiency gains, it has become standard prac-

tice to construct realized variance using returns sampled at a five-minute frequency (e.g.,

see Andersen and Bollerslev (1997)). More formally, Bandi and Russell (2004) derive the

optimal sampling frequency under a mean squared error criterion. Other researchers use

techniques to reduce the effects of the measurement error.7 ABDE (2001), for example,

fit an MA(1) model to observed returns and then use the residuals to construct realized

variance. ABDL (2001) use linear interpolation to estimate the price at each time increment

and then use the returns based on these “smoothed” prices to construct realized variance.

However, using either of these techniques, returns still typically exhibit serial correlation,

and thus we must still limit the sampling frequency in order to prevent bias.

We adopt another approach which directly accounts for the serial correlation in returns

when constructing our estimator of the variance. Specifically, we use a Newey-West (1987)

estimator of realized variance,

RV(NW)m
n =

m−1∑
i=0

r2
nC−iΔ,Δ + 2

qm∑
j=1

(
1 − j

qm + 1

) m−j−1∑
i=0

rnC−iΔ,ΔrnC−(i+j)Δ,Δ, (12)

where qm denotes the lag length captured by the covariance terms. The advantage of this

approach is that the estimator removes the effects of serial correlation on the variance,

potentially allowing us to sample returns at a higher frequency and incorporating relevant

information that might otherwise be lost. We evaluate different choices of the sampling

frequency (m) and the lag length (qm) in Section 5.

The estimator in (12) is motivated by bias correction results obtained by Hansen and
6See, e.g., Andreou and Ghysels (2002) for some numerical estimates of the bias.
7A number of recent papers examine microstructure noise and realized variance estimation, including

Barndorff-Nielsen, Hansen, Lunde and Shephard (2004), Oomen (2002, 2004), Hansen and Lunde (2006)
and Zhang, Mykland and Ait-Sahalia (2004).
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Lunde (2006) and Barndorff-Nielsen, Hansen, Lunde and Shephard (2004). Hansen and

Lunde (2006) propose a different weighting scheme in equation (12) which delivers con-

ditionally unbiased estimates. However, their estimator can generate negative variance

estimates. In our sample, the number of negative estimates per stock ranges from 42 with a

30-second sampling frequency, to 25 with a 5-minute sampling frequency, to 135 with a 60-

minute sampling frequency. The estimator in (12) is guaranteed to be positive. This comes

at a cost, however, since this estimator is not, strictly speaking, conditionally unbiased. In

practice, however, the estimator affords the potential of a nearly unbiased realized variance

estimator that is guaranteed to be positive. We confirm the nearly unbiased behavior of

the NW estimator empirically in Section 5. The NW estimator thus provides an alternative

to the ‘raw’ realized variance estimator for conducting feasible tests for the normality of

standardized returns.

In Section 5 of the paper we explore the extent to which microstructure effects bias

standard realized variance estimates and the ability of the Newey-West estimator of realized

variance to correct the bias. Before moving on to describe the data and our construction

of high-frequency returns, we note that microstructure effects might also affect the BV

estimator. This issue has received fairly limited attention in the literature. Huang and

Tauchen (2005) and BNS examine bias in realized bipower variation under different models

for microstructure noise. Both studies recommend using a “skipped” BV estimator to

mitigate potential bias from microstructure noise. Such a skipped estimator takes the form

BVm,j
n =

π

2
m

m − j

m∑
i=j+1

∣∣rnC−iΔ,Δ

∣∣ |rnC−(i+j)Δ,Δ| (13)

where j indicates the degree of skip. BNS and Huang and Tauchen (2005) suggest that a

single skip may work well in practice. BNS also point out that the BV estimate appears

to fall as the sampling frequency becomes less fine. Fleming and Paye (2005) empirically

examine the sensitivity between sampling frequency and skipped and un-skipped versions

of BV . They conclude that BV estimates, like RV estimates, are subject to bias at high

sampling frequencies and suggest using an analog of the signature plot of ABDL (2000) to

determine an appropriate sampling frequency for unbiased estimation of BV . We return to

this issue in Section 6 of the paper where we discuss the empirical details of our approach

to detecting and extracting jumps in stock prices.
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4. Data

The data consist of intradaily prices for the 20 stocks in the Major Market Index (MMI).8

We obtain these data from the Trade and Quote (TAQ) database distributed by the New

York Stock Exchange (NYSE). The sample period is January 4, 1993 to December 31, 2003,

a period of 2,771 trading days.9

We construct a database of intradaily transaction prices from the TAQ consolidated

trade (CT) database. We include records for trades executed on any exchange, but we

exclude records that have an out-of-sequence time, a price of zero, a TAQ correction code

greater than two (i.e., errors and corrections), or a TAQ condition code (i.e., nonstandard

settlement). In addition, we apply two screens to eliminate obvious price reporting errors.

First, we eliminate all records with a reported price more than 20 percent greater or less than

the previous transaction price. Second, we identify all records that imply a price change

greater than two percent in magnitude, which are followed by a price reversal greater than

two percent in magnitude. We eliminate the record if the price change is more than two

times greater than the next largest price change on that day, or if the “suspicious” price is

outside the day’s high-low range by more than the next largest price change on that day.

4.1 Construction of the returns

On most days, the trading day begins at 9:30am EST and ends at 4:00pm EST, a period of

390 minutes. We divide this period into m intervals to construct returns with a sampling

frequency of 390/m minutes. We consider a range of values for m, from m = 780 (i.e.,

30-second intervals) to m = 6.5 (i.e., 60-minute intervals). If m is an integer (e.g., m = 13),

then the trading day divides evenly into m intervals, each with a length of 390/m minutes.

If m is not an integer (e.g., m = 6.5), then we construct ceil(m) intervals, with the first one

only mod(390, int(m)) minutes in length, and the others 390/m minutes in length.10

We identify the prices at the endpoints of each of these intervals using the price database

from the previous section. We start with the first price in the database for the particular day.

We treat this as the starting price for the interval in which the observation occurred. We
8The firms in the MMI are American Express (AXP), AT&T (T), ChevronTexaco (CVX), Coca-Cola

(KO), Disney (DIS), Dow Chemical (DOW), DuPont (DD), Eastman Kodak (EK), Exxon-Mobil (XOM),
General Electric (GE), General Motors (GM), International Business Machines (IBM), International Paper
(IP), Johnson & Johnson (JNJ), McDonald’s (MCD), Merck (MRK), 3M (MMM), Philip Morris (MO),
Procter and Gamble (PG), and Sears (S).

9Philip Morris has one less trading day than the other firms because its stock did not open on May 25,
1994 in advance of a board meeting regarding a proposal to split the firm’s food and tobacco businesses.

10ceil(m) denotes the smallest integer greater than or equal to m, int(m) denotes the smallest integer less
than or equal to m, and mod(a, b) denotes the remainder of a divided by b.
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then estimate the price at the end of this interval using linear interpolation (Andersen and

Bollerslev (1997)).11 We identify the first price before (pti) and the first price after (pti+1)

the end of the interval (at time τ), and we compute pτ = pti +(pti+1 −pti)(τ − ti)/(ti+1− ti).

If one or more observations occur exactly at the end of the interval, then we average the

prices for all of these observations rather than interpolating. We use this same procedure to

estimate the price at the end of each of the remaining intervals throughout the day, except

for the last interval, in which we simply use the day’s last price. We then take the first

differences of the logs of these prices to estimate the 390/m-minute intraday returns.

4.2 Characteristics of Returns

Table 1 displays basic summary statistics for each of the stocks in the MMI, including

the average number of trades, the average intraday squared return and the annualized

volatility of intraday returns. On average, there are over 2,200 transactions per day per

stock during our sample period. GE has the greatest number of transactions, 5,533 per

day on average, and DOW has the least, 965 per day on average. Sears has the highest

volatility, with an average daily squared open-to-close return of 4.36 percent (or 33.2 percent

annualized volatility), and XOM has the lowest volatility, with an average daily squared

open-to-close return of 1.80 percent (or 21.3 percent annualized volatility). Table 1 also

reports the average time in seconds to the 5-minute grid, defined as the average of the time

distance of the nearest trade across all gridpoints based on our partition of all trading days

into 5-minute subintervals. Lower average times to gridpoint are indicative of more active

markets. When the average time to gridpoint is high relative to the sampling frequency

(e.g., relative to 300 seconds for the results in Table 1) then microstructure effects are likely

to be substantial.

