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Information, Trading, and Volatility: Evidence
from Weather-Sensitive Markets

JEFF FLEMING, CHRIS KIRBY, and BARBARA OSTDIEK∗

ABSTRACT

We find that trading- versus nontrading-period variance ratios in weather-sensitive

markets are lower than those in the equity market and higher than those in the cur-

rency market. The variance ratios are also substantially lower during periods of the

year when prices are most sensitive to the weather. Moreover, the comovement of re-

turns and volatilities for related commodities is stronger during the weather-sensitive

season, largely due to stronger comovement during nontrading periods. These results

are consistent with a strong link between prices and public information flow and

cannot be explained by pricing errors or changes in trading activity.

A LARGE SEGMENT OF THE FINANCE LITERATURE investigates the link between in-
formation and prices. Theory suggests that prices are a function of public
information and order flow (see, e.g., Grossman and Stiglitz (1980), Kyle (1985),
and Glosten and Milgrom (1985)). Order flow is driven by both public and pri-
vate information as well as investor shocks, which may be either rational (e.g.,
noninformation-based liquidity trades) or irrational (e.g., trades based on noise
as described by Black (1986)). Prices can deviate from fundamental value due
to market microstructure, liquidity, and hedging effects, and pricing errors can
arise from noise trading and the systematic underreaction or overreaction to
information.

Much of the empirical literature attempts to discriminate among public
information, private information, market frictions, and pricing errors as sources
of return volatility. Some researchers argue that observed volatility is much
higher than can be explained by fundamentals, by market microstructure or
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liquidity effects, or by measurement error. Some argue further that this “excess
volatility” must be caused by irrational trading (see, e.g., Shiller (2003) for a
review of this evidence). Other researchers, however, point out several empiri-
cal challenges to work in this area: (1) information generation is endogenous,
which makes it likely that information-based price changes and pricing errors
occur at the same time; (2) information flow is unobservable, which presents
identification and measurement problems; (3) an agent’s motivation for trad-
ing is difficult to ascertain; and (4) multiple dimensions of a market’s structure
impact the nature of price discovery and the extent of pricing errors.

One approach to disentangling the sources of volatility is to analyze trading-
versus nontrading-period variances across different market structures. It is
well known, for example, that trading-period returns in stock markets display
higher variance than overnight or weekend returns (see, e.g., Fama (1965),
Oldfield and Rogalski (1980), French and Roll (1986), Amihud and Mendelson
(1987), and Stoll and Whaley (1990)). Why this occurs is still a matter of debate.
Stoll and Whaley (1990) attribute it to greater public information flow during
the trading period since this period largely overlaps with the normal business
day.1 French and Roll (1986) argue that the higher trading-period variance is
due to greater private information flow because traders are more likely to be-
come informed and act on their information during business (trading) hours.2

Still another hypothesis is that the trading process itself generates volatility
beyond that attributable to information flow. It is difficult to distinguish among
these hypotheses, however, because both trading and information flow are con-
centrated in one part of the calendar day.

Harvey and Huang (1991) provide additional insights from the currency mar-
kets wherein both trading and information flow occur around the clock. They
find that the variance during U.S. trading hours is much closer to the variance
during nontrading hours than it is for stocks. Moreover, the variance for curren-
cies quoted against the dollar is highest during U.S. trading hours, even though
trading activity is greater during London trading hours, and the variance in-
creases around U.S. macroeconomic announcements. These findings suggest
that the higher U.S. trading period volatility is related to public information
flow. Again, however, we cannot rule out the effect of trading because trading
and information flow occur contemporaneously.

Weather-sensitive agricultural and energy markets provide a setting that al-
lows us to further discriminate among the sources of volatility. A key component

1 Consistent with this view, Jones, Kaul, and Lipson (1994) find that volatility is higher even

on days when exchanges (and businesses) are open but no trades occur than when exchanges are

closed. George and Hwang (2001) find that the lower overnight variance cannot be explained by

the absence of trading and conclude that it must be due to a reduction in public information flow.
2 Consistent with this view, Ito and Lin (1992) find lower volatility on the Tokyo Stock Exchange

(TSE) when the market is closed for the lunch break and lower volatility around the noon hour in

New York when the market is open. Barclay, Litzenberger, and Warner (1990) find higher weekend

volatility on the TSE when the exchange is open on Saturdays. Barclay and Hendershott (2003)

find that even with after-hours trading most private information price discovery for Nasdaq stocks

occurs during the trading day because liquidity is higher.
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of the information flow in these markets (weather conditions) evolves 24 hours
a day, yet the trading day is short with little after-hours trading. Thus, we have
a setting in which a large component of the public information flow occurs out-
side of trading hours. Under the extreme assumption that weather conditions
are the only relevant information in these markets and that this information
evolves randomly over the 24-hour day, the trading- and nontrading-period
variances should be equal per unit of time. In this case, a higher variance
during the trading period would be evidence of excess volatility due to market
frictions or pricing errors. More generally, though, if the information flow also
includes private information and other public information that is not randomly
distributed throughout the day, predictions about the relative variances in the
trading and nontrading periods become ambiguous.

This ambiguity can be at least partially resolved by recognizing that the im-
portance of weather conditions in some agricultural and energy markets varies
in a seasonal pattern throughout the year. Thus, even if the trading-period
variance is normally higher than the nontrading-period variance due to fac-
tors unrelated to weather conditions, the difference between the two variances
should narrow during the weather-sensitive season. Moreover, if the private in-
formation flow also increases during the weather-sensitive season, this would
increase the trading-period variance and work against the public information
effect. As a result, finding that the difference between the variances narrows
during the weather-sensitive season would provide strong indirect evidence of
a link between public information flow and volatility. This research design also
provides a degree of robustness to many of the concerns that have been raised
about variance ratio tests because any biases that affect the tests must vary
systematically with the seasons to influence our results.3

Some previous studies attempt to directly model the relation between prices
and information in weather-sensitive markets using weather data. Roll (1984)
is perhaps the most famous example. He finds that temperature has little power
in explaining futures prices for frozen-concentrated orange juice (FCOJ). Some
researchers point to this finding and argue that the lack of a relation between
prices and fundamentals in such a simple market makes it unlikely that a
relation exists in more complex markets (see, e.g., Shleifer (2000), Hirshleifer
(2001), and Daniel, Hirshleifer, and Teoh (2002)). Boudoukh, Richardson, Shen,
and Whitelaw (BRSW) (2005), however, present opposing evidence. Using a non-
linear model of the price–temperature relation, they find that FCOJ futures
prices do react to temperature changes as predicted. Their model has an ex-
planatory power of 50% versus just 5% obtained with a linear model. The
contrast between these results raises concerns about our ability to develop
appropriate models in more complex markets and highlights the appeal of our
methodology. By simply comparing the seasonal variance ratios, we can assess
the contribution of public information flow to volatility without imposing much
econometric structure.

3 George and Hwang (2001) highlight the potential impact of pricing errors (from a variety of

sources) on variance ratio tests. We explicitly consider the impact of pricing errors in our analysis.
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Our empirical results provide strong support for our hypotheses. The uncon-
ditional variance ratios for the weather-sensitive markets are generally lower
than the variance ratio for the U.S. equity market and higher than the variance
ratio for the currency market. This is consistent with the view that information
flow is more evenly distributed around the clock in weather-sensitive markets
than in the equity market but less than in the currency market. We also find
that the differences between the variance ratios in weather-sensitive markets
and the equity market are greater on weekends and during the weather-
sensitive seasons. The variance ratios for the grains and natural gas, for exam-
ple, are 30% lower than the variance ratio for the equity market on average,
but 60% lower on weekends and 75% lower on weekends during the weather-
sensitive seasons. This is consistent with the view that the higher nontrading-
period volatility during these periods is driven by public information about the
weather.

