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ARCH Effects and Trading Volume

ABSTRACT

Studies that fit volume-augmented GARCH models often find support for the hypothesis

that trading volume explains ARCH effects in daily stock returns. We show that this

finding is due to an unrecognized constraint imposed by the GARCH specification used

for the analysis. Using a more flexible specification, we find no evidence that inserting

volume into the conditional variance function of the model reduces the importance of

lagged squared returns in capturing volatility dynamics. Volume is strongly correlated

with contemporaneous return volatility, but the correlation is driven largely by transitory

volatility shocks that have little to do with the highly persistent component of volatility

captured by standard volatility models.



ARCH Effects and Trading Volume

This paper investigates the degree to which autoregressive conditional heteroscedasticity

(ARCH) in stock returns is explained by the dynamics of trading volume. Our investigation

is based on a new volume-augmented generalized ARCH (VA-GARCH) model in which

return volatility is allowed to contain both short- and long-term components. In contrast

to prior studies, we find no support for the hypothesis that inserting volume into the

conditional variance function of the model reduces the importance of lagged squared

returns in capturing volatility dynamics. Previous conclusions that trading volume largely

explains ARCH effects appear to stem from an unrecognized constraint imposed by the

econometric methodology.

Like most studies in the area, we use the mixture of distributions hypothesis (MDH)

to guide our analysis. In one of the first studies to use VA-GARCH models in an MDH

context, Lamoureux and Lastrapes (1990) report that ARCH effects tend to disappear

when contemporaneous trading volume is added to the conditional variance function of

a GARCH(1,1) specification. Although subsequent studies report a less dramatic atten-

uation of ARCH effects in such models, they generally find that incorporating trading

volume produces a substantial drop in volatility persistence and at least some reduction

in the significance of ARCH effects (see, e.g., Fujihara and Mougoue, 1997; Girma and

Mougoue, 2002; Marsh and Wagner, 2003).

Fleming, Kirby, and Ostdiek (2006), on the other hand, use linear state-space meth-

ods to investigate the MDH. They fit a number of MDH-based specifications and find that

accounting for the dynamics of trading volume has no impact on the significance of ARCH

effects. Moreover, their analysis indicates that trading volume is primarily related to the

nonpersistent component of return volatility. These findings, which are clearly at odds

with the conclusions drawn by Lamoureux and Lastrapes (1990), call into question the

robustness of the VA-GARCH methodology. Our paper attempts to identify the source of

these conflicting results.

In general, there are two specification issues that may affect the results obtained

using the VA-GARCH methodology. The first issue is the impact of simultaneity bias on

the VA-GARCH coefficient estimates. Some researchers, such as Liesenfeld (1998), use

this issue to help motivate econometric methods that are much more computationally

intensive than fitting volume-augmented GARCH models. However, we show that the
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MDH implies that the impact of simultaneity bias becomes negligible as the number of

traders in the market and/or the number of daily information events becomes large. Hence,

by focusing on widely held and frequently traded stocks that are often in the news, we can

retain the tractability and intuitive appeal of the GARCH framework while minimizing

concerns about the impact of simultaneity bias. Since Lamoureux and Lastrapes (1990)

also examine actively traded stocks, it is unlikely that simultaneity bias plays a large role

in their findings.

The GARCH(1,1) methodology used by Lamoureux and Lastrapes (1990), however,

is vulnerable to a second specification problem that has escaped attention in the litera-

ture. Although it is natural to consider a GARCH(1,1) model given its success in other

applications, a VA-GARCH(1,1) model imposes an important restriction that makes it

difficult to interpret the model fitting results. Specifically, the coefficients on lagged vol-

ume and lagged squared returns are constrained to decline with the lag length at the

same rate. Thus, if volume provides little information about future volatility, it might be

necessary to downweight lagged volume (and hence lagged squared returns) to keep the

fitted volatilities from becoming too noisy. This restriction may explain why ARCH effects

tend to vanish when volume is added to the GARCH(1,1) model.

We overcome this problem by fitting a volume-augmented exponential GARCH (VA-

EGARCH) model that allows for both short- and long-term volatility components. Our

VA-EGARCH(2,2) model nests the VA-EGARCH(1,1) model as a special case, which

allows us to directly assess the impact of relaxing the implicit restriction. We fit the model

to daily returns on the 20 stocks in the major market index (MMI). We find no support

for the hypothesis that volume explains ARCH effects. The results confirm that volume is

strongly correlated with contemporaneous return volatility, but the correlation is driven by

transitory shocks to the volatility process. Nothing in the model fitting results suggests

that volume explains the highly persistent component of volatility that is captured by

standard volatility models.

We provide further evidence on this issue by examining the relative performance of

the EGARCH models in explaining realized volatility. Our approach, which follows An-

dersen and Bollerslev (1998), is to regress the realized variances on the fitted variances

produced by each model. The regressions confirm that the VA-EGARCH(1,1) model pro-

vides misleading evidence regarding of the relation between volume dynamics and ARCH

effects. The fitted variances from the VA-EGARCH(1,1) model produce a much lower
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R-squared than the fitted variances from the basic EGARCH(1,1) model. In contrast, the

fitted variances from the VA-EGARCH(2,2) model substantially outperform the fitted

variances from both of these models as well as those from the basic EGARCH(2,2) model.

Since the superior performance of the VA-EGARCH(2,2) model is primarily attributable

to the undiminished role of ARCH effects, our results suggest that we need to look beyond

volume in order to identify the features of the trading process that give rise to ARCH

effects in daily stock returns.

The remainder of the paper is organized as follows. Section 1 covers general back-

ground issues, analyzes the large-market implications of the most widely studied bivariate

mixture model, and introduces the two-component EGARCH model that we use for the

empirical analysis. Section 2 describes the dataset and reports the model fitting results.

Section 3 offers some concluding remarks.

1 Background and Methodology

Lamoureux and Lastrapes (1990) is arguably the most influential study of the relation

between ARCH effects and trading volume. Using a sample of daily data for 20 U.S. firms,

they fit a volume-augmented GARCH(1,1) model of the form

Rt =μ+ h
1/2
t zt, (1)

ht =ω + βht−1 + αr2
t−1 + γVt, (2)

where Rt is the daily stock return, Vt is the daily trading volume, zt is an i.i.d. N(0, 1)

standardized innovation, and rt = Rt − μ is the demeaned return. They find that they

cannot reject α = β = 0 for 16 of the firms and the parameter estimates for the remaining

four firms suggest much lower levels of volatility persistence than those obtained under

the constraint γ = 0. As a result, they conclude that “lagged squared residuals contribute

little if any additional information about the variance of the stock return process after

accounting for the rate of information flow, as measured by contemporaneous volume.”

There are two aspects of the methodology that raise concerns about the robustness

of the results. First, it treats volume as exogenous. This can give rise to an undetermined

simultaneity bias if Rt and Vt are jointly determined. Second, it relies on a model that

constrains volume effects to decay at the same rate as ARCH effects, i.e., the coefficients on

Vt−s and r2
t−s−1 are both proportional to βs for all s > 0. This lack of flexibility can affect
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the coefficient estimates. Although simultaneity bias is generally viewed as the primary

robustness issue, we argue that the lack of flexibility exhibited by the GARCH(1,1) model

is likely to be a more serious concern in most applications. 1

The criticism of simultaneity bias in the VA-GARCH methodology arises because

most market microstructure models imply that trading volume is endogenous. It may be

reasonable, however, to treat Vt as exogenous under conditions in which the magnitude

of the resulting bias is likely to be small. The lack of flexibility in the VA-GARCH(1,1)

model, on the other hand, is difficult to overcome. Suppose, for example, that Vt is strongly

correlated with the volatility of Rt, but contains no information beyond that contained

in Rt about the volatility of Rt+s for any s > 0. Obtaining an estimate of β close to zero

might be evidence that volume largely subsumes ARCH effects, or it could simply indicate

that putting large weights on lagged volume (and hence lagged squared returns) makes

the fitted volatilities too noisy, thereby reducing the likelihood.

To avoid this kind of ambiguity, we propose a more flexible approach for investigating

the extent to which volume explains ARCH effects. We begin by examining the issue of

simultaneity bias in the context of bivariate mixture models. By analyzing the asymptotic

properties of these models, we identify circumstances under which a strategy of fitting

VA-GARCH models should pose minimal concerns about simultaneity bias. Once this is

established, we show how to overcome the structural constraints of the VA-GARCH(1,1)

model without sacrificing the tractability of the GARCH methodology.