Table 2 reports the serial correlation of the intraday returns by sampling frequency,

averaged across the 20 stocks. As expected, the first-order serial correlation is typically

negative (−0.07 for five-minute returns), and the magnitude increases with the sampling

frequency (−0.15 for 30-second returns). As noted earlier, these effects can arise from bid-

ask bounce, price discreteness, and/or reporting errors, and for each of these causes the

effects should be more pronounced at finer sampling frequencies.
11We find that using linear interpolation rather than the last price in each interval substantially reduces the

serial correlation in returns at high sampling frequencies and leads to less biased realized variance estimates.
This is true even if we use an MA(1) model to filter the returns (e.g., ABDE (2001)). Moreover, although

Hansen and Lunde (2006) show that RVm
n

p→ 0 as m → ∞ when using the interpolation method, we find no
evidence of this effect in our sample using sampling frequencies as fine as 30 seconds. As a robustness check
we also conducted the empirical analysis using prices constructed using the last-tick method as opposed to
interpolation. The main qualitiative results are very similar and are available from the authors upon request.
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5. Are Returns Standardized by Realized Volatility Gaussian?

While there is a great deal of emerging literature that examines microstructure bias and

realized variance estimation, a standard applied practice entails sampling returns at a 5-

minute frequency. As an exploratory analysis, we construct realized variance estimates

at the 5-minute frequency and examine the properties of the realized variances and daily

returns standardized by the realized volatility. Table 3 reports summary statistics for the

realized volatility and log realized volatility for each of the MMI firms. Realized volatility

exhibits positive skewness and heavy excess kurtosis. Log realized volatility, on the other

hand, does not display marked skewness or leptokurtotic behavior.

Table 4 presents results for a battery of statistical tests for the normal distribution

based on the standardized returns. In this paper we focus on moment-based tests for

normality. We report p-values for the Jarque-Bera test as well as for separate tests based

on the estimated skewness and kurtosis. Tests based on skewness and kurtosis statistics

may be quite sensitive to outliers. For this reason, we also report robustified versions of

these tests due to Brys, Hubert and Struyf (2004b). The appendix to the paper discusses

the construction of these robust tests, which sacrifice some power relative to the standard

tests but are less sensitive to outliers. Table 4 presents the summary statistics and results

for each of the tests for all of our MMI firms. The appendix contains additional details

regarding the tests for normality reported in the table.

While there is some variation both across stocks and across tests, the results in Table

4 appear to offer a reasonable amount of support for the simple normal mixture hypothesis.

The Jarque-Bera tests fail to reject at the 5% level for 7 out of 20 stocks and fails to reject

at the 1% level for 17 out of 20 stocks. The robust test statistics fail to reject for most of the

stocks. Our results in Tables 3 and 4 broadly replicate findings reported in ABDE(2001),

who find that standardized daily stock returns are ‘approximately Gaussian.’ ABDL(2000)

and ABDL(2003) report similar findings for exchange rate returns.

It is tempting to simply conclude that the normal mixture hypothesis is empirically

supported based on these test results. On the other hand, the tests were based on a 5-

minute sampling frequency which was somewhat arbitrarily selected to accord with common

practice. It is possible that microstructure effects exist at this sampling frequency, which

may impact statistical inference. Consequently, we next explore the robustness of our test

results to the choice of sampling frequency.
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5.1 Microstructure bias and the kurtosis of standardized returns

We construct the trading-day realized variances given by equations (9) and (12) for each

stock, for each day in the sample, and we evaluate a range of sampling frequencies, from

m = 780 to m = 6.5. We refer to estimates based on (9) and (12) as the RAW and

NW estimates, respectively. For the NW estimates, we also evaluate a range of window

lengths (w) for the autocovariance terms: 15, 30, and 60 minutes. To implement a given

window length, we set qm = ceil( w
390/m ).12 We refer to these as the NW15, NW30, and

NW60 estimates. Figure 1 shows the average realized variances for each sampling frequency,

averaged across all of our MMI firms. The figure is similar to the volatility signature plot

proposed by ABDL (2000) to identify the ‘optimal’ sampling frequency.13 The idea is to

detect the frequency at which microstructure effects begin to bias the estimates. ABDL

(2000) recommend selecting the finest sampling frequency for which microstructure effects

do not appear to bias estimates. The tick mark labeled DSR on the y-axis shows the average

daily squared open-to-close return.

The highest sampling frequency at which realized variance estimates appear to be

unbiased is substantially greater than 5 minutes for the RAW estimator. Sampling more

frequently, the realized variance estimates are upward biased due to the negative serial

correlation in returns, and sampling less frequently (although not biased) entails greater

sampling error. At a five-minute frequency, the estimates are on average more than 13

percent greater than the average daily squared return.14 Also note that the bias increases

sharply at the highest sampling frequencies.

The NW estimates, on the other hand, are not very sensitive to the sampling frequency,

and they show little evidence of bias. The NW30 and NW60 estimates are especially stable,

and for all of the sampling frequencies, they are within 2 percent of the average daily squared

return. There is some evidence that increasing the window width (w) beyond 15 minutes

reduces bias. The NW30 and NW60 estimates are on average smaller than the NW15

estimates and closer to the DSR, however, there is little noticeable difference in increasing

w from 30 to 60 minutes.
12As in Hansen and Lunde (2006), we increase qm when increasing the sampling frequency, m. The

intuition is that measurement errors take a certain period of time to die out (e.g., 15 minutes), and qm

should cover this period, independent of the sampling frequency.
13To conserve space, we do not present separate figures for each stock; however, such figures are available

upon request and illustrate that the individual stock plots share the features of the plot for the average
across stocks.

14We find that using MA(1)-filtered returns to construct realized variance (ABDL (2001)) does not remove
much of the bias. At the 5-minute frequency, the average MA(1) realized variance is less than one percent
lower than the average RAW estimate and, at the 30-second frequency, the difference is less than five percent.
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Figure 1 also presents the standard deviations of the RAW and NW estimates, aver-

aged across all MMI firms. For all choices of w, the standard deviations decrease with the

sampling frequency. This suggests, to the extent that the estimates remain conditionally

unbiased, that the efficiency gains from more frequent sampling lead to more optimal esti-

mates. Also note that the standard deviations are increasing in w. This is not surprising

because including additional (unnecessary) covariance terms reduces efficiency. Increasing

w from 15 to 30 minutes may be optimal to achieve a reduction in bias, but increasing to

60 minutes achieves little bias reduction and entails a noticeable loss in efficiency.15

We also use signature plots to examine the sensitivity of estimates of the skewness

and kurtosis of standardized daily returns to the sampling frequency. Figure 2 (Panel A)

plots the average skewness across the MMI firms for standardized returns, rn/
√

RVn, as a

function of the sampling frequency for the the RAW realized variance estimator and the NW

variants. The skewness estimates in Figure 2 are reasonably flat as a function of the sampling

frequency for all realized variance estimators. To the extent that microstructure noise biases

the RAW realized variance estimates, there does not appear to be a corresponding bias

induced in the skewness of standardized daily returns.

The situation is much different for a similar plot for kurtosis estimates, presented

in Panel B of Figure 2. It is clear that the upward bias in the RAW realized variance

estimator induces a corresponding upward bias in the kurtosis estimates. The signature

plot of kurtosis under the RAW estimator for most stocks may be described as a downward

sloping curve starting at roughly 3.5 at the highest sampling frequency and ultimately

flattening out at a kurtosis in the range 2.3 - 2.5. The NW estimators, on the other hand,

exhibit flat kurtosis signature plots, mostly in the 2.3 - 2.7 range. It is notable that at

the 5-minute sampling frequency the kurtosis under the RAW estimator is close to 3 in

many cases. The signature plots reveal that not all microstructure bias has been purged at

this sampling frequency and these estimates of the kurtosis of standardized returns remain

upward biased. Table 5 presents tests for normality for returns standardized by the square

root of the NW-30 estimate of realized variance at the 30-second sampling frequency. The

results differ markedly from those displayed in Table 4. The Jarque-Bera test rejects for all

stocks at the 99% level. The separate moment tests reveal that the rejection is largely driven

by the platykurtotic behavior of these standardized returns. We continue to reject the null

in most cases under the two robust tests that consider tail-weight (RJB1 and RJB2). In

summary, once an unbiased realized variance estimator is used to standardize returns, it is
15We also investigating using bid-ask quotes to construct realized variance. However, we find that the

variance of the estimates is approximately the same as that using transaction prices.
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clear that, from a classical hypothesis testing viewpoint, the null of normality is not difficult

to reject.