We find that the seasonal variance ratios in weather-sensitive markets are
substantially lower during the weather-sensitive seasons than during the rest
of the year. For example, for the grains and natural gas, the weekend variance
ratios are 60–70% lower on season than off season. These results cannot be
explained by seasonal variation in either trading activity or return autocorre-
lations (i.e., pricing errors). We also find that the comovement of corn, wheat,
and soybean returns and absolute returns is stronger during the growing sea-
son and that the increased comovement is most dramatic during the nontrad-
ing period: The nontrading-period return (absolute return) correlations are 20%
higher (35% higher) on season than off season. These results provide further ev-
idence of strong seasonal information flow and suggest that public information
flow during the nontrading period is an important source of volatility.

The remainder of the paper is organized as follows. Section I develops our
hypotheses regarding the variance ratios in weather-sensitive markets and
explains our test methodology. Section II provides details on the markets, our
season definitions, and the data. Section III tests our hypotheses. Section IV
examines several robustness tests, and Section V concludes.

I. Methodology

A. Information in Weather-Sensitive Markets

We define weather-sensitive markets as agricultural and energy markets in
which weather conditions in a concentrated geographic area are a key determi-
nant of supply and/or demand, and therefore price. Consider the corn market.
Corn yields depend on rainfall and temperature levels at various stages of the
growing season (see, e.g., Hu and Buyanovsky (2003)) and crops can be dam-
aged by flooding, hail storms, and freezes. Since about 20% of the world’s corn is
grown in the Midwestern U.S. (Food & Agriculture Organization of the United
Nations (FAO) Statistical Database (2004), and United States Department
of Agriculture (USDA) (2004)), weather conditions in this region can have a
material affect on world supply, and hence price.
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News about weather conditions is therefore an important public informa-
tion flow in weather-sensitive markets. In general, this news consists of two
components, weather forecasts and forecast errors. We expect that on average
the arrival rate for both of these components is nearly constant across the cal-
endar day. The primary source of weather forecasts in the U.S. is the National
Weather Service (NWS). Their information forms the basis for forecasts made by
radio and television stations and private forecasting services (National Weather
Service (2002)). According to the NWS, forecast updates were issued every
12 hours prior to 1994, every 3 hours from 1994 to 1998, and every hour start-
ing in 1998. Many commodity traders also subscribe to private services that
frequently update their forecasts.

Weather forecast errors also occur around the clock. Since weather conditions
evolve 24 hours a day and even intraday temperature and precipitation fore-
casts are not perfect,4 unexpected weather developments that affect prices can
occur at any time. Moreover, as BRSW (2005) observe, even weather conditions
that conform with point forecasts can move prices. For example, if a freeze is
forecast, but there is some probability that the freeze will not occur, the real-
ization of the freeze is likely to move prices. Finally, since weather conditions
are persistent (see, e.g., Wilks (1995)), weather forecast errors can also affect
future forecasts.

We also expect that the importance of daily weather news varies system-
atically across the calendar year. In the case of corn, for example, weather
conditions are most important during the growing season. Because changing
weather conditions during this period can affect supply, forecast revisions and
forecast errors during the growing season have greater potential price impact
than similar events during the nongrowing period. This intuition is consistent
with the seasonality in daily return volatility documented for futures contracts
on seasonal commodities (see Anderson (1985)).

B. Testable Hypotheses

We frame our hypotheses regarding the trading- to nontrading-period vari-
ances in weather-sensitive markets in terms of variance ratios. Let σ 2

oc and σ 2
co

denote the variances of open-to-close and close-to-open returns, respectively. We
consider the total variance ratio (TVR), which is simply σ 2

oc/σ
2
co, and the vari-

ance rate ratio (VRR), which divides each variance by the length of its trading
or nontrading period. If these lengths are constant over the sample period, the
TVR and VRR differ only by a multiplicative constant. Therefore, we rely on the
TVR for most of our analysis and consider the VRR only when the distinction
is relevant.

Our hypotheses regarding the variance ratios in weather-sensitive mar-
kets arise from three propositions: (1) overnight and weekend weather events
are an important source of public information in weather-sensitive markets;

4 NWS forecast verification statistics are available on the NWS website, http://www.nws.noaa.

gov/mdl/verif/.
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(2) the importance of this information changes in a predictable seasonal pattern
over the calendar year; and (3) there is a positive relation between information
flow and variance. These propositions lead to several predictions about how the
variance ratios in weather-sensitive markets compare to those in the stock and
currency markets and how they vary with the seasons.

HYPOTHESIS 1: The variance ratios in weather-sensitive markets are lower than
the variance ratio in the stock market and higher than the variance ratio in
the currency market.

Hypothesis 1 reflects the view that the structure of information flow and
trading hours for weather-sensitive markets lies between the structures for
the stock and currency markets. With respect to the stock market, both trading
and information flow are concentrated in the business day. As French and Roll
(1986) hypothesize, both public and private information is more likely to be gen-
erated during normal business hours when markets are open. Although stock-
specific announcements are often made during nontrading hours, these should
have a small impact on stock index portfolio values.5 In contrast, a large compo-
nent of the public information flow in weather-sensitive markets occurs around
the clock, independent of trading hours. To the extent that information flow gen-
erates volatility, we should observe lower variance ratios in weather-sensitive
markets than in the stock market. With respect to the currency market, on
the other hand, both trading and information flow occur around the clock. To
the extent that private information and nonweather-related public information
affect prices during the trading day, we should observe higher variance ratios
in weather-sensitive markets than in the currency market.

HYPOTHESIS 2: The variance ratios in weather-sensitive markets are lower dur-
ing the weather-sensitive season than during the rest of the year.

Hypothesis 2 reflects the view that if public information about the weather
is important to price discovery, the effects should be more pronounced dur-
ing periods of the year in which commodity prices are most sensitive to the
weather. Although both trading- and nontrading-period variances should be
higher during the weather-sensitive season, to the extent that private infor-
mation is incorporated during the trading period, the proportional increase
in information flow should be greater for the nontrading period, producing a
lower variance ratio. Seasonality that is consistent with Hypothesis 2 would
also strengthen the support for Hypothesis 1. On any given day, there may be
many nonweather-related news events, such as crop reports, changes in de-
mand forecasts, and government policy announcements that affect prices in
weather-sensitive markets. If this news is more likely to be released during
the trading day, this would work against Hypothesis 1. However, during the
weather-sensitive season, weather news should be the dominant information

5 Macroeconomic announcements are usually made in the morning before the stock market opens

(see Bauwens, Ben Omrane, and Giot (2005)). However, this information flow can impact both stock

prices and commodity prices.
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flow. Therefore, we expect that Hypothesis 1 should hold, in particular, during
the weather-sensitive season.

Hypothesis 1A: The variance ratios in weather-sensitive markets are lower
and more (less) comparable to those in the currency (stock)
market for weekend returns than for weekday returns.

Hypothesis 2A: The seasonal difference in variance ratios for weather-
sensitive markets is greater for weekend returns than for
weekday returns.

Hypotheses 1A and 2A reflect the view that the length of the nontrading
period in weather-sensitive markets is important because it affects the nature
of the information flow. Obviously, markets are closed for a longer period on
weekends than overnight. This affects both the likelihood that a weather event
occurs (e.g., temperatures can fall dramatically over a weekend) and the po-
tential cumulative impact of multiple weather events (e.g., three straight days
of rain). In contrast, information events in the stock market (and, to some ex-
tent, in the currency market) are more likely to occur during the week than on
weekends. Therefore, the variance ratios in weather-sensitive markets should
be much lower than the variance ratio in the stock market on weekends and
closer to the variance ratio in the currency market. Moreover, the distinction
between weekday and weekend weather information flow should be more im-
portant during the weather-sensitive season. To investigate these issues, we
compute two sets of variance ratios, one based on the weekday nontrading pe-
riod, using the variances of open-to-close returns on Tuesday through Friday
and overnight returns on Monday through Thursday, and another based on
the weekend nontrading period, using the variances of open-to-close returns on
Monday and weekend returns from Friday close to Monday open.6

Hypothesis 3: The comovement of returns and absolute returns in markets
sensitive to the same weather information is stronger during
the weather-sensitive season than during the rest of the year,
and the seasonal difference is greater in the nontrading period
than in the trading period.

