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1. Introduction

Volatility modeling is important for many option pricing, portfolio selection, and

risk management applications.1 A number of volatility models have been developed

over the years, including ARCH (Engle, 1982), GARCH (Bollerslev, 1986), EGARCH

(Nelson, 1991), and stochastic volatility specifications (see Taylor, 1986), and the

performance of these models has been evaluated exhaustively. Recently, however,

the volatility modeling literature appears to take a significant step forward. Ander-

sen, Bollerslev, Diebold, and Labys (2001a) (ABDL, hereafter) and Barndorff-Nielsen

and Shephard (2002), building on earlier work by Schwert (1989) and Hsieh (1991),

propose a new approach called “realized” volatility that exploits the information in

high-frequency returns. Basically, the approach is to estimate volatility by summing

the squares of intradaily returns sampled at very short intervals. The idea is that if

the sample path of volatility is continuous, then increasing the sampling frequency

yields arbitrarily precise estimates of volatility at any given point in time (Merton,

1980).2 In effect, volatility becomes observable.

A number of papers implement this approach and examine the properties of re-

alized volatility. ABDL (2001a) examine currencies, Andersen, Bollerslev, Diebold,

and Ebens (2001) (ABDE, hereafter) examine individual stocks, Ebens (1999) exam-

ines the Dow Jones Industrial Average, and Areal and Taylor (2002) examine stock

index futures. The results are generally consistent across assets and are quite com-

pelling. For example, consistent with Clark (1973), realized volatility appears to be

lognormally distributed and daily returns standardized by realized volatility are ap-

proximately normal. In addition, realized volatility exhibits long-memory dynamics

consistent with a fractionally integrated process with a degree of integration around

0.4, volatility clustering is apparent at as long as the monthly level, and realized

volatility obeys precise scaling laws under temporal aggregation.

Although these findings provide support for the realized volatility approach, they

are mainly statistical in nature. A separate question is whether the gains in precision

are sufficient to have a meaningful impact on decisions that depend on conditional

1We use the term “volatility” generically to refer to any element of the covariance matrix of
asset returns. Our terminology is more precise when the distinction between standard deviations,
variances, covariances, and correlations is important.

2In practice, the benefits of more frequent sampling may be reduced by dependence and non-
normality in returns induced by noncontinuous and irregular price observations, discrete prices, and
bid-ask bounce. Bai, Russell, and Tiao (2001) provide an analysis of this issue.
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volatility estimates. Presumably, applications such as risk management should benefit

because performance in this context depends largely on the statistical properties of

the estimates. It is not clear, however, whether using realized volatility leads to more

accurate option prices or better investment management decisions. Perhaps standard

volatility models provide a sufficient representation of volatility dynamics for these

purposes so that switching to realized volatility yields only small benefits.

This paper evaluates the economic benefits of the realized volatility approach in

the context of investment decisions. Our analysis builds on the framework developed

in Fleming, Kirby, and Ostdiek (2001) (FKO, hereafter). We consider a risk-averse

investor who uses conditional mean-variance analysis to allocate funds across four

asset classes: stocks, bonds, gold, and cash. The investor rebalances his portfolio

daily but treats expected returns as constant since there is little evidence that changes

in expected returns are detectable at the daily level. This implies that the investor

follows a volatility-timing strategy where his portfolio weights vary only with changes

in his estimates of the conditional covariance matrix of daily returns. What we

evaluate is whether using the realized volatility approach to form these estimates

improves the performance of the volatility-timing strategy.

We construct our estimates of the conditional covariance matrix using rolling

estimators of the form analyzed by Foster and Nelson (1996) and Andreou and Ghy-

sels (2001). One set of estimates is based on the realized variances and covariances

obtained using five-minute returns. We adjust these estimates for biases induced by

non-trading periods and microstructure effects relative to a second set of rolling es-

timates based on daily returns. We then use these two sets of estimates to isolate

the economic value of the realized volatility approach. Specifically, we implement

volatility-timing strategies using both sets of estimates and we evaluate the perfor-

mance gains associated with switching to the realized-volatility-based estimator.

Our results indicate that the economic value of the realized volatility approach is

substantial. We estimate that an investor implementing the volatility-timing strate-

gies would be willing to pay on the order of 50 to 200 basis points per year to capture

the incremental gains generated by the realized-volatility-based estimator. This rep-

resents approximately half of the overall gains to volatility timing, measured relative

to the performance of an ex ante efficient static portfolio. Moreover, we find that

volatility timing at the daily level leads to performance gains over longer horizons.

The gains observed at the daily level are comparable to those observed using perfor-

mance measurement horizons as long as a year.
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The remainder of the paper is organized as follows. Section 2 describes our

volatility-timing methodology and performance measurement criteria. Section 3 de-

velops our methodology for constructing the conditional covariance matrix estimates.

Section 4 describes the data and presents the preliminary empirical analysis. Section 5

evaluates the performance of the volatility-timing strategies. Section 6 examines the

robustness of our results. Section 7 concludes.

2. Empirical framework

In this section, we describe our methodology for measuring the economic value of

volatility timing using realized volatility. Our approach, which follows FKO (2001), is

to evaluate the empirical performance of conditionally mean-variance efficient portfo-

lios that are rebalanced daily based on estimates of the conditional covariance matrix

of daily returns. FKO (2001) form their estimates of this matrix using daily returns.

We treat these results as a benchmark and focus on the incremental value of employ-

ing more precise estimates of the covariance matrix constructed using the realized

volatility approach of ABDL (2001a).

2.1. Volatility-timing strategies

We consider a risk-averse investor who allocates funds across a set of N + 1

securities: N risky assets plus cash. The investor uses conditional mean-variance

analysis to make his allocation decisions and rebalances his portfolio daily. To avoid

restrictions on short selling and minimize transaction costs, the investor implements

his allocation decisions by trading futures contracts on the risky assets.

Let Rt denote the N × 1 vector of returns formed by dividing the price change

for each futures contract on day t by its price on day t− 1. Define It−1 to be the day

t − 1 information set. To minimize conditional volatility subject to a given expected

return, the investor applies the risky asset weights

wt =
µpΣ

−1
t µt

µ′
tΣ

−1
t µt

, (1)

where µp is the target expected return on his portfolio, µt ≡ E[Rt|It−1] is the N × 1

vector of conditional means, and Σt ≡ E[(Rt − µt)(Rt − µt)
′|It−1] is the N × N

conditional covariance matrix. These weights are obtained by solving the standard

portfolio optimization problem with cash playing the role of the risk-free security.

The weight in cash is given by one minus the sum of the elements of wt.
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Since futures do not require an initial outlay of funds, Eq. (1) indicates the

number of contracts to hold for a given notional investment. The return on this

portfolio should closely approximate the excess return generated by a similar portfolio

invested in the underlying spot assets. Under the cost-of-carry relation, the futures

return equals the spot return less the opportunity cost of funds. Thus, if this relation

holds, we can replicate the return on the spot portfolio by applying the portfolio

weights to the futures contracts and investing 100% of our funds in the risk-free

security.

Eq. (1) implies that the optimal portfolio weights vary through time as both

µt and Σt change. There is little evidence, however, that we can detect changes in

expected returns at the daily level. Therefore, we assume that the investor treats

µt as constant and follows a volatility-timing strategy where the weights vary only

with changes in Σt. We consider two such strategies: one that minimizes conditional

volatility subject to a target expected return (the minimum volatility strategy), and

a second that maximizes expected return subject to a target conditional volatility

(the maximum return strategy).

By comparing the performance of the volatility-timing strategies to that of the

unconditionally-efficient static portfolios with the same expected return and volatility,

we can directly measure the economic value of modeling the dynamics of Σt. FKO

(2001) conduct this comparison using rolling estimates of Σt based on daily returns.

We use these results as a benchmark and assess the incremental value of employing

rolling estimates of Σt based on realized volatility. Presumably, using more precise

estimates of the conditional covariance matrix will improve the performance of the

volatility-timing strategies.

2.2. Measuring the value of the performance gains

Following FKO (2001), we use a utility-based approach to measure the value

of the performance gains associated with using a given estimator of the conditional

covariance matrix. We consider an investor with quadratic utility who each day places

some fixed amount of wealth, W0, in the risk-free asset and implements a volatility-

timing strategy using futures contracts with the same notional value. The realized

daily utility generated by this portfolio is

U(Rpt) = W0

(
(1 + Rf + Rpt)− γ

2(1 + γ)
(1 + Rf + Rpt)

2

)
, (2)

where Rpt = w′
tRt is the portfolio return, γ is the investor’s relative risk aversion,
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and Rf denotes the risk-free interest rate.3

Let Rp1t and Rp2t denote the returns on the volatility-timing strategies using two

different estimators of the conditional covariance matrix. To measure the incremental

value of using the second estimator instead of the first, we find a constant, ∆, such

that
∑T

t=1 U(Rp1t) =
∑T

t=1 U(Rp2t − ∆). This constant represents the maximum

return the investor would be willing to sacrifice each day in order to capture the

performance gains associated with switching to the second estimator. We report the

value of ∆ as an annualized basis point fee, for two levels of relative risk aversion:

γ = 1 and γ = 10.

2.3. Assessing performance over longer horizons

Our utility-based approach for measuring value is based on the distributional

properties of the volatility-timing strategies’ daily returns. We focus on the daily

horizon because, for a given sample period, we can estimate the variances of daily

returns more precisely than those of weekly, monthly, or quarterly returns (Merton,

1980). This makes it easier to determine whether the observed performance differences

are significant. More generally, however, we are interested in whether volatility timing

at the daily level leads to better performance over longer horizons. The cumulative

gains to volatility timing, of course, will depend on the time-series properties of the

daily portfolio returns. A simple example illustrates the issue.

Let µp(j) and σ2
p(j) denote the mean and variance of the j-day portfolio return. If

we invest one dollar in the portfolio on day t, then the value of our investment after

j days is
∏j

i=1(1 + Rpt+i). Thus, we can express µp(j) and σ2
p(j) as

µp(j) = E[exp(
∑j

i=1 rpt+i)]− 1 (3)

and

σ2
p(j) = E[exp(2

∑j
i=1 rpt+i)]− E[exp(

∑j
i=1 rpt+i)]

2, (4)

where rpt+i = log(1+Rpt+i). Eqs. (3) and (4) suggest that the performance of a portfo-

lio over a multi-day horizon is determined by the mean, variance, and autocorrelation

function of the continuously compounded daily portfolio returns.

We can see this more clearly by evaluating how the Sharpe ratio for the portfolio

varies with the performance measurement horizon. To illustrate, consider a simple

3We use a risk-free rate of 6% in our empirical analysis.
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scenario in which the daily portfolio returns are randomly drawn from a univariate

normal distribution. Using the normal moment generating function, we have

µp(j) = (1 + µp(1))
j − 1 (5)

and

σ2
p(j) = (1 + µp(1))

2j(exp(jς2
p(1))− 1), (6)

where ς2
p(1) ≡ var(rpt). Therefore, we can express the annualized Sharpe ratio for a

j-day horizon as

λp(j) = (252/j)1/2

(
(1 + µp(1))

j − 1

(1 + µp(1))j(exp(jς2
p(1))− 1)1/2

)
, (7)

where we assume there are 252 trading days per year.

Even in this simple situation it is not immediately clear how the Sharpe ratio

changes with the horizon. However, we can verify numerically that for reasonable

choices of the mean and volatility of rpt the Sharpe ratio falls slowly with increasing

j. For instance, if we take the mean and volatility of rpt to be 0.04% and 1.0%

per day, we obtain λp(1) = 0.714 and λp(252) = 0.671. This suggests that Sharpe

ratios computed for a daily horizon should be a good guide to the performance of

the volatility-timing strategies over longer horizons. An important caveat, however,

is that this assumes rpt is serially uncorrelated. To the extent that this assumption

is violated, the actual results may differ from those suggested by our example. In

Section 5 we provide empirical evidence on how the gains to volatility-timing vary

with the performance measurement horizon.