5.2 What drives the bias in kurtosis?

The signature plots in Figures 1 and 2 illustrate that the upward bias in realized volatility

at high sampling frequencies yields a corresponding upward bias in the kurtosis of standard-

ized returns. Consequently, reliance on RAW realized volatility estimates at the standard

5-minute sampling frequency leads to a spurious finding that standardized returns are nor-

mally distributed for the stocks we examine. We now explore the mechanism by which the

upward bias in realized volatility translates into an upward bias in the kurtosis of standard-

ized returns.

There is reason to suspect that the bias in RAW realized variance estimates varies

over time as market conditions fluctuate. Fundamentally, this bias is induced by negative

autocovariances in high-frequency returns related to microstructure effects such as bid-ask

bounce. The nature of these microstructure effects presumably varies over different trading

days according to market conditions. For example, the extent to which microstructure

effects contaminate high-frequency returns may depend on whether an unanticipated firm-

specific or macroeconomic announcement occurs on the trading day in question. Suppose

that microstructure effects are weaker on days characterized by large absolute returns.

Then the RAW realized variance will be less upward biased on large (absolute) return

days relative to other trading days. Consequently, when returns are standardized by RAW

realized volatility, the relatively smaller upward bias in realized volatility on large return

days will artificially inflate the tails of the unconditional distribution of standardized returns,

leading to upward bias in kurtosis estimates for the standardized returns. We now present

empirical evidence consistent with this hypothesized mechanism for the stocks we examine.

We designated, on a stock-specific basis, trading days when the absolute daily return

was in excess of 2 percent as large return days. The number of large return days varies

from 763 for Sears, to 316 for ExxonMobil. Table 6 presents summary statistics for daily

returns on large return days. Comparing the results in Table 6 to those in Table 1, it is clear

that large return days are accompanied on average by higher trading volume and higher

volatility. The average time to the gridpoint is substantially lower for many of the stocks on

days with large returns. Table 7 presents the average of autocorrelation coefficients across

the MMI stocks at various sampling frequencies for large return days. When compared

to the analogous results in Table 2 for all daily returns, it is apparent that returns on

large return days exhibit much less negative serial correlation at high sampling frequencies,
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consistent with the notion that microstructure effects are weaker on these trading days.16

Figure 3 displays the average realized variances across the 20 MMI stocks as a func-

tion of the sampling frequency on large return days. Clearly, the volatility signature plot

conditional on a large absolute return exhibits much less evidence of upward bias due to

microstructure effects relative to the corresponding signature plots for all daily returns.

These results are consistent with the notion that microstructure effects are weaker on large

return days and that this phenomenon drives the transmission of upward bias in realized

variance estimates to upward bias in the kurtosis of standardized returns.

6. Do jumps account for the non-normality of standardized returns?

The results in the preceding section strongly indicate that daily returns standardized by

realized volatility are not Gaussian, and in particular they are platykurtotic. An obvious

explanation for non-normality of the standardized returns is the presence of jumps. In this

section we describe our approach to determining whether standardized returns are normal

once we account for jumps We then discuss the empirical results and comment on alternative

approaches and the robustness of our results.

6.1 Methodology

We seek to construct estimates of the series {r∗n/IVn} where IVn denotes the integrated

volatility on day n, and test whether the resulting series is standard normal as implied

by the theory discussed in Section 2. As discussed in Section 3 of the paper, the realized

bipower variation provides a consistent estimate of the integrated variance of returns in

the presence of jumps. Thus, rather than standardize returns by the realized volatility, we

standardize returns using in the square root of the realized bipower variation BV m
n defined

in (11). There remains the choice of sampling frequency, m, on which to base BV m
n While

the theory of bipower variation suggests that we sample as frequently as possible in order

to obtain as accurate an approximation to the IVn as possible, this ignores the possibility

that microstructure effects may induce bias in our estimates.

We elect to use bipower variation ‘signature plots’ similar to those proposed by ABDL

(2001) as a practical tool for selecting an appropriate sampling frequency for computing

bipower variation estimates. As in the case of realized variance, the ‘optimal’ sampling
16The autocorrelations on these trading days are positive and substantial at sampling frequencies greater

than 30 minutes. This is an artifact of our conditioning on large absolute return days. To see this, consider
half-day returns. Conditional on a large return day, returns over the first and second half of the day will
tend to be positively autocorrelated as, e.g., a positive return in the morning is more likely to be followed
by a subsequent positive return given that at close there is greater than a 2% daily return in absolute value.
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frequency is the highest frequency at which the BV m
n estimates appear to be unbiased. In

the case of realized variance, the average daily squared return is typically taken as a yardstick

against which to measure bias. In the case of realized power variation, BV 2
n serves as a

similar yardstick. This is simply the realized bipower variation computed using half-day

returns. At this frequency, microstructure effects are likely to be minimal, particularly

for the heavily-traded stocks considered in this paper, and so this estimator provides a

benchmark against which to compare estimators at higher frequencies.

Figure 4 presents a signature plot for the average realized bipower variation averaged

across the MMI stocks. The figure plots average realized bipower variation for BV m
n (de-

noted BV) as well as for ‘skipped’ versions computed according to (13) for j ∈ {2, 3}.The

figure illustrates that BV m
n is substantially upward biased for sampling frequencies higher

than 4-5 minutes and that a sampling frequency somewhere between 8-15 minutes is need

to achieve approximately unbiased estimates on average across the stocks. Based on the

signature plot in Figure 4, we elect to base realized bipower variation on BV 10
n , i.e., on a

sampling frequency of 10 minutes. At this frequency there appears to be minimal bias for

many of the stocks we consider.17

The final obstacle to a feasible test is construction of r∗n, the daily return adjusted to

remove the effect of jumps. As noted in Section 3, this is a nontrivial problem. Detection of

jumps may be based on a comparison of RV m
n and BV m

n and statistical tests for the presence

of jumps have been proposed by BNS (2006) and Huang and Tauchen (2005). However,

even though it is possible to detect the occurrence of jumps on a given trading day, such

tests provide little direct information regarding the number of jumps or the direction and

magnitude of jumps. Our approach is guided by the desire to obtain an estimate of r∗n
that is unbiased irrespective of whether or not jumps occur on a given trading day. If no

jumps occur, then rn is equivalent to r∗n Suppose that one or more jumps occur. If the

daily return provides minimal information regarding the sign and magnitude of the jumps,

then rn should be an approximately conditionally unbiased estimator for r∗n. Our approach,

then, is to simply take r∗n = rn to obtain a feasible test. Our new standardized series thus

differs from the original standardized series only through the use of a measure of integrated

variance that is robust to the presence of jumps.
17We also examined firm-by-firm signature plots. There is some variation among the firms regarding

the time at which realized bipower variance estimates appear to stabalize. A 10 minute sampling frequency
appears to offer reasonably unbiased estimates for most of our firms and for simplicity we apply this sampling
frequency in all cases. Robustness of our results to the sampling frequency is discussed in Section 6 of the
paper. Additionally, we found that using the skipped versions of the estimator often only partially mitigates
the bias at high sampling frequencies and so we elect to use the unskipped version at the 10-minute frequency
in this paper.
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We must acknowledge that in some cases the daily return may provide valuable infor-

mation regarding the sign and magnitude of the jump component in the daily return. This

may be the case, for example, when a single jump of very large magnitude occurs on a

particular trading day. Tauchen and Zhou (2005) attempt to exploit such information and

extract the jump component in daily returns. We discuss the robustness of our findings to

basing standardized returns on their approach later in the paper.

6.2 Empirical Results

Table 8 presents summary statistics and tests for normality for the series {rn/
√

BV 10
n }.