Hypothesis 3 reflects the view that if weather information is more impor-
tant during certain periods of the year, commodities that depend on the same
weather information should comove more closely during these periods. More-
over, this effect should be more pronounced during the nontrading period, when
(common) information about the weather is the most important information,
as opposed to during the trading period, when many other idiosyncratic events
can affect prices.

6 Note that our weekend and weekday variance ratios each have the same number of observations

in the numerator and the denominator, thus avoiding the bias discussed by Jones, Kaul, and Lipson

(1994).
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C. Test Methodology

We test our hypotheses using a bootstrap approach to evaluate statistical
significance. This approach avoids the size distortions associated with asymp-
totic variance ratio tests in the presence of strong persistence in conditional
variances (see Andersen, Bollerslev, and Das (2001)) and also allows us to eas-
ily construct joint hypothesis tests, even though the length of the data series
varies across markets. Specifically, we employ the stationary bootstrap, a block
bootstrap procedure in which the length of each block is chosen at random from
the geometric distribution (see Politis and Romano (1994)).

To illustrate, consider Hypotheses 1 and 1A. If our variance ratio esti-
mates do not satisfy all of the inequality restrictions implied by one of these
hypotheses, then we need to determine the sampling distribution of our vari-
ance ratio estimators to assess whether the violations are statistically signifi-
cant. We do this by generating bootstrap draws from the empirical distribution
of zt = (zco,t, zoc,t)

′, the vector of standardized returns obtained by dividing the
demeaned close-to-open and open-to-close returns by their sample standard de-
viations. First, we construct a resample, Z∗ = (z∗

1, z∗
2, . . . , z∗

T), using the station-
ary bootstrap. The resample is such that, in general, if z∗

i = zt, then z∗
i+1 = zt+1

with probability p and z∗
i+1 is drawn randomly from Z = (z1, z2, . . . , zT) with

probability 1 − p. This delivers an expected block length of L̄ = 1/(1 − p). Sec-
ond, we multiply each element of Z∗ by the sample standard deviation of the
same element of Z. Third, we compute the sample variance ratios for this boot-
strapped data set and record the results. By performing a large number of
bootstrap replications, we can approximate the sampling distribution of the
variance ratio estimators.7

The actual procedure is more involved because the starting date for the data
differs across markets. To account for this structure, we divide the sample into
subperiods based on data availability. For example, we might have one subpe-
riod in which data are available for five markets, a second subperiod in which
data are available for six markets, and a third in which data are available for
seven markets. We then build the bootstrap data set in stages. Each stage con-
sists of implementing the first two steps of our bootstrap procedure for a given
subperiod. Using this approach, all of the standardized returns for a given date
are drawn as a vector, which preserves the correlation structure of the data,
and avoids the problem of missing values in the data set.

Suppose we want to test Hypothesis 1. There are two statistics of interest
for each weather-sensitive market, the difference between the TVRs for the
stock market and the weather-sensitive market, and the difference between
the TVRs for the weather-sensitive market and the currency market. We reject
the hypothesis if the bootstrap confidence intervals indicate that either statis-
tic is negative and statistically significant. It would also be useful to have a

7 We use a similar approach to test Hypotheses 2, 2A, and 3. The main difference is that we

standardize the returns using the sample standard deviations for the weekday and weekend on-

and off-season returns. In testing Hypothesis 3, we also account for the seasonality in the sample

correlations.
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summary measure of the evidence against the null, particularly for evaluating
Hypotheses 2 and 3, since seasonal comparisons are at the core of our informa-
tion story. However, the multivariate statistics normally used to test multiple
inequality restrictions are not well suited to this purpose because they are func-
tions of the asymptotic covariance matrix of the vector of parameter estimators,
and it is not clear how to estimate this matrix when the length of the data series
differs across markets.

Instead, we employ the approach developed by Fleming, Kirby, and Ostdiek
(FKO) (2006) for testing multiple inequality restrictions on variance ratios.
Multiple inequality restrictions are more challenging to test than equality re-
strictions because they do not specify a unique parameter configuration. FKO
(2006) employ the usual strategy of using the least favorable configuration
(LFC) with respect to the alternative hypothesis to construct critical values
(see, e.g., Perlman (1969), Wolak (1987), and Wolak (1989)). In particular, they
construct critical values using a procedure that reduces the multivariate test-
ing problem to a univariate problem by focusing on the variance ratio statistic
that provides the strongest evidence against the null. Their approach can easily
be extended to test the restrictions implied by Hypotheses 2 and 3.

For example, if there are a total of n weather-sensitive markets, we can ex-
press the joint null and alternative hypotheses implied by Hypothesis 2 as

H0 : �i ≤ 0 ∀ i = 1, 2, . . . , n; HA : �i > 0 for some i ∈ (1, 2, . . . , n), (1)

where �i denotes the difference between the population on- and off-season
variance ratios for market i. In this case, our test of H0 is based on the statistic

θ̂ = max
1≤i≤n

√
Ti(�̂i/γ̂i), (2)

where �̂i is an estimator of �i based on the sample variances and γ̂i is a con-
sistent estimator of the standard deviation of

√
Ti(�̂i − �i). It is easy to show

that
√

Ti(�̂i − �i) is asymptotically normal.8 Thus, θ̂ is simply the largest of the
t-statistics obtained by setting �i = 0 for each i = 1, 2, . . . , n. Using a test based
on the maximum t-statistic has two advantages. First, it does not require an
estimate of the covariance matrix of (�̂1, . . . , �̂n). Second, it should have good
power against alternatives for which the number of inequality restrictions vi-
olated is small.

We implement the test by using the stationary bootstrap to approximate
P (θ̂ ≤ c), the probability that θ̂ is less than or equal to c. First, we generate a
bootstrap data set using the procedure described earlier and calculate

θ̂∗(1) = max
1≤i≤n

√
Ti

(
�̂∗

i − �̂i
)
/γ̂ ∗

i , (3)

8 The sample variances of the off- and on-season returns are method of moments estimators

whose asymptotic normality follows from standard results. Therefore, the asymptotic normality

of �̂i follows immediately by application of the Delta Method (see Campbell, Lo, and MacKinlay

(1997), p. 540).
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where �̂∗
i and γ̂ ∗

i are the values of �̂i and γ̂i obtained using the bootstrap data.

Next, after replicating this process M times to obtain θ̂∗(1), . . . , θ̂∗(M ), we approx-
imate P (θ̂ ≤ c) by

P̂ (θ̂ ≤ c) = 1

M

M∑
m = 1

I
(
θ̂∗(m) − θ̂ ≤ c

)
, (4)

where I(·) denotes the indicator function. This corresponds to bootstrapping
the distribution of the test statistic under the LFC, which occurs when all the
inequalities are binding (Wolak (1987)).9 The critical value for testing H0 at
significance level ν is given by inf{c : P̂ (θ̂ ≤ c) ≥ 1 − ν}.

D. Robustness Analysis

Our hypothesis tests regarding seasonal differences assume that we have
correctly defined the weather-sensitive season in each market. We evaluate the
robustness of our results to these definitions using kernel regression. Specifi-
cally, we estimate the variance ratios conditional on the day of year and then
we evaluate the patterns in the conditional estimates.

To implement the kernel regression estimator, we assume that the squared
demeaned close-to-open and open-to-close returns can be expressed as

e2
co, t = σ 2

co(xt) + uco, t , (5)

e2
oc, t = σ 2

oc(xt) + uoc, t , (6)

where xt is a day-of-year indicator variable that takes on values from 1 to
365.10 We obtain the kernel estimator of the unknown regression function by
taking a weighted average of the observations on the response variable with
the weights determined by the distance of the observations on the explanatory
variables from the point at which the function value is desired. For instance,
the kernel estimate of the value of σ 2

co(xt) at xt = x is given by

σ̂ 2
co(x) =

T∑
t = 1

Kh(x − xt)e2
co,t

T∑
t = 1

Kh(x − xt)

, (7)

where

Kh(x − xt) = 1

h
√

2π
exp

(
− (x − xt)

2

2h2

)
(8)

is the Gaussian kernel with bandwidth h.