3. Econometric methodology

In this section, we describe our methodology for estimating the conditional co-

variance matrix of daily returns. The idea, which is motivated by the work of Foster

and Nelson (1996) and Andreou and Ghysels (2001), is to construct rolling estimators

based on lagged returns. This approach has some significant advantages in our appli-

cation. Specifically, it avoids parametric assumptions, it nests a variety of GARCH

and stochastic volatility models as special cases, it is computationally efficient, and

it provides a natural way to evaluate the economic value of volatility timing using

realized volatility.
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3.1. Rolling estimators based on daily returns

We are interested in estimating the conditional covariance matrix, Σt, which we

assume evolves according to some unknown time-series process. Following Foster and

Nelson (1996), we construct daily estimates of this matrix using a backward-looking

rolling estimator. The estimator is of the general form

Σ̂t =
∞∑

k=1

Ωt−k � et−ke
′
t−k, (8)

where Ωt−k is a symmetric N ×N matrix of weights, et−k = (Rt−k −µ) is an N × 1

vector of daily return innovations, and � denotes element-by-element multiplication.

The premise behind this approach is straightforward. If Σt is time varying, then

its dynamics are reflected in the sample path of daily returns. Therefore, by apply-

ing a suitable set of weights to the squares and cross products of the lagged return

innovations, we can construct time-series estimates of Σt.

The estimator in Eq. (8) is nonparametric in nature. For certain choices of

Ωt−k, however, it resembles the Σt process implied by a multivariate GARCH model.

Consider the Engle and Kroner (1995) model as an example. It takes the form

et = Σ
1/2
t zt (9)

with

Σt = C ′C + B′Σt−1B + A′et−1e
′
t−1A, (10)

where C is a lower-triangular N×N parameter matrix, B and A are N×N parameter

matrices, and zt is an N×1 vector of uncorrelated standard normal random variables.

If we let C = 0, B = diag{b1, . . . , bN}, and A = diag{a1, . . . , aN}, then we can

express Eq. (10) as

Σt = B11′B �Σt−1 + A11′A � et−1e
′
t−1, (11)

where 1 denotes an N × 1 vector of ones.

Comparing Eqs. (8) and (11) reveals that we can nest the rolling estimator under

the GARCH model by setting Ωt−k = Bk−1A11′ABk−1. Similarly, we can treat the

fitted values of Σt from the GARCH model as rolling estimates of this matrix for a

specific choice of Ωt−k. This relation motivates a GARCH-based benchmark for our

empirical analysis, and it also suggests a simple approach for selecting an optimal

weighting scheme for our rolling estimator.
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3.1.1. Optimal weighting scheme

As in FKO (2001) our weighting scheme is of the form Ωt−k = α exp(−αk)11′.

Under this weighting scheme, Eq. (8) becomes

Σ̂t = exp(−α)Σ̂t−1 + α exp(−α)et−1e
′
t−1. (12)

This choice of weights reflects a number of considerations. First, it is consistent with

Foster and Nelson (1996), who show that exponentially weighted estimators generally

produce the smallest asymptotic mean squared error (MSE). Second, it guarantees

that Σ̂t is positive definite, which is essential in our portfolio optimization application.

Third, it implies that a single parameter (α) controls the rate at which the weights

decay with the lag length. This parsimony facilitates our sensitivity analysis.

To estimate the optimal decay rate, we use a loss function motivated by the

relation between rolling estimators and GARCH models. Our strategy is to recast the

rolling estimator as a restricted multivariate GARCH model, treat α as an unknown

parameter, and then estimate its value by maximum likelihood. Accordingly, we

define the optimal decay rate to be the value of α that maximizes the likelihood

function for the model

et = Σ
1/2
t zt (13)

with

Σt = exp(−α)Σt−1 + α exp(−α)et−1e
′
t−1, (14)

where zt ∼ NID(0, I). Using this approach facilitates a comparison between the

empirical performance of our rolling estimator and the performance of a multivari-

ate GARCH model. This allows us to determine whether our rolling estimator is a

reasonable benchmark for a class of more complex models based on daily returns.

Of course, by estimating the optimal decay rate using the full data set, we could

be introducing a look-ahead bias into our results. We do not expect this to be a

problem given the evidence in FKO (2001). They report that the optimal decay rate

under a statistical loss function is very different from the decay rate that maximizes

the empirical performance of the volatility-timing strategies. This is likely to be the

case here as well. Moreover, in the empirical analysis, we explicitly examine how the

choice of decay rate affects our results. We simply use the estimated decay rate to

establish a baseline from which we begin this analysis.
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3.2. Rolling estimators based on intradaily returns

The work of ABDL (2001a) and Barndorff-Nielson and Shephard (2001, 2002)

suggests that we can use intradaily returns to construct volatility estimators that are

more efficient than those based on daily returns. To illustrate the argument, suppose

that log prices are generated by a multivariate continuous-time stochastic volatility

process and let St denote the time t value of the associated N × N positive-definite

diffusion matrix. In this case, it is natural to use the integrated diffusion matrix∫ 1

0
St+τdτ as a measure of the latent covariance matrix of the vector of continuously

compounded returns over the interval from t to t + 1.

Now suppose we divide this interval into n subperiods of length h and let rt+jh

denote the vector of continuously compounded returns over the subperiod that ends

at time t+jh. ABDL (2001a) show that, under weak regularity conditions, the theory

of quadratic variation implies that
∑n

j=1 rt+jhr
′
t+jh − ∫ 1

0
St+τdτ → 0 almost surely

as h → 0. It follows, therefore, that by using intradaily returns, we can construct

nonparametric estimates of the integrated covariance matrix that are asymptotically

consistent. We refer to the quantity V t+1 =
∑n

j=1 rt+jhr
′
t+jh as the realized covariance

matrix for the interval t to t+1. This terminology reflects the fact that the integrated

diffusion matrix effectively becomes observable as h → 0.

To exploit these results, we need to encompass the realized volatility approach

within our rolling estimator framework. A simple way to do this is to replace the

outer product of the vector of return innovations with the realized covariance matrix

when forming our rolling estimator. In other words, we replace Eq. (12) with

Σ̃t = exp(−α)Σ̃t−1 + α exp(−α)V t−1, (15)

and estimate the optimal decay rate as before. Andreou and Ghysels (2001) study

similar estimators in a univariate setting. Intuitively, Σ̃t should be more efficient than

Σ̂t because the realized variances and covariances provide more precise estimates of

the integrated variances and covariances than the squares and cross-products of the

daily return innovations. Andersen and Bollerslev (1998), for instance, show that the

variance of daily return innovations can easily be an order of magnitude larger than

the variance of cumulative squared intradaily returns.

3.2.1. Bias corrections

Although using intradaily returns leads to efficiency gains, it can also impart sig-

nificant biases. In our case, these biases arise from three sources: a lack of intradaily
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return observations when markets are closed overnight; nonsimultaneous price ob-

servations across markets; and serial correlation induced by price discreteness and

bid-ask bounce. We can mitigate the impact of the last two factors by choosing the

sampling interval judiciously, so the lack of intradaily returns for the overnight period

is our biggest concern. Not only does this cause the realized variances and covariances

to be biased toward zero, it also results in a loss of information about the dynamics

of the conditional covariance matrix of daily returns.

We address the information loss and the bias problems in two steps. To reduce

the information loss, we include the overnight returns when constructing the realized

covariance matrix. This is accomplished by including the outer product of the vector

of overnight returns as another term in the summation that determines V t−1 in Eq.

(15). Of course, this approach is only a partial solution. The outer product of the

vector of overnight returns is an imprecise estimator of the integrated covariance

matrix over the nontrading period. Nonetheless, the lack of precision is likely to be

more than offset by the information gains.

To deal with the bias problem, we apply two simple corrections. We construct

these corrections using contemporaneous estimates from the daily-returns-based rolling

estimator because these should be largely unaffected by the biases. For the realized

variances, a simple backward-looking measure of the bias at time t for the ith contract

is

βit =

∑q
l=1 σ̂2

it−l∑q
l=1 σ̃2

it−l

, (16)

where σ̂2
it and σ̃2

it denote the ith diagonal elements of Σ̂t and Σ̃t, respectively. We

minimize the impact of the bias by using βit to construct a bias-corrected version of

σ̃2
it for all i. Specifically, we replace the ith diagonal element of Σ̃t with

σ̃∗2
it = βitσ̃

2
it, (17)

to obtain the bias-corrected variance estimates.

Next, consider the realized covariances. To correct for the bias, we replace the

off-diagonal elements of Σ̃t with

σ̃∗
ijt = σ̃∗

itσ̃
∗
jt(ρ̃ijt + βijt), (18)

where

βijt =
1

q

q∑
l=1

(ρ̂ijt−l − ρ̃ijt−l), (19)
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ρ̂ijt = σ̂ijt/(σ̂itσ̂jt), and ρ̃ijt = σ̃ijt/(σ̃itσ̃jt). Here we use an additive correction be-

cause, unlike in Eq. (16), the moving averages used to construct our bias measure can

be positive, negative, or zero. We also impose the constraint −1 ≤ ρ̃ijt + βijt ≤ 1.

In Eqs. (16) and (19), the choice of q reflects a tradeoff between two opposing

considerations. If the biases are constant, then we should make q as large as possible

to maximize the precision of our bias estimates. If, as seems more likely, the biases

vary with the level of trading activity and/or market volatility, then a small value

of q may be more effective. Fortunately, the precise choice of q does not appear to

be critical as long as it is small enough to capture the time variation in the biases.

We experimented with values from five to 504 days with little apparent effect on our

empirical results. All of the results reported below are based on q = 22 days.

4. Data and preliminary empirical analysis

Our empirical analysis is based on the same futures contracts studied by FKO

(2001): S&P 500 futures (Chicago Mercantile Exchange), Treasury bond futures

(Chicago Board of Trade), and gold futures (New York Mercantile Exchange). The

sample period is January 3, 1984 to November 30, 2000. We obtain daily closing

prices for gold futures from Datastream International and intraday transactions data

for each contract from the Futures Industry Institute. The S&P 500 futures data

prior to 1994 are obtained directly from the CME. We exclude from the data set all

days on which any of the three futures markets is closed.

To construct the return series, we generally use the nearby contract in each

market. However, we switch to the second nearby contract for stocks when the nearby

contract is in its final week and for bonds and gold when the nearby contract is in the

delivery month. The gold futures contract closes at 1:30 pm whereas the bond and

stock contracts close at 2:00 pm and 3:15 pm (all central standard times). Therefore,

we assume that our portfolios are rebalanced at 1:30 pm each day, and that these

trades occur at the closing price for gold and at the last transaction prices before 1:30

pm for stocks and bonds. We refer to these as the “1:30 prices.” This procedure is

the same as in FKO (2001).

4.1. Conditional covariance matrix estimates based on daily returns

To implement our rolling estimator based on daily returns, we use returns com-

puted from the 1:30 prices. Summary statistics for these returns are shown in Panel

A of Table 1. As explained earlier, we estimate the optimal decay rate by fitting the
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GARCH analog of the rolling estimator to the daily returns. This yields an estimate

of α = 0.031 with a log likelihood value of −6,494.5. Fig. 1 plots the conditional

covariance matrix estimates using this decay rate. Panel A shows the estimates of

the daily return volatility for each contract and Panel B shows the estimates of the

correlation between the daily returns for each pair of contracts.

