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Long Memory in Volatility and Trading Volume

ABSTRACT

We use fractionally-integrated time-series models to investigate the joint dynamics of

equity trading volume and volatility. Bollerslev and Jubinski (1999) show that volume

and volatility have a similar degree of fractional integration, and they argue that this

evidence supports a long-run view of the mixture-of-distributions hypothesis. We examine

this issue using more precise volatility estimates obtained using high-frequency returns

(i.e., realized volatilities). Our results indicate that volume and volatility both display

long memory, but we can reject the hypothesis that the two series share a common order

of fractional integration for a fifth of the firms in our sample. Moreover, we find a strong

correlation between the innovations to volume and volatility, which suggests that trading

volume can be used to obtain more precise estimates of daily volatility for cases in which

high-frequency returns are unavailable.



Long Memory in Volatility and Trading Volume

There is a consensus among financial econometricians that volatility is characterized by

long memory. The consensus began to take shape with reports of hyperbolic decay in the

autocorrelations of stock index and currency absolute returns (Taylor, 1986; Ding et al.,

1993; Dacorogna et al., 1993). It gained momentum as fractionally-integrated GARCH

models made inroads into the volatility modeling literature (Baillie et al., 1996; Bollerslev

and Mikkelsen, 1996). More recently, studies of realized volatility (i.e., cumulative squared

intraday returns), such as Andersen, Bollerslev, Diebold, and Ebens (henceforth ABDE)

(2001), Andersen, Bollerslev, Diebold, and Labys (henceforth ABDL) (2001), and Ander-

sen et al. (2003) have produced compelling evidence of long memory for both equities

and currencies. Realized volatility appears to display all the hallmarks of a fractionally-

integrated process with a degree of fractional integration in the 0.3 to 0.5 range.

Despite this finding there is an ongoing debate about whether it is appropriate to

model volatility as fractionally integrated. Other mechanisms such as structural breaks

or regime-switching in volatility can also give rise to long-range dependence in returns

(Diebold and Inoue, 2001; Granger and Hyung, 2004), and this has led some researchers

to argue that structural change can produce spurious evidence of long memory. Diebold

and Inoue (2001), however, caution against this argument and show why it is potentially

naive. They discuss a setting in which structural change and long memory are essentially

just different labels for the same phenomenon, and conclude that calling one “real” and the

other “spurious” makes little sense. Even if the “real” process includes structural change,

fractionally-integrated models provide a useful description of volatility dynamics because

they effectively allow the unconditional variance to slowly change over time. This view

is reinforced by Hyung et al. (2006) who point out the difficulty of forecasting volatility

breaks and find that, in the absence of a way to identify the breaks before they occur,

fractionally-integrated models provide the best volatility forecasts.

Bollerslev and Jubinski (1999) build on the evidence of long memory in volatility to

investigate the extent to which volume and volatility share common long-run dependen-

cies. A theoretical result called the mixture-of-distributions hypotheses (MDH) predicts

that returns and trading volume are jointly subordinate to an unobserved directing vari-

able that measures the rate at which information arrives to the market (Tauchen and

Pitts, 1983). Although early tests of the MDH were generally supportive, subsequent
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work using more sophisticated methods revealed that a single latent directing variable

cannot account for the observed short-run dynamics of volume and volatility. In light of

this finding, and the evidence of long memory in volume as well as volatility, Bollerslev

and Jubinski (1999) argue that the focus on short-run dynamics may be misplaced. They

propose that the MDH might be better viewed as long-run proposition.

To test this supposition, they use a semiparametric frequency-domain approach to

estimate the fractional order of integration of the absolute return and trading volume

series for each firm in the S&P 100 index. Their results suggest that volume and volatility

have remarkably similar memory characteristics. The estimates of the integration order for

the absolute returns have a mean value of 0.41, while the estimates for detrended trading

volume have a mean value of 0.40. Moreover, only eight of the 100 firms in the S&P index

produce evidence against the hypothesis that volume and volatility share a common order

of fractional integration. This finding differs sharply with the findings of studies that

focus on the short-run dynamics of volume and volatility, leading Bollerslev and Jubinski

(1999) to conclude that “allowing for differing short-lived news impacts, while imposing

a common long-memory component, may provide a better characterization of the joint

volume-volatility relationship in U.S. equity markets.”

Our paper investigates the empirical performance of a model that is structured along

the lines suggested by Bollerslev and Jubinski (1999). Specifically, we consider a trend-

stationary fractionally-integrated model for volume and volatility that allows for VAR(p)

dynamics after fractional differencing. The idea is to strike a middle ground between

the semiparametric estimation approach of Bollerslev and Jubinski (1999) and the type

of fully parametric approach that would be needed to incorporate all the structural and

distributional assumptions of the MDH. Although we assume enough parametric structure

to allow the long- and short-memory components to compete on an equal footing, we

do not impose a common order of fractional integration, nor do we specify the joint

distribution of the errors. This makes it easy to assess the relative importance of each

component in explaining the joint dynamics of volume and volatility, while reducing the

potential for model misspecification.

The dataset for our empirical analysis consists of daily observations of realized

volatility and trading volume for the 20 firms in the Major Market Index (MMI). Using
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realized volatilities rather than absolute returns should lead to more precise inferences. 1

We construct the realized volatilities for the full day, as suggested by Hansen and Lunde

(2005), by choosing the linear combination of the trading-day realized variance and the

overnight squared return that is the most efficient estimator of the integrated variance.

This accounts for the possibility that the overnight return contains relevant information

and the trading-day realized volatility is a biased estimator of the full-day integrated

volatility. We construct the trading-day realized variance using Newey and West (1987)

weights to account for serial correlation in the intraday returns induced by microstructure

effects, and we determine the optimal combination of the sampling frequency for the in-

traday returns and the lag truncation parameter for the weights by evaluating the effects

of these choices on the bias and efficiency of the resulting estimator.

When we fit our model to the log volatility and log volume series for each firm,

the results clearly support the view that volatility and volume display long memory: the

average estimated order of fractional integration is about 0.35 in both cases. Nonetheless,

the evidence on whether the two series share a common fractional order of integration is

mixed. We can reject this hypothesis for four of the 20 firms at the 5 percent significance

level. Interestingly, fractional differencing removes most of the predictability in the data.

The estimated first-order autocorrelation of the fractionally-differenced series ranges from

−0.05 to −0.12 for the volatility series and −0.01 to 0.22 for the volume series. It appears,

therefore, that the short-memory components play a relatively minor role in explaining

the dynamics of realized volatility and trading volume.

We also find that the innovations in the two series are highly correlated. This suggests

that volume shocks are informative about contemporaneous volatility shocks, raising the

possibility that volume can be used in conjunction with daily returns to obtain more

precise volatility estimates for cases in which the high-frequency return data needed to

construct realized volatilities are unavailable. Our analysis indicates that the increase

in precision could be substantial. For example, if we regress the log realized variance on

estimates of the variance that condition on lagged information (i.e., past realized volatility

and volume observations) plus contemporaneous volume, the mean-squared-error is 30

percent lower on average than the MSE obtained using variance estimates that condition

on lagged information alone.

1 Luu and Martens (2003) use realized volatilities to estimate an econometric model similar to
Bollerslev and Jubinski (1999).
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The remainder of the paper is organized as follows. Section 1 introduces our long-

memory specification and discusses time-domain methods of estimation and inference.

Section 2 describes the dataset and details of our construction of the realized volatilities.

Section 3 presents the model fitting results. Section 4 investigates the information content

of volume innovations for volatility forecasting. Section 5 offers some concluding remarks.

1 Model and Econometric Methodology

Let δ denote the memory parameter of a fractionally-integrated process. It is often con-

venient to estimate δ using frequency-domain methods. Perhaps the most widely used

approach is the log periodogram regression first proposed by Geweke and Porter-Hudak

(1983). Indeed, Bollerslev and Jubinski (1999) use a bivariate log periodogram regression

in their study of long memory in volume and volatility. They motivate this approach by

noting that the log-periodogram estimator is much simpler to implement than the ex-

act maximum likelihood estimator and that it imposes minimal structure beyond that

required to ensure that the spectral density is well behaved. In our case, however, the

drawbacks of the estimator outweigh its advantages.

First, the log-periodogram estimator of δ converges at less than a
√

T rate. This

raises concerns about efficiency because the high-frequency data needed to construct the

realized volatilities are unavailable before 1993. The efficiency of the log-periodogram

estimator varies somewhat depending on the data generating process and the choice of

truncation parameter that determines the Fourier frequencies used to construct the esti-

mator, but we know that it is considerably less efficient than parametric alternatives. For

example, Bollerslev and Jubinski (1999) use truncation parameters that are proportional

to
√

T . As a result, their estimator achieves only a T 1/4 rate of convergence under the

assumption of Gaussian observations.

Second, the asymptotic theory for the log-periodogram estimator is not well estab-

lished for cases in which the observations used to compute the periodogram are non-

Gaussian. This is important because we want to compare the results of estimating δ using

the realized volatilities to the results obtained using absolute returns. Deo and Hurvich

(2001) study the asymptotics of the log-periodogram estimator based on the first m Fourier

frequencies for the case in which returns are generated by a simple univariate stochastic

volatility model. They find that for consistency and asymptotic normality to obtain, the
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value of m must increase at a rate less than T 4δ/(1+4δ). Thus, unlike in the Gaussian case,

the choice of an appropriate m depends on the (unknown) value of δ. This suggests that

robustness is a concern if the data exhibit clear departures from normality.

Finally, the log-periodogram estimator focuses exclusively on long-run frequencies.

Bollerslev and Jubinski (1999) argue that this is an advantage because it allows them to

estimate δ without making any assumptions about the short-run dynamics of the process.

However, our objective is to provide evidence on both the short- and long-run relations

between volume and volatility. In order to accomplish this, we need to use a more flexible

approach that allows the short- and long-memory components of the process to compete

on an equal footing. The methodology we adopt represents a middle ground between the

semiparametric framework of the log-periodogram estimator and the type of fully para-

metric approach that would be needed to incorporate all the structural and distributional

assumptions of the MDH. We turn now to the details.