1.1 Bivariate mixture models

Let vt denote detrended trading volume. Much of the recent empirical work on the re-

lation between volume and volatility, such as Liesenfeld (1998) and Watanabe (2000), is

motivated in large part by Andersen’s (1996) modified MDH. The modified MDH implies

a bivariate mixture model of the form

rt =σ(IJKt)
1/2zrt, (3)

vt = τ(ν + λIJKt) + τ(ν + λIJKt)
1/2zvt, (4)

1 The results of Fleming, Kirby, and Ostdiek (2006), which are robust to simultaneity bias,
indirectly support this argument.
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where I is the number of informed (i.e., non-liquidity) traders in the market, J is the

number of information arrivals on the day used as a benchmark, Kt is the intensity of

information arrivals on day t relative to the benchmark day, zrt is an i.i.d. N(0, 1) standard-

ized innovation, and zvt is an i.i.d. standardized innovation — distributed independently

of zrt+s for all t and s — such that vt|Kt ∼ τ · Po(ν + λIJKt).

If Kt is serially correlated, then the model in Equations (3) and (4) is capable of

generating autocorrelation in return volatility that is explained to some extent by the

dynamics of trading volume. Unfortunately, the fact that Kt is unobservable makes it

difficult to fit the model using standard methods and tends to obscure the precise nature

of the relation between volume dynamics and ARCH effects in returns. One way to bring

the role of volume into sharper focus is to adopt an asymptotic perspective. In particular,

Equation (4) implies that for large I and/or J ,

vt

τλIJ
� Kt. (5)

Hence, if a stock is heavily traded and/or frequently in the news, it might be reasonable

to use volume as a proxy for Kt and approximate the return generating process as

rt = (γvt)
1/2zrt, (6)

where γ = σ2/(τλ). This is basically a subordinated stochastic process model of stock

returns in which trading volume functions as the directing variable (see Clark, 1973).

Although asymptotic analysis does not justify the use of VA-GARCH models in

general, it does allow us to identify circumstances in which the impact of simultaneity bias

is likely to be small. The model in Equation (6) is consistent with the model in Equations

(1) and (2) provided that α = β = 0. Thus, even if we believe that the data are generated

by a bivariate mixture model, we can make a case for fitting a VA-GARCH(1,1) model as

long as it is reasonable to assume that I and/or J are large. This is convenient because

the computational demands of GARCH models are generally much lower than those of

bivariate mixture models. 2 Of course, this argument applies only to the simultaneity bias

2 The econometric analysis of bivariate mixture models is typically carried out using specialized
and computationally-intensive Monte Carlo techniques (see, e.g., Liesenfeld, 1998; Watanabe,
2000). Fleming, Kirby, and Ostdiek (2006) show, however, that it is often possible to apply the
more tractable framework of the Kalman filter. Their approach provides an alternative to the
GARCH methodology developed here.
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issue. It says nothing about whether a GARCH(1,1) model is well-suited to studying the

role of volume in explaining ARCH effects. For robustness we need a model that allows

volume effects to decay at a different rate than ARCH effects. This leads us to propose a

two-component specification.

1.2 A two-component VA-EGARCH model

A natural way to generalize the Lamoureux and Lastrapes (1990) methodology is to specify

a VA-GARCH model that allows for both short-term and long-term volatility components.

We employ a model of the form

rt =
√
htzrt (7)

Δ log ht =Δmt + κh(mt−1 − log ht−1) + σhut−1 + γhwt (8)

Δmt =κm(ς −mt−1) + σmut−1 + γmwt, (9)

where ut = (|zrt| − E[|zrt|])/
√

var(|zrt|) and wt = (log vt − E[log vt])/
√

var(log vt) denote

the standardized values of |zrt| and log vt, respectively. 3

To see the origins of the model, suppose κm = κh and γh = σm = γm = 0. In this

case, Equations (7) – (9) collapse to

rt =
√
htzrt (10)

Δ log ht =κh(ς − log ht−1) + σhut−1, (11)

which is simply an EGARCH(1,1) model expressed in a form that lends a convenient

interpretation to each parameter. 4 Specifically, ς is the unconditional mean of log ht,

κh determines the speed at which log ht reverts towards ς, and σh is the volatility of the

innovations to log ht. If we relax the constraint γh = 0, then we obtain a volume-augmented

model similar to that of Lamoureux and Lastrapes (1990). The main differences are that

we work in logarithms to enforce the nonnegativity of ht and we standardize trading

volume to facilitate discussion of the empirical results.

3 We standardize |zrt| and log vt to make it easier to interpret and compare the coefficient
estimates. This has no effect on the dynamic implications of the model.
4 Unlike the EGARCH specification of Nelson (1991), our model does not allow for leverage
effects. This is simply for ease of exposition. Leverage effects tend to be small for individual
stocks and allowing them does not have much impact on our findings.
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Now consider the full model in Equations (7) – (9). Its underlying structure is still

that of an EGARCH specification, but instead of reverting towards a fixed mean ς, the

log variance is pulled towards a stochastic mean mt whose dynamics are described by

an autoregressive process. The idea behind this generalization, which follows Engle and

Lee (1999), is that mt captures low-frequency variations in volatility, while high-frequency

variations are captured by log ht −mt. This gives the model the flexibility to incorporate

volume effects that decay at a different rate than ARCH effects. Suppose, for example, that

volume has a very transitory impact on volatility, with most of the volatility persistence

due to ARCH effects. We would expect to find that κh is large relative to κm, σh is small

relative to γh, and σm is large relative to γm.

We gain additional insights into the dynamic properties of the model by expressing

the conditional variance in a way that eliminates mt from explicit consideration. To do

this, we substitute Equation (9) into Equation (8), and then substitute for mt−1 in the

resulting expression using the original Equation (8). After consolidating terms we obtain

Δ log ht = κ1(ς − log ht−1) + κ2(ς − log ht−2) + σ1ut−1 + σ2ut−2 + γ1wt + γ2wt−1, (12)

where κ1 = κh + κm − 1, κ2 = (1 − κh)(1 − κm), σ1 = σh + σm, σ2 = −(κhσm + κmσh),

γ1 = γh + γm, and γ2 = −(κhγm + κmγh). Hence, the model has a VA-EGARCH(2,2)

representation that imposes a set of nonlinear coefficient restrictions.

The VA-EGARCH(2,2) representation highlights both the similarities and differ-

ences between our methodology and that of Lamoureux and Lastrapes (1990). Both ap-

proaches augment the conditional variance function of a standard GARCH process with

contemporaneous trading volume. However, the model developed here is less restrictive

than their VA-GARCH(1,1) model because it does not force volume effects to decay at the

same rate as ARCH effects. This added flexibility could be important in other applications

as well. For example, it is not uncommon for researchers to fit GARCH(1,1) models that

are augmented with other explanatory variables such as bid-ask spreads, open interest,

and implied volatilities (see, e.g., Day and Lewis (1992), Lamoureux and Lastrapes (1993),

Fujihara and Mougoue (1997), Blair, Poon, and Taylor (2001), and Girma and Mougoue

(2002)). Our analysis indicates that, to the extent that the impact of the explanatory

variables decays at a different rate than ARCH effects, the model fitting results in such

studies could be misleading.
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1.3 Model comparisons

Ultimately we want to compare how well the different models capture the dynamics of

volatility. We conduct these comparisons using realized variances. The concept of realized

variance was introduced by Merton (1980). Let Rti,m , i = 1, ..., m denote the intraday

returns on day t over m equally-spaced intervals. The realized variance on day t is the

sum of the squared returns,

RVt =
m∑

i=1

R2
ti,m

. (13)

The realized variance should be close to the true variance provided that certain conditions

are satisfied. For example, if returns are generated by a continuous-time process with

instantaneous volatility σt, then it is natural to use the integrated variance IVt =
∫ 1
0 σ

2
t+τdτ

as a measure of the daily variance. Under weak regularity conditions, RVt − IVt → 0

almost surely as m → ∞ (see ABDL (2001) and Barndorff-Nielsen and Shephard (2002)

for details). This suggests that by increasing the frequency at which we sample the returns,

we can construct consistent nonparametric estimates of the integrated variance that in

principle are arbitrarily efficient. 5

Andersen and Bollerslev (1998) use realized variances to assess whether standard

volatility models generate accurate forecasts. Their approach consists of regressing the

realized variances on the fitted variances produced by a volatility model estimated using

daily returns. To apply their approach, we fit regressions of the form

log RVt = a + b log ĥt + et, (14)

where log ĥt denotes the fitted log variance for day t produced by one of our EGARCH

models. Although the regression R-squared will be biased towards zero because the vari-

ance of log RVt is greater than the variance of the true log volatility (see Andersen et al.