4.2. Conditional covariance matrix estimates based on intradaily returns

We now implement our rolling estimator based on realized volatility. We con-

struct the intradaily returns used to implement this estimator using a five-minute

sampling frequency. This sampling frequency balances the benefits derived from

large sample asymptotics and the detrimental impact of market microstructure ef-

fects (ABDE, 2001; ABDL, 2001a; Areal and Taylor, 2002). To account for serial

correlation induced by microstructure effects, ABDE (2001) suggest prewhitening the

five-minute returns by fitting a moving average model. With this approach, however,

the resulting conditional covariance matrix estimates would depend on the entire data

set. Since we want to focus as much as possible on out-of-sample results, we use an

interpolation procedure developed by ABDL (2001a).

4.2.1. Computing the five-minute returns

For each day in the sample, we compute the series of intradaily returns for each

contract using the following procedure. First, we construct a grid of five-minute

intervals that spans the trading day. Next, we identify the transaction prices that

straddle each of the grid points, deleting any grid points that are more than two

and a half minutes outside the first and last transactions of the day. Finally, we use

linear interpolation to estimate the log price at each grid point and then we take

first differences of these prices to obtain the continuously compounded five-minute

returns.

We do not construct intradaily returns for the period immediately surrounding

the 1987 stock market crash. This decision is motivated by a number of factors: gold

and bonds are missing data for a couple days, price limits went into effect for bonds,

the minimum tick size for stocks increased from 0.05 to at least 1.00 for several days,

and the stock market often closed early. Since an investor trying to compute realized

variances and covariances for one of these days would likely conclude that the intraday

data were unreliable, we substitute daily returns to construct these measures from

October 19 to 30, 1987.
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Panel B of Table 1 provides summary statistics for the five-minute returns. The

average number of returns per day ranges from 72 for gold to 80 for stocks. The return

autocorrelations for stocks are close to zero, but they are negative and significant at

lag one for both bonds and gold. This is likely due to market microstructure effects.

While all of the markets are active (each averages over 1,000 trades per day), the

bond and gold markets are noticeably less active than the stock market. Therefore,

it should not be surprising that our interpolation procedure fails to completely purge

the negative serial correlation in the bond and gold returns. The autocorrelations for

the absolute returns are all positive and significant. This shows the level of volatility

persistence in the five-minute returns.

4.2.2. Computing the realized variances and covariances

To compute the realized covariance matrix for the interval t − 1 to t, we use

the five-minute returns from 1:30 on day t − 1 to 1:30 on day t. We construct the

realized variances using all of these returns. For the realized covariances, however, we

can use only those returns that are contemporaneous across markets. For example,

the returns after 1:30 pm in the stock and bond markets cannot be used to compute

the realized covariances with gold because the gold market is closed. Since this

reduces the number of available observations, we construct the realized covariances

using the following two-step procedure. First, we use the contemporaneous returns to

compute a preliminary set of realized volatilities and covariances from which we infer

the realized correlations. Second, we convert these correlations back into covariances

using the realized volatilities based on the entire set of five-minute returns.

Panel A of Figs. 2 and 3 plots the realized volatilities and correlations. In general,

they appear more variable than the realized volatilities and correlations in ABDL

(2001a). This should not be surprising. ABDL (2001a) use quote mid-points from

the currency markets where trading occurs around the clock, giving them 288 five-

minute returns. They also exclude certain holidays and other days where intradaily

data are incomplete. In contrast, we use transaction prices, have a maximum of 87

five-minute returns, and we include days with incomplete data.

4.2.3. The rolling estimates based on realized volatility

For the rolling estimator based on realized volatility, our GARCH approach for

obtaining the optimal decay rate yields an estimate of α = 0.064 and a log likelihood

value of −6,428.8.4 This decay rate is larger than that obtained using daily returns

4These estimates are based on our adjusted realized variances and covariances which include
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and the log likelihood value is higher as well. Both of these results are consistent with

prior evidence regarding the realized volatility approach. A larger decay rate corre-

sponds to larger weights on more recent data and the higher log likelihood suggests

a gain in efficiency.

Panel B of Figs. 2 and 3 plot the rolling estimates based on the realized variances

and covariances using a decay rate of 0.064. As expected, these estimates appear

biased toward zero in comparison to the rolling estimates based on daily returns (see

Fig. 1). We correct for this bias in two steps as described in Section 3.2.1. First, we

include overnight returns when constructing the realized variances and covariances.

The resulting rolling estimates, plotted in Panel C of Figs. 2 and 3, indicate that in-

cluding overnight returns reduces the bias but not to a substantial degree. We obtain

our final set of estimates by applying our variance and covariance bias corrections.

Panel D of Figs. 2 and 3 plot these estimates which look very similar to the rolling

estimates based on daily returns.

5. Empirical results

In this section, we evaluate the performance of the volatility-timing strategies and

assess the incremental value of using the realized volatility approach to construct the

conditional covariance matrix estimates. To implement the volatility-timing strate-

gies, we need to supply an estimate of the vector of unconditional expected returns.

FKO (2001) argue that using a single estimate of this vector is problematic because

estimation risk is likely to be a significant concern. Instead, they consider a range of

inputs which are generated via a bootstrap procedure (Efron, 1979). We use a simi-

lar approach here. We start with the limiting case where there is no estimation risk,

i.e., the vector of ex post mean returns is known. Then we introduce various levels

of estimation risk by using a version of the block bootstrap advocated by Hall and

Horowitz (1996). Finally, we provide some insights into the source of the performance

gains associated with switching to the realized volatility approach.

5.1. The case of no estimation risk

Fig. 4 plots the optimal portfolio weights using the rolling covariance matrix

estimator based on realized volatility. The weights for the minimum volatility strategy

(Panel A) assume a target expected return of 10% and the weights for the maximum

return strategy (Panel B) assume a target volatility of 12%. Although these targets

overnight returns and the bias corrections described in Section 3.2.1.
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are arbitrary, changing them simply alters the allocation between the risky assets and

cash and has little effect on our results. The portfolio weights for both strategies tend

to be positive for stocks and bonds and negative for gold, consistent with the mean

returns for these assets over our sample. Also, as expected, the variation in the weights

over time tracks the variation in the covariance matrix estimates shown in Figs. 2 and

3. The weights are generally more extreme for the maximum return strategy because

it tends to plot further to the right on the efficient frontier. The optimal portfolio

weights using the rolling covariance matrix estimator based on daily returns (not

shown) are similar but they exhibit greater variability because the covariance matrix

estimates (Fig. 1) are less precise.

Table 2 compares the empirical performance of the volatility-timing strategies

using the two different rolling estimators of the conditional covariance matrix. For

the minimum volatility (maximum return) strategy, using the rolling estimator based

on daily returns yields an average return of 10.5% (12.7%), a sample volatility of 11.4%

(13.0%), and a Sharpe ratio of 0.92 (0.98). Switching to the rolling estimator based

on realized volatility, the average return increases to 11.7% (14.2%), the volatility is

comparable at 11.3% (13.0%), and the Sharpe ratio increases to 1.03 (1.09). The table

also reports results for each three-year subperiod and for two subperiods that exclude

the 1987 crash. These results indicate that switching to the realized-volatility-based

estimator generates performance gains in each subperiod.

Fig. 5 provides evidence on the value of volatility timing in the case of no estima-

tion risk. The figure shows the ex post minimum-variance frontier for static portfolios

over our sample period. The highest Sharpe ratio achieved by one of these portfolios

is 0.81. In contrast, the dynamic volatility-timing strategies earn Sharpe ratios rang-

ing from 0.92 to 1.09. Thus, the volatility-timing strategies, which are based on the

ex post means and ex ante estimates of the conditional covariance matrix, dominate

the unconditionally efficient static portfolios which are based on both ex post means

and ex post variances and covariances. This suggests that volatility timing can gen-

erate economic value. However, to assess whether this value is realizable we need to

incorporate the effects of estimation risk.

5.2. Controlling for estimation risk

In practice, an investor implementing the volatility-timing strategies faces uncer-

tainty about expected returns. We use a block bootstrap approach to control for this

uncertainty and assess its impact on the results. Suppose, for example, that we want
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to mimic the estimation risk inherent in using a sample size comparable to ours to

estimate the expected returns. First, we form an artificial sample of k = 4,000 returns

by randomly sampling, with replacement, nonoverlapping blocks of 15 observations

from the series of actual returns.5 Next, we use the mean returns from this artificial

sample, together with our conditional covariance matrix estimates, to compute the

portfolio weights for the volatility-timing strategies. Finally, we apply these weights

to the actual returns and evaluate the performance of the strategies. Repeating this

procedure over 1,000 trials, we can assess how the volatility-timing strategies perform

across a wide range of plausible inputs for the vector of expected returns.

We measure the value of volatility timing by comparing the performance of the

volatility-timing strategies to that of an ex ante unconditionally efficient static port-

folio. To construct this portfolio, we use the artificial sample in each bootstrap trial

to estimate the unconditional mean and unconditional covariance matrix of daily

returns. Then, using these estimates, we solve for the fixed portfolio weights that

either minimize volatility or maximize expected return subject to the same target re-

turn or volatility as the volatility-timing strategy. Since the static portfolio is based

on the same level of estimation risk as the volatility-timing strategy, their relative

performance reflects the gains attributable to volatility timing.

Although our bootstrap experiment mimics the uncertainty faced by an investor

in practice, a direct application of the procedure ignores potentially valuable non-

sample information about the parameters. Specifically, asset pricing theory suggests

that µs > µb > µg, µs > 0, µb > 0, and σs > σb, where µ and σ denote the un-

conditional expected return and unconditional volatility and the subscripts denote

stocks (s), bonds (b), and gold (g). By incorporating these inequalities in the estima-

tion procedure, an investor can potentially reduce estimation risk. We approximate

this strategy by treating the inequalities as exclusionary criteria: if the sample means

or volatilities for a particular trial violate any of the criteria, we discard the estimates

and generate a new bootstrap sample. We repeat this process until we have a total

of 1,000 trials in which the inequalities are satisfied.6

Table 3 shows the distributional properties of the mean and covariance matrix

estimates obtained from our bootstrap procedure. The table reports the average of

5The choice of block length is not critical. We experimented with lengths from 1 to 25 days and
found little change in the average parameter estimates or the associated standard errors.

6This approach is similar in spirit to Bayesian techniques for exploiting non-sample information.
If a Bayesian investor incorporates inequality constraints in his prior, then the posterior distribution
assigns zero probability to regions of the parameter space in which the constraints are violated.
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the estimates across trials and the associated standard errors. For example, using an

artificial sample size of k = 1,000, the average expected return estimates for stocks,

bonds, and gold are 14.4%, 7.1%, and −7.6% annualized. As k increases, the expected

return estimates converge to the actual sample means for our data set. However, even

with k = 10,000, the standard errors are fairly large. Thus, it is clear that using our

bootstrap approach generates a wide range of estimates for the expected returns.

As expected, some biases arise as a result of applying our exclusionary criteria

in the bootstrap trials. Using k = 1,000, for example, 45% of the total samples

generated violate the criteria. Since the remaining 1,000 samples tend to be those

with higher than average returns for stocks and bonds and lower than average returns

for gold, the expected return estimates for stocks and bonds exhibit an upward bias

and those for gold exhibit a downward bias. In addition, the volatility estimates

exhibit a downward bias because the excluded samples tend to be those containing

more extreme observations. Increasing k reduces these biases; however, they are still

apparent using k = 10,000, with nearly 10% of the samples violating the exclusionary

criteria. We consider later the impact of these biases on our results.