1.1 Multivariate linear regression with fractionally-integrated errors

Suppose for generality that we observe an N×1 vector time series {yt}T
t=1 that is described

by the multivariate linear regression model

yt = βxt + εt, (1)

where xt is a K × 1 vector of deterministic components, β is an unknown N ×K matrix,

and εt is an unobserved N × 1 error vector. Let ηt denote an N × 1 vector of white noise

innovations with E[ηtη
′
t] = Ω. We focus on specifications in which the regression errors are

generated by a process of the form

Φ(L)Δ(L)εt = ηt1(t > 0), (2)

where Φ(L) is a N ×N matrix polynomial of order p in the lag operator L with all roots

outside the unit circle, Δ(L) is an N × N diagonal matrix with nth diagonal element

(1 − L)δn =
∞∑

j=0

(
δn

j

)
(−L)j , (3)

and 1( · ) is the indicator function. In other words, after fractional differencing, the errors

are described by a VAR(p) process with white noise innovations. We assume that 0 ≤
δn < 0.5 for all n. Under this restriction, the error process is asymptotically stationary

and displays long memory unless all elements of δ = (δ1, . . . , δN)′ are zero.
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The regression model in equation (1) allows for deterministic trends that are indepen-

dent of the long-memory characteristics of the errors. This conforms with both predictions

of market microstructure theories and empirical evidence. Trading volume often displays

strong time trends that are qualitatively consistent with the theoretical consequences of

growth in the number of traders in the market (see, e.g., Tauchen and Pitts (1983)), and

a number of recent studies suggest that the volatility of individual stock returns has in-

creased over time (e.g., Campbell et al. (2001)). Since most of the models studied in the

volume and volatility literature assume an absence of time trends, it is common to detrend

the data before conducting the econometric analysis (see, e.g., Gallant et al. (1992), An-

dersen (1996), and Bollerslev and Jubinski (1999)). We explicitly consider the potential

impact of this detrending on the procedures used for estimation and inference.

1.2 Model fitting and hypothesis testing

First consider the case in which β = 0. Let θ = (δ′, φ′)′ where φ = vec(Φ1 Φ2 · · · ΦN ) is an

Np × 1 vector that contains the VAR(p) parameters. After concentrating out Ω, we can

express the log likelihood function for a model with Gaussian ηt as

LT (θ) = −TN

2
− TN

2
log(2π) − T

2
log |Ω(θ)|, (4)

where

Ω(θ) =
1

T

T∑
t=1

[Φ(L)Δ(L)εt][Φ(L)Δ(L)εt]
′. (5)

If ηt is non-Gaussian, then LT (θ) is a quasi-log likelihood function. Intuitively, quasi-

maximum likelihood should be a reasonable estimation strategy provided that suitable

regularity conditions are satisfied.

Nielsen (2004b), for example, analyzes the properties of the QML estimator under

the assumption that ηt is i.i.d. with positive-definite covariance matrix and finite fourth

moments. He shows that there exists a local maximizer θ̂ = (δ̂′, ϕ̂′)′ of L(θ) that is a√
T -consistent and asymptotical normal estimator of θ. Specifically, we have

√
T (θ̂ − θ)

d→ N(0, Σ), (6)

with

Σ =

⎡
⎢⎣ π2

6
Ω � Ω−1 J ′(Λ′ ⊗ I)

(Λ ⊗ I)J Γ ⊗ Ω−1

⎤
⎥⎦
−1

, (7)
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where Γ is the covariance matrix of (ε′t, . . . , ε
′
t−p+1)

′, J = (vec e1e
′
1, . . . , vec eNe′N ) with ei

denoting the ith unit N -vector, and Λ = (Λ′
1, . . . , Λ

′
p)

′ with Λi =
∑∞

j=i j
−1Ψj−i and Ψi

denoting the coefficient matrix on εt−i in the Wold representation of {εt}.
In light of these results, testing whether δ is equal to a known vector is straightfor-

ward. Consider a null hypothesis of the form H0 : δ = δ0 where δ0 is a prespecified N × 1

vector and let φ̃ denote the estimate of φ obtained by imposing H0. The quasi-likelihood

ratio (LR), Wald (W), and Lagrange multiplier (LM) statistics are

LR = 2(LT (δ̂, φ̂) −LT (δ0, φ̃)), (8)

W = T (δ̂ − δ0)
′(π2

6
Ω � Ω−1 − (ΩΛ′Γ−1ΛΩ) � Ω−1)(δ̂ − δ0) (9)

LM = ST (δ0, φ̃)′(π2

6
Ω � Ω−1 − (ΩΛ′Γ−1ΛΩ) � Ω−1)ST (δ0, φ̃) (10)

where ST (δ0, φ̃) =
√

T
∑T−1

j=1 j−1J ′(I⊗Ω(δ0, φ̃)−1)(vec C̃(j)) with C̃(j) = (1/T )
∑T

t=j+1η̃tη̃
′
t−j

denotes the score vector evaluated under H0. Under a local alternative of the form

δ = δ0 + d/
√

T with d a fixed N -vector, Nielsen (2004b) shows that the statistics in

equations (8) – (10) are asymptotically equivalent and distributed as χ2
N (ζ) with ζ =

d′(π2

6
Ω�Ω−1 − (ΩΛ′Γ−1ΛΩ)�Ω−1)d. The LR statistic, which does not require estimation

of the asymptotic covariance matrix of δ̂, is particularly convenient for applications in

which there is no desire to compute standard errors.

We can also apply these results for the case in which β �= 0 provided that we estimate

β in a way that does not influence our asymptotic inference on δ. To illustrate, consider

a univariate model with H0 : δ = δ0. Nielsen (2004a) shows that if we estimate β by

β̂ =

(
T∑

t=1

y∗
t x

∗′
t

)(
T∑

t=1

x∗
t x

∗′
t

)−1

, (11)

where x∗
t = (1−L)δ0xt and y∗

t = (1−L)δ0yt, then we can treat the residual yt− β̂xt, which

equals et + (β − β̂)xt under H0, as observed for the purpose of conducting asymptotic

inference on δ. This presumably holds in the multivariate setting as well.

Of course, this strategy works only if δ0 is prespecified. In our empirical application,

we are mainly interested in testing hypotheses of the form H0: δ = δ0ι where δ0 is an

unspecified scalar and ι is an N ×1 vector of ones, i.e., our null is that the observed series

share a common unknown order of integration. One way to deal with this situation is to
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estimate β by

β̂ =

(
T∑

t=1

ytx
′
t

)(
T∑

t=1

xtx
′
t

)−1

, (12)

and then estimate θ by maximizing

LT (β̂, θ) = −TN

2
− TN

2
log(2π) − T

2
log |Ω(β̂, θ)|, (13)

where Ω(β̂, θ) is computed as in equation (5) except that we replace εt with the vector of

residuals ε̂t = yt − β̂xt. This is equivalent to extracting a trend via OLS regression prior

to fitting the model to the data.

To justify this approach, we need to argue that replacing LT (β, θ) with LT (β̂, θ) has

no effect on the limiting distribution of θ̂. The analysis of Giraitis and Koul (1998) sup-

ports this argument. They consider maximum likelihood estimation of a multiple linear

regression model in which the errors are a non-decreasing function of a stationary long-

memory Gaussian process. For a fairly broad class of deterministic regressors (e.g., βxt

is a polynomial in t), the estimator of the parameter vector that determines the memory

characteristics of errors is
√

T -consistent and asymptotically normal with an asymptotic

covariance matrix that attains the Cramer-Rao lower bound. Since multiple linear regres-

sion with Gaussian long-memory errors is covered by these results, using OLS to detrend

the data is asymptotically sound for ηt ∼ NID(0, Ω). To our knowledge, the question of

whether this holds for a Gaussian QML approach with i.i.d. innovations has not been

addressed in the literature. But it seems likely that an extension is possible because the

non-Gaussian log likelihoods studied by the Giraitis and Koul (1998) have a quadratic

structure similar to that of the QML objective function.

2 Data

The dataset consists of daily realized volatilities and trading volumes for the 20 firms

in the MMI. 2 We construct the dataset from two sources: intradaily transaction records

from the Trade and Quote (TAQ) database of the New York Stock Exchange (NYSE),

and information on stock splits, stock dividends, and cash dividends from the Center for

2 These firms are American Express (AXP), AT&T (T), ChevronTexaco (CVX), Coca-Cola
(KO), Disney (DIS), Dow Chemical (DOW), DuPont (DD), Eastman Kodak (EK), Exxon-Mobil
(XOM), General Electric (GE), General Motors (GM), International Business Machines (IBM),
International Paper (IP), Johnson & Johnson (JNJ), McDonald’s (MCD), Merck (MRK), 3M
(MMM), Philip Morris (MO), Procter and Gamble (PG), and Sears (S).
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Research in Security Prices (CRSP) daily stock price file. The sample period is January

4, 1993 to December 31, 2003 (2,771 observations). 3

We exclude records from the TAQ database that have an out-of-sequence time stamp,

a zero price, a correction code greater than two (indicating errors and corrections), or a

condition code (indicating nonstandard settlement). We also apply two filters to identify

obvious price reporting errors. First, we exclude records that have a reported price more

than 20 percent different than the previous transaction price. Second, we flag records that

imply a price change greater than two percent in magnitude from the previous transaction

price and which are followed by a price reversal greater than two percent. We exclude the

record if the implied price change is more than two times greater than the next largest

price change on that day, or if the reported price falls outside the day’s high-low range

(ignoring the flagged price) by more than the next largest price change.