The summary statistics illustrate that the kurtosis for many stocks is quite close to the

appropriate value of three under the null. For most of the stocks, the variance, skewness

and kurtosis are similar to the theoretical equivalents for the standard normal. The returns

do appear to slightly positively skewed. Turning to the tests for normality, the Jarque-Bera

test fails to reject the null at the 5% level for 11 of 20 stocks and fails to reject at the 1%

level for 16 out of 20 stocks. Tests based on the separate moments also frequently fail to

reject. The robust tests yield qualitatively similar results, although the decision to accept or

reject the null hypothesis at conventional levels sometimes varies between the standard and

robust versions of the Jarque-Bera test. Broadly speaking, these results illustrate that while

daily returns standardized by realized volatility appear to be platykurtotic, the same returns

standardized by a volatility measure that is robust to jumps do appear to be approximately

Gaussian.

When we examine the separate moment tests, the null if rejected far more frequently

for the skewness test than for the kurtosis test. For example, the skewness test rejects for

12 out of 20 stocks at the 5% level while the kurtosis test rejects for only 3 out of 20 stocks.

Further, in those instances where we do see emphatic rejections of the null hypothesis under

the Jarque-Bera test, for GE, GM, KO and T, we see that in 3 out of 4 of these cases the

rejection is driven primarily by the significantly positive skewness of standardized returns.

6.3 Robustness

The results in Table 8 are based on a sampling frequency of 10 minutes, which we selected

based on our signature plots for realized bipower variation. Figure 5 explores the sensitivity

of our moment estimates to the choice of sampling frequency. In Figure 5 we present the

skewness and excess kurtosis estimates for the standardized returns {rn/
√

BV 10
n } as a func-

tion of sampling frequency m. For the kurtosis, at very high frequencies the excess kurtosis

is substantially greater than zero in most cases; however, as Figure 4 illustrates, realized
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bipower variation appears to be upward biased in at these sampling frequencies. Just as

in the case of bias in realized variance, this bias appears to translate into an upward bias

in the kurtosis estimates for standardized returns. For most stocks, the kurtosis estimates

stabilize by around 4-5 minutes at a level quite close to 3. The skewness estimates, on the

other hand, display little sensitivity to the sampling frequency. Our results, then, depend

only on choosing a sampling frequency greater than, say, 4 minutes and are not critically

dependent upon our choice of 10 minutes. While we find that a sampling frequency of

8-10 minutes provides less biased realized bipower variation estimates relative to higher

sampling frequencies, we have computed summary statistics and results for our tests of

normality using a 5-minute sampling frequency, which accords with common practice (see,

e.g., Andersen, Bollerslev and Diebold (2004), Huang and Tauchen (2005) and Bollerslev,

Kretschmer, Pigorsch and Tauchen (2005)). These results are available from the authors

on request.18

A potentially important feature of our data is the introduction of decimalization on

January 29, 2001. To examine the effect of decimalization, we computed both summary

statistics and tests for normality over the 733 observations following decimalization as well

as over the 733 last observations for the tick-based period. Results are presented in Table

9. The Jarque-Bera test fails to reject in the post-decimalization period for most stocks (14

out of 20) at the 5% level. Of course, there is a loss of power associated with the much

smaller sample size (733 observations relative to 2771) so it is not clear whether the fewer

rejections derives primarily from lower power or for a closer approximation to the normal

following decimalization. Some insight into this question may be derived from comparing

the post-decimalization results to the pre-decimalization results computed over a similar

sample size of 733. Over the 733 trading days immediately preceding decimalization, we

obtain quite similar results. The Jarque-Bera test fails to reject for 15 out of 20 stocks at the

5% level and the moment estimates for the stocks. Further, the moment estimates are fairly

similar across the two subsamples. The most substantial difference between the two sets of

results appears to be the kurtosis. The kurtosis in the pre-decimalization period is lower

on average than that after decimalization and the test based on this moment rejects more

frequently during the tick-based period. Overall, it appears that decimalization did not

dramatically alter the properties of standardized daily returns, with the caveat that there is

some evidence that the kurtosis is closer to the theoretical value over the post-decimalization

period.
18As the plots in Figure 4 suggest, we continue to find reasonable support for the standard normal

distribution even when we sample every 5-minutes.
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As a final robustness check, we consider basing r∗n on rn − Jn, where is an estimate

of the jump component in returns on days where (statistically) significant jumps appear to

occur. We base our approach on Tauchen and Zhou (2005), who attempt to extract the

‘realized jumps’ in returns by making two auxiliary assumptions. First, they assume that

at most one jump occurs on any given trading day. Second, they assume that the jump size

dominates the return for the day, in the sense that the sign of the daily return is equal to

the sign of the jump. Under these assumptions, they obtain the following estimator for the

daily realized jumps:

Jn = sign(rn) ×
√

(RVn − BVn) × In{test rejects} (14)

where In{test rejects} is a one on days when the null of no jumps is rejected at the 1%

level and is zero otherwise. We apply a statistical test for jumps based on (RVn − BVn)

suggested by BNS (2006).

Table 10 presents results for standardized returns based rn − Jn, where we continue

to use
√

BV 10
n as the standardization factor. These standardized returns are platykurtotic,

although they are less platykurtotic relative to the raw returns standardized by the NW

realized variance (compare with Table 5). It is notable that the standard deviation for these

returns is substantially less than one. This is explained by spurious rejection of the null

in the test for jumps. Suppose that no jump occurs but a spurious jump is detected by

the test. The return is adjusted by subtracting sign(rn) ×√
RVn − BVn which always has

the effect of reducing the absolute value of the daily return. Spurious jumps thus bias the

standard deviation downward. Note that even for a perfectly sized test, spurious jumps will

be detected for 1% of the number of days on which no jumps truly occur on average. If

jumps occur on 5% of trading days, so that no jump occurs on the remaining 95% of trading

days, then for our sample we would expect roughly 26 spurious jumps to be detected even

for a perfectly sized test. Although we reject the null that standardized returns are standard

normal under this approach, based on the discussion above it is clear that approaches based

on statistical tests for jumps lead to bias in the direction of rejecting a standard normal

distribution.19

19We emphasize that the objectives of this paper differ radically from those in Huang and Tauchen (2005b).
Indeed, our approach of setting r∗n = rn would be completely useless in their study, since their objective is
to extract realized jumps in returns and characterize the jumps.
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7. Conclusion

Recent empirical research suggests that jumps occur in asset prices. At the same time, daily

returns standardized by ‘realized volatility’ have been found to be approximately standard

normal, a finding consistent with a specification that rules out jumps. This paper resolves

these apparently contradictory findings using high-frequency returns data for 20 heavily-

traded US stocks. We show that kurtosis estimates based on standardized returns computed

using the typical realized variance estimator can be upward biased due to microstructure

noise when data are sampled at very high frequencies. Using a realized variance measure that

corrects for microstructure bias, we find that standardized returns are in fact platykurtotic

and the normal distribution can be statistically rejected.

If jumps are the source of non-normality for standardized returns, then standardized

daily returns should follow the standard normal distribution when the standardization is

based on realized bipower variation, an estimator for integrated volatility robust to the

presence of jumps. This is precisely what we find for many of our stocks. In fact, for

roughly half of the stocks we consider our ‘adjusted’ standardized returns are statistically

indistinguishable from the standard normal distribution when confronted with a set of

hypothesis tests. Even in instances when we continue to reject the null of normality, the

returns standardized by realized bipower variation provide a closer approximation to the

normal distribution relative to returns standardized by an unbiased measure of realized

variance. This finding is robust to the specific choice of sampling frequency so long as this

frequency is greater than 3 or 4 minutes.

The mixture of normals hypothesis places important restrictions on the stock price

process. Stock price paths must be continuous and the volatility process must evolve inde-

pendently of the Brownian motion governing returns. Our results illustrate that the first

restriction is violated in the data. Our results also suggest that, at least for a number of

the stocks we consider, that the second restriction may be reasonably innocuous. Among

other implications, this suggests that the leverage effect is relatively unimportant for our

individual stocks.

The analysis in this paper is based on a set of 20 heavily-traded US stocks. It would be

interesting to explore whether similar results obtain for other asset classes, including foreign

exchange, Treasury instruments, commodities and aggregate indices such as the S&P 500.

Some empirical evidence suggests that the leverage effect is stronger for aggregate indices

such as the S&P 500 than it is for individual stocks. Ait-Sahalia (2002) rejects a Markov

diffusion process for the S&P 500 in favor a process with jumps. What remains to be
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determined, however, is whether, as in our case, returns standardized by realized bipower

variation are standard normal for this index. Another question of interest is whether daily

integrated variance appears to follow a normal distribution. ABDL (2000, 2003) provide

evidence indicating that realized variance is approximately unconditionally Gaussian. Re-

alized variance, however, may be contaminated by price variation attributable to jumps.