(2005) for details), this does not affect our model comparisons because the ratio of the

R-squared values produced by different models is bias free.

5 Obviously the true price process is unobservable in practice and realized variances constructed
according to Equation (13) can be biased by the influence of microstructure effects on observed
prices and the absence of high-frequency returns during the nontrading periods overnight and
on weekends. We discuss our approach for dealing with these issues in the next section.
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2 Data and empirical findings

Our investigation of the properties of bivariate mixture models suggests that we should

focus on widely held, frequently traded stocks that have high information flow. Rather than

attempt to identify a suitable set of stocks through the use of some screening mechanism,

we simply consider the 20 firms in the MMI. 6 This gives us a set of stocks that are

likely to possess the desired characteristics without raising concerns about stock selection

bias. The MMI stocks are widely held by both individual and institutional investors and

generally exhibit a high level of trading activity.

The dataset consists of daily returns, trading volumes, and realized variances for the

20 MMI firms. We construct the dataset using data from two sources: intraday observations

on transaction prices and trading volume from the Trade and Quote (TAQ) database of the

New York Stock Exchange (NYSE), and information on daily returns, stock splits, stock

dividends, and cash dividends from the Center for Research in Security Prices (CRSP)

daily stock price file. Our sample period is January 4, 1993 to December 31, 2003 (2,770

observations). 7

We delete records from the TAQ database that have an out-of-sequence time stamp,

a zero price, a correction code greater than two (indicating errors and corrections), or

a condition code (indicating nonstandard settlement). In addition, we apply two other

screens designed to identify and eliminate price reporting errors. First, we exclude prices

that are more than 20 percent higher or lower than the previous transaction price. Second,

we flag prices that imply a price change greater than two percent in magnitude and are

immediately followed by a price reversal greater than two percent in magnitude. We

exclude the flagged price if the implied price change is more than two times the next

largest price change for the day, or if the price falls outside the day’s high-low range

(ignoring the flagged price) by more than the next largest price change for the day.

We aggregate the transaction volume for all of the remaining TAQ records to con-

struct the daily trading volume for each firm. We adjust this figure as necessary for

6 These firms are American Express (AXP), AT&T (T), ChevronTexaco (CVX), Coca-Cola
(KO), Disney (DIS), Dow Chemical (DOW), DuPont (DD), Eastman Kodak (EK), Exxon-Mobil
(XOM), General Electric (GE), General Motors (GM), International Business Machines (IBM),
International Paper (IP), Johnson & Johnson (JNJ), McDonald’s (MCD), Merck (MRK), 3M
(MMM), Philip Morris (MO), Procter and Gamble (PG), and Sears (S).
7 Philip Morris did not open on May 25, 1994 in advance of a board meeting regarding a proposal
to split the firm’s food and tobacco businesses. We exclude this date from the sample.
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stock splits and stock dividends using the information on stock distributions from the

CRSP daily stock price file. We obtain the detrended volume series used to fit the vari-

ous EGARCH models by using OLS to extract a quadratic time trend. Although other

methods would provide more flexibility in fitting the trend, they would be more prone to

overfitting as well, which could inadvertently remove components of volume that are im-

portant to the volume-volatility relation. In any case, we find that detrending the volume

series has little impact on our results. We obtain similar results using the original series

instead of the detrended series.

We construct the daily realized variances for each firm using the filtered transaction

price records from the TAQ database. We use the Hansen and Lunde (2005) approach

to construct the realized variance for the full day. First, we construct the trading-day

realized variance using the Newey and West (1987) corrected realized variance estimator

proposed by Hansen and Lunde (2004). The Newey-West approach provides an unbiased

estimate of the integrated variance, even in the presence of microstructure effects for

returns sampled at very high frequencies, and guarantees nonnegativity. We implement

the estimator using a 30-second sampling frequency for returns and a 30-minute window

length for the Newey-West correction. Next, we combine the trading-day realized variance

with the squared return over the previous nontrading period. We estimate this return

using the last transaction price on the previous day from the TAQ database and the first

price on the current day, adjusted for cash dividends and stock distributions reported

in the CRSP database. We follow Hansen and Lunde (2005) to determine the relative

weights placed on the trading- and nontrading-period variances to obtain the full-day

realized variance. More details regarding our construction of the realized variances are

provided in the Appendix.

2.1 Estimation and inference for the EGARCH(1,1) model

We begin our empirical analysis by fitting the basic EGARCH(1,1) model in Equations

(10) and (11). Specifically, we estimate the parameters via maximum likelihood and use

the Bollerslev and Wooldridge (1992) approach to compute robust standard errors. Table 1

reports the parameter estimates and t-ratios along with several specification diagnostics.

As expected, the model only partially accounts for the fat tails that characterize the

distribution of daily returns. The excess kurtosis of the standardized returns is positive

for all firms, with especially large values for Eastman Kodak, Phillip Morris, and Procter
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and Gamble. Finding a few large values is not unusual, however, given the extreme returns

that occasionally occur for individual stocks.

The results clearly point to high levels of volatility persistence. Our estimate of

κh is close to zero for all firms except Eastman Kodak, and only seven of the estimates

have t-ratios of 2.0 or greater. In addition, the first-order sample autocorrelation of the

fitted conditional volatilities is 0.96 or higher for all firms except Eastman Kodak. The

diagnostics suggest that the low estimate of persistence for Eastman Kodak is probably

due to a small number of influential observations. Eastman Kodak has the largest excess

kurtosis of any firm, and an examination of the data reveals several instances of daily

returns between 10 and 20 percent in magnitude. Overall, the model fitting results are

consistent with those of previous studies in the volatility modeling literature (see, e.g.,

Kim and Kon (1994)).

The model itself does not appear to have much explanatory power. The R-squared

value for a regression of the absolute demeaned returns on the fitted conditional volatilities

ranges from 3 percent for Eastman Kodak to 15 percent for Dow Chemical. 8 Of course, as

Andersen and Bollerslev (1998) point out, we expect such regressions to produce relatively

low R-squared values because absolute returns are a noisy proxy for volatility. The realized

variance regressions discussed later provide a better benchmark for assessing how well the

EGARCH(1,1) specification captures volatility dynamics.

Next we consider a modified version of the EGARCH(1,1) specification in which con-

temporaneous volume is included as an explanatory variable. Table 2 reports the model

fitting results. The most striking change from Table 1 is a sharp increase in the estimates

of κh together with a sharp decline in the estimates of ρ, the first-order sample autocorre-

lation of the fitted conditional volatilities. The estimate of κh exceeds one for 19 of the 20

stocks and most of the estimates are highly statistically significant. The largest ρ estimate

now is just 0.63 (Dow Chemical), while the smallest estimate is 0.25 (ChevronTexaco).

Clearly, the addition of volume as an explanatory variable produces a marked drop in the

degree of volatility persistence implied by the model.

More generally, our results confirm that volume is a significant factor in explaining

contemporaneous volatility. In most cases, volume enters the model with a t-ratio greater

8 We use absolute, rather than squared, demeaned returns in these regressions so the results are
less sensitive to outliers. See Davidian and Carroll (1987).
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than 15, the log likelihood values are substantially higher than those in Table 1, and the

excess kurtosis is substantially lower as well. Incorporating volume also produces a jump

in the R-squared values for a regression of the absolute demeaned returns on the fitted

conditional volatilities. The majority of the R-squared values in Table 2 are greater than

20 percent (the largest is 39 percent for Procter and Gamble), while the majority of those

in Table 1 are less than 10 percent. This increase in explanatory power suggests that the

contemporaneous relation between volume and volatility is quite strong.

Despite these results, it would be premature to conclude that volume accounts for or

subsumes ARCH effects in daily returns. The most obvious indication of this is that the

absolute standardized return still enters the volume-augmented model with a positive and

statistically significant coefficient for almost all of the stocks. In many cases, the t-ratio on

the σh estimate is five or greater. The question is how to interpret this evidence given the

structural constraints imposed by EGARCH(1,1) methodology. One possibility is that,

even if the constraints were relaxed, ARCH effects would make only a small contribution

to the explanatory power of the volume-augmented model. This would support the con-

clusions drawn by Lamoureux and Lastrapes (1990). Alternatively, the constraints could

be masking the true contribution of ARCH effects to volatility dynamics. We turn now to

a more detailed analysis of this issue.