We construct the daily trading volume for each firm by aggregating the transaction

volumes for all of the remaining TAQ records on a given day. We adjust the daily volumes

as necessary to account for stock splits and stock dividends using the information reported

in the CRSP file. We construct the daily realized volatility for each firm using the filtered

TAQ transaction prices and the procedure explained in Section 2.1. Implementing this

procedure also requires the daily overnight return. We compute this return using the last

transaction price on a given day, and the first transaction price on the following day,

adjusted for cash dividends and stock distributions reported in the CRSP file.

2.1 Constructing the realized volatilities

Merton (1980) introduced the concept of realized volatility. In its simplest form, the

realized variance on day t is the sum of the squared intradaily returns, rti,m , i = 1, ..., m,

over m equally-spaced intervals,

RVt =
m∑

i=1

r2
ti,m

. (14)

Under certain conditions, the realized variance should be close to the true variance. For

example, if returns are generated by a continuous-time process with instantaneous volatil-

ity σt, then it is natural to use the integrated variance IVt =
∫ 1
0 σ2

t+τdτ as a measure of

the daily variance. ABDL (2001) and Barndorff-Nielsen and Shephard (2002) show that

3 Philip Morris has only 2,770 observations. Its stock did not open on May 25, 1994 in advance
of a board meeting regarding a proposal to split the firm’s food and tobacco businesses.
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under weak regularity conditions, RVt − IVt → 0 almost surely as m → ∞. Thus, by

increasing the sampling frequency of returns, we can construct consistent nonparametric

estimates of the integrated volatility that in principle are arbitrarily efficient.

In practice, realized volatilities can be biased by market microstructure effects, and

these effects are typically more pronounced as m increases. A number of strategies have

been proposed to deal with this issue. Andersen and Bollerslev (1997) argue that using

five-minute returns strikes a reasonable balance between the bias and the efficiency gains

associated with more frequent sampling. Bandi and Russell (2005) derive the optimal

sampling frequency under a mean squared error criterion. ABDE (2001) construct real-

ized volatility using the residuals from an MA(1) model fitted to returns. ABDL (2001)

use linear interpolation to estimate the prices used in constructing the returns. Each of

these strategies, however, either places an upper bound on m or does not sufficiently elim-

inate the serial correlation in returns when m is large. We adopt an alternative approach

suggested by Hansen and Lunde (2004) which directly accounts for serial correlation in re-

turns when constructing the realized variances. Specifically, we construct the trading-day

realized variance for day t using a Newey and West (1987) estimator of the form,

RVt[o] =
m∑

i=1

r2
ti,m

+ 2
q∑

j=1

(
1 − j

q + 1

)m−j∑
i=1

rti,mrtj,m
, (15)

where q denotes the window length for the autocovariance terms. This estimator guaran-

tees nonnegativity and is consistent in the presence of serial correlation, which allows us

to sample returns at very high frequencies.

The trading-day realized variance may be a biased estimator of the daily integrated

variance because it ignores returns during non-trading periods overnight and on week-

ends. We construct the full-day realized variance by combining RVt[o] with the squared

nontrading-period return, r2
t[c] using the weighting scheme proposed by Hansen and Lunde

(2005). They consider the class of conditionally unbiased estimators that are linear in RVt[o]

and r2
t[c] and show that the following weights deliver the lowest mean squared error

RVt = ϕ
μ

μo

RVt[o] + (1 − ϕ)
μ

μc

r2
t[c], (16)

where

ϕ =
μ2

oς
2
c − μoμcςoc

μ2
cς

2
o + μ2

oς
2
c − 2μoμcςoc

, (17)

and μ = E(r2
t ), μo = E(RVt[o]), μc = E(r2

t[c]), ς2
o = var(RVt[o]), ς2

c = var(r2
t[c]), and ςoc =
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cov(RVt[o], r
2
t[c]).

4 The ratios μ/μo and μ/μc scale the variance estimates to match the

unconditional mean of the squared close-to-close returns and ϕ determines the relative

weights on the trading- and nontrading-period variance estimates. In general, ϕ should

be close to one because r2
t[c] is a relatively imprecise estimator of the nontrading-period

variance and this variance is typically lower than the variance during the trading day.

These effects can easily be seen in equation (17) for the case in which ςoc = 0.

To implement equation (15), we need to specify the sampling frequency (m) and

the window length for the autocovariance terms (q). Since the optimal values are not

known a priori, we consider a range of candidate values and evaluate their effect on the

properties of the realized variances. The candidate values for m correspond to returns

sampled as finely as every 30 seconds, and the values for q correspond to four different

window lengths: 0, 15, 30, and 60 minutes. We construct the returns used to implement

equation (15) by applying the Andersen and Bollerslev (1997) linear interpolation scheme

to the filtered intraday transaction prices from the TAQ database.

It is common practice to construct realized variances using five-minute returns and

with q = 0. We find that realized variances constructed using this combination of param-

eter values are severely biased, with the average realized variance 13 percent greater than

the average squared open-to-close return. The magnitude of bias increases rapidly with

the sampling frequency, but increasing the window length counteracts the bias. Using a

30-minute window produces realized variances that, for any choice of sampling frequency,

are within two percent of the average squared open-to-close return. Increasing the win-

dow length further (e.g., 60 minutes) substantially increases the standard deviation of the

realized variances. Therefore, we conclude that the best combination of parameter values

is a 30-second sampling frequency and a 30-minute window length.

We construct the full-day realized volatilities by substituting the sample analogs of

μ, μo, μc, ς2
o , ς2

c , and ςoc into equations (16) and (17). Hansen and Lunde (2005) suggest

removing outliers from the estimation to avoid obtaining a negative weight on r2
t[c]. Ac-

cordingly, we exclude days in which either RVt[o] or r2
t[c] is among the largest 0.5 percent

4 Strictly speaking, this estimator is not optimal under a MSE criterion if we construct RVt[o]

using Newey-West weights since this does not produce a conditionally unbiased estimator. As
a practical matter, however, the magnitude of the bias appears to be small. Hansen and Lunde
(2005) favor a different weighting scheme which leads to conditionally unbiased estimators, but it
does so by admitting the possibility of negative estimates. Using their weighting scheme produces
an average of over 40 negative variance estimates per stock over our sample period.
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of the observations for a given stock. The average ϕ estimate for the 20 stocks is 0.92. By

comparison, the ratio of the average squared close-to-close return to the average squared

close-to-open return indicates that 20 percent of the daily variance occurs during the

nontrading period. The ϕ estimate gives less weight than this to the nontrading-period

variance estimate because the trading-period variance estimate is much more precise.

3 Model Fitting Results

We fit our long-memory model using three different proxies for the volatility of daily re-

turns. First, to provide a set of baseline results, we fit the model with yt = (log RVt, log Vt)
′

where RVt is constructed with m = 78 and q = 0, the parameter choices most commonly

employed in prior research (i.e., five-minute sampling frequency, without the Newey-West

correction). We refer to this measure as the standard estimator of realized volatility. Next,

we fit the model replacing RVt with the estimator obtained using a 30-second sampling fre-

quency and a 30-minute window length. We refer to this measure as the higher-frequency,

biased-corrected (HFBC) estimator of realized volatility. Finally, we fit the model using

daily squared returns in place of RVt to investigate how the precision of the volatility

estimates impacts our inference.

3.1 Results using the standard estimator

Table 1 reports the model fitting results obtained using the standard estimator of realized

volatility. In parameterizing the model, we assume that a VAR(1) process is sufficient to

capture the short-run dynamics of the fractionally-differenced series. Panel A of the table

reports the memory parameter estimates and their asymptotic standard errors, the VAR

coefficient estimates and their asymptotic t-ratios, the value of the quasi-log likelihood,

and the likelihood ratio statistic for the hypothesis δ1 = δ2. Panel B reports the trend

parameter estimates, the innovation covariance matrix estimates, and selected model di-

agnostics.

As expected, the estimates of δ1 point to long memory in the volatility process. The

mean of the estimates is 0.43 and the range is relatively narrow (0.39 for Eastman Kodak

to 0.46 for IBM and Exxon-Mobil). This finding is broadly consistent with the evidence

of Bollerslev and Jubinski (1999), who report that the absolute returns for the S&P 100

firms have a mean estimated order of fractional integration of 0.41. Of course, our memory

parameter estimates should be much more precise. All of the standard errors in Table 1 are
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equal to 0.02, but the standard error of the log-periodogram-based estimator is three times

as large using the maximum sample size considered by Bollerslev and Jubinski (1999). 5

Thus, the QML estimator of δ1 appears to have a substantial efficiency advantage.

The estimates of δ2 also point to long memory in trading volume. However, the mean

of the estimates (0.34) is lower than the mean for the volatility process and the range is

wider as well (0.25 for Coca Cola to 0.39 for American Express, IBM, and AT&T). This

finding represents a significant departure from Bollerslev and Jubinski (1999). They find

that detrended trading volume has a mean estimated order of fractional integration of 0.40,

while 13 of our estimates of δ2 are more than two standard errors below 0.40. Moreover,

they report only 8 rejections of the hypothesis δ1 = δ2 for the S&P 100 firms, while we

reject this hypothesis for 18 of the 20 MMI firms. There are many factors, such as different

estimators, sample periods, volatility measures, and firms, that could contribute to the

disparity in findings. We provide more evidence in this regard shortly.

The estimates of Φ suggest that long memory is the main source of time variation

in the conditional means of log RVt and log Vt, i.e., fractional differencing eliminates most

of the serial correlation in the data. Our estimate of the first-order autocorrelation in

(1 − L)δ1 log RVt ranges from −0.05 (Procter & Gamble) to −0.15 (Disney), while the

range for (1− L)δ2 log Vt is 0.01 (American Express) to 0.22 (Coca Cola). Although most

of the autocorrelation estimates are statistically significant at the 5 percent level, the

level of predictability implied by the VAR(1) specification is small. Apparently the short-

memory component of the model plays only a minor role in explaining the dynamics of

realized volatility and trading volume.