It would be interesting to explore whether the log realized bipower variation appears to

provide a better approximation to the normal distribution and whether the log realized

bipower variation is statistically consistent with the normal distribution. As discussed by

Thomakos and Wang (2003) and Bontemps and Meddahi (2003), testing for normality in

this setting is more complex due to the presence of serial correlation and perhaps long run

dependence in (log) realized bipower variation.
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A Appendix

1. Statistical Tests for Normality

This appendix briefly describes the various statistical tests for a standard normal distri-

bution applied in the paper. Several of the tests we apply are standard. The robustified

versions of tests for normality, due to Brys, Hubert and Struyf (2004), are less frequently

applied in econometrics and for this reason we devote relatively more space to a discussion of

these tests. Let {Xt}T
1 denote a time series of iid observations that, under the null hypothe-

sis, represent a random sample from the standard normal distribution. The sample average

and sample standard deviation are X̄ = T−1
∑T

t=1 Xt and σ̂ = {T−1
∑T

t=1

(
Xt − X̄

)2}1/2.

1.1 Moment-based tests for normality

The sample skewness and sample kurtosis may be expressed as functions of the sample mean

and sample standard deviation. These statistics are

ŜT =
1

T σ̂3

T∑
t=1

(
Xt − X̄

)3 (15)

K̂T =
1

T σ̂4

T∑
t=1

(
Xt − X̄

)4

Moment-based tests for normality may be based on both of the above statistics. For ex-

ample, a test that the skewness of the data is zero is based on the fact that under the null√
T
6 ŜT follows the standard normal distribution and hence T

6 Ŝ2
T follows a χ2

1 (chi-squared

distribution with one degree of freedom). Similarly, under the null that the kurtosis is equal

to three, the statistic
√

T
24

(
K̂T − 3

)
follows the standard normal distribution and hence

T
24

(
K̂T − 3

)2
follows a χ2

1 distribution. To increase power, it is natural to consider com-

bining information in the skewness and kurtosis statistics. The Jarque-Bera test (see e.g.,

Bera and Jarque, 1982) does exactly this, employing the result that the test statistics based

on the skewness and kurtosis coefficients are asymptotically independent. The Jarque-Bera

test statistic is

JBT = T

⎡
⎢⎣ Ŝ2

T

6
+

(
K̂T − 3

)2

24T

⎤
⎥⎦ , (16)
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which under the null follows a χ2
2.
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1.2 Robust tests for normality

A potential disadvantage of tests based on the skewness or kurtosis coefficient, as well

as the Jarque-Bera test, is that such tests are highly sensitive to outliers. Brys, Hubert

and Struyf (hereafter “BHS”, 2003, 2004a, 2004b and 2005) propose robust measures of

skewness and tail weight and suggest a robustified test version of the Jarque-Bera test. The

authors propose the medcouple (MC) as a robust measure of skewness and the right- and

left-medcouples (RMC and LMC) as robust tail weight measures. Letting F denote the

distribution of Xt, MC is defined as

MC(F ) = medx1≤mF≤x2h(x1, x2) (17)

for x1 and x2 sampled from F , mF = F−1(0.5) and kernel function h() given by

h(x, x) =
(xj − mF ) − (xi − mF )

xj − xi
.

The RMC and LMC are defined by the medcouple on the upper and lower halves of the

distribution of Xt, respectively:

LMC(F ) = −MC(x < mF ) and RMC(F ) = MC(x > mF ).

Finite sample versions of these quantities, denoted MCT , RMCT and LMCT are con-

structed using the empirical distribution function in place of the population distribution

function F . Computation of these quantities may be performed in O(T log T ) time using

algorithms described by BHS (2004a). Finally, the quantities depend only on the quan-

tiles of the distribution and thus may be computed for any distribution irrespective of the

existence of moments (see, e.g, BHS, 2003).

BHS (2004b) propose various tests for normality based on medcouples. The tests are

Wald-type tests based on a set of statistics w = (ω1, .., ωk)′ such that

√
Tw ∼ Nk(ω,Σk)

so that a general test statistic for the normal may be based on
20The test statistics reported in the paper are based on skewness and kurtosis statistics that are adjusted

for bias and which therefore differ slightly from statistics based on the formula in (15). This distinction does
not materially affect the results.
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T (w − ω)′Σ−1
k (w − ω) ≈ χ2

k. (18)

BHS (2004b) propose tests of the form (18) based on w = MC, w = (LMC,RMC)′ and

w = (MC,LMC,RMC)′, which we refer to as RJB1 (“Robust Jarque-Bera 1”), RJB2 and

RJB3, respectively.To implement the tests, we must obtain ω and Σk under the null that

the data follow the normal distribution. These quantities are tabulated in BHS (2004b).

Finally, as discussed by BHS (2004b), while these tests are less sensitive to outlying values

then the corresponding tests based skewness and kurtosis coefficients, they are less powerful

to detect non-normality than the classical tests.
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Table 1

Basic summary statistics

The table reports daily summary statistics for the 20 MMI stocks. For each stock, we report the number

of trading days in the sample period, the average number of trades per day, the average time (in seconds)

to the last transaction price before each 5-minute gridpoint, the average daily open-to-close squared return,

and the annualized volatility rate. The sample period is January 4, 1993 to December 31, 2003.

Average Ave time to Average daily Annualized
Ticker Days # of trades 5-min gridpoint squared return volatility

AXP 2,771 1,726 34 0.000368 30.4%
CVX 2,771 1,389 38 0.000185 21.6%
DD 2,771 1,625 31 0.000284 26.8%
DIS 2,771 2,806 19 0.000321 28.5%
DOW 2,771 965 54 0.000312 28.1%
EK 2,771 1,181 36 0.000269 26.0%
GE 2,771 5,533 13 0.000260 25.6%
GM 2,771 1,738 23 0.000311 28.0%
IBM 2,771 3,740 13 0.000341 29.3%
IP 2,771 1,138 58 0.000328 28.8%
JNJ 2,771 2,291 20 0.000209 23.0%
KO 2,771 2,265 18 0.000217 23.4%
MCD 2,771 1,826 24 0.000254 25.3%
MMM 2,771 1,196 46 0.000198 22.4%
MO 2,770 3,011 15 0.000324 28.6%
MRK 2,771 2,966 13 0.000258 25.5%
PG 2,771 1,862 27 0.000221 23.6%
S 2,771 1,165 39 0.000436 33.2%
T 2,771 3,425 13 0.000368 30.5%
XOM 2,771 2,467 22 0.000180 21.3%



Table 2

Serial correlation of returns at different sampling frequencies

The table reports the average number of returns per day and the serial correlation of returns for different

sampling frequencies. We compute the intradaily returns for each of the 20 MMI stocks using sampling

frequencies ranging from 30 seconds to 60 minutes. For each sampling frequency, we compute the first-

through fifth-order serial correlation coefficients for each stock, and we report the average coefficients in the

table. The sample period is January 4, 1993 to December 31, 2003 (2,771 trading days for most stocks).

Serial correlation coefficients
Frequency Average

(in minutes) # of returns ρ1 ρ2 ρ3 ρ4 ρ5

0.5 772 −0.148 −0.036 −0.012 −0.005 −0.002
1.0 386 −0.143 −0.013 −0.003 −0.004 −0.003
1.5 257 −0.123 −0.007 −0.006 −0.004 −0.003
2.0 193 −0.105 −0.009 −0.006 −0.005 −0.003
2.5 155 −0.092 −0.010 −0.006 −0.005 −0.003
3.0 129 −0.084 −0.010 −0.006 −0.004 −0.001
3.5 111 −0.077 −0.011 −0.005 −0.003 0.001
4.0 97 −0.073 −0.010 −0.006 0.000 0.002
4.5 86 −0.069 −0.011 −0.004 0.001 0.001
5.0 77 −0.069 −0.010 −0.001 0.002 0.001
6.0 65 −0.061 −0.009 0.001 0.002 0.004
7.0 56 −0.057 −0.006 0.003 0.003 0.003
8.0 49 −0.054 −0.002 0.003 0.005 0.003
9.0 44 −0.050 −0.002 0.006 0.003 0.005

10.0 39 −0.048 0.000 0.008 0.004 0.004
15.0 26 −0.035 0.008 0.007 0.005 0.002
20.0 20 −0.023 0.011 0.007 0.003 0.004
30.0 13 −0.005 0.012 0.006 0.007 0.001
45.0 9 0.003 0.010 0.008 −0.003 0.007
60.0 7 0.012 0.008 0.003 0.006 −0.012



Table 3

Summary statistics for realized variance

The table reports summary statistics for realized variance and log realized variance for the 20 MMI stocks.