2.2 Estimation and inference for the EGARCH(2,2) model

To investigate the effects of relaxing the constraints imposed by the EGARCH(1,1) method-

ology, we estimate a more flexible econometric specification that nests the EGARCH(1,1)

model as a special case. In particular, we consider an EGARCH(2,2) model that allows for

both short- and long-term volatility components. We initially estimate the model without

incorporating volume to assess how its empirical implications differ from those of the basic

EGARCH(1,1) model. Table 3 reports the results.

In general, the EGARCH(2,2) model fits better than the EGARCH(1,1) model re-

ported on in Table 1. Most of the t-ratios for the κh and σh estimates are greater than two

and the increase in the log likelihood is statistically significant at the 5 percent level for a

majority of the stocks. Nonetheless, allowing for two volatility components does not have

a major impact on the volatility dynamics implied by the model. Although we observe

some decline in the first-order sample autocorrelation of the fitted conditional volatilities,

the autocorrelation still exceeds 0.90 for 17 of the 20 stocks. Similarly, the R-squared for a
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regression of the absolute demeaned returns on the fitted conditional volatilities suggests

little increase in the explanatory power of the model. Overall these results point to a

relatively modest improvement in the goodness of fit.

Now we consider the main issue, which is how the EGARCH(2,2) model performs

once we incorporate volume as an explanatory variable. Table 4 reports the results. Two

aspects of the results stand out immediately. First, all of the log likelihood values are

significantly higher than those for the VA-EGARCH(1,1) model reported in Table 2. The

average increase in log likelihood across stocks is 103. Second, all of the R-squared values

are substantially higher as well. Most of the increases are in the range of 6 to 10 percentage

points, with increases of 13 percentage points for three of the firms. These findings point

to a clear increase in explanatory power relative to the VA-EGARCH(1,1) model.

We also see an interesting pattern in the coefficient estimates. All of the κh and

γh estimates are positive, highly statistically significant, and comparable in magnitude to

the corresponding estimates in Table 2. More importantly, only four of the σh estimates

are significantly different from zero at the 5 percent level. This indicates that the short-

term dynamics of log volatility, which are captured by log ht −mt, are explained almost

exclusively by volume. In contrast, only one of the γm estimates is statistically significant

at the 5 percent level, while the ς, κm and σm estimates look similar to the corresponding

estimates in Table 1. This indicates that the long-term dynamics of log volatility, which

are captured by mt, are explained almost exclusively by the absolute standardized returns.

These findings suggest a much different role for volume than the results obtained

using the VA-EGARCH(1,1) model. Specifically, nothing in the results obtained using the

VA-GARCH(2,2) model indicates that volume accounts for or subsumes ARCH effects

in daily returns. On the contrary, we find that ARCH effects are a key determinant of

long-term volatility dynamics and that the long-term component of volatility displays

the high level of persistence typically reported in the ARCH literature. Moreover, the

evidence suggests that the long-term component of volatility in the VA-EGARCH(2,2)

model behaves similar to the conditional volatility implied by the basic EGARCH(1,1)

model.

Figure 1 illustrates this point more clearly. The figure compares the fitted values

produced by the two models for American Express, the first stock alphabetically in the

MMI. Panels A and B plot the fitted values of log ht and mt, respectively, for the VA-
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EGARCH(2,2) model. Panel C plots the fitted values of log ht for the basic EGARCH(1,1)

model. The fitted log volatility in Panel A is highly variable, reflecting the strong short-

term impact of trading volume. But there are also indications of an underlying autore-

gressive structure that seems characteristic of a slowly mean-reverting process. Once we

isolate the associated component of log volatility (Panel B), we find that it tracks closely

with the fitted values from the basic EGARCH(1,1) model (Panel C).

Although this evidence is clearly at odds with the main conclusion of Lamoureux and

Lastrapes (1990), there is another aspect of the relation between volume and ARCH effects

on which we agree. Regardless of the model, incorporating volume produces a large drop in

the persistence of the fitted volatility series. Consider the ρ estimates in Table 4. Although

they are higher than the corresponding estimates in Table 2, they are still well below the

values reported in Tables 1 and 3. Since ARCH effects appear to be undiminished for the

model analyzed in Table 4, this has two implications. First, the short-term component of

volatility is much less persistent than is typical of the fitted volatility from ARCH models.

Second, short-term dynamics account for a substantial fraction of the total variation in

the volatility of daily returns.

Table 5 provides additional evidence on the short- and long-term volatility dynamics.

The first four columns report the sample variance of the fitted log ht for each of the models

in Tables 1 – 4. Not surprisingly, both of the volume-augmented models imply substantially

more variation in loght. The more interesting comparison is between these two models.

The VA-EGARCH(2,2) model yields the higher value for every stock, and the difference

is often 20 percent or more. This is indicative of the impact of relaxing the structural

constraints imposed by the VA-EGARCH(1,1) model. In the absence of these constraints,

ARCH effects make an important contribution to the dynamics of the log variance series.

The three remaining columns of the table decompose the sample variance of the

fitted log ht for the VA-EGARCH(2,2) model into three components — short-term, long-

term, and interaction — using the relation var(log ht) = var(loght − mt) + var(mt) +

2 cov(log ht −mt, mt). The results show that most of the variation in loght is short-term

in nature. But this is not due to the absence of strong ARCH effects. Compare the variance

of mt in column six to the variance of the fitted log ht from the EGARCH(1,1) model in

column one. The two sets of figures are relatively similar, which is consistent with the

evidence from Figure 1. In general, the long-term component of volatility tends to closely

mimic the conditional volatility implied by the basic EGARCH(1,1) model.
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The relation between the short- and long-term volatility components is also of inter-

est. The interaction term in the variance decomposition is negative for most of the firms.

However, with the exception of AT&T, Eastman Kodak, and General Motors, the corre-

lation between the components is such that a regression of one on the other would yield

an R-squared of less than 5 percent. Therefore, it seems that the short- and long-term

components of volatility are largely unrelated. Since the former is driven primarily by con-

temporaneous volume and the latter by lagged absolute returns, this lack of correlation

is broadly consistent with volatility following a stochastic autoregressive process in which

the unpredictable volatility shocks are strongly associated with the contemporaneous level

of trading activity.

2.3 Regression-based model comparisons

Table 6 provides direct evidence on how well the various models capture the dynamics

of volatility. The table reports the R-squared values for a regression of the log realized

variances on the fitted log variances from each of the four EGARCH specifications. The

R-squared values for the basic EGARCH(1,1) model range from 16.8 percent for Eastman

Kodak to 50.1 percent for AT&T. This range is roughly consistent with the evidence

reported by Andersen and Bollerslev (1998) for a GARCH(1,1) model. Since the basic

model captures up to 50 percent of the variation in the log realized variances, it should

represent a reasonable benchmark for assessing the performance of the other three models.

If contemporaneous volume largely subsumes ARCH effects, then we should find that

the VA-EGARCH(1,1) model performs at least as well as the basic model. We find this

not to be the case. The VA-GARCH(1,1) model produces a lower R-squared value for 15 of

the 20 stocks and, in some cases, the reduction exceeds 20 percentage points. Apparently,

the addition of trading volume forces the model to place too little weight on the lagged

absolute returns, leading to variance estimates that have a lower correlation with the

realized variances than the estimates from the basic model. Thus, the results support our

earlier conclusions about the shortcomings of the VA-EGARCH(1,1) specification.

The R-squared values for the EGARCH(2,2) model are similar to those for the

EGARCH(1,1) model. However, adding contemporaneous volume to the EGARCH(2,2)

specification leads to a substantial increase in the R-squared value for most of the firms,

typically on the order of 10 to 20 percentage points. In most cases, the R-squared for the

VA-EGARCH(2,2) model exceeds 50 percent. This finding confirms the need to properly
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account for the short-term impact of the information contained in daily volume in order

to uncover the true nature of the relation between ARCH effects and trading volume.

The implications of these findings go beyond the specific models considered here.