Panel B of the table shows that most firms display some evidence of trends of one

form or another. This follows by comparing the estimated means of log RVt and log Vt

at the start of the sample (i.e., β̂11 and β̂21) to the estimated means at the end of the

sample (i.e.,
∑3

i=1 β̂1i and
∑3

i=1 β̂2i). With the exception of IBM, the estimated volume

trend is positive, which is not particularly surprising given the growth in equity market

participation over time. However, there are also indications of positive volatility trends

for 14 of the 20 firms. This could be a symptom of increasing idiosyncratic volatility in

recent years (see, e.g., Campbell et al., 2001).

5 In particular, the asymptotic standard error is (π/
√

24)T−1/4 and the maximum value of T is
8,440 daily observations.
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The estimates of Ω imply that the log volatility and log volume innovations typically

have a correlation between 40 and 60 percent. It follows, therefore, that volume shocks

are quite useful for predicting contemporaneous volatility shocks, which is consistent with

the evidence reported by Fleming, Kirby, and Ostdiek (2006). They use linear state-space

methods to fit a factor model to daily trading volume and daily squared returns for the

MMI firms, and find that the nonpersistent component of volume is highly correlated with

the contemporaneous nonpersistent component of volatility. Specifically, this component

of volume typically captures 60 to 80 percent of the variation in nonpersistent volatility.

The diagnostics for the model suggest that it is reasonably well specified. The innova-

tions to log RVt tend to have small estimated coefficients of skewness and excess kurtosis,

with most of the skewness values less than 0.5, and most of the excess kurtosis values

less than 2. There is some evidence of statistically significant serial correlation in the in-

novations. The Leung-Box statistic based on the first five autocorrelations produces four

rejections at the 5 percent level, and the statistic based on the first ten autocorrelations

produces seven rejections at the 5 percent level. Nonetheless, treating the log volatility

innovations as Gaussian white noise is probably a reasonable approximation.

Normality is somewhat less plausible for the log volume innovations. The coefficient

of skewness ranges from 0.13 (American Express) to 1.10 (Eastman Kodak), while the

coefficient of excess kurtosis ranges from 0.64 (International Paper) to 6.44 (Procter and

Gamble). Nonetheless, the Leung-Box statistics produce about the same number of re-

jections as for realized volatility, which suggests we could reasonably treat the volume

innovations as non-Gaussian white noise. Using the first five autocorrelations produces

two rejections at the 5 percent level, and using the first ten autocorrelations produces

five rejections. We could reduce the number of rejections by fitting a higher-order VAR

specification, but standard criteria for selecting the dimension of a model, such as the

Schwarz (1978) criterion, favor the more parsimonious VAR(1) parameterization.

3.2 Results using the HFBC estimator

Table 2 reports the model fitting results obtained using the HFBC estimator of realized

volatility. These results shed additional insights into the results reported in Table 1. In

general, our previous results bolster the case for using long memory specifications to

model the dynamics of volatility and volatility. However, the one finding at odds with

prior research is the lack of empirical support for the hypothesis that the two series share
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a common long-memory parameter. We now assess whether these results, and this last

finding in particular, are robust to our choice of realized volatility measure.

The estimates of δ1 reported in Table 2, like our earlier results, point to long memory

in the volatility process. However, a key difference is that the estimates are now much

lower; the mean of the estimates is 0.36, and the range is 0.33 to 0.40. Since these estimates

are much closer to the estimates of δ2 and the standard errors are essentially unchanged,

the number of rejections of the hypothesis δ1 = δ2 falls from 18 in Table 1 to only four in

Table 2. It seems that using a more precise realized volatility estimator has a substantial

impact on our inferences regarding the empirical plausibility of a common long-memory

parameter. In all other respects the results in Panel A of Table 2 are similar to those

reported in Panel A of Table 1.

The diagnostics reported in Panel B of Table 2 suggest a modest improvement in the

specification of the model. In particular, the volatility innovations tend to have smaller

estimated coefficients of skewness and excess kurtosis than in Table 1. Most of skewness

values are less than 0.4, and most of the excess kurtosis values are less than 1. Although

there is still evidence of statistically significant serial correlation in the innovations, the

number of rejections based on the first five autocorrelations falls from four to three, and

the number of rejections based on the first ten autocorrelations falls from seven to five.

These changes, while relatively minor, suggest that there are gains to using an improved

realized volatility measure to fit the long memory model.

3.3 Results using daily squared returns

Although we find more support for the proposition that volume and volatility share a

common order of fractional integration using our preferred realized volatility estimator,

we still find less support than Bollerslev and Jubinski (1999). We reject the hypothesis for

20 percent of the MMI firms, while they reject for only 8 percent of the S&P 100 firms.

To investigate the extent to which this finding may be due to our use of a more precise

proxy for the volatility of daily returns, we fit the model a third time using daily squared

returns in place of realized volatilities.

Table 3 reports the model fitting results using daily squared returns. As in both

of the previous tables, the estimates of δ1 and δ2 support the hypothesis that volume

and volatility display long memory. However, the δ1 estimates now range from 0.07 (3M)

to 0.17 (American Express), which is substantially lower than the estimates reported in
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Tables 1 and 2, while the magnitude of the δ2 estimates are relatively unchanged. As a

result, the results in Table 3 provide strong evidence against the hypothesis of a common

order of fractional integration. Using the likelihood ratio test, we reject the hypothesis for

all of the firms at the 5 percent level.

The diagnostics in Panel B of Table 3 suggest a possible explanation for the dispar-

ity between the different sets of δ estimates. The estimated variance of the innovation to

log r2
t is typically an order of magnitude larger than the estimated variance of the inno-

vations to log RVt and log Vt. Since this implies a much more difficult signal-extraction

problem, we should expect to obtain less precise information about the dynamics of the

conditional variance from the squared returns than from the realized variances. Moreover,

the innovation to log r2
t displays more serious departures from normality than the inno-

vations to log RVt and log Vt. It seems likely that the performance of the QML estimator

would deteriorate under such circumstances.

Another concern is that the standard errors in Table 3 may be unreliable if the

limiting distribution of the QML estimator is a poor approximation to its finite-sample

distribution. Nielsen (2004b) provides some preliminary evidence on the finite sample

performance of the likelihood ratio test for models with Gaussian innovations. He finds

that the test has good size in samples as small as 100 observations, and that the rejection

frequencies under the alternative are close to the asymptotic local power implied by the

asymptotic distribution theory. Since the innovations for the model in Table 2 display only

mild departures from normality, it seems likely that the standard errors reported in Table 2

are reliable. This may not be true, however, for the standard errors in Table 3. Studies that

fit short-memory stochastic volatility models to log squared returns via Gaussian QML

report that this produces highly inefficient inferences (see, e.g., Alizadeh et al., 2002).

This probably holds for long-memory models as well.

As an additional robustness test, we investigate whether fitting the model to squared

returns rather than log squared returns alters the basic message of the analysis. This test is

motivated by a well-known drawback of the logarithmic transformation: it translates any

squared return sufficiently close to zero into a negative outlier. In general, the parameter

estimates (not reported) are similar to those obtained using log squared returns, and again

the estimates of δ1 are substantially smaller than those in Table 2. As an aside, we should

point out that the assumption of i.i.d. innovations is almost certain to be violated for the
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squared-return specification. 6 Although this would be problematic from the standpoint of

conducting formal hypothesis tests, it is not a significant concern for the limited purposes

of the application considered here.

4 Model forecasting performance

We now investigate the volatility forecasting performance of our long memory models.

We are specifically interested in two issues. First, we want to measure the incremental

forecasting performance associated with using realized variances instead of daily squared

returns to fit the model. Second, we want to measure the incremental performance of

volatility estimates obtained by conditioning on contemporaneous trading volume.

4.1 Methodology

Our methodology is based on the Andersen et al. (2003) regression approach for comparing

the performance of volatility forecasts produced by different models. Let ht|t−1 denote the

forecast of the log variance for day t given the (model specific) information observed

through day t − 1. We use an OLS regression of the form

log RVt = a + bht|t−1 + ut, (18)

to assess how much of the variation in the log volatility is captured by a given model.

Although the regression R-squared is biased towards zero because the variance of log RVt

is greater than the variance of the true log volatility (see Andersen et al. (2005) for details),

this is irrelevant for evaluating relative forecasting performance because the ratio of the

R-squared values produced by different models is bias free.

We use this approach to compare the volatility forecasts from our long memory

model fit to the HFBC estimates of realized volatility to those from the model fit to

daily squared returns. For the realized volatility specification, the value of ht|t−1 is simply

the fitted conditional mean of log RVt produced by the model. For the squared return

specification, we adjust the fitted values from the model to account for the difference

between the unconditional mean of log r2
t and the unconditional mean of the log variance.

6 To see this, write r2
t = htνt, where ht ≡ E[r2

t |It−1], νt ≡ r2
t /ht, and It−1 denotes the date t−1

information set. Since log r2
t = log ht + log νt, it is reasonable to assume that a log linear model

has i.i.d. innovations. Note, however, that r2
t = ht + zt, where zt = ht(νt − 1). Even if νt is i.i.d.,

zt is not unless ht is constant.
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The standard way to do this is to assume that we can express the squared demeaned

return as r2
t = htz

2
t , where ht is the unobserved variance and zt is Gaussian white noise.

Under this approach, it follows that E[log ht] = E[log r2
t ]+1.27. Thus, we add 1.27 to each

of the fitted log variances to obtain the log variance forecasts.

We use a similar strategy to investigate the relation between the unexpected com-

ponents of trading volume and volatility. Suppose that

log RVt =ht|t−1 + η1t (19)

log Vt =mt|t−1 + η2t (20)

where ht|t−1 and mt|t−1 are the conditional means implied by our long memory model

and ηt = (η1t, η2t)
′ is distributed i.i.d. N(0, Ω). Now let It−1 = {V1, RV1, . . . , Vt−1, RVt−1}

denote the day t − 1 information set. With Gaussian innovations, we have

log RVt|It−1, Vt ∼ N(ht|t, Ω11|2) (21)

where ht|t = ht|t−1 + Ω12Ω
−1
22 (log Vt − mt|t−1) and Ω11|2 = Ω11 − Ω2

12Ω
−1
22 . 7 Thus, we can

use a regression of the form

log RVt = a + bht|t + ut, (22)

to investigate how conditioning on contemporaneous trading volume improves our volatil-

ity estimates. In particular, we can use the ratio of the R-squared values for the regressions

in equations (18) and (22) as a measure of the information content of unexpected volume.