Table 4 evaluates the performance of the volatility-timing strategies for various

levels of estimation risk. For the strategies using the daily-returns-based rolling esti-

mator, volatility timing clearly outperforms the ex ante efficient static porfolio. For

example, with k = 10,000, the average returns for the minimum volatility and static

portfolios are comparable, but volatility timing generates lower volatility (11.5% ver-

sus 12.2%) and a higher Sharpe ratio (0.89 versus 0.82). The p-value of 1.00 indicates

that the volatility-timing strategy yields a higher Sharpe ratio in 100% of the boot-

strap trials. Turning to the performance fees (∆γ), an investor with low relative risk

aversion (γ = 1) would be willing to pay 18 basis points per year to switch from

the static to the volatility-timing portfolio, while an investor with high relative risk

aversion (γ = 10) would be willing to pay 101 basis points. The maximum return

strategy also outperforms the static portfolio but in this case the gains come mostly

from a large increase in the average returns (12.3% versus 10.0%).

Reducing the sample size k increases the level of estimation risk. Naturally,

this tends to reduce the effectiveness of the volatility-timing strategies. However, it

also reduces the performance of the ex ante efficient static portfolios, so the gains to

volatility timing are not that sensitive to the level of estimation risk. Even with k =

1,000, the minimum volatility (maximum return) strategy has a higher Sharpe ratio

than the static portfolio in 87% (94%) of the trials, and the performance fees are not
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very different from those with k = 10,000.

Now consider the results for the volatility-timing strategies using the rolling es-

timator based on realized volatility. The value of volatility timing increases substan-

tially. The minimum volatility strategy generates both a higher return and lower

volatility than the ex ante optimal static portfolio, independent of the level of esti-

mation risk. The Sharpe ratios range from 0.86 to 0.98, the p-values are all greater

than 92%, and the performance fees are on the order of 100 to 200 basis points. For

the maximum return strategy, the Sharpe ratios range from 0.94 to 1.05, the p-values

exceed 95%, and the performance fees are 250 to 350 basis points. These results

suggest that volatility timing using the covariance matrix estimates based on realized

volatility generates substantial economic value.

Table 5 evaluates the incremental contribution of the realized volatility approach

on the performance of the volatility-timing strategies. The means, volatilities, and

Sharpe ratios are the same as those reported in Table 4, but here the p-values indicate

the fraction of trials in which the rolling estimator based on realized volatility gener-

ates a higher Sharpe ratio than the estimator based on daily returns. These p-values

are always nearly one. For the minimum volatility strategy, using realized volatility

increases the average returns without much effect on volatility, so the performance

fees are roughly the magnitude of this increase (62 to 110 basis points). For the maxi-

mum return strategy, using realized volatility generates both higher returns and lower

volatility, and the performance fees are even greater (117 to 138 basis points). These

results suggest that the incremental value of using realized volatility is substantial.

Fig. 6 plots the distribution of performance fees across the bootstrap trials for

k = 4,000. Panels A and B show the fees for the realized-volatility-based estimator

relative to the ex ante efficient static portfolio. The distributions vary with the level of

risk aversion but in every case almost all the mass is in the positive region. Panels C

and D show the fees for switching from the rolling estimator based on daily returns

to the one based on realized volatility. Again, almost all the mass of each distribution

lies above zero, and the distributions are much tighter than those in Panels A and B.

The implication is that using the more precise conditional covariance matrix estimates

almost always leads to better volatility-timing performance.

Earlier we noted the biases that arise from applying the exclusionary criteria

in our bootstrap trials. To assess their impact on our results, Table 6 examines

the performance of the various strategies when we implement the bootstrap without
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any constraints. As expected, the performance of all the strategies deteriorates, es-

pecially with high levels of estimation risk, and the p-values are lower because the

trials generate a wider range of parameter estimates than before. Nonetheless, the

relative performance of the strategies remains unchanged. Switching to the realized-

volatility-based estimator from either the unconditional or the daily-returns-based

estimators generates roughly the same increase in Sharpe ratio and same perfor-

mance fees as reported in Table 4. Moreover, if we directly compare the performance

of the realized-volatility-based and daily-returns-based estimators (not shown), the

realized-volatility-based estimator yields a higher Sharpe ratio in over 90% of the

trials, regardless of the level of estimation risk. When k = 4,000, the p-values are

greater than 99%. Since eliminating the exclusionary criteria does not qualitatively

change the results, we continue to employ them for the remainder of our analysis.

5.3. Decomposition of the performance gains

Table 7 provides additional insights into the gains generated using the realized

volatility-based rolling estimator. The first two rows in each panel restate the re-

sults for the ex ante efficient static portfolios and for the volatility-timing strategies

using the rolling estimator based on daily returns. The next four rows report the

performance of the volatility-timing strategies using realized volatility as we sequen-

tially add components of our procedure for constructing this estimator. The final

two rows show the results using only the variance or covariance elements of the

realized-volatility-based estimator, with the other elements replaced by those from

the daily-returns-based estimator. All of the results are based on k = 4,000.

These results indicate that realized volatility performs reasonably well even with-

out applying our rolling estimator framework. When we simply use the lagged realized

covariance matrix as our estimator of Σt, the minimum volatility strategy has a p-

value of 0.57 relative to the optimal static portfolio and both performance fees are

positive. For the maximum return strategy, the p-value increases to 0.99, but the

fees are sensitive to the level of risk aversion. The strategies fare much worse when

compared to those using the rolling estimator based on daily returns. The p-values

are 0.15 and 0.05 and three of the four performance fees are negative. This is not

surprising, however, given the variability of the realized volatilities and correlations

shown in Panel A of Figs. 2 and 3.

Rows four and five of each panel consider rolling versions of the realized-volatility-

based estimator, with and without overnight returns, but before applying our bias
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corrections. These results indicate that using the rolling estimator reduces volatility

and improves the performance of both volatility-timing strategies, especially after

including overnight returns. The minimum volatility strategy now has both a higher

return and lower volatility than using the rolling estimator based on daily returns;

however, for the maximum return strategy, the daily-returns-based estimator is still

more effective. Row six reports the results for the final bias-corrected rolling estimator

based on realized volatility. Adding the bias corrections generates a large increase

in the average returns for both strategies and substantially improves their overall

performance. The final two rows of each panel show that the variances and covariances

are of roughly equal importance in terms of their impact on economic performance.

5.4. Performance gains measured over longer horizons

Our results thus far provide strong support for the proposition that volatility

timing has significant value to investors with a one-day horizon. More generally,

we are interested in whether volatility timing at the daily level leads to performance

gains over longer investment horizons. As discussed in Section 2, the results for a daily

horizon can provide a guide to the results for longer horizons. However, the accuracy

of this approach for assessing long-horizon performance depends on the time-series

properties of the daily returns.

We provide direct evidence on this issue by determining the gains to daily volatil-

ity timing over horizons ranging from one week to one year. Table 8 examines the

cumulative returns over nonoverlapping multi-day periods for the ex ante efficient

static and volatility-timing portfolios with k = 4,000. The results indicate that the

mean returns tend to rise and the volatilities tend to fall as the measurement horizon

gets longer, leading to increases in the Sharpe ratios. However, this occurs for both

the static and volatility-timing portfolios, so there is little effect on the relative per-

formance. For each strategy, at almost every horizon, volatility timing generates a

higher Sharpe ratio in over 90% of the trials and the performance fees are substantial

at both levels of risk aversion. These results, therefore, confirm that our earlier results

based on a daily horizon provide a reasonable guide to the value of volatility timing

measured over longer horizons.

6. Robustness tests

In this section, we perform additional tests to assess the robustness of our results.

First, we evaluate whether we should use a multivariate GARCH model instead of the
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daily-returns-based rolling estimator as a benchmark for measuring the incremental

value of the realized volatility approach. Second, we assess the sensitivity of our

results to the choice of decay rate used in implementing the rolling estimators. Third,

we evaluate the impact of transaction costs on the performance of the volatility-timing

strategies.

6.1. A multivariate GARCH alternative

Our results suggest that switching from daily to intradaily returns to construct

the conditional covariance matrix estimates generates substantial economic value.

These results, however, may overstate the value if our parsimonious daily-returns-

based rolling estimator fails to adequately capture the dynamics of the conditional

covariance matrix process. Using a less restrictive estimator, such as a multivariate

GARCH model, may lead to different inference regarding the incremental value of

the realized volatility approach.

To investigate this issue, we fit the multivariate GARCH model in Eqs. (9) and

(10) to the daily returns and then we evaluate the performance of the model relative

to the daily-returns-based rolling estimator when implementing the volatility-timing

strategies.7 This is a stringent test because the fitted values of Σt from the multivari-

ate GARCH model are based on parameter estimates obtained using the full data set.

From a statistical perspective, the multivariate GARCH model clearly fits better than

the GARCH analog of the rolling estimator: the increase in the log likelihood is 105.2.

The question of interest, however, is whether this statistical advantage translates into

improved performance in our volatility-timing framework.

Table 9 compares the performance of the two estimators along this dimension.

The p-values indicate the fraction of trials in which the rolling estimator generates

a higher Sharpe ratio than the GARCH model. In almost every case, the p-values

exceed 0.90. The only exceptions are for the minimum volatility strategies where the

p-values are 0.80 and 0.85 at the two highest levels of estimation risk. Moreover, all

of the performance fees for switching from the GARCH model to the rolling estimator

are positive. For the minimum volatility strategies they range from 12 to 38 basis

points and for the maximum return strategies they range from 25 to 147 basis points.

While it may seem surprising that the more restrictive rolling estimator delivers

the better performance, this is consistent with evidence reported in FKO (2001). They

7We restrict the A and B matrices to be diagonal to avoid overparameterizing the model.
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find that volatility timing adds the most value using estimates of Σt that are much

smoother than is optimal under a statistical goodness-of-fit criterion. Apparently the

fitted values from the multivariate GARCH model exhibit too much variability when

viewed through the lens of the volatility-timing strategies.

6.2. The effect of the decay rate

The next robustness issue we consider is the choice of decay rate used to imple-

ment the two rolling estimators. Our previous results are based on the decay rates

that provide the best statistical fit for the GARCH-analog of the rolling estimators.

However, as we found with the multivariate GARCH model, using a statistical cri-

teria may be suboptimal in terms of implementing the volatility-timing strategies.

This has two potential implications for our results. First, if the decay rate for the

daily-returns-based estimator is suboptimal, our results may overstate the incremen-

tal value of using the realized volatility approach. Second, if the decay rate for the

realized-volatility-based estimator is suboptimal, our results may understate the over-

all value of volatility-timing using realized volatility.

6.2.1. Sensitivity analysis for the daily-returns-based estimator

Table 10 shows how our results vary with the decay rate used to implement the

daily-returns-based estimator. The first two rows in each panel restate the results for

the ex ante efficient static portfolios and for the realized-volatility-based estimator

with α = 0.064. The results in the remaining rows show that using a decay rate of

about 0.005 for the daily-returns-based estimator maximizes the overall performance

of the volatility-timing strategies. With this choice, the p-values relative to the static

portfolios are 0.96 and 0.99 and the performance fees are 48 and 95 basis points

for the minimum volatility strategy and 167 and 169 basis points for the maximum

return strategy. However, using the realized-volatility-based estimator still leads to

better performance. The p-values indicate that switching from realized volatility to

the daily-returns-based estimator rarely yields a higher Sharpe ratio and all of the

performance fees are negative, independent of the choice of decay rate.

Fig. 7 shows the distribution of the performance fees across the bootstrap trials

using a decay rate of 0.005 for the daily-returns-based estimator. Panels A and B show

the fees for switching from the ex ante efficient static portfolios to the volatility-timing

strategies using the daily-returns-based estimator. Panels C and D show the fees

for switching from the daily-returns-based estimator to the realized-volatility-based
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estimator. In every case the majority of the distribution lies above zero. Moreover,

the distribution in Panel A is roughly comparable to that in Panel C, and the same

is true for the distributions in Panels B and D. From this we conclude that, even

if we implement the daily-returns-based estimator using the most effective decay

rate, switching to the realized-volatility-based estimator approximately doubles the

economic value of volatility timing.