There are many examples of studies in the literature that include explanatory variables

other than volume in a GARCH(1,1) specification. Day and Lewis (1992) and Lamoureux

and Lastrapes (1993), for example, add implied volatilities to the model. Fujihara and

Mougoue (1997) and Girma and Mougoue (2002) add bid-ask spreads and open inter-

est. Although a direct investigation of the empirical performance of these specifications is

beyond the scope of the paper, our results suggest that they may deliver unreliable infer-

ences if the variables added to the conditional variance function capture a component of

volatility different from that captured by lagged squared returns.

3 Conclusions

The relation between volume and volatility has attracted a great deal of interest in the fi-

nance literature. We investigate a particular aspect of this relation: the ability of volume to

explain ARCH effects. Studies such has Lamoureux and Lastrapes (1990) and Marsh and

Wagner (2003) report that ARCH effects tend to vanish when contemporaneous volume

is added to the conditional variance equation of a GARCH(1,1) model. We demonstrate

that this is mainly due to structural constraints inherent in the GARCH(1,1) specification.

When volume is added to the model, the associated coefficient is constrained to decline

with the lag length at the same rate as the coefficient on the squared residual. Thus, if

the impact of volume on volatility is strong but short lived, ARCH effects may appear to

vanish because the squared residuals must be downweighted to adequately capture volume

effects.

Using a more flexible EGARCH(2,2) model that allows for both short- and long-

term volatility components, we find little support for the proposition that volume explains

ARCH effects. The model does imply that volume is strongly associated with return

volatility, but this is primarily a short-term phenomenon that has little to do with the

highly persistent component of volatility that is characteristic of GARCH processes. We

find that it is important to incorporate both contemporaneous volume and the persistent

component of volatility in order to explain realized volatility. These results suggest that

if we want to identify the features of the trading process that give rise to ARCH effects

in daily stock returns, we need to look beyond trading volume.
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More generally, our analysis has implications for any GARCH(1,1) model that in-

cludes additional explanatory variables. Since these models are subject to the same kind

of specification issue identified for VA-GARCH models, it can be difficult to properly

interpret the model fitting results. The methodology developed in this paper overcomes

the shortcomings of the GARCH(1,1) methodology. Thus, it should prove more reliable in

applications that use augmented GARCH models to examine the role of variables other

than lagged squared returns in explaining volatility dynamics.

17



Appendix

This appendix describes our methodology for constructing realized variance, including our

choice of sampling frequency and our method of dealing with trading- versus nontrading-

period returns. In theory, we should construct realized variance by sampling returns con-

tinuously. However, as the sampling frequency increases, returns become more negatively

serially correlated due to market microstructure effects, which leads to a biased variance

estimate. Moreover, high-frequency returns are not available on weekends or overnight.

Our general strategy is to deal with these issues separately. First we construct realized

variance for the trading day using an estimator that is robust to serial correlation in re-

turns, and then we construct the full-day realized variance by appropriately weighting the

trading-day realized variance and the squared return during the nontrading period.

We construct the realized variance for the trading day using the Newey-West (1987)

estimator proposed by Hansen and Lunde (2004),

RVt[o] =
m∑

i=1

R2
ti,m

+ 2
q∑

j=1

(
1 − j

q + 1

)m−j∑
i=1

Rti,mRtj,m
, (A.1)

where q denotes the window length for the autocovariance terms. Since this estimator is

consistent in the presence of serial correlation, it allows us to sample returns at a higher

frequency and thereby incorporate information that might otherwise be lost.

We construct the full-day realized variance by combining RVt[o] with the squared

nontrading-period return, R2
t[c], using the weighting scheme proposed by Hansen and

Lunde (2005). They consider the class of conditionally unbiased estimators that are linear

in RVt[o] and R2
t[c] and show that the following weights deliver the lowest mean squared

error

RVt = ϕ
ψ

ψo
RVt[o] + (1 − ϕ)

ψ

ψc
R2

t[c], (A.2)

where

ϕ =
ψ2

oη
2
c − ψoψcηoc

ψ2
cη

2
o + ψ2

oη
2
c − 2ψoψcηoc

, (A.3)

and ψ = E(R2
t ), ψo = E(RVt[o]), ψc = E(R2

t[c]), η
2
o = var(RVt[o]), η

2
c = var(R2

t[c]), and

ηoc = cov(RVt[o], R
2
t[c]). The ratios ψ/ψo and ψ/ψc scale the variance estimates to have the

same unconditional mean as squared close-to-close returns and ϕ determines the relative

weights on the trading- and nontrading-period variance estimates. In general, ϕ should
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be close to one because variance is typically lower during the nontrading period than

the trading period and R2
t[c] is a relatively imprecise estimator of the nontrading-period

variance. These effects can most easily be seen in Equation (A.3) by assuming ηoc = 0.

To implement Equations (A.1) and (A.2), we use intraday transaction prices from

the TAQ database. We apply the price filters described in the paper to eliminate obvious

reporting errors and then use the remaining prices to construct returns. The trading

day for stocks is usually 390 minutes in length (9:30am to 4:00pm EST). We consider

sampling frequencies as high as m = 780 (i.e., 30-second returns). For a given choice of

m, we need to find the price at the beginning and end of each m/390-minute interval. We

start with the first price in the TAQ database for that day and treat it as the beginning

price for the interval in which it occurs. We then estimate the price at the end of this

and each successive interval by linear interpolation of the prices nearest (on either side)

to the end of the interval (see Andersen and Bollerslev (1997)). If one or more prices

occurs exactly at the end of the interval, we use the average of these prices. We use

the last transaction price of the day as the price at the end of the last interval. We

construct the returns by differencing these log prices. As expected, the returns have a

negative first-order serial correlation which increases with the sampling frequency. The

average correlation coefficient across the 20 MMI stocks is −0.07 for five-minute returns

and −0.15 for 30-second returns. 9

We use the intraday returns to construct RVt[o], using values of q that correspond to

four different window lengths: 0, 15, 30, and 60 minutes. Using a window length of 0, the

bias caused by microstructure effects is readily apparent. Realized variances constructed

using five-minute returns, which is common practice in the literature, are on average 13

percent greater than the average squared open-to-close return. The bias is much worse at

higher sampling frequencies. However, increasing the window length counteracts the bias.

Using a 15-minute window, the realized variances are still noticeably biased; but, using a

30-minute window, the average realized variances at every sampling frequency are within

two percent of the average squared open-to-close return. Increasing the window length

further (e.g., 60 minutes) substantially increases the standard deviation of the realized

variances, as including unnecessary covariance terms in Equation (A.1) reduces efficiency.

9 These serial correlation coefficients (based on interpolated prices) are substantially smaller
than those obtained using the last transaction price in each intraday time interval. This is true
even if we use an MA(1) model to filter returns as in ABDE (2001).
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Based on these results, we use the realized variances constructed using 30-second returns

and a 30-minute window length in our construction of the full-day realized variances.

We construct the full-day realized variances by substituting the sample analogs of

ψ, ψo, ψc, η
2
o , η

2
c , and ηoc into Equations (A.2) and (A.3). Hansen and Lunde (2005)

suggest removing outliers from the estimation to avoid obtaining a negative weight on

R2
t[c]. Accordingly, we exclude days in which either RVt[o] or R2

t[c] are among the largest

0.5 percent of the observations for each stock. The average ϕ estimate for the 20 stocks is

0.92. By comparison, the ratio of the average squared close-to-close return to the average

squared close-to-open return indicates that approximately 20 percent of the daily variance

occurs during the nontrading period. However, the ϕ estimate gives less weight than this

to the nontrading-period variance estimate because the trading-period variance estimate

is much more precise.

20



References

Andersen, T.G., 1996, Return volatility and trading volume: An information flow inter-

pretation of stochastic volatility, Journal of Finance 51, 169–204.

Andersen, T.G., and T. Bollerslev, 1997, Intraday periodicity and volatility persistence in

financial markets, Journal of Empirical Finance 4, 115–158.

Andersen, T.G., and T. Bollerslev, 1998, Answering the skeptics: Yes, standard volatility

models do provide accurate forecasts, International Economic Review 39, 885–905.

Andersen, T.G., T. Bollerslev, F.X. Diebold, and H. Ebens, 2001, The distribution of

stock return volatility, Journal of Financial Economics 61, 43–76.

Andersen, T.G., T. Bollerslev, F.X. Diebold, and P. Labys, 2001, The distribution of

realized exchange rate volatility, Journal of the American Statistical Association 96,

42–55.