4.2 Empirical results

Table 4 summarizes the results of the volatility regressions. Panel A focuses on the realized

volatility specification of the long memory model. The first three columns report the

intercept, slope, and R-squared estimates for the regression in equation (18), the next

three columns report the same quantities for the regression in equation (22), and the last

column reports the ratio of the R-squared values for the two regressions. Panel B reports

the same set of results for the squared returns specification of the long memory model.

The results in Panel A show that the one-step-ahead log variance forecasts produced

by the realized volatility specification exhibit little evidence of bias. The intercept esti-

mates are close to zero and the slope estimates are close to one. This is expected given

7 More generally, for models with non-Gaussian innovations, ht|t represents the minimum-mean-
square linear estimate of log RVt given Vt after we first condition on It−1.
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the nature of the first-order conditions imposed during the QML estimation procedure.

Moreover, the R-squared values for the forecasting regression range from 31 percent for

General Motors to 58 percent for AT&T, which indicates that the long memory model

produces forecasts that capture a sizeable fraction of the time-series variation in the log

realized variances. This is consistent with the evidence presented in Andersen et al. (2003).

The results in Panel B indicate that the one-step-ahead log variance forecasts pro-

duced by the squared returns specification perform more poorly. The intercept and slope

estimates suggest that the forecasts are biased, and the R-squared values now range from

19 percent for General Motors and Johnson & Johnson to 48 percent for AT&T. Compar-

ing the R-squared values in Panels A and B, there is a reduction in explanatory power for

every firm, and the reduction in R-squared is typically on the order of 0.1 or 0.2. These

comparisons provide an indication of the value of using high-frequency return data to

construct volatility forecasts.

Now consider the impact of updating the volatility forecasts from the realized volatil-

ity specification (Panel A) using the contemporaneous realization of trading volume. The

forecasts still show little evidence of bias, but there is a marked increase in the explanatory

power for most firms. The regression R-squared values range from 50 percent for Johnson

& Johnson to 71 percent for General Electric and AT&T. The ratio of the R-squared for

the regression in equation (18) to the R-squared for the regression in equation (22) is,

on average, 0.73. Since this ratio is unaffected by measurement error, it should provide

an accurate reflection of the extent to which observing contemporaneous volume resolves

the uncertainty about volatility. Another way to look at this is to compute the reduction

in the MSE obtained by updating the log variance forecasts to account for the observed

trading volume. On average, the reduction is 30 percent.

We observe a similar increase in explanatory power by updating the forecasts from

the squared returns specification (Panel B) with contemporaneous volume. In this case,

the average increase in the R-squared value is 0.12, and the ratio of R-squared values for

the regressions in equations (18) and (22) is 0.72. Interestingly, for most firms, the R-

squared for the updated forecasts is comparable to the R-squared for the one-step-ahead

forecasts from the realized volatility specification.

Thus, the realization of contemporaneous trading volume is quite informative about

unpredictable shocks to return volatility, even at the daily sampling frequency. This sug-
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gests that daily trading volume can be used in conjuction with daily returns to obtain

more precise estimates of daily return volatility for situations in which the intradaily re-

turns data needed to construct realized volatilities are unavailable. Of course, the updated

forecasts are no longer forecasts in the usual sense. Like the log realized variances, they

are estimates of the unobserved log variance based on both past and contemporaneous

information. However, the motivation is the same as using the realized volatility approach

to obtain a more precise proxy for daily volatility on a given day.

Volume data might also prove useful in the econometric analysis of realized volatility.

For example, realized volatility is often modeled as the true volatility plus measurement

error. In this case, we can obtain more precise volatility estimates by employing a filtering

technique. Barndorff-Nielsen and Shephard (2002) propose a simple approach based on

the Kalman filter. A similar strategy could be employed in a long-memory setting. For

example, we might model the log realized variances as a fractionally-integrated process

subject to additive measurement error, and then estimate a joint system that includes log

trading volume via linear state-space methods. 8 This would allows us to exploit the con-

temporaneous correlation between volatility and volume shocks to extract more efficient

“smoothed” estimates of the latent volatility process.

5 Concluding Remarks

Recent empirical work suggests that return volatility and trading volume exhibit similar

long-run dynamics. Building on this research, we examine the performance of a long-

memory model for return volatility and trading volume that permits both common long-

run dependencies and flexible short-run interactions. In particular, we assume that the log-

arithms of volatility and volume are described by a trend-stationary fractionally-integrated

process that displays VAR(p) dynamics after fractional differencing. Since our approach

allows the trend, short-memory, and long-memory components to compete on an equal

footing, it should be well suited to analyzing the relative importance of each component

in explaining the observed characteristics of the data.

When we fit the model to daily realized volatilities and daily trading volumes for

the 20 MMI firms, the results paint an interesting picture of the role of long memory in

8 Chan and Palma (1998) show that these methods perform well for univariate long-memory
specifications.
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volatility and volume dynamics. Both the log realized volatilities and log trading volumes

appear to be fractionally integrated with an order of integration of about 0.35. However,

the evidence on whether the two series share a common order of fractional integration

is mixed, with one fifth of the firms producing rejections of this hypothesis at the 5

percent significance level. This is a considerably higher rejection rate than that reported

previously for the S&P 100 firms. Although drawing definitive conclusions about this issue

would require a better understanding of the finite sample performance of the tests used

in this paper and in previous work, our findings suggest that it is premature to treat

common long-run dependencies as a stylized fact of the volume-volatility literature.

With respect to short-run dynamics, we find that they play only a minor role in

explaining the serial dependence in the data. The main short-run phenomenon is a strong

contemporaneous correlation between the log volatility and log volume innovations. In

light of this correlation, it may be possible to use trading volume data to improve estimates

of daily return volatility for cases in which the high-frequency return data needed to

construct realized volatilities are unavailable. On the other hand, it seems that there is

little to be gained from modeling short-run dynamics if the objective is to improve short-

range volatility forecasts. Fractional differencing by itself is sufficient to remove most of

the serial dependence in the realized volatilities.

There are a couple of issues that hold potential for future research in this area.

First, it would be useful to document the finite-sample size and power of asymptotic tests

in the long-memory setting. This would facilitate comparison between studies that use

different estimation techniques, and would help shed light on why the QML estimates of

the memory parameter for volatility are sensitive to whether we use realized volatilities or

squared returns to fit the models. Second, it would be interesting to study the implications

of long memory for long-range volatility forecasts. If these forecasts can be improved by

adopting long-memory specifications, then we can potentially improve the pricing and

hedging of long-term financial contracts.
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Table 1

Model fitting results using the standard estimator of realized volatility

The table reports the results of fitting a bivariate linear regression model with deterministic regressors and long-memory errors to the daily realized variance and daily trading
volume for the MMI firms. The model is

yt = βxt + εt,

Φ(L)Δ(L)εt = ηt,

where yt = (log RVt, log Vt)′ with RVt based on a five-minute sampling frequency and a window length of zero, xt = (1, t/T, t2/T 2)′, Φ(L) = I−ΦL, Δ(L) = diag((1−L)δ1 , (1−
L)δ2 ), and ηt ∼ NID(0, Ω) with ηt = 0 ∀t ≤ 0. We estimate δ and φ = vec(Φ) by Gaussian quasi-maximum likelihood, which is equivalent to minimizing |Ω̂(δ, φ)| where

Ω̂(δ, φ) =
T∑

t=1

[Φ(L)Δ(L)(yt − β̂xt)][Φ(L)Δ(L)(yt − β̂xt)]
′ with β̂ =

(
T∑

t=1

ytx
′
t

)(
T∑

t=1

xtx
′
t

)−1

.

Panel A reports the elements of δ̂ and their asymptotic standard errors, the elements of φ̂ and their asymptotic t-ratios, the quasi-log likelihood value (LT ), and the quasi-

likelihood-ratio statistic (LR) for H0: δ1 = δ2. Panel B reports the elements of β̂ and summary statistics for the fitted innovation sequence {ηt}T
t=1 implied by the parameter

estimates. The summary statistics are the unique elements of Ω̂, the coefficients of skewness (CS) and excess kurtosis (CK) for the fitted innovations, and the Leung-Box
statistics computed from the first five and ten sample autocorrelations of the fitted innovations (Q5 and Q10). An asterisk indicates a likelihood ratio or Leung-Box statistic
that is statistically significant at the 5 percent level. The realized variances are expressed as squared annualized percentage rates (assuming 252 trading days per year). Trading
volume is measured in millions of shares. The sample period is January 1, 1993 to December 31, 2003.