6.2.2. Sensitivity analysis for the realized-volatility-based estimator

In Table 11, we show how our results vary with the decay rate used to implement

the realized-volatility-based estimator. The first two rows in each panel restate the

results for the ex ante efficient static portfolios and for the daily-returns-based esti-

mator with α = 0.005. The remaining rows show that as we vary the decay rate used

for the realized-volatility-based estimator from 0.020 to 0.175, the performance of the

volatility-timing strategies is not greatly affected. In almost every case, the p-values

with respect to both the ex ante efficient static portfolios and the daily-returns-based

estimator are greater than 0.90 and switching to the realized-volatility-based estima-

tor generates large performance fees.

Based on these results, we can provide some conservative estimates of the eco-

nomic value of volatility timing using realized volatility. The overall value of volatility-

timing using realized volatility is approximately 100 to 200 basis points for the mini-

mum volatility strategy and 250 to 350 basis points for the maximum return strategy.

The incremental value of using realized volatility, compared to the daily-returns-based

estimator, is approximately 50 to 100 basis points for the minimum volatility strategy

and 80 to 200 basis points for the maximum return strategy. Thus, it seems clear

that the realized volatility approach has considerable economic value.

6.3. Transaction costs

Evaluating the effect of transaction costs provides another perspective on the

economic significance of our results. To get a sense of a reasonable level of transaction

costs, consider the S&P 500 futures contract. Fleming, Ostdiek, and Whaley (1996)

estimate that the roundtrip commissions and fees for large institutions are about $6.00

per contract. If we assume, conservatively, that the bid-ask spread averages 0.10 ($50

per contract) and use the average futures price during our sample (551.39), we obtain

an average one-way transaction cost of $28.00 on a contract size $551.39×500, or
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2.56% annualized.8 This means that if, on average, we trade one contract every day

for a year, transaction costs would reduce our returns by 256 basis points.

Table 12 illustrates the effect of imposing different levels of proportional trans-

action costs on the performance of the ex ante efficient static portfolios and the

volatility-timing strategies. We impose the transaction costs on every trade, includ-

ing those required to establish the initial position, implement the daily rebalancing,

roll into each subsequent contract month, and liquidate the position at the end of

the sample. For the volatility-timing strategies, daily rebalancing is needed to track

the time variation in the portfolio weights and, for the static portfolios, it is needed

to maintain a constant weight in each asset. We impose the transaction costs by

subtracting the appropriate percentage each day from the daily portfolio returns.

As expected, transaction costs have a larger impact on the volatility-timing strate-

gies than on the ex ante efficient static portfolios. Transaction costs of 10%, for exam-

ple, would reduce the average return on the volatility-timing strategies by 90 and 130

basis points compared to only 50 basis points for the static portfolios. Nonetheless,

even with this level of transaction costs, both of the volatility-timing strategies out-

perform the static portfolios by a substantial margin. The Sharpe ratios are higher

in over 95% of the trials, and the performance fees are 56 and 147 for the minimum

volatility strategy and 250 and 169 for the maximum return strategy. Thus, transac-

tion costs would need to be much larger than our estimate of 2.56% in order to offset

the gains to volatility timing using realized volatility.

A separate question is whether the gains may be offset by market-impact costs. To

examine this, suppose we implement the maximum return strategy using a constant

$100 million value for the portfolio. In our bootstrap experiment, managing such

a position requires, on average, daily trade sizes of 16, 40, and 93 contracts for

stock, bond, and gold futures, respectively. For comparison, the average daily trading

volumes in these markets during our sample period are 69,000 for stocks, 290,000 for

bonds, and 31,000 for gold. Thus, it seems unlikely that market-impact costs would

be large enough to offset the observed performance differential.

7. Conclusions

Prior research has documented many statistical benefits of the realized volatility

approach. We find that, with regard to investment decisions, the approach yields

substantial economic benefits as well. In particular, an investor implementing a

8This assumes a contract size of 500 times the index level. The contract size for S&P 500 futures
changed from 500 to 250 times the index level in November 1997.
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volatility-timing strategy would be willing to pay on the order of 50 to 200 basis

points per year to switch from a daily-returns-based estimator of the conditional co-

variance matrix to an estimator based on realized volatility. Relative to an ex ante

efficient static portfolio, the overall value of volatility timing using realized volatility

is approximately double this magnitude. Moreover, we find that these benefits are

not restricted to short-horizon investors. The cumulative gains to volatility timing

at the daily level are substantial for performance measurement horizons as long as a

year.

The results of our analysis point to some interesting directions for future research.

One possibility is to relax the assumption that our investor treats expected returns

as constant. We could then attempt to relate the predictable variation in monthly

returns to persistence in daily expected returns which in turn is related to persistence

in conditional covariances. Establishing a clear linkage between conditional expected

returns and covariance-based measures of systematic risk has proven difficult in the

past. Perhaps using the realized volatility approach will be more successful.

Another potential avenue is an in-depth analysis of the statistical performance

of realized-volatility-based estimators of the conditional covariance matrix. ABDL

(2001b) show that modeling the time series of realized volatilities as a simple au-

togressive process produces volatility forecasts that outperform those obtained by

fitting standard GARCH models. Given our results, it would be interesting to com-

pare the performance of the ABDL (2001b) specification to that of GARCH models

formulated directly in terms of the lagged realized volatilities.

25



References

Andersen, T.G., Bollerslev, T., 1998. Answering the skeptics: yes, standard volatility
models do provide accurate forecasts. International Economic Review 39, 885–905.

Andersen, T.G., Bollerslev, T., Diebold, F.X., Ebens, H., 2001. The distribution of realized
stock return volatility. Journal of Financial Economics 61, 43–76.

Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P., 2001a. The distribution of realized
exchange rate volatility. Journal of the American Statistical Association 96, 42–55.

Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P., 2001b. Modeling and forecasting
realized volatility. Working paper #8160, National Bureau of Economic Research.

Andreou, E., Ghysels, E., 2001. Rolling-sample volatility estimators: some new theoretical,
simulation and empirical results. Journal of Business and Economic Statistics, forthcoming.

Areal, N., Taylor, S.J., 2002. The realized volatility of FTSE-100 futures prices. Journal of
Futures Markets, forthcoming.

Bai, X., Russell, J.R., Tiao, G.C., 2001. Beyond Merton’s utopia (I): effects of non-
normality and dependence on the precision of variance estimates using high-frequency fi-
nancial data. Unpublished working paper. University of Chicago.

Barndorff-Nielsen, O.E., Shephard, N., 2001. Non-Gaussian OU based models and some
of their uses in financial economics. Journal of the Royal Statistical Society, Series B 63,
167–241.

Barndorff-Nielsen, O.E., Shephard, N., 2002. Econometric analysis of realized volatility and
its use in estimating stochastic volatility models. Journal of the Royal Statistical Society,
Series B 64, forthcoming.

Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. Journal of
Econometrics 31, 307–327.

Clark, P.K., 1973. A subordinated stochastic process model with finite variance for specu-
lative prices. Econometrica 41, 135–155.

Ebens, H., 1999. Realized stock index volatility. Unpublished working paper #420. De-
partment of Economics, Johns Hopkins University.

Efron, B., 1979. Bootstrap methods: another look at the jackknife. Annals of Statistics 7,
1–26.

Engle, R.F., 1982. Autoregressive conditional heteroskedasticity with estimates of the vari-
ance of U.K. inflation. Econometrica 50, 987–1008.

26



Engle, R.F., Kroner, K.F., 1995. Multivariate simultaneous generalized ARCH. Economet-
ric Theory 11, 122–150.

Fleming, J., Kirby, C., Ostdiek, B., 2001. The economic value of volatility timing. Journal
of Finance 56, 329–352.

Fleming, J., Ostdiek, B., Whaley, R.E., 1996. Trading costs and the relative rates of price
discovery in the stock, futures, and option markets. Journal of Futures Markets 16, 353–387.

Foster, D.P., Nelson, D.B, 1996. Continuous record asymptotics for rolling sample variance
estimators. Econometrica 64, 139–174.

Hall, P., Horowitz, J., 1996. Bootstrap critical values for tests based on generalized-method-
of-moments estimators. Econometrica 64, 891–916.

Hsieh, D.A., 1991. Chaos and nonlinear dynamics: application to financial markets. Journal
of Finance 46, 1839–1877.

Merton, R.C., 1980. On estimating the expected return on the market: an exploratory
investigation. Journal of Financial Economics 8, 323–361.

Nelson, D.B., 1991. Conditional heteroskedasticity in asset returns: a new approach. Econo-
metrica 59, 347–370.

Schwert, G.W., 1989. Does stock market volatility change over time? Journal of Finance
44, 1115–1153.

Taylor, S.J., 1986. Modelling Financial Time Series. Wiley: Chichester, UK.

27



Table 1
Summary statistics for daily and five-minute returns

The table provides summary statistics for the daily and five-minute returns for stock, bond, and gold
futures. The daily returns are based on closing prices for gold and 1:30 prices for stocks and bonds
for days that all three markets are open. The five-minute returns are based on intraday transaction
prices nearest to each five-minute gridpoint. We exclude gridpoints at the beginning and end of each
day until the nearest transaction is less than two and a half minutes away. For the daily returns, we
report the number of days, the unconditional mean returns and volatilities (both annualized), and
the unconditional correlations. For the five-minute returns (rt), we report the number of days and
statistics for the number of transaction prices per day, the number of five-minute returns per day,
and the autocorrelations of rt and |rt|. The sample period is January 3, 1984 to November 30, 2000.
The five-minute returns are continuously compounded and exclude October 19 to 30, 1987.

Statistic Stocks Bonds Gold

Panel A: Daily Returns

Days 4,238 4,238 4,238

Mean Return 0.099 0.065 −0.066
Volatility 0.169 0.101 0.143

Correlations Stocks 0.326 −0.124
Bonds −0.168

Panel B: Five-minute Returns

Days 4,228 4,228 4,119

Trades per Day Minimum 241 210 42
Average 2,686 1,594 1,101
Maximum 5,228 3,719 4,646

Returns per Day Minimum 20 24 12
Average 80 77 72
Maximum 87 87 78

Autocorrelation of rt Lag 1 −0.010 −0.077 −0.053
Lag 2 −0.021 0.011 −0.023
Lag 3 −0.007 0.001 −0.004
Lag 4 −0.002 0.004 −0.001
Lag 5 0.000 0.002 −0.004

Autocorrelation of |rt| Lag 1 0.289 0.223 0.314
Lag 2 0.264 0.174 0.228
Lag 3 0.247 0.128 0.187
Lag 4 0.232 0.095 0.155
Lag 5 0.223 0.072 0.131



Table 2
Performance of the volatility-timing strategies with no estimation risk

The table summarizes the performance of the volatility-timing strategies for the case of no estimation risk regarding expected returns.
Each day, we solve a portfolio optimization problem in which the expected return for each asset equals its in-sample mean return and the
conditional covariance matrix is estimated out of sample using either the daily-returns-based rolling estimator (“Daily”) or the realized-
volatility-based rolling estimator (“Realized”). In each case, we solve for the portfolio weights that minimize conditional volatility subject
to a target expected return of 10% (“Minimum Volatility Strategy”) and the weights that maximize expected return subject to a target
volatility of 12% (“Maximum Return Strategy”). For each set of weights, we report the mean next-day return (µ), volatility (σ), and Sharpe
ratio (SR). The means and volatilities are expressed as annualized percentages. The sample period is January 3, 1984 to November 30,
2000. We also report the results for each three-year subperiod and for two non-crash periods that exclude either October 19 to 30, 1987 or
the entire 1986 to 1988 subperiod.