Andersen, T., T. Bollerslev, and N. Meddahi, 2005, Correcting the errors: Volatility fore-

cast evaluation using high-frequency data and realized volatilities, Econometrica, forth-

coming.

Barndorff-Nielsen, O.E., and N. Shephard, 2002, Econometric analysis of realized volatility

and its use in estimating stochastic volatility models, Journal of the Royal Statistical

Society, Series B 64, 253–280.

Blair, B.J., S. Poon, and S.J. Taylor, 2001, Forecasting S&P 100 volatility: The incremen-

tal information content of implied volatilities and high frequency returns, Journal of

Econometrics 105, 5-26.

Bollerslev, T. and J.M. Wooldridge, 1992, Quasi-maximum likelihood estimation and in-

ference in dynamic models with time varying covariances, Econometric Reviews 11,

143–172.

Clark, P.K., 1973, A subordinated stochastic process model with finite variance for spec-

ulative prices, Econometrica 41, 135–156.

Davidian, M. and Carroll, R.J., 1987, Variance function estimation, Journal of the Amer-

ican Statistical Association 82, 1079–1091.

Day, T.E. and C.M. Lewis, 1992, Stock market volatility and the information content of

stock index options, Journal of Econometrics 52, 267-287.

21



Fujihara R., and M. Mougoue, 1997, Linear dependence, nonlinear dependence and

petroleum futures market efficiency, Journal of Futures Markets 17, 75-99.

Engle, R.F., and G.J. Lee, 1999, A permanent and transitory component model of stock

return volatility, in (eds) Engle, R.F. and H. White, Cointegration, Causality, and Fore-

casting: A Festschrift in Honour of Clive W.J. Granger, Oxford University Press.

Fleming, J., C. Kirby, and B. Ostdiek, 2006, Stochastic volatility, trading volume, and the

daily flow of information, Journal of Business, forthcoming.

Girma, P., and M. Mougoue, 2002, An empirical examination of the relation between

futures spreads volatility, volume, and open interest, Journal of Futures Markets 22,

1083–1102.

Hansen, P.R., and A. Lunde, 2004, An unbiased measure of realized variance, Working

paper, Stanford University.

Hansen, P.R., and A. Lunde, 2005, A realized variance for the whole day based on inter-

mittent high-frequency data, Journal of Financial Econometrics, forthcoming.

Kim, D., and S.J. Kon, 1994, Alternative models for the conditional heteroscedasticity of

stock returns, Journal of Business 67, 563–598.

Lamoureux, C.G. and W.D. Lastrapes, 1990, Heteroskedasticity in stock return data:

Volume versus GARCH effects, Journal of Finance 45, 221–229.

Lamoureux, C.G. and W.D. Lastrapes, 1993, Forecasting stock-return variance: Toward an

understanding of stochastic implied volatility, Review of Financial Studies 6, 293-326.

Liesenfeld, R., 1998, Dynamic bivariate mixture models: Modeling the behavior of prices

and trading volume, Journal of Business and Economic Statistics 16, 101–109.

Marsh, T.A., and N. Wagner, 2003, Return-volume dependence and extremes in interna-

tional equity markets, Working paper, University of California at Berkeley.

Merton, R.C., 1980, On estimating the expected return on the market: An exploratory

investigation, Journal of Financial Economics 8, 323–361.

Nelson, D, 1991, Conditional heteroskedasticity in asset returns: A new approach, Econo-

metrica 59, 347–370.

Newey, W.K., and K.D. West, 1987, A simple, positive semi-definite, heteroskedasticity

and autocorrelation consistent covariance matrix, Econometrica 55, 703–708.

22



Tauchen, G.E., and M. Pitts, 1983, The price variability-volume relationship on specula-

tive markets, Econometrica 51, 485–505.

Watanabe, T., 2000, Bayesian analysis of dynamic bivariate mixture models: Can they

explain the behavior of returns and trading volume? Journal of Business and Economic

Statistics 18, 199–210.

23



Table 1. EGARCH(1,1) model

Estimates t-ratios Diagnostics

Firm ς κh σh ς κh σh L R2 ρ CK

AXP 1.56 0.03 0.11 12.2 2.7 5.5 − 5893.3 0.12 0.98 1.35
CVX 0.89 0.02 0.07 6.8 1.8 3.9 − 4950.8 0.06 0.98 0.87
DD 1.45 0.01 0.07 7.1 1.2 2.4 − 5512.3 0.09 0.99 2.01
DIS 1.87 0.01 0.07 7.6 1.3 2.1 − 5873.6 0.09 0.99 5.82
DOW 1.61 0.01 0.08 5.0 1.8 3.9 − 5352.6 0.15 0.99 1.78
EK 1.48 0.34 0.22 12.3 2.3 3.9 − 5820.4 0.03 0.51 15.69
GE 1.05 0.01 0.07 2.9 1.1 3.1 − 5280.5 0.13 0.99 1.26
GM 1.48 0.03 0.08 13.6 2.1 4.3 − 5798.8 0.07 0.98 1.44
IBM 1.92 0.02 0.08 8.7 2.0 3.8 − 5984.5 0.05 0.98 4.02
IP 1.47 0.01 0.05 6.2 1.0 2.1 − 5630.9 0.10 0.99 1.44
JNJ 1.08 0.02 0.09 7.2 2.3 4.3 − 5181.9 0.08 0.98 1.61
KO 1.21 0.01 0.06 4.9 1.6 3.7 − 5173.9 0.10 0.99 1.81
MCD 1.48 0.01 0.06 6.8 2.3 4.0 − 5417.6 0.06 0.99 2.25
MMM 1.20 0.01 0.04 7.4 1.7 2.3 − 5107.4 0.07 0.99 3.98
MO 2.95 0.00 0.04 1.5 0.7 4.0 − 5870.4 0.05 0.99 10.16
MRK 1.38 0.01 0.04 7.7 1.3 2.7 − 5531.5 0.05 0.99 2.18
PG 1.56 0.00 0.06 2.7 1.9 5.6 − 5175.5 0.09 0.99 10.72
S 1.90 0.03 0.11 11.2 1.9 3.4 − 6150.0 0.07 0.96 4.02
T 2.17 0.01 0.06 6.9 1.1 1.7 − 5909.6 0.13 0.99 7.59
XOM 0.87 0.01 0.07 3.8 2.0 4.4 − 4798.7 0.11 0.99 1.09

The table reports the results of fitting an EGARCH(1,1) model to daily percentage returns on the MMI stocks. The
model is of the form

rt =
√

htzrt,

Δ log ht = κh(ς − log ht−1) + σhut−1,

where rt is the demeaned return for day t, ut = (|zrt| − E[|zrt|])/
√

var(|zrt|), and zrt ∼ NID(0, 1). We fit the
model via maximum likelihood and report the parameter estimates, the associated t-ratios, the maximized value of
log-likelihood (L), the sample R-squared for a regression of {|rt|}T

t=1 on the fitted conditional volatilities (R2), the
first-order sample autocorrelation of the fitted conditional volatilities (ρ), and the coefficient of excess kurtosis for
the standardized returns (CK). The t-ratios are based on robust standard errors. The sample period is January 5,
1993 to December 31, 2003.