Panel A: Long-memory and VAR parameters

Firm δ̂1 δ̂2 se(δ̂1) se(δ̂2) φ̂1 φ̂2 φ̂3 φ̂4 t(φ̂1) t(φ̂2) t(φ̂3) t(φ̂4) LT LR

AXP 0.45 0.39 0.02 0.02 -0.06 0.10 0.03 0.01 -1.78 2.48 1.64 0.27 -587.5 5.19∗
CVX 0.42 0.29 0.02 0.02 -0.10 0.05 0.00 0.07 -3.33 1.46 0.02 1.94 -182.0 23.15∗
DD 0.43 0.33 0.02 0.02 -0.07 0.05 0.00 0.12 -2.15 1.19 -0.20 3.19 -289.7 11.05∗
DIS 0.45 0.36 0.02 0.02 -0.15 -0.01 0.05 0.11 -5.04 -0.29 3.40 3.06 -369.2 11.44∗
DOW 0.45 0.32 0.02 0.02 -0.13 0.10 0.02 0.02 -4.61 2.75 1.00 0.62 -1059.4 24.81∗
EK 0.39 0.34 0.02 0.02 -0.11 0.01 0.08 0.18 -3.44 0.22 4.57 4.54 -1070.0 6.19∗
GE 0.43 0.37 0.02 0.02 -0.08 0.06 0.06 0.03 -2.43 1.79 2.60 0.78 173.6 5.89∗
GM 0.41 0.36 0.02 0.02 -0.10 -0.02 0.03 0.11 -3.16 -0.50 2.02 2.94 -631.2 4.95∗
IBM 0.46 0.39 0.02 0.02 -0.10 0.04 0.07 0.11 -2.76 0.88 3.04 2.77 -249.1 11.61∗
IP 0.42 0.32 0.02 0.02 -0.12 -0.02 0.02 0.14 -4.19 -0.41 1.69 3.99 -619.1 11.51∗
JNJ 0.43 0.33 0.02 0.02 -0.12 0.01 0.05 0.11 -3.74 0.19 2.79 3.12 -218.9 15.18∗
KO 0.43 0.25 0.02 0.03 -0.09 0.06 0.04 0.22 -2.75 1.45 2.71 5.73 74.7 39.39∗
MCD 0.42 0.34 0.02 0.02 -0.10 0.04 0.01 0.09 -3.10 1.07 0.55 2.52 -479.4 22.62∗
MMM 0.41 0.34 0.02 0.02 -0.08 0.03 0.04 0.10 -2.61 0.65 2.07 2.68 -560.8 24.47∗
MO 0.41 0.33 0.02 0.02 -0.13 0.04 0.10 0.19 -3.92 1.08 4.95 5.01 -744.1 11.67∗
MRK 0.42 0.30 0.02 0.02 -0.07 -0.01 0.03 0.19 -2.23 -0.24 1.68 4.96 -168.0 18.73∗
PG 0.43 0.33 0.02 0.02 -0.05 0.05 0.03 0.09 -1.45 1.20 1.56 2.57 -282.3 12.89∗
S 0.41 0.38 0.02 0.02 -0.08 0.04 0.03 0.08 -2.46 1.04 2.19 2.23 -927.7 1.84
T 0.42 0.39 0.02 0.02 -0.07 0.03 0.03 0.11 -2.17 0.64 1.90 3.16 -531.3 0.91
XOM 0.46 0.27 0.02 0.02 -0.11 0.07 0.02 0.10 -3.75 2.13 0.95 2.94 452.5 49.71∗



Table 1, continued

Panel B: Trend parameters and innovation diagnostics

Innovations to log RVt Innovations to log Vt

Firm β̂11 β̂12 β̂13 β̂21 β̂22 β̂23 Ω̂11 Ω̂12 Ω̂22 CS CK Q5 Q10 CS CK Q5 Q10

AXP 3.50 -0.16 0.00 1.27 0.41 -0.15 0.05 0.04 0.13 0.34 1.72 5.44 12.24 0.13 1.65 3.65 10.31
CVX 2.77 1.77 -1.75 -0.09 -0.19 1.48 0.04 0.03 0.10 0.37 1.87 6.91 21.94∗ 0.40 3.14 4.03 11.14
DD 2.95 1.43 -1.20 0.40 1.38 -0.73 0.05 0.03 0.11 0.28 1.18 9.10 16.68 0.42 2.37 1.64 20.05∗
DIS 3.32 -0.14 0.46 1.15 0.71 0.20 0.05 0.03 0.12 0.62 2.29 7.75 13.38 0.79 2.98 7.83 13.96
DOW 2.96 0.25 0.31 0.45 0.76 -0.13 0.06 0.04 0.14 0.38 2.17 13.68∗ 21.43∗ 0.47 3.11 4.14 6.64
EK 3.26 -0.02 0.33 0.07 -1.16 2.26 0.06 0.06 0.18 0.58 2.29 20.15∗∗ 29.22∗∗ 1.10 4.51 11.59∗ 15.52
GE 2.76 1.70 -1.21 2.41 0.14 0.57 0.05 0.03 0.08 0.35 1.48 3.80 19.40∗ 0.34 1.84 0.67 14.56
GM 3.43 -0.27 0.23 0.83 -0.96 1.79 0.05 0.04 0.13 0.37 1.40 9.30 29.78∗∗ 0.30 1.58 5.21 13.16
IBM 3.29 0.79 -0.78 2.18 0.36 -0.74 0.06 0.05 0.11 0.33 1.05 7.90 15.07 0.57 2.27 7.60 22.93∗
IP 2.70 2.91 -2.52 -0.41 1.80 -0.31 0.05 0.03 0.13 0.20 1.07 3.50 17.65 0.23 0.64 0.46 12.64
JNJ 3.34 -0.60 0.37 1.53 -0.76 1.44 0.05 0.03 0.10 0.23 1.31 10.61 18.84∗ 0.40 1.90 6.59 19.64∗
KO 3.16 0.39 -0.51 0.89 0.59 0.11 0.04 0.03 0.10 0.30 1.53 6.39 11.15 0.38 1.68 3.57 7.58
MCD 3.12 0.50 -0.38 0.90 0.72 0.11 0.05 0.03 0.13 0.51 2.50 5.04 9.11 0.55 1.78 4.59 12.69
MMM 2.55 2.58 -2.29 -0.08 1.25 0.37 0.05 0.04 0.13 0.21 1.07 7.46 15.18 0.71 3.22 1.53 6.74
MO 3.13 1.20 -1.14 1.84 -0.13 0.26 0.07 0.05 0.13 1.06 4.44 3.21 4.62 0.95 3.66 2.41 6.64
MRK 3.47 -0.81 0.60 1.69 -0.64 0.82 0.05 0.04 0.10 0.34 2.85 11.89∗ 15.21 0.57 2.55 12.94∗ 20.83∗
PG 3.04 1.48 -1.70 0.26 1.30 -0.31 0.05 0.03 0.11 0.27 1.23 4.87 16.06 0.76 6.44 3.94 21.57∗
S 3.23 1.03 -0.67 -0.14 0.25 1.13 0.05 0.04 0.15 0.25 1.41 16.31∗∗ 27.32∗∗ 0.62 2.54 5.00 12.50
T 3.01 1.36 -0.74 -0.94 3.07 -0.64 0.05 0.03 0.12 0.49 2.24 3.20 9.98 0.85 3.83 2.51 16.94
XOM 2.68 1.64 -1.39 1.22 1.63 -0.40 0.04 0.02 0.08 0.32 1.48 4.66 16.09 0.15 2.06 2.00 10.67



Table 2

Model fitting results using the higher-frequency, bias-corrected (HFBC) estimator of realized volatility

The table reports the results of fitting a bivariate linear regression model with deterministic regressors and long-memory errors to the daily realized variance and daily trading
volume for the MMI firms. The model is

yt = βxt + εt,

Φ(L)Δ(L)εt = ηt,

where yt = (log RVt, log Vt)′ with RVt based on a 30-second sampling frequency and 30-minute window length, xt = (1, t/T, t2/T 2)′, Φ(L) = I−ΦL, Δ(L) = diag((1−L)δ1 , (1−
L)δ2 ), and ηt ∼ NID(0, Ω) with ηt = 0 ∀t ≤ 0. We estimate δ and φ = vec(Φ) by Gaussian quasi-maximum likelihood, which is equivalent to minimizing |Ω̂(δ, φ)| where

Ω̂(δ, φ) =
T∑

t=1

[Φ(L)Δ(L)(yt − β̂xt)][Φ(L)Δ(L)(yt − β̂xt)]
′ with β̂ =

(
T∑

t=1

ytx
′
t

)(
T∑

t=1

xtx
′
t

)−1

.

Panel A reports the elements of δ̂ and their asymptotic standard errors, the elements of φ̂ and their asymptotic t-ratios, the quasi-log likelihood value (LT ), and the quasi-

likelihood-ratio statistic (LR) for H0: δ1 = δ2. Panel B reports the elements of β̂ and summary statistics for the fitted innovation sequence {ηt}T
t=1 implied by the parameter

estimates. The summary statistics are the unique elements of Ω̂, the coefficients of skewness (CS) and excess kurtosis (CK) for the fitted innovations, and the Leung-Box
statistics computed from the first five and ten sample autocorrelations of the fitted innovations (Q5 and Q10). An asterisk indicates a likelihood ratio or Leung-Box statistic
that is statistically significant at the 5 percent level. The realized variances are expressed as squared annualized percentage rates (assuming 252 trading days per year). Trading
volume is measured in millions of shares. The sample period is January 1, 1993 to December 31, 2003.