9 The LFC implies that
√

Ti�̂i is asymptotically distributed as N(0, γ 2
i ) ∀i = 1, 2, . . . , n. Since the

bootstrap distribution of
√

Ti(�̂
∗
i − �̂i) is centered at zero, it follows that the bootstrap delivers

critical values for the LFC.
10 We handle leap years by assigning February 29 the same indicator as February 28.
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Kernel regression is also useful for investigating alternative explanations for
our empirical results. For example, Stoll and Whaley (1990) and George and
Hwang (2001) point out that pricing errors can influence variance ratio tests if
they are correlated with information. Pricing errors can be generated by bid–
ask bounce and other market microstructure effects or by systematic under- or
overreaction to information.

We first consider broadly the level of trading activity as a source of bias.
Suppose the kernel estimates of the variance ratios display a seasonal pattern
that is consistent with the hypothesized seasonality in the information flows.
To assess the likelihood that trading-related pricing errors could explain this
pattern, we use kernel regression to estimate the expected level of trading ac-
tivity by day of year and then we compare the pattern in these estimates to the
pattern in the kernel estimates of the variance ratios. Even if the patterns are
different, it is possible that volatility is linked to trading and that the strength
of the linkage is seasonal. To investigate this possibility, we examine kernel es-
timates of the correlation between daily trading activity and contemporaneous
open-to-close absolute demeaned returns.

To assess the impact of pricing errors more directly, we consider the autocor-
relation structure of returns in a multiperiod variance ratio framework. Bid–
ask bounce and pricing errors that are subsequently corrected (i.e., temporary
errors) induce serial correlation in returns. Our interest centers on whether
seasonal variation in the pricing errors can explain our results. We address
this issue by comparing the variances of m- and one-period returns. Since the
m-period variance is m times the one-period variance if returns are serially un-
correlated, variation in the multiperiod variance ratio can reflect the potential
impact of pricing errors.

II. Data

A. Contract Selection

We select the commodity futures contracts for our analysis based on two
factors, trading activity and price sensitivity to weather conditions in a concen-
trated geographic area. Contracts on agricultural and energy commodities are
the most likely to satisify the weather-sensitivity condition. The most active
agricultural futures contracts are soybeans, corn, live cattle, and wheat. Over
the past 5 years, the next-most active contracts, coffee and world sugar, traded
less than half the dollar volume of any of these contracts (Commodity Research
Bureau (2004)). Thus, we select the soybean, corn, and wheat contracts, and
we exclude live cattle because it is not likely to be weather sensitive. The most
active energy futures contracts are crude oil, natural gas, heating oil, and
unleaded gasoline. Of these, we select the natural gas contract because, as we
explain below, its prices are likely to be the most sensitive to weather conditions.

We expect futures prices for the grains to be weather sensitive because crop
yields depend on weather conditions during the growing season.11 Corn and

11 Stevens (1991) documents a persistent weather effect on grain futures prices during the

growing season.
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soybean production are both concentrated. The U.S. produces 40% of the world’s
corn and 50% of the world’s soybeans, with the next largest shares being 18%
(China) for corn and 20% (Brazil) for soybeans.12 Therefore, weather conditions
in the primary U.S. growing states (the grain belt) are likely to be a key determi-
nant of corn and soybean prices. The production of wheat, on the other hand, is
less concentrated. The U.S. produces just 10% of the world’s wheat and China,
Russia, and India are also major producers. Production in these countries is
largely for local consumption, however, so the U.S. accounts for a large share of
the wheat available on the world market (over 33%). We therefore expect wheat
prices to have some sensitivity to weather conditions in the U.S. grain belt, but
less sensitivity than corn and soybean prices.

We expect natural gas futures prices to be weather sensitive because demand
for natural gas is sensitive to temperatures in the winter and winter supply is
constrained. The U.S. typically consumes twice as much natural gas in the
winter as in the summer (due to space heating), and 70% of this increase is
due to consumption in the Northeast and the Upper Midwest (see Natural Gas
Monthly, various issues, published by the Energy Information Administration
(EIA)). Thus, colder temperatures in these states can lead to large increases
in demand. At the same time, the supply of natural gas in the winter is es-
sentially fixed. U.S. production is relatively constant throughout the year, and
the seasonality in consumption is satisified by storing gas in the summer and
withdrawing it in the winter (see International Energy Agency (IEA) (2002),
Fig. 97). On average, these storage withdrawals supply 20% of consumption in
the winter and as much as 50% on peak demand days (EIA (1995)). Overseas
imports cannot provide much additional supply (EIA (2001a)). Therefore, nat-
ural gas prices can spike during peak periods in the winter in order to balance
supply and demand.

We exclude heating oil, gasoline, and crude oil futures because these contracts
are much less weather sensitive. While heating oil consumption is seasonal (EIA
(2001b)), supply is less constrained in the winter than natural gas because
higher heating oil prices stimulate additional supply. Refiners can increase
production and imports can increase from overseas. Both of these sources take
2 to 3 weeks to reach consumers (EIA (2001b)), but their availability means that
a short-term supply shortage that increases the spot price has a more muted
effect on futures prices. Consistent with these fundamentals, the volatility of
heating oil futures is much less seasonal during our sample period (low of 27%
in May, high of 38% in January, excluding the Gulf War in 1990 and 1991)
than the volatility of natural gas futures (36% in April, 77% in December). We
expect even less weather sensitivity for gasoline and crude oil futures. Gasoline
consumption is seasonal (i.e., summer driving months) but does not vary with
daily weather conditions in any particular geographic area. Crude oil prices are
not typically weather sensitive because over 90% of U.S. oil consumption is for

12 All of the crop production and export statistics cited in this paragraph are from the FAO

Statistical Database (2004) for the period from 1980 to 2004.
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transportation (gasoline, jet fuel, and diesel) and industrial uses (EIA (2004)),
which are not sensitive to the weather.13

In addition to the grain and natural gas contracts, we include futures con-
tracts on FCOJ, S&P 500, and Japanese yen. We include FCOJ due to its promi-
nence in prior research and its sensitivity to freezing temperatures around
Orlando, Florida (BRSW (2005)). However, this contract is far less active than
the other contracts we consider. The average dollar volume (Table I) is less than
a tenth that of wheat, the next least active contract. In addition, the season-
ality of FCOJ may be less well defined because orange trees are sensitive to
general weather conditions throughout the year and to weather events other
than freezes (e.g., hurricanes). We include the financial contracts (S&P 500
and Japanese yen) to serve as benchmarks for our analysis of the weather-
sensitive markets. We select the yen because it is an actively traded currency
and Japanese business hours do not overlap with trading hours for the futures
contract, increasing the importance of overnight information flow.

B. Sample Construction

The data set consists of daily observations for open and close prices, num-
ber of trades, and trading volume. We obtain the prices and number of trades
from Tick Data and trading volume from Datastream. Table I reports the sam-
ple period for each contract. The sample periods for the commodity contracts
start with the first day of data available from Tick Data. We choose the start
date for the financial contracts to match the first date for the grains. All of
the sample periods end on December 31, 2004. We eliminate days with miss-
ing price observations for any of the contracts. The sample size ranges from
2,855 observations for natural gas to 5,370 observations for the grains and the
financials.

We compute the daily open-to-close and close-to-open returns for each market
using, in most cases, the nearby futures contract. However, we switch to the
second nearby contract on the 20th day of the month prior to expiration for the
commodities and a week prior to expiration for the financials to avoid expiration
effects on prices and on the level of trading activity. In addition, we exclude
the September contract for corn and wheat and the August and September
contracts for soybeans because these contracts straddle the harvest cycle and
are therefore much less actively traded (see Smith (2005)). Some of the contracts
have exchange-imposed price limits (see Table I). In constructing the return
series for these contracts, we retain the return for an interval in which a limit
move occurs but we exclude the return over the subsequent interval unless the

13 Business press articles occasionally mention a link between crude oil prices and weather

conditions in the Northeast (e.g., see “Crude oil up on high demand, cold weather, fears of tight

supplies,” Washington Post, March 4, 2005). This occurs when heating oil supplies are low and cold

weather could increase demand for crude oil to produce heating oil (see Mussa (2000)). However,

these conditions are not prevalent and, when they do occur, the impact on crude oil futures prices

is much less than the impact on the spot price.
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Table II
Weather-Sensitive Seasons

This table reports the weather-sensitive period for each contract and the criteria used to define

these seasons.