Minimum Volatility Strategies Maximum Return Strategies

Daily Realized Daily Realized

Period Obs. µ σ SR µ σ SR µ σ SR µ σ SR

Entire Sample 4,175 10.5 11.4 0.92 11.7 11.3 1.03 12.7 13.0 0.98 14.2 13.0 1.09

1984–1985 440 16.3 10.0 1.63 16.4 10.0 1.64 20.4 12.9 1.58 21.2 13.1 1.62
1986–1988 757 9.7 16.6 0.59 14.0 16.4 0.85 6.0 13.5 0.45 9.3 13.5 0.69
1989–1991 758 10.7 11.8 0.91 11.0 11.8 0.93 10.4 13.1 0.79 11.7 12.9 0.91
1992–1994 751 5.0 8.3 0.60 5.6 8.3 0.68 7.6 12.7 0.59 8.9 12.7 0.70
1995–1997 744 18.4 8.9 2.07 19.3 8.9 2.17 28.0 12.9 2.17 29.3 12.9 2.26
1998–2001 726 5.3 10.1 0.52 5.8 10.1 0.58 7.4 12.9 0.57 7.8 12.9 0.60

ex Oct 19–30, 1987 4,165 10.0 11.1 0.90 10.8 11.1 0.97 12.5 12.9 0.97 13.6 12.9 1.05
ex 1986–1988 3,418 10.7 9.9 1.08 11.2 9.9 1.13 14.2 12.9 1.10 15.2 12.9 1.18



Table 3
Estimates of the unconditional means, volatilities, and correlations in the bootstrap trials

The table summarizes the distributional properties of the unconditional mean return and covariance
matrix estimates obtained from our bootstrap trials. In each trial, we generate an artificial sample of
k returns by randomly sampling with replacement from the actual returns, selecting nonoverlapping
blocks of 15 observations. We then use the artificial sample to estimate the unconditional mean
returns and the unconditional covariance matrix. We discard trials that violate any of our exclu-
sionary criteria: µs > µb > µg, µs > 0, µb > 0, and σs > σb, where µ and σ are the mean return
and volatility estimates for stocks (s), bonds (b), and gold (g). The results reported in the table
are the average estimates based on 1,000 acceptable trials. We report the average mean return and
volatility estimates for each asset (as annualized percentages) and the average correlation estimates
(ρ) for each pair of assets. Standard errors are reported below the averages.

Mean Returns Covariance MatrixTrials
k Excluded µs µb µg σs σb σg ρsb ρsg ρbg

1,000 45.3% 14.40 7.10 −7.63 15.93 10.06 14.09 0.346 −0.126 −0.166
5.36 3.80 6.07 1.97 0.50 1.05 0.061 0.046 0.049

2,000 33.6% 12.56 6.46 −6.98 16.21 10.08 14.17 0.340 −0.125 −0.168
4.23 3.04 4.65 1.63 0.36 0.77 0.045 0.032 0.036

3,000 26.5% 11.62 6.16 −6.87 16.41 10.10 14.20 0.336 −0.125 −0.167
3.67 2.65 3.91 1.43 0.30 0.65 0.036 0.027 0.030

4,000 21.7% 11.13 6.07 −6.61 16.48 10.10 14.21 0.335 −0.124 −0.168
3.30 2.32 3.40 1.24 0.26 0.54 0.032 0.022 0.026

5,000 17.4% 10.91 6.13 −6.80 16.53 10.11 14.23 0.333 −0.125 −0.168
2.85 2.22 3.03 1.13 0.24 0.50 0.028 0.020 0.023

10,000 9.9% 10.49 6.20 −6.51 16.68 10.12 14.23 0.330 −0.125 −0.168
2.18 1.60 2.11 0.85 0.17 0.33 0.020 0.014 0.016



Table 4
Comparison of the volatility-timing strategies and the ex ante efficient static portfolios

The table compares the performance of the volatility-timing strategies to that of the ex ante efficient static portfolios. The results for each
line in the table are based on 1,000 simulation trials using artificial samples of k returns to estimate the unconditional expected returns
and the unconditional covariance matrix. For each trial, we compute the next-day returns earned by the ex ante efficient static portfolios
(“Static”) and by the volatility-timing strategies using conditional covariance matrix estimates generated by either the daily-returns-based
rolling estimator (“Daily”) or the realized-volatility-based estimator (“Realized”). The table reports the average annualized mean return (µ),
annualized volatility (σ), and Sharpe ratio (SR) for each strategy, the proportion of trials (p-val) in which each volatility-timing strategy
earns a higher Sharpe ratio than the corresponding static portfolio, and the average annualized basis point fees (∆γ) an investor with
quadratic utility and constant relative risk aversion of γ would pay to switch from the static portfolio to the volatility-timing strategy.

Static Daily Realized

k µ σ SR µ σ SR p-val ∆1 ∆10 µ σ SR p-val ∆1 ∆10

Panel A: Minimum Volatility Strategies

1,000 7.2 9.8 0.73 7.2 9.1 0.79 0.87 8.4 75.8 7.8 9.1 0.86 0.92 70.2 139.8
2,000 8.4 11.1 0.76 8.4 10.4 0.82 0.93 12.9 95.4 9.1 10.4 0.89 0.96 86.6 171.6
3,000 9.0 11.7 0.77 9.1 11.0 0.83 0.95 16.3 102.6 9.9 11.0 0.91 0.97 99.7 188.6
4,000 9.5 12.1 0.79 9.5 11.3 0.85 0.96 15.9 103.4 10.4 11.3 0.93 0.98 105.3 196.3
5,000 9.5 12.0 0.80 9.6 11.2 0.86 0.98 17.1 101.2 10.5 11.2 0.94 0.99 109.2 197.4

10,000 10.1 12.2 0.82 10.2 11.5 0.89 1.00 18.0 100.7 11.2 11.4 0.98 1.00 121.0 210.4

Panel B: Maximum Return Strategies

1,000 9.3 12.7 0.73 11.0 13.1 0.85 0.94 169.7 134.6 12.2 13.0 0.94 0.95 286.6 254.3
2,000 9.5 12.5 0.76 11.4 13.1 0.87 0.96 187.3 127.9 12.6 13.0 0.97 0.98 308.1 251.4
3,000 9.6 12.4 0.77 11.7 13.1 0.89 0.98 200.0 124.1 12.9 13.0 0.99 0.99 326.0 252.7
4,000 9.7 12.3 0.79 11.8 13.0 0.91 0.99 205.0 121.2 13.1 13.0 1.01 0.99 333.2 251.8
5,000 9.8 12.3 0.80 12.0 13.0 0.92 0.99 209.9 121.7 13.3 13.0 1.02 0.99 341.5 255.5

10,000 10.0 12.2 0.82 12.3 13.0 0.95 1.00 219.1 120.7 13.7 13.0 1.05 1.00 354.8 258.5



Table 5
Performance of the realized-volatility-based estimator vs. the daily-returns-based estimator

The table compares the performance of the volatility-timing strategies using a rolling estimator of
the conditional covariance matrix based either on daily returns or on realized volatility. The results
for each line in the table are based on 1,000 simulation trials using an artificial sample of k returns
to estimate the unconditional expected returns. For each trial, we compute the next-day returns
earned by the volatility-timing strategies using either the daily-returns-based estimator (“Daily”) or
the realized-volatility-based estimator (“Realized”). The table reports the average annualized mean
return (µ), annualized volatility (σ), and Sharpe ratio (SR) for each strategy, the proportion of trials
(p-val) in which using realized volatility earns a higher Sharpe ratio, and the average annualized
basis point fees (∆γ) that an investor with quadratic utility and constant relative risk aversion of γ
would be willing to pay to switch from using daily returns to using realized volatility.

Daily Realized

k µ σ SR µ σ SR p-val ∆1 ∆10

Panel A: Minimum Volatility Strategies

1,000 7.2 9.1 0.79 7.8 9.1 0.86 0.99 61.8 64.0
2,000 8.4 10.4 0.82 9.1 10.4 0.89 1.00 73.7 76.3
3,000 9.1 11.0 0.83 9.9 11.0 0.91 1.00 83.4 86.0
4,000 9.5 11.3 0.85 10.4 11.3 0.93 1.00 89.4 92.9
5,000 9.6 11.2 0.86 10.5 11.2 0.94 1.00 92.1 96.3

10,000 10.2 11.5 0.89 11.2 11.4 0.98 1.00 103.0 109.7

Panel B: Maximum Return Strategies

1,000 11.0 13.1 0.85 12.2 13.0 0.94 0.99 116.9 119.7
2,000 11.4 13.1 0.87 12.6 13.0 0.97 1.00 120.8 123.5
3,000 11.7 13.1 0.89 12.9 13.0 0.99 1.00 126.0 128.6
4,000 11.8 13.0 0.91 13.1 13.0 1.01 1.00 128.2 130.6
5,000 12.0 13.0 0.92 13.3 13.0 1.02 1.00 131.6 133.7

10,000 12.3 13.0 0.95 13.7 13.0 1.05 1.00 135.7 137.7



Table 6
The effect of the exclusionary criteria on the performance of the volatility-timing strategies

The table compares the performance of the volatility-timing strategies and the ex ante efficient static portfolios when the exclusionary
criteria used in Table 4 are not applied. The results for each line in the table are based on 1,000 simulation trials using artificial samples of
k returns to estimate the unconditional expected returns and the unconditional covariance matrix. For each trial, we compute the next-day
returns earned by the ex ante efficient static portfolios (“Static”) and by the volatility-timing strategies using either the daily-returns-based
rolling estimator (“Daily”) or the realized-volatility-based estimator (“Realized”). The table reports the average annualized mean return (µ),
annualized volatility (σ), and Sharpe ratio (SR) for each strategy, the proportion of trials (p-val) in which each volatility-timing strategy
earns a higher Sharpe ratio than the corresponding static portfolio, and the average annualized basis point fees (∆γ) an investor with
quadratic utility and constant relative risk aversion of γ would pay to switch from the static portfolio to the volatility-timing strategy.