Table 2. VA-EGARCH(1,1) model

Estimates t-ratios Diagnostics

Firm ς κh σh γh ς κh σh γh L R2 ρ CK

AXP 1.32 1.19 0.09 0.74 44.7 24.1 3.6 21.3 − 5757.2 0.19 0.41 0.21
CVX 0.66 1.16 0.04 0.58 21.9 20.0 1.6 15.7 − 4836.1 0.12 0.25 0.37
DD 1.07 1.17 0.13 0.63 32.5 14.3 4.6 17.3 − 5410.6 0.15 0.35 0.62
DIS 1.21 1.23 0.13 0.78 39.8 30.5 5.7 22.6 − 5600.4 0.25 0.31 0.22
DOW 1.07 0.66 0.26 0.45 23.3 2.4 5.1 3.0 − 5378.7 0.15 0.63 1.17
EK 0.90 1.22 0.09 0.89 27.9 31.0 3.3 27.8 − 5171.8 0.37 0.33 0.59
GE 0.91 1.20 0.07 0.72 29.9 19.1 2.8 21.2 − 5190.0 0.21 0.37 0.38
GM 1.21 1.31 0.07 0.72 39.8 30.3 2.9 19.0 − 5598.9 0.19 0.30 0.40
IBM 1.23 1.26 0.08 0.81 38.7 32.1 2.9 22.3 − 5624.0 0.28 0.35 0.57
IP 1.15 1.10 0.16 0.63 35.3 17.5 6.2 17.9 − 5522.5 0.18 0.45 0.46
JNJ 0.75 1.17 0.07 0.68 25.7 21.2 2.8 19.8 − 4965.6 0.24 0.39 0.17
KO 0.74 1.14 0.05 0.73 26.4 21.7 2.1 23.0 − 4950.3 0.25 0.41 0.04
MCD 0.90 1.24 0.14 0.69 28.4 26.2 5.7 20.7 − 5177.4 0.23 0.28 0.45
MMM 0.67 1.27 0.06 0.74 21.4 26.0 2.3 19.9 − 4855.5 0.21 0.28 0.56
MO 1.00 1.26 0.05 0.96 17.3 28.6 1.2 22.1 − 5311.6 0.37 0.34 6.96
MRK 0.95 1.29 0.05 0.73 34.8 29.5 2.2 25.0 − 5245.8 0.25 0.27 -0.04
PG 0.71 1.15 0.12 0.68 22.8 23.1 4.6 20.1 − 4910.2 0.39 0.39 0.35
S 1.42 1.34 0.05 0.77 44.7 26.4 2.2 22.5 − 5894.6 0.26 0.29 0.67
T 1.39 1.17 0.15 0.68 33.0 7.4 2.8 10.0 − 5831.4 0.24 0.41 2.45
XOM 0.56 1.02 0.15 0.62 18.1 15.0 5.5 17.1 − 4705.7 0.16 0.44 0.21

The table reports the results of fitting a volume-augmented EGARCH(1,1) model to daily percentage returns on the
MMI stocks. The model is of the form

rt =
√

htzrt,

Δlog ht = κh(ς − log ht−1) + σhut−1 + γhwt,

where rt is the demeaned return for day t, ut = (|zrt| − E[|zrt|])/
√

var(|zrt|), wt = (log vt − E[log vt])/
√

var(log vt),
and zrt ∼ NID(0, 1). We fit the model via maximum likelihood and report the parameter estimates, the associated
t-ratios, the maximized value of log-likelihood (L), the sample R-squared for a regression of {|rt|}T

t=1 on the fitted
conditional volatilities (R2), the first-order sample autocorrelation of the fitted conditional volatilities (ρ), and the
coefficient of excess kurtosis for the standardized returns (CK). The t-ratios are based on robust standard errors.
The sample period is January 5, 1993 to December 31, 2003.



Table 3. EGARCH(2,2) model

Estimates t-ratios Diagnostics

Firm κh σh ς κm σm κh σh ς κm σm L R2 ρ CK

AXP 0.10 0.10 1.59 0.00 0.03 3.2 4.7 8.0 1.4 2.4 − 5884.4 0.13 0.97 1.27
CVX 1.73 0.03 0.90 0.01 0.06 9.9 1.2 6.5 1.8 4.0 − 4949.8 0.06 0.96 0.87
DD 0.22 0.11 1.42 0.00 0.03 2.5 3.9 4.7 1.1 2.9 − 5497.1 0.09 0.95 1.63
DIS 1.37 0.08 1.88 0.01 0.05 7.1 2.3 7.3 1.8 2.4 − 5866.6 0.10 0.91 5.75
DOW 0.14 0.07 1.62 0.00 0.04 0.5 1.6 5.2 1.3 1.9 − 5345.3 0.15 0.98 1.63
EK 0.44 0.21 1.73 0.00 0.01 1.8 3.4 9.7 2.7 2.4 − 5810.9 0.03 0.48 16.32
GE 0.13 0.08 -0.13 0.00 0.03 1.4 3.3 -0.3 -0.8 2.9 − 5268.1 0.13 0.98 1.00
GM 0.06 0.07 1.54 0.00 0.02 1.9 3.5 10.0 0.9 1.1 − 5795.1 0.07 0.97 1.41
IBM 0.09 0.05 1.99 0.01 0.05 1.1 1.8 8.7 2.5 3.4 − 5982.4 0.06 0.97 4.08
IP 0.17 0.08 1.36 0.00 0.03 2.5 2.8 4.3 1.2 4.3 − 5618.0 0.11 0.97 1.20
JNJ 0.86 0.08 1.10 0.02 0.07 3.8 2.3 6.6 2.2 3.8 − 5178.0 0.08 0.92 1.60
KO 0.41 0.09 1.18 0.00 0.04 2.7 3.0 4.1 1.6 5.1 − 5164.3 0.10 0.96 1.70
MCD 1.07 0.11 1.46 0.01 0.05 3.4 3.1 6.7 2.2 3.5 − 5404.6 0.07 0.87 2.47
MMM 1.04 0.10 1.18 0.01 0.04 1.1 1.9 7.9 2.0 2.3 − 5098.5 0.07 0.89 3.62
MO 0.51 0.11 3.11 0.00 0.03 1.7 2.9 1.9 1.0 4.7 − 5848.7 0.06 0.91 10.68
MRK 0.63 0.06 1.41 0.01 0.03 0.2 1.5 5.3 0.6 1.1 − 5528.5 0.05 0.95 2.19
PG 1.46 0.04 1.54 0.00 0.06 3.1 1.0 2.6 1.9 5.0 − 5173.5 0.09 0.96 11.03
S 1.90 -0.02 1.89 0.04 0.11 28.8 -1.1 11.9 1.8 3.2 − 6148.3 0.07 0.95 3.82
T 0.21 0.11 2.03 0.00 0.03 3.8 4.7 7.2 1.9 3.4 − 5886.6 0.14 0.96 7.18
XOM 0.30 0.09 0.88 0.01 0.05 3.5 3.7 3.2 2.0 5.4 − 4788.4 0.11 0.96 1.01

The table reports the results of fitting an EGARCH(2,2) model to daily percentage returns on the MMI stocks. The model has a two-component representation
of the form

rt =
√

htzrt,

Δ log ht = Δmt + κh(mt−1 − log ht−1) + σhut−1,

Δmt = κm(ς − mt−1) + σmut−1,

where rt is the demeaned return for day t, ut = (|zrt| − E[|zrt|])/
√

var(|zrt|), and zrt ∼ NID(0, 1). We fit the model via maximum likelihood and report the
parameter estimates, the associated t-ratios, the maximized value of log-likelihood (L), the sample R-squared for a regression of {|rt|}T

t=1 on the fitted conditional
volatilities (R2), the first-order sample autocorrelation of the fitted conditional volatilities (ρ), and the coefficient of excess kurtosis for the standardized returns
(CK). The t-ratios are based on robust standard errors. The sample period is January 5, 1993 to December 31, 2003.