On-Season Period

Contract Start End Identification Criteria

Corn May 15 October 31 Season begins when 50–75% of the crop is likely

planted and ends when 75% of the crop is

likely harvested.

Soybean June 1 October 15 Season begins when 50–75% of the crop is likely

planted and ends when 75% of the crop is

likely harvested.

Wheat March 15 August 31 Season begins when winter wheat is likely

sprouting and ends when 75% of the spring

wheat crop is likely harvested.

FCOJ December 1 February 28 Months in which freezing temperatures around

Orlando, Florida are most likely.

Natural Gas December 1 February 28 Months in which the market is in a state of

storage withdrawal and average temperatures

are below freezing in the states that account

for the majority of withdrawal.

return is a reversal. This removes zero-return trading days following a limit
open as well as overnight continuations following a limit close.14

C. Season Definitions

Table II reports our definition of the weather-sensitive season for each con-
tract. In general, the on season for the grains is the period of the year in which
the crops are in the ground, the on season for natural gas is the period of the
year in which the average temperature is below freezing in the states whose
demand accounts for the majority of natural gas storage withdrawal, and the
on season for FCOJ is the period of the year in which damaging freezes are
most likely to occur around Orlando, Florida. The on season starting and end-
ing dates reported in the table are based on our assessment of the potential for
weather conditions to impact supply or demand in each market. The Appendix
provides additional details.

III. Variance Ratio Hypothesis Tests

A. Unconditional Comparisons

Our first set of hypotheses (1 and 1A) relates to the unconditional variance
ratios. Table III reports the close-to-close and trading- and nontrading-period

14 We provide more details regarding price limits and trading halts and our treatment of

the affected price observations in the Supplemental Appendix, which is available at www.

ruf.rice.edu/∼jf leming/pub/tnt-app.pdf.
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sample volatilities for each market, as well as the TVR estimates, for weekends
(Panel A) and weekdays (Panel B). In each case, natural gas has the highest
volatility, followed by FCOJ. The grains, which all have similar volatilities,
are somewhat more volatile than the S&P 500 (excluding the 1987 crash) and
the yen has the lowest volatility. The close-to-close volatilities are higher on
weekends than on weekdays for all contracts except the yen. Turning to the
TVR estimates, the estimates for weekend returns range from 0.41 for the yen
to 5.86 for the S&P 500. The TVR estimates for weekday returns range from
0.74 for the yen to 4.45 for wheat.

We evaluate the precision of the TVR estimates using the stationary bootstrap
with the expected block length L̄ set equal to 40. This choice of L̄ is based on
results reported by FKO (2006). FKO use simulations to investigate the small
sample properties of the bootstrap inequality tests and find (not surprisingly)
that the test size is sensitive to the degree of volatility persistence implied by
the data generating process. In particular, they find that L̄ must be at least 40
for the test to have good size when the conditional return variances are highly
persistent. Their results also suggest that there is little disavantage to using a
large L̄ even if the returns display constant volatility: In this case, the power
of the test with L̄ = 40 is only slightly lower than that obtained with L̄ = 1.

Table III reports the 95% confidence intervals (CIs) based on 10,000 boot-
strap replications. If the CI does not include one, then we conclude that the
trading- and nontrading-period variances are significantly different. The week-
end results indicate that the trading-period variance is significantly higher
than the nontrading-period variance for wheat, FCOJ, natural gas, and the
S&P 500. For the yen, the trading-period variance is significantly lower.
The weekday results indicate that the trading-period variance is significantly
higher than the nontrading-period variance for all contracts except the yen.
Again, for the yen, the trading-period variance is significantly lower. The re-
sults for the yen are not surprising given that the Japanese business day occurs
during the (U.S.) nontrading period.

Table III also reports the differences between the TVR estimates for the
weather-sensitive contracts and those for the S&P 500 (excluding the 1987
crash) and the yen. Hypothesis 1 says that all of the differences reported in
the table should be positive. Consistent with the hypothesis, all of the week-
end point estimates are positive and, except for the difference between FCOJ
and the S&P 500, none of the CIs include zero. Similarly, all of the weekday
point estimates are positive and significantly different from zero, except for
the difference between wheat and the S&P 500, which is insignificantly neg-
ative. Since this difference would appear even less significant if we were to
treat it as the minimum of five univariate statistics, we can forgo implement-
ing a multivariate test and conclude that the data provide no evidence against
Hypothesis 1.

The results in Table III also provide support for Hypothesis 1A. The TVR
estimates for the weather-sensitive contracts are lower on weekends than on
weekdays and the differences between the estimates for the S&P 500 and
the weather-sensitive contracts are generally much greater on weekends than
on weekdays. This occurs because the weather-sensitive contracts, unlike the
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S&P 500, have much higher volatility on weekends than overnight, consistent
with the view that weather information flow evolves randomly around the clock
while news about stocks is concentrated during the business day. On the other
hand, the differences between the TVRs for the weather-sensitive contracts and
for the yen tend to be smaller on weekends than on weekdays. This is expected
because weather-sensitive markets and currency markets both have important
information flow during the weekend nontrading period.

As an additional test, we evaluate whether Hypothesis 1 holds for variance
rate ratios. The weekend VRR estimates (not reported in the table) are 4.2
for the yen, 39.7 for the noncrash S&P 500, and between 19.0 and 42.6 for
the weather-sensitive markets. The weekday VRR estimates are 2.0 for the
yen, 10.8 for the noncrash S&P 500, and between 9.5 and 23.7 for the weather-
sensitive markets. Thus, the weekend estimates are consistent with
Hypothesis 1, but the weekday estimates are not. Although this might be in-
terpreted as evidence against the hypothesis, it may also reflect the problem
of comparing VRRs across markets with trading days of different lengths. The
VRR reflects the average variance rate per unit of time and the trading day is
much shorter for the weather-sensitive contracts than for stocks (see Table I).
To the extent that trading is necessary to incorporate private information flow,
a given amount of information would have to be incorporated at a faster rate
in these markets than in the stock market.

B. Seasonal Comparisons

Although the unconditional results are generally consistent with our infor-
mation story, seasonal comparisons in the weather-sensitive markets (Hypothe-
ses 2 and 2A) are at the core of the story. If public information about weather
conditions is more important during the on season, the proportional increase
in information flow should be greater during nontrading periods than during
trading periods. Therefore, if information drives volatility, we should find lower
variance ratios during the on season.

Table IV reports the results of the seasonal comparisons. Consider first the
on- and off-season sample volatilities. In all cases, the close-to-close volatility
is higher on season than off season, which is consistent with the premise that
weather information flow is more important during the on season. Consider
next the on- and off-season TVR estimates. Both the weekend and weekday
estimates are lower on season for four of the five contracts.15 Lower estimates
on season indicate that the on-season increase in volatility is proportionally
greater for the nontrading period, as predicted by Hypothesis 2. Only the esti-
mates for FCOJ are inconsistent with the hypothesis.