The realized variances are constructed using a five-minute sampling frequency. For each stock, we report

the mean, standard deviation, skewness, and kurtosis of the daily realized variance and the daily log realized

variance. The sample period is January 4, 1993 to December 31, 2003 (2,771 trading days for most stocks).

Realized variance Log realized variance

Ticker Mean Std Skew Kurt Mean Std Skew Kurt

AXP 0.00046 0.00043 4.75 39.57 −7.93 0.70 −0.06 4.37
CVX 0.00020 0.00014 3.00 19.73 −8.69 0.62 −0.05 3.31
DD 0.00033 0.00028 3.45 22.71 −8.25 0.66 0.34 3.35
DIS 0.00042 0.00044 8.39 147.34 −8.03 0.67 0.44 3.74
DOW 0.00031 0.00043 9.81 189.20 −8.50 0.83 0.60 3.39
EK 0.00030 0.00032 5.97 58.33 −8.36 0.65 0.78 4.40
GE 0.00030 0.00036 9.12 165.81 −8.42 0.72 0.52 3.81
GM 0.00031 0.00025 4.35 34.30 −8.30 0.61 0.27 4.09
IBM 0.00032 0.00032 5.81 74.26 −8.31 0.71 0.28 3.47
IP 0.00039 0.00034 3.13 19.69 −8.14 0.73 0.15 3.01
JNJ 0.00026 0.00022 5.96 72.54 −8.44 0.62 0.10 3.99
KO 0.00028 0.00021 3.88 28.75 −8.38 0.60 0.22 3.82
MCD 0.00035 0.00030 5.24 50.40 −8.14 0.59 0.44 3.95
MMM 0.00023 0.00022 3.65 24.82 −8.64 0.73 0.14 3.38
MO 0.00034 0.00049 12.00 235.62 −8.33 0.74 0.56 4.16
MRK 0.00030 0.00026 5.13 50.48 −8.31 0.62 0.19 3.93
PG 0.00027 0.00026 5.35 53.62 −8.49 0.69 0.16 3.98
S 0.00042 0.00040 4.51 36.36 −8.02 0.66 0.58 3.71
T 0.00038 0.00041 5.13 45.62 −8.17 0.71 0.68 3.42
XOM 0.00022 0.00022 5.92 65.18 −8.65 0.64 0.65 3.91



Table 4

Returns standardized by realized volatility

The table reports summary statistics and the results of normality tests for returns standardized by realized volatility. The returns are daily open-to-close

returns and the realized volatilities are constructed using a five-minute sampling frequency. For each stock, we report the mean, standard deviation,

skewness, and kurtosis of the standardized returns, and the p-values for normality tests based on the Jarque-Bera (JB), JB skewness (JB-skew), JB

kurtosis (JB-kurt), as well as the robust versions of the JB tests (RbstJB). The sample period is January 4, 1993 to December 31, 2003 (2,771 trading

days for most stocks).

Test statistics (p-values)

Ticker Mean Std Skew Kurt JB JB-skew JB-kurt RbstJB1 RbstJB2 RbstJB3

AXP 0.01 0.89 0.12 3.10 0.01 0.01 0.17 0.86 0.70 0.84
CVX −0.02 0.94 0.07 2.97 0.24 0.09 0.81 0.45 0.51 0.66
DD 0.02 0.89 0.18 2.94 0.01 0.01 0.13 0.05 0.09 0.02
DIS −0.02 0.86 0.09 2.84 0.10 0.05 0.40 0.88 0.52 0.73
DOW 0.03 0.95 0.05 3.03 0.54 0.28 0.83 0.10 0.01 0.02
EK −0.04 0.91 0.14 3.08 0.03 0.02 0.24 0.01 0.72 0.04
GE 0.02 0.92 0.16 2.83 0.01 0.00 0.38 0.05 0.17 0.03
GM −0.06 1.00 0.16 2.84 0.01 0.00 0.19 0.00 0.82 0.00
IBM −0.01 1.00 0.13 2.65 0.00 0.02 0.00 0.54 0.11 0.12
IP −0.05 0.91 0.18 2.98 0.01 0.00 0.50 0.00 0.83 0.02
JNJ 0.02 0.87 0.06 2.87 0.41 0.22 0.60 0.97 0.92 0.98
KO 0.05 0.86 0.13 3.18 0.00 0.00 0.00 0.06 0.76 0.22
MCD 0.03 0.82 0.08 3.12 0.11 0.05 0.43 0.18 0.34 0.16
MMM −0.01 0.90 0.06 3.04 0.50 0.85 0.24 0.86 0.74 0.88
MO 0.03 0.91 0.12 2.93 0.05 0.01 0.79 0.47 0.51 0.64
MRK 0.04 0.92 0.12 2.87 0.03 0.01 0.65 0.03 0.76 0.10
PG 0.09 0.87 0.08 2.84 0.02 0.03 0.07 0.90 0.45 0.65
S 0.01 0.96 0.02 2.78 0.04 0.70 0.01 0.88 0.00 0.01
T −0.06 0.93 0.14 3.10 0.00 0.00 0.20 0.03 0.29 0.03
XOM 0.02 0.87 0.04 2.88 0.71 0.46 0.71 0.49 0.16 0.28



Table 5

Returns standardized by Newey-West realized volatility

The table reports summary statistics and the results of normality tests for returns standardized by a Newey-West estimator of realized volatility. The

returns are daily open-to-close returns and the realized volatilities are constructed using a 30-second sampling frequency and a 30-minute window width.

For each stock, we report the mean, standard deviation, skewness, and kurtosis of the standardized returns, and the p-values for normality tests based

on the Jarque-Bera (JB), JB skewness (JB-skew), JB kurtosis (JB-kurt), as well as the robust versions of the JB tests (RbstJB). The sample period is

January 4, 1993 to December 31, 2003 (2,771 trading days for most stocks).

Test statistics (p-values)

Ticker Mean Std Skew Kurt JB JB-skew JB-kurt RbstJB1 RbstJB2 RbstJB3

AXP 0.00 0.94 0.04 2.33 0.00 0.40 0.00 0.93 0.00 0.00
CVX −0.02 0.96 0.02 2.36 0.00 0.59 0.00 0.42 0.01 0.02
DD 0.02 0.95 0.13 2.37 0.00 0.01 0.00 0.09 0.00 0.00
DIS −0.04 0.94 0.05 2.32 0.00 0.27 0.00 0.49 0.01 0.02
DOW 0.02 0.96 0.00 2.43 0.00 0.94 0.00 0.13 0.01 0.01
EK −0.05 0.93 0.07 2.48 0.00 0.11 0.00 0.01 0.00 0.00
GE 0.01 0.97 0.09 2.31 0.00 0.06 0.00 0.64 0.00 0.00
GM −0.07 1.00 0.14 2.32 0.00 0.00 0.00 0.00 0.01 0.00
IBM −0.02 1.02 0.09 2.26 0.00 0.05 0.00 0.74 0.00 0.00
IP −0.07 0.95 0.16 2.41 0.00 0.00 0.00 0.00 0.02 0.00
JNJ 0.01 0.94 0.02 2.38 0.00 0.73 0.00 0.76 0.00 0.00
KO 0.05 0.93 0.05 2.41 0.00 0.29 0.00 0.05 0.05 0.02
MCD 0.02 0.91 0.02 2.45 0.00 0.74 0.00 0.44 0.01 0.01
MMM −0.03 0.92 0.03 2.45 0.00 0.54 0.00 0.97 0.03 0.07
MO 0.02 0.97 0.05 2.27 0.00 0.26 0.00 0.29 0.04 0.06
MRK 0.04 0.98 0.06 2.31 0.00 0.22 0.00 0.08 0.00 0.00
PG 0.09 0.94 -0.02 2.37 0.00 0.71 0.00 0.86 0.00 0.01
S 0.00 0.99 0.01 2.27 0.00 0.90 0.00 0.69 0.00 0.01
T −0.08 0.99 0.13 2.32 0.00 0.00 0.00 0.81 0.00 0.00
XOM 0.02 0.96 0.03 2.32 0.00 0.49 0.00 0.70 0.03 0.06



Table 6

Summary statistics for large-return days

The table reports summary statistics for the 20 MMI stocks on days with absolute open-to-close returns

greater than 2 percent. For each stock, we report the number of high-return days, and the average number

of trades, the average time (in seconds) to the last transaction price before each 5-minute gridpoint, the

average daily open-to-close squared return, and the annualized volatility rate on the large-return days. The

sample period is January 4, 1993 to December 31, 2003.