Panel A: Long-memory and VAR parameters

Firm δ̂1 δ̂2 se(δ̂1) se(δ̂2) φ̂1 φ̂2 φ̂3 φ̂4 t(φ̂1) t(φ̂2) t(φ̂3) t(φ̂4) LT LR

AXP 0.39 0.39 0.02 0.02 -0.07 0.10 0.03 -0.01 -2.01 3.09 1.36 -0.40 -1206.0 0.01
CVX 0.33 0.29 0.02 0.02 -0.05 0.02 0.00 0.08 -1.55 0.75 0.10 2.14 -963.4 2.86
DD 0.37 0.34 0.02 0.02 -0.08 0.06 -0.02 0.09 -2.37 2.01 -0.91 2.51 -1099.6 1.18
DIS 0.38 0.37 0.02 0.02 -0.09 0.00 0.03 0.10 -2.65 -0.03 1.23 2.66 -1172.2 0.38
DOW 0.38 0.32 0.02 0.02 -0.09 0.05 0.00 0.02 -2.94 1.87 0.01 0.59 -1917.9 5.10∗
EK 0.33 0.36 0.02 0.02 -0.09 0.02 0.09 0.15 -2.46 0.58 3.35 3.55 -1733.6 1.19
GE 0.38 0.36 0.02 0.02 -0.11 0.05 0.06 0.04 -3.36 1.75 2.08 0.98 -371.7 1.01
GM 0.33 0.35 0.02 0.02 -0.07 -0.02 0.03 0.12 -2.14 -0.66 1.11 3.01 -1364.7 0.49
IBM 0.40 0.38 0.02 0.02 -0.09 0.03 0.07 0.12 -2.50 0.85 2.13 2.86 -876.0 1.53
IP 0.37 0.33 0.02 0.02 -0.09 0.01 0.01 0.13 -2.88 0.31 0.45 3.52 -1291.7 2.03
JNJ 0.36 0.32 0.02 0.02 -0.10 0.01 0.05 0.12 -2.93 0.23 1.87 3.16 -997.4 2.56
KO 0.37 0.25 0.02 0.02 -0.09 0.05 0.05 0.21 -2.77 1.62 1.88 5.37 -628.1 22.94∗
MCD 0.33 0.32 0.02 0.02 -0.07 0.01 0.00 0.11 -2.00 0.19 0.10 2.90 -1254.6 0.09
MMM 0.33 0.33 0.02 0.02 -0.08 0.01 0.02 0.11 -2.24 0.32 0.92 2.90 -1385.2 0.00
MO 0.35 0.31 0.02 0.02 -0.08 0.01 0.11 0.22 -2.15 0.41 3.24 5.23 -1422.9 2.93
MRK 0.38 0.30 0.02 0.02 -0.08 0.03 0.01 0.18 -2.43 0.82 0.26 4.41 -768.6 10.39∗
PG 0.36 0.33 0.02 0.02 -0.09 0.02 0.02 0.10 -2.75 0.59 0.92 2.60 -1014.2 1.85
S 0.36 0.39 0.02 0.02 -0.07 0.05 0.01 0.06 -2.08 1.65 0.63 1.55 -1814.3 1.67
T 0.37 0.40 0.02 0.02 -0.05 0.05 0.01 0.09 -1.53 1.46 0.52 2.34 -1175.7 1.61
XOM 0.40 0.27 0.02 0.02 -0.12 0.07 0.01 0.10 -3.84 2.82 0.38 2.71 -309.3 28.82∗



Table 2, continued

Panel B: Trend parameters and innovation diagnostics

Innovations to log RVt Innovations to log Vt

Firm β̂11 β̂12 β̂13 β̂21 β̂22 β̂23 Ω̂11 Ω̂12 Ω̂22 CS CK Q5 Q10 CS CK Q5 Q10

AXP 3.05 1.11 -0.76 1.27 0.41 -0.15 0.09 0.06 0.13 0.29 1.22 4.55 7.81 0.13 1.64 3.59 10.15
CVX 2.55 2.32 -2.08 -0.09 -0.19 1.48 0.09 0.04 0.10 0.17 0.80 3.46 9.41 0.40 3.18 3.45 10.68
DD 2.63 2.33 -1.84 0.40 1.38 -0.73 0.09 0.05 0.11 0.33 1.11 8.20 15.53 0.41 2.35 1.84 19.61∗
DIS 3.00 0.50 0.10 1.15 0.71 0.20 0.09 0.06 0.12 0.46 1.15 9.27 16.21 0.79 2.98 7.91 14.16
DOW 2.71 0.91 -0.15 0.45 0.76 -0.13 0.12 0.06 0.14 0.28 0.98 9.13 13.99 0.47 3.08 4.09 6.87
EK 2.77 1.10 -0.45 0.07 -1.16 2.26 0.11 0.09 0.18 0.61 1.77 19.16∗∗ 33.08∗∗ 1.10 4.50 13.05∗ 17.10
GE 2.51 2.17 -1.40 2.41 0.14 0.57 0.08 0.05 0.08 0.23 0.55 0.77 12.12 0.34 1.83 1.53 15.27
GM 3.13 0.46 -0.15 0.83 -0.96 1.79 0.10 0.06 0.13 0.20 0.45 10.14 20.18∗ 0.30 1.57 4.99 12.84
IBM 3.01 1.43 -1.23 2.18 0.36 -0.74 0.10 0.07 0.11 0.30 0.50 8.43 10.47 0.56 2.27 6.31 21.14∗
IP 2.61 2.82 -2.30 -0.41 1.80 -0.31 0.08 0.05 0.13 0.18 0.72 1.92 14.79 0.23 0.64 0.33 12.84
JNJ 3.05 0.22 -0.20 1.53 -0.76 1.44 0.10 0.05 0.10 0.28 0.81 8.32 22.23∗ 0.41 1.91 5.98 19.60∗
KO 2.73 1.60 -1.29 0.89 0.59 0.11 0.08 0.05 0.10 0.26 0.76 2.91 7.36 0.38 1.68 4.24 8.18
MCD 2.80 1.07 -0.54 0.90 0.72 0.11 0.10 0.06 0.13 0.40 1.04 3.20 6.31 0.55 1.77 4.12 11.81
MMM 2.35 2.99 -2.55 -0.08 1.25 0.37 0.10 0.06 0.13 0.24 1.02 4.46 9.88 0.70 3.21 1.01 6.56
MO 2.81 1.79 -1.49 1.84 -0.13 0.26 0.12 0.08 0.13 0.79 2.58 2.86 7.23 0.96 3.69 2.63 6.94
MRK 3.05 0.46 -0.25 1.69 -0.64 0.82 0.09 0.06 0.10 0.42 1.51 14.47∗ 16.03 0.58 2.53 12.09∗ 20.21∗
PG 2.70 2.18 -2.19 0.26 1.30 -0.31 0.09 0.05 0.11 0.64 3.62 7.59 15.38 0.76 6.42 3.96 21.20∗
S 2.94 1.40 -0.81 -0.14 0.25 1.13 0.11 0.07 0.15 0.27 0.84 17.65∗∗ 22.76∗ 0.62 2.51 5.38 12.43
T 2.63 1.97 -0.96 -0.94 3.07 -0.64 0.09 0.06 0.12 0.60 1.98 4.69 13.70 0.86 3.86 2.34 17.04
XOM 2.41 2.30 -1.79 1.22 1.63 -0.40 0.07 0.04 0.08 0.27 0.55 4.90 13.13 0.15 2.08 1.95 10.34



Table 3

Model fitting results using daily squared returns

The table reports the results of fitting a bivariate linear regression model with deterministic regressors and long-memory errors to the daily squared demeaned returns and daily
trading volume for the MMI firms. The model is

yt = βxt + εt,

Φ(L)Δ(L)εt = ηt,

where yt = (log r2
t , log Vt)′, xt = (1, t/T, t2/T 2)′, Φ(L) = I −ΦL, Δ(L) = diag((1 − L)δ1 , (1 − L)δ2 ), and ηt ∼ NID(0, Ω) with ηt = 0 ∀t ≤ 0. We estimate δ and φ = vec(Φ) by

Gaussian quasi-maximum likelihood, which is equivalent to minimizing |Ω̂(δ, φ)| where

Ω̂(δ, φ) =
T∑

t=1

[Φ(L)Δ(L)(yt − β̂xt)][Φ(L)Δ(L)(yt − β̂xt)]
′ with β̂ =

(
T∑

t=1

ytx
′
t

)(
T∑

t=1

xtx
′
t

)−1

.

Panel A reports the elements of δ̂ and their asymptotic standard errors, the elements of φ̂ and their asymptotic t-ratios, the quasi-log likelihood value (LT ), and the quasi-

likelihood-ratio statistic (LR) for H0: δ1 = δ2. Panel B reports the elements of β̂ and summary statistics for the fitted innovation sequence {ηt}T
t=1 implied by the parameter

estimates. The summary statistics are the unique elements of Ω̂, the coefficients of skewness (CS) and excess kurtosis (CK) for the fitted innovations, and the Leung-Box
statistics computed from the first five and ten sample autocorrelations of the fitted innovations (Q5 and Q10). An asterisk indicates a likelihood ratio or Leung-Box statistic
that is statistically significant at the 5 percent level. The returns are expressed as annualized percentage rates and multiplied by

√
252. Trading volume is measured in millions

of shares. The sample period is January 1, 1993 to December 31, 2003.

Panel A: Long-memory and VAR parameters

Firm δ̂1 δ̂2 se(δ̂1) se(δ̂2) φ̂1 φ̂2 φ̂3 φ̂4 t(φ̂1) t(φ̂2) t(φ̂3) t(φ̂4) LT LR

AXP 0.17 0.37 0.02 0.02 -0.13 0.03 0.11 0.04 -4.51 4.27 1.71 1.11 -5083.4 50.16∗
CVX 0.10 0.28 0.02 0.02 -0.08 0.02 0.10 0.07 -2.84 3.81 1.41 2.29 -4864.9 38.94∗
DD 0.12 0.29 0.02 0.03 -0.04 0.03 0.10 0.15 -1.32 4.51 1.42 4.41 -4946.4 25.98∗
DIS 0.11 0.31 0.02 0.02 -0.07 0.02 0.22 0.14 -2.31 2.43 2.92 4.00 -5120.5 50.36∗
DOW 0.15 0.31 0.02 0.02 -0.11 0.04 0.11 0.03 -3.72 5.24 1.81 0.93 -5339.5 35.50∗
EK 0.10 0.30 0.02 0.03 -0.08 0.02 0.20 0.20 -2.47 1.93 3.02 5.44 -5640.8 47.74∗
GE 0.12 0.32 0.02 0.02 -0.10 0.02 0.14 0.08 -3.33 4.21 1.75 2.48 -4399.3 52.63∗
GM 0.14 0.31 0.02 0.02 -0.07 0.03 0.03 0.12 -2.46 4.03 0.42 3.65 -5117.7 32.50∗
IBM 0.15 0.34 0.02 0.02 -0.15 0.03 0.25 0.14 -5.22 4.74 3.35 4.16 -4951.5 49.15∗
IP 0.12 0.31 0.02 0.03 -0.06 0.01 0.13 0.14 -2.16 2.00 2.01 4.12 -5104.2 42.75∗
JNJ 0.13 0.31 0.02 0.02 -0.07 0.02 0.01 0.11 -2.31 3.95 0.13 3.34 -4807.2 39.08∗
KO 0.12 0.25 0.02 0.03 -0.10 0.03 0.27 0.21 -3.46 3.97 3.56 5.79 -4684.1 16.98∗
MCD 0.11 0.30 0.02 0.02 -0.07 0.02 0.07 0.13 -2.27 2.37 0.96 3.67 -5162.0 33.52∗
MMM 0.07 0.31 0.02 0.02 -0.05 0.02 0.13 0.12 -1.62 3.17 1.81 3.55 -5302.1 66.02∗
MO 0.15 0.27 0.02 0.03 -0.11 0.01 0.36 0.26 -3.83 1.69 4.96 6.88 -4944.4 22.41∗
MRK 0.15 0.27 0.02 0.03 -0.09 0.02 0.16 0.20 -2.92 3.62 2.12 5.56 -4790.8 17.05∗
PG 0.11 0.32 0.02 0.02 -0.10 0.02 0.19 0.10 -3.59 3.03 2.53 2.99 -5001.3 52.67∗
S 0.12 0.36 0.02 0.02 -0.07 0.01 0.04 0.10 -2.26 1.09 0.53 2.91 -5456.8 68.34∗
T 0.16 0.35 0.02 0.03 -0.07 0.01 0.07 0.15 -2.44 2.37 0.80 4.40 -5517.9 33.18∗
XOM 0.14 0.24 0.02 0.02 -0.11 0.02 0.12 0.13 -3.95 4.37 1.44 4.01 -4331.2 13.53∗