The 95% CIs for the seasonal differences indicate that the TVR is signifi-
cantly lower on season than off season in most cases. The estimates for FCOJ
and the weekday estimate for wheat are not significantly different from zero.
However, the upper confidence limits for these estimates suggest that the

15 Note that the inference from these difference statistics is independent of the distinction be-

tween TVRs and VRRs because the two variance ratios differ only by a multiplicative constant.
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Table IV
Seasonal Variance Ratio Estimates

This table reports the on- and off-season total variance ratios (TVR) for the weather-sensitive contracts

and the difference between the on- and off-season estimates (“Seasonal Diff.”). The weekend results

(Panel A) are based on returns from Friday close to Monday close and the weekday results (Panel

B) are based on returns from Monday close to Friday close. The table also reports the number of

observations and volatility (annualized by
√
252) for the close-to-close (CC), nontrading (CO), and trading

(OC) periods. The confidence intervals (95% CI) reported for the TVRs and the seasonal differences are

based on the stationary bootstrap procedure described in the text with 10,000 replications. The sample

period starts on July 1, 1982 for all contracts except FCOJ (July 6, 1987) and natural gas (January 4,

1993) and ends on December 31, 2004. The on-season period is May 15 to October 31 for corn, June 1 to

October 15 for soybeans, March 15 to August 31 for wheat, and December 1 to February 28 for FCOJ

and natural gas.

Obs. Ann. Volatility (%) Seasonal Diff.

Contract Seas. CO OC CC CO OC TVR (95% CI) (95% CI)

Panel A: Weekends

Corn On 469 460 28.18 20.81 18.79 0.82 (0.57, 1.18) 1.20

Off 513 512 18.32 10.19 14.45 2.01 (1.44, 2.85) (0.51, 2.05)

Soybean On 388 382 31.36 24.18 20.48 0.72 (0.48, 1.08) 1.45

Off 595 595 19.42 10.88 16.03 2.17 (1.57, 2.99) (0.75, 2.28)

Wheat On 469 467 26.40 16.40 20.78 1.61 (1.15, 2.23) 2.62

Off 516 516 20.43 8.99 18.47 4.22 (3.08, 5.77) (1.30, 4.19)

FCOJ On 160 161 37.88 16.06 32.31 4.05 (0.93, 12.32) −1.99

Off 592 594 29.31 17.82 25.58 2.06 (0.91, 4.29) (−10.08, 1.82)

Natural Gas On 109 109 92.11 60.57 60.32 0.99 (0.56, 1.72) 1.32

Off 406 406 53.24 27.70 42.10 2.31 (1.72, 3.11) (0.37, 2.21)

Panel B: Weekdays

Corn On 2,037 2,064 21.11 12.54 17.59 1.97 (1.65, 2.37) 0.96

Off 2,297 2,303 15.44 8.04 13.75 2.93 (2.47, 3.48) (0.35, 1.60)

Soybean On 1,639 1,666 23.01 14.22 18.84 1.76 (1.40, 2.23) 2.44

Off 2,704 2,708 17.19 7.66 15.69 4.20 (3.50, 5.09) (1.60, 3.38)

Wheat On 2,037 2,047 22.28 10.02 20.28 4.09 (3.45, 4.93) 0.80

Off 2,337 2,337 19.67 8.38 18.54 4.89 (4.13, 5.81) (−0.30, 1.90)

FCOJ On 798 806 29.76 14.69 26.53 3.26 (1.51, 6.55) −0.96

Off 2,588 2,597 29.69 16.05 24.37 2.31 (1.47, 3.65) (−4.32, 1.33)

Natural Gas On 559 559 63.82 37.21 51.22 1.89 (1.43, 2.54) 1.31

Off 1,781 1,781 44.14 22.08 39.56 3.21 (2.73, 3.81) (0.51, 2.06)

p-value generated by a formal test of Hypothesis 2 might be reasonably low.
We investigate this further using 10,000 bootstrap replications to approximate
the p-value implied by the multivariate test described in Section I.C.16 The
maximum t-statistic for the weekend TVRs is 1.75, which has a p-value of
0.3431, and the maximum t-statistic for weekday estimates is 0.96, which has
a p-value of 0.7040. Thus, we conclude that the data provide no reliable evidence
against Hypothesis 2.

16 We estimate γ i by treating the moment conditions for the off- and on-season TVR estimators as

an exactly identified generalized method of moments (GMM) system and using the Newey and West

(1987) estimator of the GMM covariance matrix. Following FKO (2005), we set the lag truncation

for the estimator equal to 1.4L̄.
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Despite this conclusion, the FCOJ results stand out as the least consistent
with Hypothesis 2. Several features of the FCOJ market might explain these
results. First, the most important weather event is dichotomous, freeze or no
freeze. Since there are no damaging freezes in many years, we may face a peso
problem. Second, temperature impacts FCOJ prices nonlinearly: Prices only
move dramatically when the expectation of a freeze is high (see BRSW (2005)).
Moreover, once a damaging freeze occurs, it essentially fixes supply and ends the
weather sensitivity of prices until the next growing season.17 Finally, the nature
of weather news on weekends is different for FCOJ than for the other contracts.
For example, a freeze is more likely to occur over the weekend than overnight,
but the impact of a freeze on supply (and hence price) is the same regardless
of when it occurs. In contrast, a rainstorm is more likely to occur on weekends
and there is greater potential for cumulative rainfall that has a large impact on
supply. This could explain why the weekend and weekday volatilities for FCOJ
are comparable, while the volatilities for the other contracts are sharply higher
on weekends.

Turning to Hypothesis 2A, the seasonal differences in the TVR estimates in
Table IV tend to be greater for weekends than weekdays, as predicted. The raw
differences for corn, wheat, and natural gas are all greater on weekends and,
in percentage terms, the differences are greater for all contracts except FCOJ.
For the grains, the weekend estimates are 60–70% smaller on season than off
season, while the weekday estimates are 20–60% smaller on season. For natural
gas, the weekend estimate is 60% smaller on season than off season, while the
weekday estimate is 40% smaller on season.

Finally, note that the results of our seasonal analysis reinforce our earlier
conclusions regarding Hypothesis 1. Specifically, all of the on-season TVRs for
the weather-sensitive contracts (Table IV) lie between the TVRs for the yen
and the S&P 500 (Table III). This was not the case for the unconditional TVRs.
However, we expect to find stronger evidence in favor of Hypothesis 1 during
the on season because weather news represents a greater share of the total
information flow during this period of the year. This evidence is consistent with
public information about the weather being a key determinant of volatility in
weather-sensitive markets.

C. Seasonal Comovements

Our final hypothesis relates to seasonal changes in the comovement of mar-
kets sensitive to the same weather conditions. All of the grains, for example, are
grown in a similar geographic area during a similar growing season. Therefore,
if weather information generates price movement, the comovement of returns
and absolute returns across the grains should be stronger during the growing
season and the seasonal increase should be larger for the nontrading period.

Table V reports the seasonal correlation estimates for the trading and
nontrading periods, the seasonal difference in the correlation estimates, the

17 For this reason, BRSW (2005) exclude all returns following the first damaging freeze of a

season.
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within-season difference in the correlation estimates, and 95% CIs for the
differences based on 10,000 bootstrap replications.18 The return correlations
(Panel A) are consistent with Hypothesis 3. For each pair of markets, the corre-
lation of nontrading period returns is higher on season than off season and the
differences are all statistically significant. The correlations of trading period
returns are also all higher on season but none of the differences is significant.
Finally, for each pair of markets, the difference between the correlation es-
timates for the nontrading and trading periods is greater on season and the
on-season differences are all statistically significant.

The absolute return correlations (Panel B) are also consistent with
Hypothesis 3. Again, for each pair of markets, the estimate for the nontrad-
ing period is significantly higher on season than off season, the estimate for
the trading period is (insignificantly) higher on season than off season, and
the difference between the estimates for the nontrading and trading periods
is greater and highly significant on season. These findings are consistent with
the view that public information about the weather is an important source of
nontrading-period volatility in the grain markets.

IV. Robustness Tests

In this section, we use kernel regression to investigate the robustness of our
information story as an explanation for our results. First, we estimate the TVRs
conditional on the day of year to assess the robustness of our season definitions
and to establish the degree of seasonal variation in the estimates. Second, we as-
sess whether seasonal patterns in trading activity and the correlation between
trading activity and volatility are consistent with the seasonal pattern in the
TVRs. Third, we estimate conditional multiperiod variance ratios to evaluate
the possible impact of pricing errors. Finally, we consider the choice of sample
period, the impact of scheduled public information releases, and the impact of
our treatment of price limits.