Static Daily Realized

k µ σ SR µ σ SR p-val ∆1 ∆10 µ σ SR p-val ∆1 ∆10

Panel A: Minimum Volatility Strategies

1,000 6.2 11.4 0.61 6.1 10.7 0.64 0.73 3.4 119.6 6.6 10.7 0.69 0.80 50.0 169.1
2,000 8.3 11.9 0.72 8.2 11.2 0.76 0.80 2.9 92.4 8.8 11.2 0.82 0.87 67.2 157.3
3,000 8.9 12.0 0.75 8.9 11.3 0.80 0.87 9.2 90.0 9.6 11.3 0.87 0.93 83.6 165.0
4,000 9.3 12.2 0.78 9.4 11.5 0.83 0.91 13.7 97.9 10.2 11.5 0.90 0.96 96.1 181.8
5,000 9.6 12.3 0.79 9.7 11.6 0.85 0.93 14.5 96.2 10.6 11.5 0.93 0.97 102.5 185.9

10,000 10.1 12.4 0.82 10.2 11.6 0.88 0.98 17.0 98.4 11.2 11.6 0.97 0.99 117.4 203.7

Panel B: Maximum Return Strategies

1,000 7.7 12.5 0.61 9.0 13.1 0.69 0.83 122.4 61.2 9.9 13.1 0.76 0.85 213.9 151.6
2,000 8.9 12.4 0.72 10.6 13.0 0.81 0.91 164.1 88.1 11.7 13.1 0.89 0.94 272.3 195.5
3,000 9.3 12.3 0.75 11.2 13.0 0.86 0.95 182.8 99.5 12.3 13.0 0.95 0.96 299.0 215.0
4,000 9.5 12.2 0.78 11.5 13.0 0.88 0.97 194.5 104.6 12.8 13.0 0.98 0.98 316.1 225.6
5,000 9.7 12.2 0.79 11.8 13.0 0.90 0.99 202.0 109.9 13.0 13.0 1.00 0.99 327.7 235.2

10,000 10.0 12.1 0.82 12.2 13.0 0.94 1.00 215.3 114.3 13.6 13.0 1.04 1.00 347.7 247.0



Table 7
Decomposition of the performance gains for the realized-volatility-based estimator

The table shows the effects of the steps in our procedure for constructing the realized-volatility-based
rolling estimator on volatility-timing performance. The results are based on 1,000 simulation trials
using an artificial sample of 4,000 returns to estimate the unconditional expected returns. For each
trial, we compute the next-day returns earned by the ex ante efficient static portfolios (“Static”)
and by the volatility-timing strategies using either the daily-returns-based estimator (“Daily”) or
the realized-volatility-based estimator (“Realized”). For the strategies using the realized volatility
approach, we report results as we sequentially adjust our estimate of the conditional covariance
matrix. First we use the lagged realized covariance matrix, next we use the unadjusted rolling
estimator, then we include overnight returns in the rolling estimator, and finally we add the bias
corrections. We also compute results using the “Variances Only” or the “Covariances Only” of the
realized-volatility-based estimator (with the other elements based on the daily returns). The table
reports the average annualized mean return (µ), annualized volatility (σ), and Sharpe ratio (SR) for
each case, the proportion of trials (p-val) in which using realized volatility earns a higher Sharpe
ratio, and the average annualized basis point fees (∆γ) that an investor with quadratic utility and
constant relative risk aversion of γ would be willing to pay to switch to using realized volatility.

vs. Static vs. Daily

Strategy µ σ SR p-val ∆1 ∆10 p-val ∆1 ∆10

Panel A: Minimum Volatility Strategies

Static 9.5 12.1 0.79

Daily 9.5 11.3 0.85 0.96 15.9 103.4

Realized

Lagged Realized 9.5 11.8 0.81 0.57 4.3 37.8 0.15 −11.6 −65.6
Add Rolling 9.4 11.3 0.83 0.96 −1.9 81.7 0.23 −17.8 −21.6
Add Overnight 9.8 11.2 0.87 0.98 37.8 134.8 0.86 21.9 31.4
Add Corrections 10.4 11.3 0.93 0.98 105.3 196.3 1.00 89.4 92.9

Variances Only 9.9 11.2 0.89 0.98 53.0 152.0 1.00 37.2 48.7
Covariances Only 10.1 11.4 0.89 0.96 67.1 143.2 0.95 51.2 39.8

Panel B: Maximum Return Strategies

Static 9.7 12.3 0.79

Daily 11.8 13.0 0.91 0.99 205.0 121.2

Realized

Lagged Realized 15.9 18.7 0.85 0.99 518.7 −388.9 0.05 313.7 −510.5
Add Rolling 13.0 15.1 0.86 0.99 295.5 −53.1 0.12 90.5 −174.4
Add Overnight 11.9 13.2 0.90 0.99 204.9 102.6 0.31 −0.1 −18.6
Add Corrections 13.1 13.0 1.01 0.99 333.2 251.8 1.00 128.2 130.6

Variances Only 12.4 13.0 0.95 0.99 256.8 180.5 1.00 51.8 59.4
Covariances Only 12.6 13.1 0.96 0.98 283.9 190.8 0.98 78.9 69.6



Table 8
Performance of the volatility-timing strategies over longer horizons

The table compares the performance of the daily volatility-timing strategies and the ex ante efficient
static portfolios for a range of performance measurement horizons. The results are based on 1,000
simulation trials using an artificial sample of 4,000 returns to estimate the unconditional expected
returns. For each trial, we compute the realized returns over various horizons (nonoverlapping) for
the ex ante efficient static portfolios (“Static”) and for the volatility-timing strategies using the
realized-volatility-based estimator (“Realized”). For each horizon, we report the average annualized
mean return (µ), annualized volatility (σ), and Sharpe ratio (SR) for the static and volatility-timing
strategies, the proportion of trials (p-val) in which the volatility-timing strategy earns a higher
Sharpe ratio, and the average annualized basis point fees (∆γ) that an investor with quadratic
utility and constant relative risk aversion of γ would be willing to pay to switch from the static
portfolio to the volatility-timing strategy.

Static Realized

Horizon Obs. µ σ SR µ σ SR p-val ∆1 ∆10

Panel A: Minimum Volatility Strategies

Daily 4,175 9.5 12.1 0.79 10.4 11.3 0.93 0.98 105.3 196.3

Weekly 834 9.5 11.6 0.82 10.4 11.2 0.94 0.97 97.2 142.2
Biweekly 417 9.5 11.4 0.84 10.4 11.0 0.96 0.97 95.2 140.7
Monthly 198 9.6 11.4 0.85 10.5 11.0 0.96 0.96 90.8 135.6
Bimonthly 98 9.7 11.3 0.87 10.5 10.5 1.02 0.98 90.7 181.9
Quarterly 65 9.8 10.9 0.92 10.6 9.8 1.10 0.98 91.8 198.0
Semiannual 32 9.8 10.6 0.95 10.7 9.3 1.17 0.97 96.7 225.0
Annual 16 9.8 10.9 0.92 10.8 10.0 1.12 0.91 114.2 213.5

Panel B: Maximum Return Strategies

Daily 4,175 9.7 12.3 0.79 13.1 13.0 1.01 0.99 333.2 251.8

Weekly 834 9.7 11.8 0.82 13.2 13.3 0.99 0.99 324.7 166.5
Biweekly 417 9.7 11.6 0.84 13.1 13.0 1.01 0.98 322.8 165.7
Monthly 198 9.8 11.6 0.85 13.2 13.2 1.00 0.98 319.0 143.2
Bimonthly 98 10.0 11.5 0.87 13.3 12.8 1.05 0.98 323.7 186.3
Quarterly 65 10.1 11.1 0.92 13.5 12.2 1.11 0.99 332.2 212.7
Semiannual 32 10.1 10.7 0.95 13.7 12.2 1.14 0.92 344.1 200.2
Annual 16 10.0 11.0 0.92 14.0 14.0 1.01 0.77 365.9 40.1



Table 9
Performance of the daily-returns-based estimator vs. GARCH

The table compares the performance of the volatility-timing strategies using the daily-returns-based
rolling estimator of conditional volatility versus using the in-sample fitted values from a multivariate
GARCH model. The results for each line in the table are based on 1,000 simulation trials using
an artificial sample of k returns to estimate the unconditional expected returns. For each trial, we
compute the next-day returns earned by the volatility-timing strategies using either the GARCH
model (“GARCH”) or the daily-returns-based estimator (“Daily”). The table reports the average
annualized mean return (µ), annualized volatility (σ), and Sharpe ratio (SR) for each strategy, the
proportion of trials (p-val) in which the daily-returns-based estimator earns a higher Sharpe ratio,
and the average annualized basis point fees (∆γ) that an investor with quadratic utility and constant
relative risk aversion of γ would be willing to pay to switch from using GARCH to using the rolling
estimator.

GARCH Daily

k µ σ SR µ σ SR p-val ∆1 ∆10

Panel A: Minimum Volatility Strategies

1,000 7.0 9.1 0.77 7.2 9.1 0.79 0.80 19.5 11.9
2,000 8.1 10.3 0.80 8.4 10.4 0.82 0.85 24.2 13.5
3,000 8.8 10.9 0.81 9.1 11.0 0.83 0.90 28.0 16.7
4,000 9.2 11.2 0.83 9.5 11.3 0.85 0.91 30.8 18.1
5,000 9.2 11.1 0.84 9.6 11.2 0.86 0.94 32.0 20.2

10,000 9.8 11.4 0.86 10.2 11.5 0.89 0.99 37.8 24.3

Panel B: Maximum Return Strategies

1,000 9.6 12.1 0.79 11.0 13.1 0.85 0.99 131.0 24.8
2,000 9.9 12.1 0.82 11.4 13.1 0.87 1.00 135.9 30.3
3,000 10.2 12.1 0.84 11.7 13.1 0.89 1.00 138.7 33.6
4,000 10.3 12.1 0.85 11.8 13.0 0.91 1.00 140.8 36.1
5,000 10.4 12.1 0.86 12.0 13.0 0.92 1.00 142.0 37.7

10,000 10.8 12.1 0.89 12.3 13.0 0.95 1.00 146.6 43.1



Table 10
The effect of the decay rate on the performance of the daily-returns-based estimator

The table shows the effect of the decay rate (α) used in the daily-returns-based rolling estimator on
the performance of the volatility-timing strategies. The results are based on 1,000 simulation trials
using an artificial sample of 4,000 returns to estimate the unconditional expected returns. For each
trial, we compute the next-day returns earned by the ex ante efficient static portfolios (“Static”)
and for the volatility-timing strategies using either the daily-returns-based estimator (“Daily”) or
the realized-volatility-based estimator (“Realized”). The table reports the average annualized mean
return (µ), annualized volatility (σ), and Sharpe ratio (SR) for each strategy, the proportion of trials
(p-val) in which using daily returns earns a higher Sharpe ratio, and the average annualized basis
point fees (∆γ) that an investor with quadratic utility and constant relative risk aversion of γ would
be willing to pay to switch to using the daily-returns-based estimator.

vs. Static vs. Realized

Strategy α µ σ SR p-val ∆1 ∆10 p-val ∆1 ∆10

Panel A: Minimum Volatility Strategies

Static — 9.5 12.1 0.79

Realized 0.064 10.4 11.3 0.93 0.98 105.3 196.3

Daily 0.001 9.8 12.0 0.82 0.92 28.5 36.7 0.02 −76.8 −159.6
0.005 9.9 11.7 0.85 0.96 47.9 95.2 0.02 −57.4 −101.1
0.010 9.7 11.5 0.85 0.97 29.4 95.5 0.02 −75.9 −100.8
0.020 9.6 11.4 0.85 0.97 18.4 100.3 0.01 −86.9 −96.0
0.040 9.5 11.3 0.85 0.95 12.6 99.9 0.00 −92.7 −96.4
0.060 9.4 11.4 0.83 0.90 −1.0 78.1 0.00 −106.3 −118.2
0.080 9.2 11.5 0.81 0.72 −17.8 48.0 0.00 −123.1 −148.2
0.100 9.1 11.6 0.79 0.51 −34.3 16.1 0.00 −139.6 −180.1

Panel B: Maximum Return Strategies

Static — 9.7 12.3 0.79

Realized 0.064 13.1 13.0 1.01 0.99 333.2 251.8

Daily 0.001 9.9 11.9 0.84 0.98 29.3 77.2 0.01 −303.9 −174.5
0.005 11.4 12.3 0.92 0.99 166.7 168.9 0.01 −166.5 −82.8
0.010 11.5 12.5 0.92 0.99 178.0 160.9 0.01 −155.2 −90.8
0.020 11.7 12.7 0.92 0.99 195.2 146.5 0.01 −138.0 −105.3
0.040 11.9 13.3 0.89 0.98 208.1 92.0 0.00 −125.1 −159.8
0.060 11.9 13.9 0.86 0.96 203.3 12.6 0.00 −129.9 −239.2
0.080 11.9 14.5 0.82 0.90 191.3 −79.7 0.00 −141.9 −331.4
0.100 11.9 15.2 0.78 0.39 177.7 −178.7 0.00 −155.5 −430.3