Table 3, continued

Panel B: Trend parameters and innovation diagnostics

Innovations to log r2
t Innovations to log Vt

Firm β̂11 β̂12 β̂13 β̂21 β̂22 β̂23 Ω̂11 Ω̂12 Ω̂22 CS CK Q5 Q10 CS CK Q5 Q10

AXP 2.35 1.82 -1.34 1.27 0.41 -0.15 1.14 0.11 0.13 -1.15 2.24 5.33 6.38 0.13 1.69 3.51 10.45
CVX 2.04 2.05 -1.85 -0.09 -0.19 1.48 1.23 0.09 0.10 -1.33 3.88 3.71 10.56 0.39 3.13 2.88 10.40
DD 2.04 2.65 -2.19 0.40 1.38 -0.73 1.16 0.10 0.11 -1.00 1.13 5.75 8.00 0.40 2.34 1.71 20.72∗
DIS 2.25 1.33 -0.58 1.15 0.71 0.20 1.29 0.13 0.12 -1.42 4.71 15.21∗∗ 20.24∗ 0.80 3.02 8.64 14.83
DOW 2.13 0.97 -0.15 0.45 0.76 -0.13 1.23 0.12 0.14 -1.22 2.81 8.48 16.21 0.47 3.16 4.12 6.83
EK 2.29 0.91 -0.51 0.07 -1.16 2.26 1.35 0.19 0.18 -1.10 1.83 0.64 6.41 1.08 4.43 9.91 14.33
GE 1.88 2.66 -1.85 2.41 0.14 0.57 1.12 0.09 0.08 -1.12 1.80 15.44∗∗ 26.14∗∗ 0.34 1.91 5.75 19.68∗
GM 2.54 0.56 -0.22 0.83 -0.96 1.79 1.21 0.13 0.13 -1.07 1.44 7.24 14.49 0.29 1.66 3.39 10.32
IBM 2.40 1.50 -1.22 2.18 0.36 -0.74 1.24 0.13 0.11 -1.19 3.10 13.42∗ 14.94 0.59 2.35 3.71 17.98
IP 2.06 2.83 -2.30 -0.41 1.80 -0.31 1.15 0.11 0.13 -1.14 1.77 3.28 5.72 0.23 0.63 0.87 12.03
JNJ 2.42 0.64 -0.68 1.53 -0.76 1.44 1.25 0.11 0.10 -1.28 2.94 10.26 25.37∗∗ 0.39 1.89 4.61 20.40∗
KO 2.06 2.51 -2.33 0.89 0.59 0.11 1.14 0.11 0.10 -1.04 1.22 12.90∗ 22.52∗ 0.37 1.76 3.85 7.52
MCD 2.17 1.40 -0.92 0.90 0.72 0.11 1.25 0.12 0.13 -1.09 1.41 5.83 10.37 0.54 1.75 3.86 11.64
MMM 1.81 2.64 -2.18 -0.08 1.25 0.37 1.37 0.12 0.12 -1.27 2.98 4.19 9.64 0.69 3.16 0.50 5.92
MO 2.17 2.38 -2.13 1.84 -0.13 0.26 1.13 0.16 0.13 -0.84 1.35 9.98 19.09∗ 0.95 3.69 4.97 10.23
MRK 2.42 1.02 -0.86 1.69 -0.64 0.82 1.22 0.11 0.10 -1.18 2.17 4.33 11.39 0.58 2.57 12.58∗ 21.36∗
PG 2.07 2.61 -2.68 0.26 1.30 -0.31 1.27 0.12 0.11 -1.33 3.43 2.67 11.28 0.76 6.43 4.44 21.26∗
S 2.52 0.99 -0.65 -0.14 0.25 1.13 1.30 0.15 0.15 -1.12 2.15 7.24 12.13 0.62 2.56 4.15 12.67
T 1.75 2.73 -1.46 -0.94 3.07 -0.64 1.66 0.14 0.12 -1.44 2.39 2.71 4.52 0.85 3.85 4.05 16.67
XOM 1.83 2.40 -1.84 1.22 1.63 -0.40 1.12 0.08 0.08 -1.08 1.61 6.17 12.22 0.15 2.04 1.07 10.74



Table 4

Realized volatility regressions

The table summarizes the results of fitting a linear regression of log RVt, where RVt is constructed using our HFBC estimator
of realized volatility, on the log variance estimates obtained from our fitted long memory models. Panel A reports the results
for the long memory model fit based on realized volatilities and Panel B reports the results for the long memory model fit based
on daily squared returns. For each model, we consider two realized volatility regressions. The explanatory variable in the first
regression is a one-step-ahead forecast of the log variance. The explanatory variable in the second regression is an estimate
of the log variance obtained by updating the one-step-ahead forecast to reflect the information revealed by the realization of
contemporaneous trading volume. For each regression we report the intercept estimate (α̂), slope estimate (β̂), and sample
R-squared (R2). The final column reports the ratio of the two values of the sample R-squared.

Panel A: Log variance estimates based on realized volatilities

One step ahead After observing Vt

Firm α̂ β̂ R2 α̂ β̂ R2 Ratio

AXP -0.20 1.03 0.48 -0.11 1.02 0.64 0.75
CVX -0.03 1.00 0.39 -0.02 1.00 0.52 0.75
DD -0.10 1.02 0.49 -0.11 1.02 0.63 0.78
DIS 0.00 1.00 0.49 -0.05 1.01 0.64 0.76
DOW -0.07 1.01 0.53 -0.05 1.01 0.63 0.84
EK 0.16 0.97 0.39 -0.02 1.00 0.64 0.61
GE -0.07 1.01 0.56 -0.04 1.01 0.71 0.79
GM -0.06 1.01 0.31 -0.07 1.01 0.52 0.59
IBM -0.01 1.00 0.43 -0.09 1.01 0.68 0.64
IP -0.10 1.02 0.53 -0.06 1.01 0.63 0.85
JNJ -0.14 1.02 0.32 -0.06 1.01 0.50 0.64
KO -0.19 1.03 0.48 -0.08 1.01 0.63 0.76
MCD 0.05 0.99 0.36 -0.03 1.00 0.55 0.66
MMM -0.10 1.02 0.46 -0.03 1.01 0.62 0.75
MO -0.13 1.02 0.42 -0.07 1.01 0.65 0.65
MRK 0.03 0.99 0.34 -0.09 1.01 0.58 0.59
PG -0.24 1.04 0.46 -0.10 1.02 0.61 0.75
S 0.02 1.00 0.41 -0.04 1.01 0.57 0.72
T 0.04 0.99 0.58 0.00 1.00 0.71 0.82
XOM -0.10 1.02 0.54 -0.06 1.01 0.65 0.83

Panel B: Log variance estimates based on squared demeaned daily returns

One step ahead After observing Vt

Firm α̂ β̂ R2 α̂ β̂ R2 Ratio

AXP 0.71 0.87 0.30 1.00 0.70 0.46 0.65
CVX -0.58 1.08 0.27 1.29 0.64 0.33 0.81
DD 0.06 0.96 0.35 0.57 0.74 0.46 0.78
DIS 0.70 0.87 0.32 1.83 0.59 0.41 0.76
DOW -0.23 1.01 0.40 0.23 0.78 0.46 0.87
EK -1.45 1.21 0.28 1.97 0.57 0.42 0.65
GE 0.00 0.97 0.45 0.44 0.75 0.57 0.79
GM 1.07 0.82 0.19 1.95 0.58 0.37 0.50
IBM 0.11 0.96 0.29 1.59 0.63 0.47 0.60
IP -0.28 1.02 0.43 1.09 0.68 0.45 0.95
JNJ 0.37 0.92 0.19 2.13 0.54 0.32 0.57
KO 0.88 0.84 0.29 1.89 0.57 0.41 0.71
MCD 0.27 0.94 0.25 1.54 0.62 0.39 0.64
MMM -0.93 1.14 0.35 0.58 0.74 0.44 0.78
MO 0.61 0.88 0.31 1.40 0.64 0.52 0.60
MRK 0.74 0.86 0.22 1.68 0.60 0.42 0.53
PG 0.45 0.91 0.29 1.54 0.61 0.41 0.71
S -2.51 1.35 0.31 1.64 0.63 0.36 0.87
T 1.82 0.73 0.48 1.83 0.61 0.58 0.83
XOM 0.08 0.96 0.38 0.77 0.70 0.45 0.85