Average Ave time to Average daily Annualized
Ticker Days # of trades 5-min gridpoint squared return volatility

AXP 668 2,214 22 0.001199 55.0%
CVX 366 1,640 28 0.000846 46.2%
DD 523 2,150 19 0.001093 52.5%
DIS 609 3,923 12 0.001109 52.9%
DOW 507 1,354 34 0.001320 57.7%
EK 484 1,678 25 0.001110 52.9%
GE 496 9,101 6 0.001037 51.1%
GM 617 2,105 19 0.001038 51.1%
IBM 647 4,734 9 0.001134 53.5%
IP 615 1,391 35 0.001127 53.3%
JNJ 417 2,740 16 0.000875 47.0%
KO 394 3,142 12 0.000983 49.8%
MCD 480 2,535 16 0.001043 51.3%
MMM 353 1,500 30 0.000975 49.6%
MO 536 4,392 10 0.001293 57.1%
MRK 517 3,684 10 0.000958 49.1%
PG 393 2,616 20 0.001007 50.4%
S 763 1,514 30 0.001307 57.4%
T 615 5,108 8 0.001321 57.7%
XOM 316 3,421 12 0.000921 48.2%



Table 7

Serial correlation of intraday returns on large-return days

The table reports the average number of returns per day and the serial correlation of returns for different

sampling frequencies on large-return days. We compute the intradaily returns for each of the 20 MMI

stocks using sampling frequencies ranging from 30 seconds to 60 minutes. For each sampling frequency,

we compute the first- through fifth-order serial correlation coefficients for each stock, and we report the

average coefficients in the table. The sample period is January 4, 1993 to December 31, 2003.

Serial correlation coefficients
Frequency Average

(in minutes) # of returns ρ1 ρ2 ρ3 ρ4 ρ5

0.5 773 −0.134 0.005 0.010 0.010 0.006
1.0 387 −0.072 0.019 0.011 0.004 0.001
1.5 258 −0.037 0.019 0.004 0.004 0.004
2.0 194 −0.015 0.011 0.006 0.004 0.004
2.5 155 −0.005 0.008 0.007 0.003 0.006
3.0 129 0.001 0.008 0.006 0.007 0.011
3.5 111 0.004 0.008 0.009 0.008 0.013
4.0 97 0.007 0.009 0.008 0.015 0.015
4.5 86 0.008 0.008 0.013 0.018 0.016
5.0 78 0.005 0.011 0.019 0.018 0.017
6.0 65 0.012 0.013 0.023 0.023 0.024
7.0 56 0.014 0.017 0.030 0.025 0.024
8.0 49 0.015 0.027 0.030 0.030 0.024
9.0 44 0.019 0.031 0.037 0.027 0.029

10.0 39 0.024 0.033 0.039 0.030 0.030
15.0 26 0.040 0.052 0.046 0.040 0.034
20.0 20 0.063 0.065 0.055 0.044 0.042
30.0 13 0.090 0.078 0.065 0.064 0.058
45.0 9 0.120 0.096 0.087 0.082 0.112
60.0 7 0.153 0.110 0.113 0.147 0.179



Table 8

Returns standardized by realized bipower variation

The table reports summary statistics and the results of normality tests for returns standardized by realized bipower variation. The returns are daily

open-to-close returns and the realized bipower variation is constructed using a 10-minute sampling frequency. For each stock, we report the mean,

standard deviation, skewness, and kurtosis of the standardized returns, and the p-values for normality tests based on the Jarque-Bera (JB), JB skewness

(JB-skew), JB kurtosis (JB-kurt), as well as the robust versions of the JB tests (RbstJB). The sample period is January 4, 1993 to December 31, 2003

(2,771 trading days for most stocks).

Test statistics (p-values)

Ticker Mean Std Skew Kurt JB JB-skew JB-kurt RbstJB1 RbstJB2 RbstJB3

AXP 0.01 0.98 0.08 2.92 0.12 0.06 0.40 0.83 0.48 0.65
CVX −0.02 1.04 0.06 2.87 0.09 0.24 0.06 0.64 0.61 0.78
DD 0.03 0.98 0.12 2.89 0.10 0.18 0.09 0.05 0.00 0.00
DIS −0.03 0.96 0.07 2.81 0.09 0.04 0.46 0.85 0.87 0.96
DOW 0.03 1.04 0.06 2.96 0.28 0.16 0.44 0.10 0.21 0.20
EK −0.04 1.00 0.10 3.03 0.07 0.02 0.91 0.01 0.96 0.05
GE 0.02 1.02 0.17 2.89 0.00 0.00 0.64 0.06 0.02 0.00
GM −0.06 1.09 0.15 2.69 0.00 0.01 0.01 0.00 0.21 0.00
IBM −0.02 1.10 0.12 2.71 0.01 0.04 0.03 0.64 0.08 0.11
IP −0.07 1.01 0.13 3.06 0.07 0.03 0.42 0.01 0.13 0.01
JNJ 0.02 0.98 0.07 2.83 0.13 0.12 0.19 1.00 0.04 0.09
KO 0.06 0.97 0.15 2.99 0.00 0.00 0.60 0.05 0.98 0.22
MCD 0.03 0.93 0.07 3.02 0.12 0.04 0.68 0.17 0.90 0.58
MMM −0.02 0.98 0.05 2.93 0.87 0.78 0.65 1.00 0.35 0.55
MO 0.03 1.01 0.11 2.79 0.02 0.02 0.13 0.50 0.09 0.16
MRK 0.04 1.03 0.10 2.74 0.01 0.02 0.06 0.04 0.46 0.17
PG 0.10 0.97 0.08 2.84 0.02 0.03 0.09 0.66 0.07 0.11
S 0.01 1.07 0.02 2.68 0.01 0.68 0.00 0.81 0.00 0.01
T −0.07 1.04 0.17 2.84 0.00 0.00 0.43 0.22 0.37 0.20
XOM 0.02 0.99 0.03 2.78 0.20 0.81 0.08 0.50 0.28 0.35



Table 9

Returns standardized by realized bipower variation: Pre- vs. post-decimalization

The table reports summary statistics and the results of normality tests for returns standardized by realized bipower variation for the pre- and

post-decimalization sample periods. The returns are daily open-to-close returns and the realized bipower variation is constructed using a 10-minute

sampling frequency. For each stock, we report the standard deviation, skewness, and kurtosis of the standardized returns, and the p-values for normality

tests based on the Jarque-Bera (JB), JB skewness (JB-skew), and JB kurtosis (JB-kurt) test statistics. The pre-decimalization sample period is March

4, 1998 to January 26, 2001, and the post-decimalization sample period is January 29, 2001 to December 31, 2003 (733 trading days in each sample period).