A. Conditional TVRs

We begin by using kernel regression to estimate the conditional TVRs
(CTVRs) for each day of the year. For all of the kernel regressions in our
robustness tests, we set the bandwidth (h) equal to 30. We determine this value
based on visual inspection of the results, that is, we start with a large bandwidth
and decrease the value until it appears to produce too much local variation in
the CTVR estimates.19 To put this choice in perspective, recall that h acts as

18 We combine the weekday and weekend returns in computing the correlation estimates. The

on-season period for each pair of markets is defined by the first on-season date and the last on-

season date for the pair. However, the results are robust to using only the common on-season period

for each pair.
19 We do not use cross validation, the most common approach to bandwidth selection, because it

has two important drawbacks in our application. First, it is essentially a least-squares procedure,

so it is not robust to outliers. This is problematic because we are applying the kernel estimator

to squared demeaned returns. Second, cross validation is a univariate procedure. Thus, we could

obtain a different value of h for each contract, raising concerns about the validity of cross-contract

comparisons.
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the standard deviation in the Gaussian kernel. Hence, about 95% of the kernel
weight is placed on observations within ±60 days of the day of the year for
which the CTVR is desired.

Figure 1 plots the CTVR estimates for each market. The solid horizontal
line in each plot shows the average estimate for the full year. For the weather-
sensitive contracts, the shaded area shows the defined on-season period and
the dashed horizontal line in the shaded (non-shaded) area shows the average
estimate for the on (off) season. In general, the patterns in the CTVR estimates
for the weather-sensitive contracts correspond closely to our defined seasons.
For corn and soybeans, the estimates decrease as the growing season begins,
reach a low in July, and increase again as the crops approach harvest. Wheat
exhibits a similar but less dramatic pattern. Corn and soybeans also exhibit
a secondary cycle, with decreasing estimates from December into February.
Consistent with our information story, this pattern may be driven by the impact
of weather conditions in Argentina and Brazil. These countries produce over
30% of the world’s soybeans and nearly 10% of the world’s corn (FAO Statistical
Database (2004)) and the most weather-sensitive period for the South American
crops is December to February (see Solberg (1999)).20

The CTVR estimates for natural gas also correspond to our defined seasons,
reaching a peak in early summer and falling as winter approaches. The plot also
shows an interesting plateau in August. This may reflect demand for electricity
generation during summer heat waves (see Sturm (1997)), as greater sensitivity
to information regarding daytime temperatures would tend to produce higher
variance ratios. On average, the CTVR estimates for FCOJ are also lower during
the on season and higher during the off season. However, the estimates reach
a low in October, well ahead of our defined weather-sensitive season. This may
be associated with the USDA’s first production forecast for the growing season,
which is released during nontrading hours in the second week of October (see
BRSW (2005)). If we eliminate USDA announcement dates, the plot for FCOJ
conforms much more closely with our defined seasons. In contrast to the plots
for the weather-sensitive markets, the CTVR estimates for the yen and the S&P
500 stay within a relatively narrow range throughout the year. The only clear
pattern is that the CTVRs for the S&P 500 tend to be lower during the last
quarter of the year.

B. Conditional Trading Activity Analysis

Although the seasonality in the CTVR estimates is consistent with the sea-
sonal impact of weather information flow, perhaps there are other explana-
tions. Suppose, for example, that trading generates pricing errors, and hence
volatility that is unrelated to information flow. If this is the case, then the
observed seasonality in the CTVR estimates may be somehow related to sea-
sonal changes in trading activity. We investigate this possibility by extending
our kernel regression analysis to include measures of trading activity.

20 In contrast, South America produces just 3% of the world’s wheat (FAO Statistical Database

(2004)).
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Figure 1. Kernel estimation of total variance ratios by day of year. These graphs display

the total variance ratios (TVR) based on kernel estimation of the mean trading- and nontrading-

period demeaned squared returns for each day of the calendar year. The shaded areas in the graphs

for the weather-sensitive contracts represent the defined on-season periods. The thin horizontal

line in each graph represents the average TVR across the full year and the dashed horizontal lines

represent the average TVRs in the defined on- and off-season periods. The sample period starts on

July 1, 1982 for all contracts except FCOJ (July 6, 1987) and natural gas (January 4, 1993) and

ends on December 31, 2004.

Figure 2 shows the conditional expected volume (left-hand column) and ex-
pected number of trades (right-hand column) for each market by day of year.
For corn and natural gas, both measures of trading activity are greater, on
average, during the off season. For the other contracts, trading activity tends
to be greater on season. In each case, however, the seasonal differences are
fairly small. Moreover, the seasonality in trading activity does not mimic the
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Figure 2. Kernel estimation of trading activity by day of year. These graphs display the

conditional expected volume (left-hand column) and number of trades (right-hand column), as well

as the correlation between each trading activity variable and absolute open-to-close returns, based

on kernel estimation for each day of the calendar year. The solid line represents the total volume

(100s of contracts) or total number of trades (100s of contracts) and the dashed line represents the

correlation between contemporaneous open-to-close returns and the trading activity variable. The

vertical dashed lines in each graph represent the days of the year on which the kernel estimates

of the variance ratio cross the annual average (Figure 1). The sample period starts on July 1,

1982 for all contracts except FCOJ (July 6, 1987) and natural gas (January 4, 1993) and ends on

December 31, 2004.

seasonality in the CTVR estimates (Figure 1). Trading activity for soybeans,
for example, reaches a peak at the beginning of the on season and falls below
the annual average just after mid-season. In contrast, the CTVR estimates fall
into July and remain below the annual average through the end of the season.
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Nonetheless, it still possible that trading activity is linked to volatility and
that the strength of the linkage is seasonal. To investigate this, we examine
whether there is seasonal variation in the correlation between daily trading
activity and contemporaneous open-to-close absolute demeaned returns. The
dashed curves in Figure 2 plot the correlation estimates by day of year. In
general, the estimates are relatively flat throughout the year, and there is no
evidence that they are systematically different during the on season. Therefore,
it seems unlikely that trading activity is the cause of the seasonal differences
observed in the CTVRs.

C. Conditional Pricing Error Analysis

We directly assess whether pricing errors can explain the seasonal varia-
tion in the CTVR estimates by examining the multiperiod variance ratios for
both trading- and nontrading-period returns. If the returns for a given inter-
val (trading- or nontrading-period) are serially uncorrelated, then the m-period
variance should equal m times the one-period variance. However, if pricing er-
rors induce negative serial correlation (i.e., a pattern of overreaction and subse-
quent correction), the ratio of the m-period variance to the one-period variance
will be less than m; similarly, if pricing errors induce positive serial correlation
(i.e., a pattern of underreaction and subsequent correction), the multiperiod
variance ratio will be greater than m.

Figure 3 plots the kernel regression estimates of the 2- and 20-period vari-
ance ratios for the trading and nontrading periods by day of year. The 2-period
estimates are close to 2, consistent with no serial correlation, but the esti-
mates for the nontrading period tend to be greater than those for the trading
period. The 20-period estimates for the trading period are close to 20 for soy-
beans, wheat, and natural gas, and tend to be greater (less) than 20 for corn
(FCOJ). The estimates for the nontrading period tend to be greater than 20, on
average, for all of the contracts except soybeans, and are substantially higher
during some periods of the year for soybeans and FCOJ. Note, however, that the
20-period estimates are much less precise than the 2-period estimates because
of the reduction in the number of observations.21

In order for pricing errors to explain our results, they must induce a bias that
decreases the trading-period variance and/or increases the nontrading-period
variance during the on season. If this is the case, we should find that, on season,
the m-period variance ratios are greater than m for the trading period, less than
m for the nontrading period, or at least that the variance ratio for the trading
period increases relative to that for the nontrading period. Figure 3 shows
some evidence of this for wheat. However, for corn, soybeans, and natural gas,
the multiperiod variance ratios for the nontrading period increase relative to
those for the trading period on season. The evidence regarding FCOJ is mixed.
Therefore, it seems unlikely that our results can be attributed to the impact of
pricing errors.