Table 11
The effect of the decay rate on the performance of the realized-volatility-based estimator

The table shows the effect of the decay rate (α) used in the realized-volatility-based rolling estimator
on the performance of the volatility-timing strategies. The results are based on 1,000 simulation
trials using an artificial sample of 4,000 returns to estimate the unconditional expected returns. For
each trial, we compute the next-day returns earned by the ex ante efficient static portfolios (“Static”)
and for the volatility-timing strategies using either the daily-returns-based estimator (“Daily”) or
the realized-volatility-based estimator (“Realized”). The table reports the average annualized mean
return (µ), annualized volatility (σ), and Sharpe ratio (SR) for each strategy, the proportion of trials
(p-val) in which the realized-volatility-based estimator earns a higher Sharpe ratio, and the average
annualized basis point fees (∆γ) that an investor with quadratic utility and constant relative risk
aversion of γ would be willing to pay to switch to using realized volatility.

vs. Static vs. Daily

Strategy α µ σ SR p-val ∆1 ∆10 p-val ∆1 ∆10

Panel A: Minimum Volatility Strategies

Static — 9.5 12.1 0.79

Daily 0.005 9.9 11.7 0.85 0.96 47.9 95.2

Realized 0.020 9.9 11.4 0.88 0.99 52.6 134.6 0.94 4.8 39.4
0.040 10.2 11.3 0.91 0.98 84.5 176.8 0.99 36.6 81.7
0.060 10.4 11.3 0.93 0.98 102.4 194.2 0.99 54.5 99.0
0.080 10.5 11.3 0.94 0.98 114.1 200.3 0.98 66.2 105.1
0.100 10.6 11.4 0.94 0.97 124.5 200.3 0.96 76.6 105.1

0.125 10.7 11.6 0.92 0.94 122.5 175.1 0.84 74.7 79.9
0.150 10.7 12.2 0.89 0.76 123.0 106.9 0.69 75.1 11.7
0.175 10.7 12.7 0.86 0.68 117.4 37.9 0.63 69.5 −57.4

Panel B: Maximum Return Strategies

Static — 9.7 12.3 0.79

Daily 0.005 11.4 12.3 0.92 0.99 166.7 168.9

Realized 0.020 12.4 13.1 0.94 0.99 255.8 162.0 0.90 89.1 −7.0
0.040 12.8 13.0 0.98 0.99 296.7 217.0 0.99 130.0 48.0
0.060 13.1 13.0 1.00 0.99 327.6 247.4 0.99 160.9 78.4
0.080 13.3 13.1 1.02 0.99 349.7 261.6 0.99 183.0 92.6
0.100 13.6 13.2 1.03 0.99 374.8 273.8 0.97 208.0 104.8

0.125 13.6 13.4 1.02 0.98 379.8 253.8 0.95 213.1 84.8
0.150 13.9 14.1 0.98 0.93 391.7 173.1 0.72 225.0 4.0
0.175 14.0 14.9 0.94 0.79 391.0 66.8 0.65 224.3 −102.4



Table 12
The effect of transaction costs on the performance of the realized-volatility-based estimator

The table compares the performance of the volatility-timing strategies using the realized-volatility-
based estimator to that of the ex ante efficient static portfolios under various levels of transaction
costs. The results are based on 1,000 simulation trials using an artificial sample of 4,000 returns to
estimate the unconditional expected returns. For each trial, we compute the next-day returns earned
by the ex ante efficient static portfolios (“Static”) and for the volatility-timing strategies using the
realized-volatility-based estimator (“Realized”). We impose proportional transaction costs on all
trades, either rebalancing or rolling into the next contract month. These “Pct. Costs” are expressed
in the table as the percentage one-way cost of trading one futures contract every day for a year.
For each level of transaction costs, we report the average annualized mean return (µ), annualized
volatility (σ), and Sharpe ratio (SR) for the static and volatility-timing strategies, the proportion
of trials (p-val) in which the volatility-timing strategy earns a higher Sharpe ratio, and the average
annualized basis point fees (∆γ) that an investor with quadratic utility and constant relative risk
aversion of γ would be willing to pay to switch from the static portfolio to the volatility-timing
strategy.

Static Realized

Pct. Costs µ σ SR µ σ SR p-val ∆1 ∆10

Panel A: Minimum Volatility Strategies

0.0% 9.5 12.1 0.79 10.4 11.3 0.93 0.98 105.3 196.3

2.5% 9.4 12.1 0.78 10.2 11.3 0.91 0.98 92.9 184.0
5.0% 9.2 12.1 0.77 9.9 11.3 0.89 0.97 80.5 171.6
7.5% 9.1 12.1 0.76 9.7 11.3 0.87 0.97 68.1 159.3
10.0% 9.0 12.1 0.75 9.5 11.3 0.84 0.96 55.7 147.0

12.5% 8.9 12.1 0.74 9.2 11.3 0.82 0.96 43.3 134.7
15.0% 8.7 12.1 0.73 9.0 11.3 0.80 0.94 30.9 122.4
17.5% 8.6 12.1 0.72 8.7 11.3 0.78 0.92 18.6 110.1
20.0% 8.5 12.1 0.71 8.5 11.3 0.76 0.90 6.2 97.7

Panel B: Maximum Return Strategies

0.0% 9.7 12.3 0.79 13.1 13.0 1.01 0.99 333.2 251.8

2.5% 9.6 12.3 0.78 12.8 13.0 0.98 0.99 312.4 231.0
5.0% 9.5 12.3 0.77 12.5 13.0 0.96 0.99 291.6 210.3
7.5% 9.3 12.3 0.76 12.1 13.0 0.93 0.98 270.8 189.6
10.0% 9.2 12.3 0.75 11.8 13.0 0.91 0.98 250.0 168.8

12.5% 9.1 12.3 0.74 11.5 13.0 0.88 0.98 229.2 148.0
15.0% 9.0 12.3 0.73 11.1 13.0 0.85 0.97 208.4 127.3
17.5% 8.8 12.3 0.72 10.8 13.0 0.83 0.96 187.6 106.5
20.0% 8.7 12.3 0.71 10.5 13.0 0.80 0.95 166.8 85.7



 
Panel A: Volatility Estimates 
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Fig. 1.  Daily conditional volatility and correlation estimates for stock, bond, and gold futures using the 
daily-returns-based rolling estimator.  The estimates are generated using a decay rate of α = 0.031.  Panel A 
shows the volatility estimates for each market (reported as annualized percentages) and Panel B shows the 
implied correlations for each pair of markets based on the conditional variance and covariance estimates.  
The sample period is January 3, 1984 to November 30, 2000.  
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Panel A: Realized Volatilities Panel B: Unadjusted Rolling Estimates  
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Panel C: Rolling Estimates with Overnight Returns Panel D: Rolling Estimates with Overnight Returns and Bias Correction  
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Fig. 2.  Daily conditional volatility estimates for stock, bond, and gold futures using the realized volatility approach.  Panel A shows the cumulative squared five-
minute returns for each day in the sample.  Panel B shows the unadjusted rolling estimates with a decay rate of α = 0.064.  Panel C shows the rolling estimates after 
including the overnight (i.e., close-to-open) returns.  Panel D shows the rolling estimates after adding the volatility bias correction.  All of the volatility estimates are 
shown as annualized percentages.  The sample period is January 3, 1984 to November 30, 2000.  
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Panel A: Realized Correlations Panel B: Unadjusted Rolling Estimates  
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Panel C: Rolling Estimates with Overnight Returns Panel D: Rolling Estimates with Overnight Returns and Bias Corrections  
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Fig. 3.  Daily conditional correlation estimates for stock, bond, and gold futures using the realized volatility approach.  All of the correlation estimates are implied 
based on variance and covariance estimates.  Panel A shows realized correlations based on cumulative squared five-minute returns and return cross-products.  Panel B 
shows the unadjusted rolling estimates with a decay rate of α = 0.064.  Panel C shows the rolling estimates after including the overnight (i.e., close-to-open) returns.  
Panel D shows the rolling estimates after adding the volatility and correlation bias corrections.  The sample period is January 3, 1984 to November 30, 2000. 
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Panel A: Minimum Volatility Strategy 
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Panel B: Maximum Return Strategy 
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Fig. 4.  Portfolio weights from daily mean-variance optimizations using stock, bond, and gold futures for the 
case of no estimation risk.  The optimizations assume that the expected return for each asset is constant and 
equal to its in-sample mean and that the conditional covariance matrix equals our daily estimate based on the 
realized volatility approach.  Panel A shows the portfolio weights that minimize conditional volatility while 
setting the expected return equal to 10%, and Panel B shows the weights that maximize expected return 
while setting the conditional volatility equal to 12%.     
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Fig. 5.  The performance of the volatility-timing strategies versus the ex post efficient frontier using static 
portfolio weights.  We plot the return-volatility combinations earned by the volatility-timing strategies using 
rolling conditional covariance matrix estimates based on either daily returns (“Daily”) or realized volatility 
(“Realized”).  We also plot the set of return-volatility combinations that could be earned during our sample 
period using static portfolio weights in stock, bond, and gold futures.  The volatility-timing strategies are 
based on the ex post means and ex ante estimates of the conditional covariance matrix while the static 
portfolios are based on ex post means and ex post variances and covariances.  The returns and volatilities are 
annualized on the basis of 252 trading days per year.  
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Panel A: Static to Realized (Minimum Volatility) Panel B: Static to Realized (Maximum Return)  

-200 -100 0 100 200 300 400
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Basis Point Fees

Frequency (%) 

γ = 1
γ = 10

  
-200 -100 0 100 200 300 400

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Basis Point Fees

Frequency (%) 

γ = 1
γ = 10

 
 
Panel C: Daily to Realized (Minimum Volatility) Panel D: Daily to Realized (Maximum Return)  
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Fig. 6.  Distribution of the performance fees across 10,000 bootstrap trials for the volatility-timing strategies using the realized-volatility-based estimator.  In each 
trial, we form an artificial sample of 4,000 returns to estimate the unconditional expected returns and the unconditional covariance matrix.  We then compute the 
next-day returns earned by the ex ante efficient static portfolios (“Static”) and by the volatility-timing strategies using the rolling estimator based on either daily 
returns (“Daily”) or realized volatility (“Realized”).  Finally, we estimate the fees that an investor with quadratic utility and constant relative risk aversion of γ would 
be willing to pay to switch strategies.  Panels A and B show the fees to switch from the static portfolios to using the realized volatility approach, and Panels C and D 
show the fees to switch from using daily returns to realized volatility in the rolling estimator.  All of the fees are expressed as annualized basis points.  



 

Panel A: Static to Daily (Minimum Volatility) Panel B: Static to Daily (Maximum Return)  
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Panel C: Daily to Realized (Minimum Volatility) Panel D: Daily to Realized (Maximum Return)  
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Fig. 7.  Distribution of the performance fees across 10,000 bootstrap trials using α = 0.005 for the daily-returns-based estimator.  In each trial, we form an artificial 
sample of 4,000 returns to estimate the unconditional expected returns and the unconditional covariance matrix.  We then compute the next-day returns earned by 
the ex ante efficient static portfolios (“Static”) and by the volatility-timing strategies using the rolling estimator based on either daily returns (“Daily”) or realized 
volatility (“Realized”).  Finally, we estimate the fees that an investor with quadratic utility and constant relative risk aversion of γ would be willing to pay to switch 
strategies.  Panels A and B show the fees to switch from the static portfolios to using the daily-returns-based estimator, and Panels C and D show the fees to switch 
from using daily returns to using realized volatility in the rolling estimator.  All of the fees are expressed as annualized basis points.  