Table 4. Volume-augmented EGARCH(2,2) model

Estimates t-ratios Diagnostics

Firm κh σh γh ς κm σm γm κh σh γh ς κm σm γm L R2 ρ CK

AXP 1.21 -0.05 0.72 1.01 0.01 0.06 0.00 32.4 -1.8 20.7 6.0 1.9 4.1 0.7 − 5618.9 0.29 0.62 -0.03
CVX 1.15 -0.07 0.60 0.48 0.01 0.05 0.00 23.9 -2.4 18.2 3.2 1.5 3.5 0.1 − 4730.4 0.18 0.45 0.02
DD 1.25 0.01 0.62 0.78 0.01 0.06 0.00 24.8 0.3 20.3 3.6 1.3 3.0 -0.3 − 5246.3 0.25 0.57 0.06
DIS 1.24 0.01 0.79 0.78 0.00 0.05 0.00 36.2 0.2 23.5 4.0 2.4 6.6 -0.5 − 5437.6 0.35 0.49 -0.18
DOW 1.14 -0.01 0.61 0.92 0.00 0.06 0.00 21.5 -0.5 18.3 3.9 1.9 5.5 -1.4 − 5112.2 0.27 0.69 0.39
EK 1.18 -0.03 0.96 0.83 0.06 0.10 -0.02 28.5 -0.7 26.3 12.6 1.9 3.5 -1.6 − 5093.0 0.43 0.35 0.50
GE 1.24 -0.05 0.67 -0.32 0.00 0.03 0.00 28.4 -1.9 23.3 -1.0 1.8 5.2 1.6 − 4992.9 0.34 0.65 -0.29
GM 1.30 -0.03 0.76 1.05 0.02 0.06 -0.01 33.5 -1.0 23.9 11.2 2.9 5.3 -1.6 − 5492.0 0.26 0.41 -0.11
IBM 1.21 -0.09 0.89 0.83 0.01 0.06 -0.01 36.7 -3.2 24.6 5.2 2.3 5.0 -2.4 − 5429.8 0.41 0.44 -0.18
IP 1.20 0.02 0.64 0.56 0.00 0.04 0.00 26.8 0.5 19.4 0.9 0.6 1.7 -0.6 − 5377.7 0.27 0.65 0.05
JNJ 1.21 -0.03 0.70 0.61 0.02 0.06 0.00 29.3 -1.1 19.8 6.5 3.2 6.2 -1.4 − 4883.8 0.30 0.46 -0.10
KO 1.21 -0.04 0.69 0.37 0.01 0.04 0.00 30.7 -1.5 24.2 2.3 2.5 5.8 0.9 − 4835.8 0.34 0.56 -0.26
MCD 1.26 0.04 0.72 0.69 0.01 0.05 0.00 29.3 1.2 24.3 3.9 1.4 3.1 -0.6 − 5059.6 0.32 0.41 0.11
MMM 1.27 -0.02 0.73 0.49 0.01 0.04 0.00 27.4 -0.7 22.8 2.1 1.3 3.4 -0.9 − 4733.2 0.29 0.47 0.11
MO 1.26 -0.12 1.02 0.93 0.03 0.10 -0.01 43.6 -2.4 26.7 5.3 1.7 3.6 -0.9 − 5218.1 0.41 0.41 8.23
MRK 1.28 -0.03 0.73 0.69 0.01 0.06 0.00 32.2 -0.9 25.5 5.8 2.5 5.5 0.6 − 5154.3 0.30 0.41 -0.30
PG 1.18 0.00 0.72 0.17 0.00 0.05 0.00 28.8 -0.1 22.0 0.6 1.3 4.1 -0.5 − 4762.9 0.45 0.46 -0.07
S 1.26 -0.06 0.81 1.24 0.01 0.08 -0.01 29.5 -2.1 24.4 9.8 2.4 5.1 -1.6 − 5743.7 0.36 0.45 0.00
T 1.26 -0.02 0.83 0.82 0.01 0.07 -0.01 34.8 -0.8 24.4 2.7 1.7 5.3 -1.5 − 5420.7 0.37 0.60 0.18
XOM 1.13 -0.01 0.60 0.08 0.01 0.05 0.00 24.6 -0.4 21.9 0.3 1.5 5.5 1.0 − 4552.5 0.26 0.66 -0.25

The table reports the results of fitting a volume-augmented EGARCH(2,2) model to daily percentage returns on the MMI stocks. The model has a two-component
representation of the form

rt =
√

htzrt,

Δ log ht = Δmt + κh(mt−1 − log ht−1) + σhut−1 + γhwt,

Δmt = κm(ς − mt−1) + σmut−1 + γmwt,

where rt is the demeaned return for day t, ut = (|zrt| − E[|zrt|])/
√

var(|zrt|), wt = (log vt − E[log vt])/
√

var(log vt), and zrt ∼ NID(0, 1). We fit the model via
maximum likelihood and report the parameter estimates, the associated t-ratios, the maximized value of log-likelihood (L), the sample R-squared for a regression
of {|rt|}T

t=1 on the fitted conditional volatilities (R2), the first-order sample autocorrelation of the fitted conditional volatilities (ρ), and the coefficient of excess
kurtosis for the standardized returns (CK). The t-ratios are based on robust standard errors. The sample period is January 5, 1993 to December 31, 2003.



Table 5. Volume versus ARCH effects

Components of var(log ht)
Estimated var(log ht) for the different models for the VA-EGARCH(2,2) model

Firm EGARCH(1,1) VA-EGARCH(1,1) EGARCH(2,2) VA-EGARCH(2,2) Short-term Long-term Interaction

AXP 0.301 0.484 0.315 0.663 0.425 0.214 0.024
CVX 0.164 0.304 0.168 0.444 0.320 0.153 -0.028
DD 0.271 0.371 0.289 0.581 0.318 0.268 -0.004
DIS 0.281 0.527 0.287 0.736 0.511 0.257 -0.031
DOW 0.516 0.445 0.509 0.790 0.327 0.478 -0.016
EK 0.129 0.654 0.133 0.724 0.777 0.141 -0.194
GE 0.439 0.448 0.509 0.741 0.371 0.358 0.012
GM 0.148 0.415 0.151 0.534 0.450 0.148 -0.063
IBM 0.217 0.526 0.217 0.729 0.634 0.299 -0.204
IP 0.293 0.392 0.304 0.598 0.344 0.260 -0.006
JNJ 0.190 0.411 0.195 0.504 0.406 0.124 -0.026
KO 0.280 0.475 0.290 0.606 0.393 0.173 0.040
MCD 0.214 0.416 0.218 0.543 0.425 0.190 -0.072
MMM 0.169 0.448 0.180 0.597 0.424 0.255 -0.018
MO 0.274 0.731 0.291 0.890 0.800 0.160 -0.070
MRK 0.115 0.432 0.119 0.537 0.421 0.137 -0.020
PG 0.369 0.431 0.367 0.691 0.435 0.251 0.005
S 0.230 0.453 0.228 0.613 0.509 0.227 -0.123
T 0.516 0.418 0.511 1.054 0.535 0.625 -0.105
XOM 0.328 0.415 0.343 0.627 0.329 0.268 0.030

The table examines the extent to which trading volume captures ARCH effects in daily returns on the MMI stocks. We report the sample variance of the fitted log
volatility series from the models in Tables 1 – 4. In addition, we decompose the variance for the model in Table 4 into three components — short-term, long-term,
and interaction — using the relation var(log ht) = var(log ht − mt) + var(mt) + 2 cov(log ht − mt, mt). The sample period is January 5, 1993 to December 31,
2003.



Table 6. Realized variance regressions

Regression R-squared for the different models

Firm EGARCH(1,1) VA-EGARCH(1,1) EGARCH(2,2) VA-EGARCH(2,2)

AXP 0.376 0.348 0.384 0.555
CVX 0.283 0.170 0.284 0.377
DD 0.405 0.203 0.417 0.520
DIS 0.403 0.238 0.411 0.507
DOW 0.486 0.279 0.496 0.562
EK 0.168 0.318 0.223 0.439
GE 0.482 0.282 0.493 0.636
GM 0.240 0.261 0.246 0.424
IBM 0.309 0.283 0.322 0.578
IP 0.447 0.209 0.463 0.493
JNJ 0.232 0.293 0.243 0.404
KO 0.369 0.291 0.383 0.521
MCD 0.241 0.216 0.257 0.426
MMM 0.340 0.238 0.354 0.491
MO 0.267 0.416 0.303 0.529
MRK 0.246 0.289 0.259 0.488
PG 0.358 0.281 0.362 0.521
S 0.320 0.203 0.311 0.440
T 0.501 0.221 0.522 0.613
XOM 0.433 0.226 0.445 0.520

The table reports the R-squared for the regression

log RVt = a + b log ĥt + et

where RVt is the realized variance for day t and log ĥt is the fitted log variance for day t for each of the models in
Tables 1 – 4. We construct the realized variance using the full-day Newey-West estimator described in the Appendix,
with a 30-second sampling frequency and a window length of 30 minutes. The sample period is January 5, 1993 to
December 31, 2003.



Figure 1 
Comparison of volatility estimates for American Express 

 
The figure plots the daily volatility estimates for American Express under the EGARCH(1,1) model and the volume-
augmented (VA) EGARCH(2,2) model.  Panel A shows the fitted volatility estimates for the VA-EGARCH(2,2) 
model, Panel B shows the fitted estimates of the long-term component of volatility under the VA-EGARCH(2,2) 
model, and Panel C shows the fitted volatility estimates for the EGARCH(1,1) model.  Each series is expressed as 
an annualized percentage volatility.  The sample period is January 5, 1993 to December 31, 2003. 
 
Panel A:  VA-EGARCH(2,2) volatility estimates  
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Panel B:  VA-EGARCH(2,2) estimates of the long-term component of volatility  
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Panel C:  EGARCH(1,1) volatility estimates  

0

20

40

60

80

100

120

1993                                     1996                                     1999                                      2002                                     2000

 

1993                                           1996                                           1999                                          2002                          2004 

1993                                           1996                                           1999                                          2002                          2004 

1993                                           1996                                           1999                                          2002                          2004 