21 Although we use overlapping returns to improve the efficiency of the multiperiod variance

ratio estimators, the efficiency gains are relatively small. See Richardson and Smith (1991).
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Figure 3. Kernel estimation of multiperiod variance ratios by day of year. These graphs

display the conditional 2-period (left-hand column) and 20-period (right-hand column) variance ra-

tios for close-to-open (solid line) and open-to-close (dashed line) returns based on kernel estimation

for each day of the calendar year. The vertical dashed lines in each graph represent the days of

the year on which the kernel estimates of the total variance ratio (TVR) cross the annual average

(Figure 1). The sample period starts on July 1, 1982 for all contracts except FCOJ (July 6, 1987)

and natural gas (January 4, 1993) and ends on December 31, 2004.

D. Other Robustness Tests

We consider three additional robustness issues: (1) changing market fun-
damentals; (2) scheduled public information releases; and (3) our treatment
of price limits. To assess whether our results are robust to these issues, we
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investigate their impact on the CTVR estimates. Below we summarize the main
findings. We report the complete results in the Supplemental Appendix.

Market fundamentals have changed over our sample period, including
changes in the U.S. share of world agricultural production and changes in the
supply and demand of natural gas. In addition, the NWS increased the fre-
quency of its forecast update cycle in 1994 and again in 1998. To evaluate the
impact of these changes on our results, we divide the sample period in half
and examine the CTVRs for each subperiod. The CTVRs for corn, soybeans,
and natural gas are stable across the two subperiods. The CTVRs for wheat
are greater and exhibit less seasonality in the second subperiod. This may be
due to the declining importance of U.S. production on the world market: The
U.S. share of wheat exports fell from 36% in the 1980s to 23% since 1997 (FAO
Statistical Database (2004)). The CTVRs for FCOJ are different across the two
subperiods, but there is no clear pattern to the differences. The CTVR estimates
for the yen (S&P 500 excluding 1987 crash) are about 25% (10%) less on average
in the second subperiod. None of the differences, however, is sufficient to alter
our basic conclusions.

Public information releases in the agricultural and energy markets include
monthly government crop reports and weekly industry reports on storage levels
for natural gas. Since these reports are an easily identifiable source of public
information that is unrelated to current weather conditions, we examine how
excluding announcement interval returns affects our results. In general, we
find that excluding these returns has little effect on our results. The most no-
table difference is that the CTVR estimates for FCOJ show less seasonality in
October, which likely reflects the importance of nontrading-period news about
orange production estimates entering the growing season.

Price limits for the agricultural contracts were hit on a number of days in
our sample. Section II.B describes our procedure for handling returns on and
subsequent to limit move days. To assess whether our results are sensitive to the
choice of procedure, we estimate the CTVRs using two alternative procedures:
(1) ignoring price limits entirely; and (2) using the approach commonly used
for full-day returns. We find that the CTVRs are not sensitive to the choice of
procedure.

V. Conclusions

In stock and currency markets, it is difficult to distinguish between volatil-
ity caused by public and private information flow and volatility caused by
irrational phenomena such as overreaction and excess trading because, in
most cases, information flow and trading occur contemporaneously. Weather-
sensitive commodity markets provide an opportunity to shed light on this issue.
The information environment in these markets differs from that in financial
markets in two key respects. First, a major component of the public information
flow (i.e., news about weather conditions) evolves randomly over the 24-hour
day and is independent of whether the market is open, the level of trading ac-
tivity, and the timing of normal business hours. Second, the importance of this
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component of the public information flow varies in a predictable seasonal pat-
tern across the calendar year. Based on these differences, we generate hypothe-
ses about how the trading- to nontrading-period variance ratios in weather-
sensitive markets compare to those in the stock and currency markets and how
the ratios vary across seasons.

We test our hypotheses using futures data for corn, soybeans, wheat, natural
gas, and FCOJ. In general, the results are consistent with our information hy-
potheses. The variance ratios in these markets are lower than the variance ratio
in the stock market and higher than the variance ratio in the currency market,
the variance ratios tend to be much lower during the weather-sensitive season
than during the rest of the year, and the comovements of returns (and absolute
returns) across the grain complex are stronger during the weather-sensitive
season, with a greater increase in comovements during the nontrading period.
We also find that the seasonality in the variance ratios cannot be explained by
seasonal changes in trading activity or by pricing errors. Therefore, we conclude
that a large component of the volatility in weather-sensitive markets is driven
by public information flow regarding weather conditions.

Appendix: Defining the Weather-Sensitive Seasons

A. Grains

We define the seasons for the grains according to the planting and harvesting
times in states that account for the majority of the production of each crop as
reported in USDA (1997). Specifically, for corn and soybeans, the beginning
of the season corresponds to the date when approximately 50% to 75% of the
U.S. crop acreage is likely to be planted and the end of the season corresponds
to the date when approximately 75% of those acres are likely to have been
harvested. The corn season is five and a half months long, spanning the summer.
The soybean season is four weeks shorter than the corn season, with soybeans
planted two weeks later and harvested two weeks earlier than corn.

Defining the wheat season is more complicated because there are two growing
seasons in the U.S., winter and spring. Winter wheat accounts for about two-
thirds of total U.S. wheat acreage and is planted in the fall, usually by early-
to mid-October. Depending on conditions, this wheat might sprout in the fall
and be grazed before going dormant for the winter. In the spring, this wheat
sprouts sometime after mid-March and is harvested in June and July. Yields
are sensitive to weather conditions (particularly moisture) during the entire
growing period, but they are much less sensitive during the dormant months.
For spring wheat, 50% to 75% of the crop is typically planted by mid-May and
75% is harvested by the end of August. To capture the weather-sensitive periods
for both wheat crops, we define the season as starting in mid-March when the
winter wheat sprouts and running through the end of August when the spring
wheat is harvested.22

22 Several varieties of wheat are accepted as deliverable grades against the CBOT wheat futures

contract including No. 2 Hard Red Winter Wheat, No. 2 Dark North Spring Wheat, and No. 2

Northern Spring Wheat.
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B. FCOJ

The supply of oranges for FCOJ is sensitive to weather-related growing condi-
tions throughout the year. Since about 95% of the oranges produced in the U.S.
for FCOJ are grown around Orlando, Florida, supply is particularly sensitive
to freezing temperatures in this area. However, defining the weather-sensitive
season is complicated by at least three factors. First, while winter freezes pose
the greatest threat to FCOJ production in the U.S., the orange trees, buds, and
blossoms are sensitive to general weather conditions throughout the year. This
is in contrast to the more concentrated period of weather sensitivity during the
shorter growing seasons for the grains. Second, demand fluctuations may be
more important for orange juice, a more discretionary item, than for staples
such as grains. Third, the impact of (relatively weather-insensitive) Brazilian
production may cause specific weather conditions to have less effect on supply
and, hence, prices.23

Nonetheless, since the potential impact of freezes is the source of weather
sensitivity most commonly studied in the literature, we define the weather-
sensitive season for FCOJ to encompass the months when damaging freezes
around Orlando are most likely to occur. Attaway (1997) documents the im-
portant freezes in Florida from 1835 to 1998. All of these freezes occurred in
December, January, or February. Hence, we define these three months as the
weather-sensitive season for FCOJ.

C. Natural Gas

Our definition of the weather-sensitive season for natural gas is based on two
considerations. The first is identifying the months in which natural gas is with-
drawn from storage and therefore supply is constrained.24 Using data reported
in the EIA’s Natural Gas Monthly (various issues), we determine that natural
gas withdrawals normally occur from November through March. The second
consideration is identifying when there is a high probability of extreme tem-
peratures that can cause unexpectedly high withdrawals. Using data reported
by the National Climate Data Center in Surface Data, Monthly, we identify
the months with average temperatures below freezing for the states whose de-
mand accounts for the majority of natural gas storage withdrawals. We define
these months, December through February, as our weather-sensitive season for
natural gas.
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