Pre-decimalization Post-decimalization

Ticker Std Skew Kurt JB JB-skew JB-kurt Std Skew Kurt JB JB-skew JB-kurt

AXP 1.10 0.17 2.53 0.01 0.06 0.01 1.04 0.03 2.88 0.76 0.70 0.52
CVX 1.10 0.10 2.70 0.14 0.26 0.10 1.02 0.04 3.08 0.81 0.64 0.64
DD 1.03 0.07 3.03 0.74 0.45 0.89 0.98 0.26 3.12 0.01 0.00 0.51
DIS 1.00 0.14 2.76 0.14 0.14 0.19 0.98 −0.03 2.55 0.04 0.75 0.01
DOW 1.12 0.15 2.72 0.07 0.09 0.12 1.02 0.03 3.09 0.85 0.75 0.64
EK 0.96 0.20 2.86 0.07 0.03 0.45 0.96 0.01 3.04 0.96 0.89 0.82
GE 1.07 0.12 3.04 0.43 0.20 0.81 1.06 0.19 2.75 0.04 0.03 0.17
GM 1.15 0.07 2.63 0.09 0.43 0.04 1.08 0.18 2.59 0.01 0.05 0.02
IBM 1.06 0.15 2.78 0.13 0.10 0.22 1.09 0.13 2.56 0.02 0.16 0.02
IP 1.01 0.16 2.60 0.02 0.08 0.03 1.00 0.16 2.97 0.21 0.08 0.86
JNJ 1.06 0.14 2.77 0.14 0.13 0.20 0.94 0.03 2.70 0.25 0.76 0.10
KO 1.04 0.19 2.82 0.07 0.04 0.32 0.96 0.05 2.81 0.51 0.62 0.29
MCD 1.02 0.03 2.58 0.07 0.73 0.02 0.94 −0.04 3.21 0.45 0.64 0.24
MMM 0.98 −0.10 2.78 0.24 0.25 0.22 1.02 0.11 2.84 0.30 0.21 0.36
MO 1.09 0.08 2.67 0.14 0.40 0.07 1.03 0.07 2.67 0.15 0.45 0.07
MRK 1.10 0.12 2.59 0.04 0.20 0.02 1.02 −0.01 2.53 0.03 0.88 0.01
PG 1.04 0.02 2.80 0.54 0.86 0.27 0.93 −0.02 2.90 0.83 0.81 0.58
S 1.11 0.07 2.63 0.10 0.44 0.04 1.04 0.03 2.74 0.36 0.78 0.16
T 1.09 0.19 2.52 0.00 0.03 0.01 1.08 −0.03 2.70 0.24 0.70 0.10
XOM 1.01 0.09 2.49 0.01 0.34 0.01 0.97 0.08 2.71 0.19 0.39 0.11



Table 10

Non-jump component of returns standardized by realized bipower variation

The table reports summary statistics and the results of normality tests for the non-jump component of returns standardized by realized bipower variation.
We estimate the jump component on day n as

Jn = sign(rn) ×
√

(RVn − BVn) × In{test rejects}

where In{test rejects} is a one on days when the null of no jumps is rejected at the 1% level and zero otherwise. We then construct the non-jump

component of returns by subtracting Jn from the daily open-to-close return, and we construct the realized bipower variation using a 10-minute sampling

frequency. For each stock, we report the mean, standard deviation, skewness, and kurtosis of the standardized returns, and the p-values for normality

tests based on the Jarque-Bera (JB), JB skewness (JB-skew), JB kurtosis (JB-kurt), as well as the robust versions of the JB tests (RbstJB). The sample

period is January 4, 1993 to December 31, 2003 (2,771 trading days for most stocks).

Test statistics (p-values)

Ticker Mean Std Skew Kurt JB JB-skew JB-kurt RbstJB1 RbstJB2 RbstJB3

AXP 0.00 0.85 0.05 2.61 0.00 0.15 0.00 0.86 0.31 0.45
CVX −0.03 0.86 0.04 2.71 0.01 0.29 0.00 0.26 0.82 0.67
DD 0.01 0.85 0.19 2.74 0.00 0.00 0.00 0.12 0.48 0.25
DIS −0.03 0.84 0.08 2.68 0.01 0.14 0.00 0.14 0.92 0.47
DOW 0.01 0.85 0.01 2.80 0.08 0.59 0.03 0.54 0.72 0.76
EK −0.04 0.83 0.03 2.78 0.07 0.67 0.02 0.56 0.22 0.35
GE 0.02 0.89 0.10 2.63 0.00 0.09 0.00 0.27 0.22 0.17
GM −0.06 0.89 0.13 2.59 0.00 0.00 0.00 0.00 0.95 0.00
IBM −0.02 0.91 0.12 2.55 0.00 0.01 0.00 0.09 0.36 0.18
IP −0.06 0.85 0.18 2.70 0.00 0.00 0.01 0.00 0.56 0.00
JNJ 0.01 0.84 0.03 2.72 0.05 0.61 0.02 0.70 0.90 0.93
KO 0.04 0.83 0.10 2.74 0.00 0.03 0.01 0.06 0.87 0.25
MCD 0.02 0.81 0.05 2.80 0.04 0.28 0.02 0.31 0.97 0.76
MMM −0.03 0.83 0.03 2.75 0.14 0.91 0.05 0.41 0.67 0.75
MO 0.01 0.87 0.05 2.54 0.00 0.27 0.00 0.91 0.03 0.08
MRK 0.03 0.87 0.04 2.61 0.00 0.20 0.00 0.09 0.58 0.27
PG 0.08 0.84 0.04 2.64 0.00 0.29 0.00 0.09 0.26 0.12
S −0.01 0.89 0.01 2.61 0.00 0.84 0.00 0.37 0.00 0.00
T −0.07 0.89 0.14 2.61 0.00 0.00 0.00 0.24 0.16 0.11
XOM 0.01 0.86 0.05 2.62 0.00 0.44 0.00 0.44 0.70 0.73
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Figure 1  
Mean and standard deviation of realized variance 

 
The figure plots the mean and standard deviation of the daily realized variance as a function of sampling 
frequency.  We construct the daily realized variance for each of the 20 MMI stocks during the sample 
period January 4, 1993 to December 31, 2003 (2,771 observations for most stocks).  We construct both 
RAW estimates and NW estimates based on window widths of 15, 30 and 60 minutes (i.e., NW15, NW30 
and NW60), using sampling frequencies ranging from 30 seconds to 60 minutes.  For each set of realized 
variances, we compute the mean and standard deviation, and the figure plots the average mean (Panel A) 
and standard deviation (Panel B) for the 20 stocks.  The tick mark labeled “DSR” on the y-axis in Panel A 
shows the average daily squared return.    
 
Panel A.  Mean realized variance 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel B.  Standard deviation of realized variance 
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Figure 2  
Skewness and kurtosis of returns standardized by realized variance 

 
The figure plots the skewness and kurtosis of daily returns standardized by realized volatility as a function 
of sampling frequency.  We compute the standardized returns for each of the 20 MMI stocks during the 
sample period January 4, 1993 to December 31, 2003 (2,771 observations for most stocks), using both the 
RAW and NW30 realized variances constructed using sampling frequencies ranging from 30 seconds to 60 
minutes.  For each set of returns, we compute the skewness and kurtosis, and the figure plots the average 
skewness (Panel A) and kurtosis (Panel B) for the 20 stocks.    
 
Panel A.  Skewness 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel B.  Kurtosis 
 
  
 
 



Figure 3  
Mean realized variance on large-return days 

 
The figure plots the mean daily realized variance as a function of sampling frequency on large-return days.  
We construct the daily realized variance for each of the 20 MMI stocks during the sample period January 4, 
1993 to December 31, 2003 for those days in which the stock’s absolute open-to-close return is greater than 
2 percent.  The figure shows the mean RAW and NW30 realized variances constructed using sampling 
frequencies ranging from 30 seconds to 60 minutes.   
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Figure 4  
Realized bipower variation signature plot 

 
The figure plots realized bipower variation as a function of sampling frequency.  We construct the daily 
realized bipower variation (BV) for each of the 20 MMI stocks during the sample period January 4, 1993 to 
December 31, 2003 (2,771 observations for most stocks) using sampling frequencies from 30 seconds to 60 
minutes.  For each sampling frequency, we compute the mean realized bipower variation for the 20 stocks.  
For comparison, we also report the mean (RAW) realized variance.  The thick line in the figure denotes the 
mean realized bipower variation using half-day returns.     
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Figure 5  
Skewness and kurtosis of returns standardized by realized bipower variation 

 
The figure plots the skewness and kurtosis of daily returns standardized by realized bipower variation as a 
function of sampling frequency.  We compute the standardized returns for each of the 20 MMI stocks 
during the sample period January 4, 1993 to December 31, 2003 (2,771 observations for most stocks), 
using realized bipower variation constructed using sampling frequencies ranging from 30 seconds to 60 
minutes.  For each set of returns, we compute the skewness and kurtosis, and the figure plots the average 
skewness (Panel A) and kurtosis (Panel B) for the 20 stocks.    
 
Panel A.  Skewness 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel B.  Kurtosis 
 
  
 
 

 




